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Abstract— In open-environment machine learning (open ML),
the learning objectives can vary according to specific real-
world requirements. Models tailored for initial objectives may
not be appropriate for the varied objectives. Retraining models
from scratch for every single objective can be computationally
intensive. Therefore, it is desirable to reuse models trained on
the original objectives to help learn under the varied objectives.
To this end, it is essential to characterize the objective correla-
tions to better reuse the models. Previous works only consider
the relative importance between pairs of previous and varied
objectives, also known as previous-varied objectives correlations,
ignoring correlations among the original objectives themselves.
In this article, we demonstrate the importance of cross-original
objective correlations. We propose a novel approach that employs
the optimal transport technique to model correlations across all
previous and varied objectives and then facilitates model reuse
by utilizing learned transportation discrepancies to incorporate
model reusabilities. Our empirical results show that our approach
significantly outperforms existing benchmarks and well captures
the underlying objective structure, validating the importance of
accurate objective correlation modeling for learning with varied
objectives.

Index Terms— Correlation exploration, learning with varying
objectives, model reuse, open-environment machine learning
(open ML).

I. INTRODUCTION

LEARNING objectives of machine learning models refer
to the specific goals or tasks that machine learning

algorithms aim to achieve and define what the algorithms are
trying to learn or accomplish during the process. Traditionally,
the learning objective is often assumed to be designed by
the user and kept invariant during the learning procedure.
In recent years, there has been a growing trend to address
open-environment machine learning (open ML) [1] in real-
world applications, where significant changes, e.g., input and
output spaces, hypothesis spaces, and learning objectives, exist
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among previous and current learning tasks. Among them, the
changing objective is less studied but quite challenging to
handle. In an open and dynamic environment, the learning
objectives are defined by the specific task or domain appli-
cations and can therefore vary beyond what already trained
models can accommodate.

Despite the significance of this topic, the exploration of
learning with varied objectives remains relatively rare in
machine learning research. One approach to handling varied
objectives is training a new model whenever the objective
changes. However, this can result in significant computational
waste, and the original training data may be limited—
especially in open ML scenarios where objectives frequently
change. Is there a more efficient alternative to retraining from
scratch? A more advanced method, inspired by the idea of
model reuse [2], considers adapting already trained models to
varied objectives. We formally define this class of methods
as objective adaptation (OA) methods. The central challenge
of such adaptation lies in the requirement to utilize obtained
information to decide “how much” each model should be
reused—a concept referred to as the reusability of the base
models.

One approach to constructing reusability in OA is to explore
the previous-varied objective correlations, defined in this arti-
cle as the relationships between the original objectives and
the varied new objectives. The key idea is that if the varied
objectives are not significantly different from the original
ones, models trained on the original objectives can still be
useful for the new objectives. Without explicitly modeling
these correlations, Li et al. [3] proposed an OA method that
adjusts the original hypothesis based on the target performance
measure, leveraging the observation that many performance
measures are correlated. Later, Ding and Zhou [4] modeled
the varied objectives as a weighted linear combination of the
original objectives, with the weights representing objective
importance and explicitly capturing the previous-varied objec-
tive correlations.

However, existing studies have overlooked the crucial role
of the correlations among the original objectives themselves,
which we define in this article as the cross-original objec-
tive correlations. In this article, we emphasize that the
cross-original objective correlations are crucial to the previous-
varied correlations, which, in turn, are crucial for OA in
learning with varied objectives.

To illustrate, consider the example of Fig. 1. Suppose that
the learner faces a classification task with three classes, 1–3,
with originally trained one-vs-one classifiers: f1,2, f2,3, and
f1,3. Now, suppose that the objective changes to ℓ3,∗, where
∗ represents the other classes and focuses on distinguishing
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Fig. 1. Illustrative example showing the importance of considering cor-
relations within original objectives when addressing objective discrepancies.
The example begins with three trained one-vs-one binary classifiers, denoted
as f1,2(x), f2,3(x), and f1,3(x), where the subscripts indicate their specific
classification objectives. Suppose that the new objective shifts to ℓ3,∗, focusing
on whether class 3 can be correctly distinguished from the other classes.
Without considering cross-original objective correlations, f1,2 may appear
irrelevant to the new objective. However, when combined with f2,3 or
f1,3, f1,2 provides additional marginal information that can benefit the new
objective.

class 3 from the rest. The classifier f1,2 appears irrelevant
to this new objective using only previous-varied objective
correlations. However, incorporating cross-original objective
correlations shows that combining f1,2 with f2,3 or f1,3 pro-
vides useful marginal information (the multiparty multiclass
margin [5]). This example demonstrates the importance of
cross-original correlations in revealing the true reusability of
base models.

In this article, we revisit the problem of learning with
varied objectives, where the learning objective differs from
that of the original models. Assuming that the original models
remain effective due to correlations between objectives, the
task is restricted to OA methods, which adapt models to new
objectives without retraining from scratch. The key challenge
lies in determining each model’s reusability, which determines
its contribution to adaptation. To address this, we formalize
the cross-objective correlations as transportation discrepancies
within a unified framework using optimal transport techniques.
Leveraging these correlations, we introduce a reusability crite-
rion and propose the OA by correlation-based reuse (OACR)
algorithm, which jointly estimates correlations and optimizes
model reuse. Experiments on real-world applications demon-
strate significant improvements, underscoring the impor-
tance of cross-objective correlations in learning with varied
objectives.

The rest of this article is organized as follows. We introduce
related works, the problem setups, and some preliminaries in
Sections II and III. Then, we introduce the proposed approach
in Section IV. We finally present the experimental results and
conclude this article in Sections V and VI.

II. RELATED WORK AND DISCUSSION

The problem of OA arises in learning with varied objectives
in open ML, where the learning objective can frequently
shift to meet real-world demands [1]. One line of approaches
involves training new models for each objective indepen-
dently, without leveraging prior information [6], [7]. Wu and
Zhou [8] further categorize common objectives into a universal
framework for multilabel learning. In contrast, another line of

approaches focuses on model reuse, where previously trained
models are adapted to new objectives, also known as OA [5],
[9]. Li et al. [3] propose a weighted ensemble of original
models without explicitly modeling objective correlations,
while Ding and Zhou [4] address cases where objectives are
not provided in advance. They model the varied objectives
as a weighted combination of the original ones and learn
these weights from implicit feedback to capture objective
importance and reusability. Despite these advances, existing
approaches overlook the correlations among objectives, which
we argue are crucial for accurately modeling reusability and
effectively learning with varied objectives.

OA is closely related to multiobjective learning [10], [11],
[12], [13], but they address distinct challenges. OA focuses
on adapting existing models to new objectives by leverag-
ing relationships among objectives for targeted adjustments.
In contrast, multiobjective learning seeks to optimize multiple
objectives simultaneously, often using evolutionary algo-
rithms [14], [15] to identify the Pareto front—the set of
solutions where no single objective can be improved without
degrading another. While multiobjective learning balances all
objectives equally, OA prioritizes smooth transitions between
objectives, exploiting their relationships to guide adaptation
more effectively.

Another related area is domain adaptation (DA) [16], [17],
[18], [19], which focuses on transferring existing models or
knowledge to new tasks by addressing differences in data dis-
tribution between source and target domains. DA emphasizes
knowledge transfer across domains with varying distributions.
In contrast, OA assumes consistent data distributions but shifts
learning objectives. This consistency enables OA to reuse
representations learned by the original models, addressing
challenges distinct from DA. The differing contexts of envi-
ronmental variation in these problems render their methods
generally incompatible.

More broadly, handling varied objectives is an essential yet
underexplored challenge in open ML. Unlike traditional ML
with static settings, open ML faces dynamic challenges, such
as emerging new classes [20], [21], evolving features [22],
[23], changing data distributions [24], [25], and varying
objectives [26]. These challenges require the learning models
to be flexible to adapt to open and dynamic environments.
As objectives evolve, models must adjust seamlessly to remain
effective. Addressing varied objectives is, therefore, funda-
mental for building robust and practical solutions in open
ML.

III. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we first formulate the problem setup of
OA and then provide preliminaries useful for the subsequent
technical discussions.

A. Problem Formulation

The OA method considered in this article is formalized
as follows. Suppose that the learner has already trained N
models, denoted by F(x) := { f1(x), f2(x), . . . , fN (x)}, where
each f j (x), j ∈ [N ] : X 7→ Y is a mapping from the feature
space X to the label space Y , trained independently according
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to some unknown learning objectives {ℓ1, . . . , ℓN }.1 Although
the data distribution D remains unchanged, the learning objec-
tives and their corresponding performance measures may vary
based on real-world requirements, meaning that the trained
models in F might not satisfy new objectives.

Suppose that the learning objective shifts to a known ℓ∗,
which evaluates the quality of learning. The task is to obtain
a new model that performs well on ℓ∗. A straightforward
approach is to retrain a completely new model on the data
distribution D, using ℓ∗ or its convex surrogate as the risk
function and employing empirical risk minimization (ERM).
However, retraining becomes inefficient in open ML, where
objectives frequently change. By the time retraining is com-
plete, objectives may have shifted again, leading to repeated
training cycles where no model is operational during the
transition.

An alternative approach is model reuse [2], which adapts
existing models according to the new objectives. In the fol-
lowing, we leverage optimal transport theory to model the
correlations among the objectives of the base models.

B. Preliminaries: Background for Optimal Transport

To better present our proposed approach, we first introduce
some preliminaries on optimal transport theory, which is
essential for modeling objective correlations.

Optimal transport quantifies the discrepancy between two
probability distributions by measuring the effort required to
transform one distribution into the other. This effort is rep-
resented by a cost matrix, typically denoted as M , which
encodes the pairwise costs of moving mass between points in
the two distributions. Unlike traditional discrepancy measures
that compare distributions in a fixed space, optimal transport
accounts for the underlying geometries of the probability
spaces, making it particularly effective for spaces with intri-
cate or heterogeneous structures. Before entering applications,
we outline the fundamental definitions related to optimal
transport.

Definition 1 (Transport Polytope): Given two N -dimen-
sional probability distributions, denoted by 1a and 1b,
the transport polytope between 1a and 1b, denoted by
U (1a,1b), is defined as the polyhedral set of N × N matri-
ces as

U (1a,1b) :=
{

P ∈ RN×N
+

∣∣ P1N = 1a, P⊤1N = 1b
}

where 1N is the N -dimensional vector of ones.
Definition 2 (Optimal Transport): Given an N × N cost

matrix M , the optimal transport from the distribution 1a to 1b
on the cost matrix M is defined as the minimum Frobenius
dot product of the cost matrix M and all possible transport
P ∈ U (1a,1b), formally defined as

OT(1a,1b,M) := min
P∈U (1a ,1b)

⟨P,M⟩.

The transport polytope represents all possible joint distribu-
tions that transfer mass from a source distribution to a target
distribution. Optimal transport identifies the best transport
plan that minimizes the transportation cost. Represented by

1Strictly speaking, the objective function should be ℓ(x,y)∼D( f (x), y). For
simplicity, we use this notation where no confusion arises.

a triplet (1a,1b,M), optimal transport measures the dis-
crepancy between the simplex pair (1a,1b) defined on the
cost matrix M . However, there are computational challenges.
Solving the optimal transport problem often involves handling
large linear programs, particularly for high-dimensional data
or large sample sizes. Furthermore, computing the pairwise
costs between all points in the two distributions can be com-
putationally intensive. Recent advancements propose various
approximation and computational strategies [27], [28], [29],
[30] that effectively address these issues.

Unlike traditional metrics that compare distributions point-
wise in a fixed space, optimal transport accounts for the
underlying geometry and structure of the probability spaces.
This makes it particularly effective in capturing the heteroge-
neous characteristics of cross-original objective correlations.

In the following, we demonstrate how to model and adapt
to varied learning objectives by capturing the correlations
between original and new objectives using the optimal trans-
port theory. By constructing a cost matrix that encodes
pairwise transport costs between objectives, the method quan-
tifies the discrepancy between objective distributions. This
allows for the modeling of cross-original objective corre-
lations, which are crucial for accurately estimating model
reusability in new contexts. The optimal transport framework
provides a solid mathematical foundation for this estimation,
facilitating the computation of a transport plan that minimizes
the cost of transforming the original objective distribution to
the new one. This ensures that the adaptation process accounts
for the underlying geometries and structures of the objective
spaces, offering a robust mechanism for effective model reuse
and OA in dynamic learning environments.

IV. PROPOSED APPROACH

In this section, we first introduce the OA task, explaining
how we can construct models with the original obtained
models. Then, we introduce how to estimate the reusability
based on the cross-original objective correlations and how this
contributes to our OA procedure.

A. Correlation-Based Model Reuse

Recall that the learning task is to adapt the base models to
the varied objective ℓ∗. One effective approach is to construct
an ensemble of the base models. Specifically, given the set
of base models F(x) := { f1(x), f2(x), . . . , fN (x)}, we first
construct a weighted linear ensemble of the base models and
then add an extra perturbation to this ensemble. Formally, the
target model h(x) is constructed as

h(x) = sign

(
N∑

i=1

αi fi (x)+ β⊤φ(x)

)
(1)

where fi (x) are the base models and fδ(x) := β⊤φ(x)
is the auxiliary δ-function. Notably, the extension from
binary classification to multiclass classification is conceptually
straightforward using one-hot encoding for labels. For sim-
plicity and without loss of generality, this article focuses on
the binary classification case, as all methods described can be
naturally extended to the multiclass scenario.
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Notice that the model above is a parameterized model.
To obtain the target model, we need to learn the weight
parameters α := [α1, . . . , αN ]

⊤ and the δ-function. Intuitively,
if one model’s objective is more closely related to the varied
objective, it should receive more weight. This observation
leads to the need for a method to measure the “discrepancy”
between the objective of a base model and the new objective,
which we define as the previous-varied objective correlations.
Existing works [4], [31] assume the new objectives to be
weighted combinations of the original objectives, directly
formalizing the previous-varied objective correlations through
weights, without considering the correlations between the
original objectives—what we call cross-original objective cor-
relations.

Specifically, the learner aims to learn the weight vector
α in the (N − 1)-dimensional simplex,2 denoted as α :=

[α1, . . . , αN ]
⊤, such that the new objective ℓ∗ is expressed

as a weighted sum of the original objectives

ℓ∗ =

N∑
i=1

αiℓi (2)

where ℓi for i ∈ [N ] represents the learning objective
of base model fi (x). However, when the objectives of the
base models are correlated, co-linearity can destabilize this
regression. Meanwhile, the assumption implied by (2) restrains
the new objective to be within the convex hull induced by
original objectives, which may not always hold. To address
these issues, rather than directly considering the one-to-one
discrepancy from any original objective to the new objective,
we also model the internal correlations within the original
objectives. This allows us to better understand the relationship
between the new objective and the original objectives. Specif-
ically, we span the objective space by defining the following
normalized objective vector as the basis:

L(x,y)∼D(h) :=
1

Z(h)

[
ℓ1(h(x), y), . . . , ℓN (h(x), y)

]⊤ (3)

where Z(h) =
∑N

i=1 ℓi (h(x), y) is the normalization factor,
making L(h) lying in the (N − 1)-dimensional simplex.

Assuming that the base models are well trained according
to their respective objectives, the consistency between the
models and objectives in the objective space can be expected.
Each objective of a base model can be represented as a
one-hot distribution in this space. For example, the vector
[1, 0, . . . , 0] represents the objective of base model f1(x) in
the objective space. When constructing the target model h(x)
using the weighted ensemble in (1), the projection of the
new objective onto the objective space is simply the weight
vector α = [α1, . . . , αN ]

⊤. By transforming each base model
into its corresponding distribution in the objective space,
we can define two key quantities: the correlated discrepancy
(CD) between a given base model and the target model, and
correlated reusability (CR), which is defined as the negative
weighted sum of the correlated discrepancies.

Formally, the CD between ℓi and ℓ∗, denoted by CDi , and
the CR of all base models, denoted by CR, are defined as

CDi := OT(ei ,α,M) (4)

2The (N − 1)-simplex 1N−1 is the set of all N -dimensional vectors
[α1, α2, . . . , αN ] such that αi ≥ 0 for all i , and

∑N
i=1 αi = 1.

CR := −
N∑

i=1

αi · CDi (5)

where ei is the one-hot N -dimensional vector representing the
original objective of fi (x), α is the projection of the new
objective onto the objective space, and M is the N × N cost
matrix encoding the correlations between the objectives.

The intuition behind these definitions can be explained as
follows. CDi corresponds to the CD between the objective of
fi (x) and the new objective. Maximizing CR is equivalent
to minimizing the weighted CD, which intuitively seeks a
consensus point in the objective space that is closest to all
original objectives, weighted by the discrepancy and the model
weights in (1).

Note that when the entries of the cost matrix M are set
to 1 for all off-diagonal entries and 0 for the diagonal, this
formalization reduces to the traditional one-to-one discrepancy
in (2), which does not consider the cross-original objective
correlations. Moreover, even though the bases of the objec-
tive space in (3) are not guaranteed to be orthogonal, the
co-linearity issue is alleviated by the cost matrix M , which
explicitly encodes the correlations. Therefore, the cost matrix
M plays a critical role in the overall learning procedure.

In the following, we describe how to obtain this cost matrix
M , either through learning from data or model specifications.

B. Learning the Cost Matrix
In this section, we introduce our method for learning the

cost matrix. A crucial element in this procedure is the model
specification [32], [33], which is the detailed description of
a model’s functionality, capabilities, and applicable contexts.
These specifications can include statistical properties, semantic
descriptions, and other relevant metadata, enabling the precise
identification and reuse of models for various tasks, even
beyond their original purposes. They are frequently provided
alongside models on platforms such as Hugging Face.

We consider two main scenarios.
1) When no data are available, we can only infer objective

correlations from model specifications.
2) When a limited amount of data is available, we can

extract additional information from this data.
We first focus on the scenario where only model spec-

ifications are available. Among various types of model
descriptions, we use the reduced kernel mean embedding
(RKME) specification [34] within the learnware frame-
work [2], [32] to demonstrate how to construct the cost
matrix from specifications. The same principle applies to other
specifications.

Example: In this example, we illustrate the process of
generating the cost matrix using the RKME specification.

1) Obtaining RKME for Base Models: The first step is to
find the corresponding vectorized representation in a unified
reproducing kernel Hilbert space (RKHS) for each base model.
Specifically, we introduce the detailed steps as follows.

1) Kernel Mean Embedding (KME): Compute the empirical
KME for each base model fi

µi
k =

1
m

m∑
j=1

k(x j , ·) (6)
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Algorithm 1 Constructing Cost Matrix With RKME
Require: A set of base models { fi }

N
i=1, learning rate η,

number of reduced points R
Ensure: Cost matrix M

1: Initialize cost matrix M ∈ RN×N

2: for each model fi do
3: Calculate µi

k according to (6) ▷KME for model i
4: repeat
5: Update γ i according to (7): ▷Update weights
6: Update Z i according to (8) ▷Update points
7: until convergence
8: Construct (ψ, t)i according to (9)▷RKME for model i
9: end for

10: for each pair of models (i, j) do
11: Calculate Vi, j , Qi, j according to (10) (11)
12: Calculate Mi, j according to (12) ▷Final cost matrix
13: end for
14: return Cost matrix M

where {x j }
m
j=1 are the training samples and k(x j , ·)

represents the kernel function k evaluated at the training
sample x j and is a function mapping from the input
space to the RKHS.

2) Reduced Set Construction: For base model fi , the
reduced set is the set that approximately preserves the
corresponding empirical KME information. Specifically,
this can be implemented by finding the smaller set of
points {zi

r }
R
r=1 with weights {γ i

r }
R
r=1 such that∥∥∥∥∥µi

k −

R∑
r=1

γ i
r k
(
zi

r , ·
)∥∥∥∥∥

2

Hk

is minimized. Here, Hk denotes the RKHS associated
with kernel k and R is the number of reduced points
prespecified by the learner, determining the tradeoff
between computational efficiency and approximation
accuracy. This optimization problem can be solved by
the following two-step alternating optimization: fix {zi

r }

and calculate γ i by

γ i
= K−1C (7)

where K is the kernel matrix with entries Ksr =

k(zi
s, zi

r ) and C is a vector with entries Cs =

(1/m)
∑m

j=1 k(zi
s, x j ); and then, fix γ i to update zi

r using
gradient descent

zi
r ← zi

r − η
∂

∂zi
r

∥∥∥∥∥µi
k −

R∑
r=1

γ i
r k
(
zi

r , ·
)∥∥∥∥∥

2

Hk

(8)

where η is the predefined learning rate.
3) Computing RKME: The RKME specification for the

i th base model fi , denoted by (ψ, t)i , can then be
constructed by

(ψ, t)i =
R∑

r=1

γ i
r k(zi

r , ·). (9)

This process results in a compact and informative represen-
tation of the model’s training distribution.

Algorithm 2 ASQP
1: Input: The cost matrix M , the regularization parameter

λ1, stopping threshold ϵ.
2: Initialization: randomly simplex α, CR = −1, 1 > ϵ

3: while 1 ≥ ϵ do
4: Fix α, solve CDi according to (14) for i ∈ [N ];
5: Fix CDi for i ∈ [N ] and update α by solving (15);
6: Calculate CR′ for current result according to (5).
7: Calculate the CR gain 1← |CR− CR′|;
8: Restore the current results CR← CR′;
9: end while

10: Output: Weight vector α, correlated reusability CR.

2) Constructing the Cost Matrix: Once the vectorized rep-
resentations are obtained, the cost matrix can be constructed
based on RKHS discrepancies and error overlaps. Specifi-
cally, when model specifications are available, the discrepancy
between pairs of base models ( fi (x), f j (x)) is defined as

Vi, j = ∥(ψ, t)i − (ψ, t) j∥
2
Hk
. (10)

In cases where additional data is accessible, it is possible to
incorporate this data to derive a more informative cost matrix.
To achieve this, we compute the error overlap Qi, j , which
quantifies the similarity in errors between fi (x) and f j (x)

Qi, j =
mi, j

mi + m j − mi, j
. (11)

Subsequently, the metrics are uniformly combined

Mi, j = γ Vi, j + (1− γ )Qi, j , for i, j ∈ [N ] (12)

where γ represents the balance between relying on predefined
model specifications and leveraging information learned from
data. When the base model is suboptimal or there is a shift
in data distribution, it is advantageous to prioritize model
specifications by assigning a higher value to γ . In these
circumstances, increasing γ reflects a stronger emphasis on
predefined model characteristics, thereby reducing the influ-
ence of data-driven insights Qi, j , which may be less reliable.

Remark 1 (Complexity and Scalability): For each model,
calculating the KME with m samples requires O(m2) oper-
ations. Building a reduced set for KME involves O(R2)

complexity for R reduced sets. In addition, calculating the
RKHS discrepancy V , error overlap Q, and cost matrix
M each requires the O(N 2) operations. Therefore, the total
complexity is O(N · (m2

+ R2
+ N )). It is important to note

that m is the number of selected training samples from the
base models, and R is the number of reduced sets; both are
usually very small. For scalable base-model pools where N
is large, the quadratic complexity term of O(N 2) may limit
scalability. Techniques, such as kernel herding, can efficiently
reduce complexities for large-scale computations.

This example demonstrates how the RKME methodology
can be employed to construct a cost matrix for optimal
transport modeling, considering both predefined specifications
and learned data discrepancies. In the following, we introduce
how to learn the weight parameter for each model.
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Algorithm 3 OACR
1: Input: Data (xi , yi ) ∼ D, i ∈ [m], base models
{ f1(x), . . . , fN (x)}, regularization parameter λ1,λ2,λ3;

2: Calculate the cost matrix M according to Algorithm 1;
3: Obtaining the weight vector α and the correlated reusabil-

ity CR according to ASQP (Algorithm 2);
4: Learn the auxiliary δ-function according to (16);
5: Construct the target model according to (1);
6: Output: Target model h(x).

C. Learn the Weight Parameters

When obtaining the cost matrix M from the data or model
specifications, we can then learn the weight parameter α

in (1). Based on the above definition of CR, we obtain the
weight vector α by finding the projected coordinate of the
new objective that has the highest CR or correspondingly
smallest weighted correlated discrepancies to the objectives of
base models so that the base models can be utilized as much
as possible. Formally, we obtain α by solving the following
regularized optimization problem:

α = arg max
α∈1N−1

CR+
λ1

2
∥α∥2

2

= arg min
α∈1N−1

N∑
i=1

αi · OT(ei ,α,M)+
λ1

2
∥α∥2

2 (13)

where the extra regularization term (λ1/2)∥α∥2
2 avoids assign-

ing too large weight on a single base model. Notice that when
replacing the above CDi by traditional discrepancy measures
such as Euclidean norm, the above optimization problem
reduces to a traditional quadratic programming (QP) problem,
which finds the central point of several fixed points (which is
exactly the base models in the objective space) according to
square discrepancies and thus can be efficiently solved due to
its convexity. However, when it comes to the CD, solving the
optimization in (13) efficiently is not trivial. The key lies in
the definition of CD that solving the optimal transport itself
would be ill posed in stability. For fixed α, the corresponding
transport polytope U (ei ,α) defined in Definition 1 is fixed for
fixed ei , and the optimal transport defined by Definition 2 can
be efficiently found inside the convex polytope; when α now
turns into a variable, the transport polytope is changing with
α, resulting in the nonconvexity of the corresponding optimal
transport optimization.

To handle the difficulties in solving optimization (13),
we propose the following approaches. We first separate the
optimization into two phases and alternatively optimize one
phase each time. The procedure repeats until converges.
Specifically, the algorithm conducts the following procedures
alternatively.

1) Fix α and calculate CD CDi for i ∈ [N ] with Sinkhorn
approximation [27].

2) Fix CDi and update α by reducing the original optimiza-
tion into a QP problem.

We formally propose the above approach as Alternative
Sinkhorn-QP (ASQP).

At the beginning of the algorithm, a random (N − 1)-
dimensional simplex is initialized as α. Then, the algorithm

enters the following two-step alternative optimization proce-
dure until certain convergence is reached: the first step is to
fix α and optimize CDi for i ∈ [N ], and the second step is to
fix CDi and optimize α.

In the first step, instead of directly optimizing CDi by mini-
mizing optimal transport OT(ei ,α,M), which provides precise
results but at high computational complexity, we solve a surro-
gate problem. This surrogate problem offers an approximation
with bounded errors, significantly reducing computational
complexity. Specifically, the surrogate is defined as

CDλ2
i = min

P∈U (ei ,α)
⟨P,M⟩ −

1
λ2

H(P) (14)

where H(P) = −P log P = −
∑N

i=1
∑N

j=1 pi j log pi j is
the element-wise entropy of P and λ2 > 0 is the entropic
regularization coefficient.

The introduction of the entropy term makes the surrogate
problem strongly convex, ensuring fast convergence rates.
In this case, we can apply the famous Sinkhorn algorithm [27]
to solve the surrogate problem. The following theorem guar-
antees that the approximation error introduced by the extra
regularization is bounded by a problem-related term, and the
convergence rate of the surrogate problem is exponential.

Theorem 1: Let λ2 > 0 be the entropic regularization
parameter in the surrogate problem defined by (14). Let CDi
be the solution to the original optimal transport problem, and
let CDλ2

i be the solution to the surrogate problem. In addition,
let CDλ2,k

i denote the kth iterate of the Sinkhorn algorithm
applied to the surrogate problem. Then, the following results
hold.

1) Proximity of Surrogate to Original: There exists a
constant C > 0, dependent on the specific problem
parameters, such that the approximation error in terms
of the Frobenius norm is bounded by

∥CDλ2
i − CDi∥F ≤

C
λ2
.

2) Exponential Convergence Rate of the Surrogate: The
iterative solution CDλ2,k

i to the surrogate problem con-
verges exponentially to CDλ2

i . Specifically, there exists a
constant C ′ > 0 such that the approximation error after
k iterations is bounded by

∥CDλ2,k
i − CDλ2

i ∥F ≤ C ′ exp(−λ2k).

Remark 2: The first result ensures that the solution of the
surrogate problem defined in (14) is close to the original
optimal transport solution. The second result guarantees that
the surrogate problem can be solved efficiently using the
Sinkhorn algorithm, with an exponential convergence rate.
The overall computational complexity of solving the surrogate
problem in (14) is thus O(N 2 log(N )/λ2

2).
Next, we proceed to the second step of the alternating opti-

mization, where CDi is fixed and we optimize α. Specifically,
with CDi fixed, the problem in (13) reduces to the following
QP problem:

min
α

c⊤α +
λ1

2
· α⊤IN α

s.t. 1⊤N α = 1
IN α ≥ 0N (15)
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where c is constructed by taking CDi as the i th entry, i.e., ci =

CDi . Meanwhile, IN is the N -dimensional identity matrix; 1N
and 0N is N -dimensional vector of ones and zeros, respec-
tively. The constraints guarantee α to be a valid distribution.
We can prove that the above QP problem is strictly convex and
thus can be efficiently solved by various methods. We take the
interior point method in the implementation, which is provably
guaranteed to find a global optimal solution within O(N 3.5)

complexity in the worst case.
By alternatively repeating the above two-step procedure, the

algorithm repeatedly updates CR according to (5) until certain
stopping condition is met; the algorithm stops and outputs the
weight parameter. We summarize the above procedure as the
ASQP algorithm in Algorithm 2. In the following, we focus
on how to learn the δ-function based on the CR.

D. Learn the Auxiliary δ-Function

When the weight vector α in (1) is determined, the next
step is to learn the δ-function. Note that the new objective
may not always fall within the objective space, causing the
weighted ensemble of base models to fail if the new objec-
tive differs significantly from previous ones. The δ-function
facilitates retraining, indicating that our constructed hypothesis
does not always rely on the weighted ensemble. We perform
the learning in an end-to-end manner, allowing simultaneous
learning of the parameter β and the feature representation φ(·).
Specifically, for a given new objective ℓ∗, we directly learn the
δ-function by minimizing the following structural risk:

min
β

m∑
i=1

ℓ∗(h(xi ), yi )+
λ3

2
·
∥β∥2

2

−CR
. (16)

According to the definition in (5), CR measures how
much previous information aids the current hypothesis, deter-
mined by the distance between the target model h(x) in (1)
and the weighted ensemble of base models

∑N
i=1 αi fi (x) in

the objective space. This regularization, combined with the
auxiliary δ-function, enables a balance between relying on
original models and retraining a new model. For instance,
if the new objective significantly deviates from previous
ones, the correlated discrepancies CDi will be large, resulting
in a highly negative CR. Consequently, the regularization
term becomes dominant, allowing β to scale significantly
by reducing the penalty with (1/(−CR)). In this scenario,
the δ-function in (1) dominates the weighted ensemble, indi-
cating that the final classifier h(x) will prioritize retraining
the δ-function over trusting the weighted ensemble. This
approach is reasonable, as there is limited reusable informa-
tion, and the previous weighted ensemble should contribute
less.

E. Overall Procedure

Finally, we summarize the whole learning procedure as the
OACR algorithm in Algorithm 3 and Fig. 2. At the begin-
ning of a learning task, we first obtain several base models
f1(x), f2(x), f3(x), . . . , each with corresponding specification
or data; when the objective varied, we take the objectives of
these base models as the bases and span the corresponding
objective space, to which we project the original models.

Meanwhile, we can learn a cost matrix M from the model
specifications or data. By obtaining this cost matrix and the
coordinates of base models on the objective space, we can
find the coordinates of the target model by minimizing the
weighted distance on the objective space by the ASQP
algorithm, according to which we construct the target model by
h(x) = sign(

∑N
i=1 αi fi (x)+ β⊤φ(x)), where α is the weight

distribution found by ASQP, and β⊤φ(x) is the δ-function
trained by ERM. In the following, we empirically evaluate
our approach to real-world OA tasks.

V. EXPERIMENTS

In this section, we conduct two real-world applications
on OA. We first conduct experiments on multilabel learn-
ing, stating the correlations within labels are essential; then,
we conduct OA as in [3], which adapts original models to
specific performance measures. All experiments were con-
ducted on a system equipped with Intel Xeon E5-2640 v4
(10C/20T, 2.4 GHz), 32-GB DDR4-2666 RAM, and NVIDIA
RTX 2080Ti (11-GB GDDR6). All cost matrices used in the
experiments are learned purely from RKME specifications,
assuming that no additional data are available.

A. Exemplary Case: Multilabel Learning
We first conducted experiments on real-world multilabel

data to verify the importance of cross-original objective
correlations in OA. In multilabel learning, each instance is
associated with multiple labels that describe different aspects
of the instance. For example, a dog can be labeled as both
“mammal” and “animal” simultaneously. Clearly, in this exam-
ple, “mammal” and “animal” are correlated, a relationship
dictated by the intrinsic structure of the label space. Utilizing
such label correlations, or in our approach, cross-original
objective correlations are central to our method.

To illustrate this, we consider a binary 2-label multil-
abel classification task. The learner is initially provided with
four base models f1(x), . . . , f4(x), where fk(x) for k =
1, 2, 3, 4 are trained to maximize the accuracy for the kth label,
denoted by ℓk . Suppose that now, the learning objective shifts
to the Hamming loss, which evaluates the accuracy across all
labels. The Hamming loss is formally defined as follows:

ℓ∗ :=
1

ml

m∑
i=1

l∑
j=1

Iŷi j ̸=yi j
=

1
4

4∑
k=1

ℓk

where m is the total number of instances, l is the number of
labels, and ŷi j is the prediction for the j th label of the i th sam-
ple. In this case, since the varied objective can be written as a
weighted combination of the original objectives, the weights
can be treated as a valid criterion for the previous-varied
objective correlation.

If equal weights are assigned to each of the base models,
it suggests that the average ensemble of base models may
be a promising model for the new objective ℓ∗. However,
this assumption does not hold in practice. One key difference
between multilabel learning and single-label learning is the
existence of label correlations [35], which implies a more
complex internal structure within the base models. Therefore,
determining model reusability solely based on weights may
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Fig. 2. Illustration of the OACR. We first transform the objectives of the base models onto an objective space, and then, by constructing the target model
as a weighted ensemble of base models plus an extra disturb function, we can measure the correlated discrepancies between the objective of a base model
and the new objective (represented by the purple double-headed arrow), as the weighted optimal transport (represented by dashed lines), where the optimal
transport is the shortest transport from the objective of the base model (in this example, represented by a one-hot vector e3) to the new objective (the α
marked in blue) on a cost matrix M that is learned from model specifications or data.

Fig. 3. (a) Weights assigned to base models by ASQP over iterations, where each color represents the weight assigned to a specific base model.
(b) Label-correlation heatmap, with darker blocks indicating higher correlations. In the left plot, unlike the averaged ensemble that assigns equal weights of
0.25 to each model, ASQP assigns greater weights to the first three base models (with higher α1–α3) and the least weight to the fourth base model. This
observation is explained by the right plot: the high correlation between “quiet-still,” “sad-lonely,” and “relaxing-calm” aligns with intuition as these emotional
states are associated with a peaceful and calm atmosphere. Conversely, the low correlation between “angry-aggressive” and the other states is expected as it
is characterized by high energy and intensity, sharply contrasting with the calmer emotions.

fail due to the presence of multicollinearities among the labels.
This highlights the necessity of considering label correlations
to accurately estimate model reusability and improve adapta-
tion to new objectives.

To illustrate the above observation, we simulate the
following scenarios on real-world multilabel data emo-
tions [36], which consists of a collection of texts, each labeled
with six different emotions: amazed-surprised, happy-pleased,
relaxing-calm, quiet-still, sad-lonely, and angry-aggressive.
The dataset reflects the multilabel nature of human emotions,
acknowledging that the emotional tones conveyed by the text
can be correlated. We select the last four emotions as the
original objectives in multilabel learning, denoted by ℓ1–
ℓ4, and train their corresponding classifiers f1(x)– f4(x). The
varied objective is the Hamming loss ℓ∗ = (1/4)

∑4
k=1 ℓk ,

which concerns the averaged accuracies over the four labels.
We compare the proposed OACR (Algorithm 3) with the
following contenders.

1) Retrain From Scratch: Without utilizing the original
models, we directly optimize hamming loss on the
available data. This method is implemented with an
eight-layer multilayer perceptron (MLP).

2) Averaged Ensemble: Given that the varied objective can
be represented as the weighted combination of original
objectives with equal weight for each original objective,
we can construct the ensemble of original classifiers
according to (1), with an equal weight of 0.25 assigned
to each of the original classifier.

All the auxiliary δ-functions are trained with the same
structure of MLP and the same set of parameters as retrain
from scratch, including optimizer and learning rate.

Experimental Result: We illustrate the weights assigned
to each base model and the label-correlation heatmap in
Fig. 3. Meanwhile, we present a plot of training epochs versus
averaged accuracy in Fig. 4. Focusing first on Fig. 3, the left
plot displays the weights assigned to base models by ASQP
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Fig. 4. Training epoch versus averaged accuracy. The plot compares the
proposed OACR (red solid line) and OACR without δ-function (OACRw.o.,
red dashed line) with averaged ensemble methods: with δ-function (turquoise
solid line) and without δ-function (turquoise dashed line). Retraining from
scratch (green line) is also included. Performance is measured on the test set
and averaged over ten trials with randomly initialized MLPs, with shaded
areas indicating one standard deviation. OACR shows faster convergence
(stabilizing around 100 epochs) and strong final performance, while the
averaged ensemble achieves the worst results despite an improvement from
the δ-function. Retraining achieves the best final performance but requires sig-
nificantly more epochs, highlighting its higher computational cost compared
to OACR.

over iterations. Each color represents the weight assigned to
one base model. As we can observe, in contrast to the averaged
ensemble, which assigns equal weights of 0.25 to each model,
our proposed method assigns more weight to the first three
base models (with higher α1–α3) and the least weight to the
fourth base model. The right plot in Fig. 3 showcases the label-
correlation heatmap, where a deeper block indicates a higher
correlation between emotions. We find that the unbalanced
weight assignment comes from varying correlation levels:
the “quiet-still,” “sad-lonely,” and “relaxing-calm” emotions
exhibit higher correlations, while the “angry-aggressive” emo-
tion is more isolated, showing lower correlation levels with
the other emotions. This weight distribution, differing from
an equal assignment, arises from our approach’s modeling of
cross-original objective correlations. Turning our attention to
Fig. 4, we present a training epoch versus averaged accuracy
plot, with the training epoch corresponding to the training of
the auxiliary δ-function. We present the performance of our
proposed OACR and OACRw.o. (without δ-function) using
a red solid line and a dashed line, respectively. Meanwhile,
we illustrate the performance of averaged ensemble and aver-
aged ensemblew.o. (without δ-function) with the greenish-blue
solid and dashed lines, respectively. The green line represents
retraining from scratch. All performances are measured on the
test set and averaged over ten independent trials with randomly
initialized MLPs. The shadow represents a one-standard devia-
tion region. With examining the dashed lines, we observe that
the weight distribution assigned by OACR has a relatively
better initialization than the averaged ensemble. As for the
solid lines, OACR reaches a stationary phase with commend-
able performance within a relatively small number of epochs
(approximately 100 epochs). In contrast, while the auxiliary
δ-function significantly enhances the averaged ensemble’s per-
formance from a suboptimal initialization, this improvement
is limited. Consequently, the averaged ensemble exhibits the
lowest final performance. Meanwhile, even though retrain-
ing from scratch achieves the highest final performance,
it takes longer to reach the stationary phase (approximately

TABLE I
STATISTICS OF REAL-WORLD DATASETS

250 epochs), implying a potentially higher computational
cost.

In conclusion, our proposed OACR outperforms the aver-
aged ensemble due to the cross-original objective correlations
and demonstrates a slightly lower averaged accuracy than
retraining from scratch. However, it benefits from a much
faster rate of convergence. This tradeoff that slightly sac-
rifices performance for significantly enhanced efficiency
represents the central advantage of OACR, which we aim to
emphasize.

B. Model Adaptation With Specific Performance Measures

In this section, we conduct the OA task according to
specific performance measures [3]. Specifically, we focus on
the following four commonly used performance measures:
accuracy, F1-score, area under the ROC curve (AUC), and
average precision (AP). For each task, we select one of these
measures as the varied new objective, while the remaining
three measures are treated as the original objectives.

For instance, consider a scenario where accuracy is chosen
as the new objective. In this case, F1-score, AUC, and AP
are treated as the original objectives. We train base models
to optimize these original objectives and then adapt these
models to the new objective of accuracy. Similarly, if F1-
score is selected as the new objective, the base models are
initially trained to optimize accuracy, AUC, and AP, and then
adapted to optimize F1-score. By systematically varying the
new objective and keeping the others as original objectives,
we aim to evaluate the effectiveness of our approach in
adapting to different performance measures as the varied new
objectives.

It is important to note that adapting from one to another is
in fact nontrivial, even for balanced datasets [37]. The main
reasons for this are differences in optimization compatibility,
threshold dependency, and varying emphases on different
error types. Specifically, accuracy, due to its alignment with
cross-entropy loss, can be efficiently optimized via gradient
descent. In contrast, F1-score and AUC are nondifferen-
tiable, preventing direct optimization through similar methods.
Furthermore, accuracy, F1-score, and AP values vary with
classification thresholds, whereas AUC remains threshold-
independent. In addition, accuracy treats all errors equally,
precision focuses more on positive predictions, F1-score bal-
ances precision and recall, and AP considers the ranking
of positive instances. These factors collectively highlight the
complexity and challenges of adapting to these metrics inter-
changeably.
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TABLE II
EXPERIMENTAL RESULTS OF THE OA TASKS. “↑” INDICATES “THE HIGHER THE BETTER.” THE RESULTS ARE

GIVEN IN THE MEAN ± STD (RANK) FORMAT. THE BEST RESULTS ARE EMPHASIZED WITH BOLD

TABLE III
AVERAGE PERFORMANCE RANK OVER ALL EXPERIMENTS

1) Data Description: Table I provides an overview of key
statistics of the dataset we use from the LIBSVM datasets,3

where the imbalance ratio (IR) is defined as the ratio of the
number of samples in the minority class to those in the major-
ity class. A value of IR close to 1 indicates a well-balanced
dataset, typically resulting in strong correlations between
various performance metrics. In contrast, an IR approaching
0 represents a highly imbalanced dataset, where the correlation
between metrics weakens (e.g., accuracy and F1-score may
diverge significantly in cases of extreme imbalance), reflecting
a scenario in which the learning objectives vary considerably
from their original ones.

3https://www.csie.ntu.edu.tw/~cjlin/libsvm/

In addition, we briefly introduce the machine learning tasks
on these datasets as follows.

1) Splice: This dataset focuses on bioinformatics, where
the task is to classify DNA sequences as either splice
junctions—where DNA is split and recombined—or
nonsplice regions, based on sequence information.

2) Letter: In the domain of optical character recognition
(OCR), this dataset involves classifying 26 capital letters
of the English alphabet into two categories: “A to M”
and “N to Z,” using pixel images of the letters.

3) Mitfaces: Pertaining to facial recognition task, this
dataset is used to categorize face data into two prede-
fined categories, utilizing face detection data.

4) Reuters: This dataset is from the field of text mining and
natural language processing (NLP), where the task is
to classify news articles into different predefined topics
based on their textual content.

5) RNA: In bioinformatics and genomics, this dataset is
used to classify RNA sequences into noncoding and
coding categories based on free energy changes and their
secondary structure formation as features.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Nanjing University. Downloaded on December 07,2024 at 05:50:04 UTC from IEEE Xplore.  Restrictions apply. 

~


MA et al.: LEARNING OBJECTIVE ADAPTATION BY CORRELATION-BASED MODEL REUSE 11

6) Usps: This dataset focuses on OCR, where the goal is
to classify handwritten digits “01234” apart from digits
“56789” using images of the digits.

7) Phishing: From the domain of cybersecurity, this dataset
aims to identify and classify websites as either phishing
or legitimate based on various features.

8) Covertype: In forestry, this dataset is used for predicting
the forest cover type based on cartographic information.

9) Vehicle: This dataset pertains to computer vision and
transportation, where the task is to classify vehicles into
two predefined categories based on their silhouettes.

2) Contenders: We compared the following approaches.

1) OACRcvm (Algorithm 3): For our proposed approach,
we first train three core vector machine (CVM) [38] as
the base models according to the original objectives and
then we implement the δ-function in (1) by a eight-layer
MLP.

2) CAPOcvm [3]: CAPO handles the OA problem in
the function-level adaptation framework, except that it
takes various trained models, which are not necessar-
ily designed for the original objectives, and thus, the
objective correlation is not taken into consideration. This
approach can be seen as the ablation method without
objective correlations. Different from the original CAPO
that takes CVMs, RBF-kernelled neural network [39]
and C4.5 decision tree [40] as its base models, we take
five CVMs instead as its base models for CAPOcvm,
to get rid of the differences brought by the base models.
We use the original codes and default parameters.

3) Retraines: Though retrain from scratch always guar-
antees promising performances, the cost is additional
training epochs. To this end, we compare the proposed
approach with a variant of retrain, that puts additional
restriction on the number of training epochs. Specifi-
cally, Retraines will conduct early stopping when our
approach converges, and thus, Retraines represents the
performance of retraining a new model from scratch
given (almost) same amount of computational resources.
The implementation uses exactly the same eight-layer
MLP with the same set of parameters, optimizer, and
learning rate.

3) Experimental Results: Table II presented the perfor-
mance on the varied objective by the above approaches, and we
additionally present the ranks averaged on all tasks in Table III.
The results are represented in percentile, with the best results
emphasized by bold, and the N/A result stands for the
algorithm does not output results within 24 h. As we can see,
OACRcvm reaches the best overall performance. Compared
with Retraines, which does not utilize any of the obtained
models, our proposed approach achieves better performances
in most tasks, the main reason is the faster convergence
brought by the weighted ensemble base models, validating the
rationality of the model reusing strategy; comparing OACRcvm
with CAPOcvm, which does not take the objective correlation
into consideration, we state that the reusing strategies with
explicitly learned previous-varied and cross-original objective
correlations are both helpful for OA tasks.

VI. CONCLUSION AND FUTURE WORK

This article addresses the challenge of learning with varied
objectives by adapting preexisting models to new objec-
tives without starting from scratch. Recognizing that smaller
objective variation discrepancies correspond to more related
models, we emphasize the importance of integrating objec-
tive correlations into the adaptation process. Unlike previous
methods that overlook these correlations, we utilize a cost
matrix with optimal transport techniques to accurately estimate
objective variation discrepancies and guide hypothesis adapta-
tion. Experiments on synthetic and real-world data show the
effectiveness of our approach, validating the significance of
considering objective correlations in OA.

While our framework demonstrates strong potential in
adapting to varied learning objectives, it assumes a fixed data
distribution with well-trained base models. In an open envi-
ronment, distribution shifts in data, causing well-trained base
models to become suboptimal and put for greater robustness
in handling such cases. Future work will focus on improving
the robustness of our proposed approach to data distribution
shifts in a weakly trained model reuse framework for open
ML.
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