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Abstract

This is the supplementary material for the paper Label Dis-
tribution Learning by Optimal Transport (Zhao and Zhou
2018), including proofs of the theorems and lemmas in the
main paper.

Review of Optimal Transport Distance
In this part, we review some basic concepts and properties
for optimal transport distance.

Definition 1. (Transport Polytope) For two probability vec-
tors r and c in the simplex Σd, we write U(r, c) for the trans-
port polytope of r and c, namely the polyhedral set of d× d
matrices,

U(r, c) := {P ∈ Rd×d+ |P1d = r, PT1d = c}. (1)

Definition 2. (Optimal Transport) Given a d × d cost ma-
trix M , the total cost of mapping from r to c using a trans-
port matrix (or coupling probability) P can be quantified as
〈P,M〉. The optimal transport (OT) problem is defined as,

dM (r, c) := min
P∈U(r,c)

〈P,M〉. (2)

Theorem 1. (Optimal Transport Distance) dM defined in
(2) is a distance on Σd whenever M is a metric matrix.

Theorem 1 is proved by gluing lemma, and a detailed
proof could be found in Chapter 6 in the seminal book (Vil-
lani 2008).

Proof of Optimal Transport with a
Pseudo-Metric Cost

In this part, we will prove that for optimal transport with
a pseudo-metric cost matrix, it preserves the sub-additivity
property, which plays a key role in measuring difference be-
tween prediction and groundtruth. Meanwhile, it is sufficient
to make it a strict distance by multiplying dM by 1r 6=c.

The proof here is similar to proofs in papers (Cuturi 2013;
Cuturi and Avis 2014), we provide a detailed proof as fol-
lows for self-containedness.
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Theorem 2. For a pseudo-metric M and probability distri-
butions r, c ∈ Σd, the function (r, c)→ 1r 6=cdM (r, c) satis-
fies all four distance axioms, i.e., non-negativity, symmetry,
definiteness and sub-additivity (triangle inequality).

Proof. Non-negativity is easy to prove: since the coupling
matrix P and cost matrix M are nonnegative. Besides, by
the symmetry of M , dM is itself symmetric in its two argu-
ments. Also, the definiteness is a direct result of the 1r 6=c
term in function definition. The main point is to prove sub-
additivity.

Let x, y, z be three elements in Σd. Let P ∈ U(x, y) and
Q ∈ U(y, z) be two optimal solutions of the transport prob-
lems dM (x, y) and dM (y, z). Let T be a d× d× d tensor,

Tijk =

{pijqjk
yj

when yj 6= 0

0 when yj = 0

DefineR , [rik], where rik =
∑d
j=1 Tijk. Then,R is the

coupling set of x and z, i.e., R ∈ U(x, z). Indeed,
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Now, we proceed to prove the sub-additivity,

dM (x, z) = min
S∈U(x,z)

〈S,M〉
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where we can see that the sub-additivity of M plays an im-
portant role in the proof (in the second inequality).

Proof of Risk Bounds Analysis
In this part, we provide proof of risk bound analysis. To sim-
plify the presentation, we introduce the Sinkhorn loss as:

`(h(x),y) := dλM (h(x),y) =
〈
Pλ,M

〉
(3)

where Pλ is obtained by Sinkhorn iteration defined in
Sinkhorn relaxation for optimal transport.
Proposition 1. Loss function defined in (3) satisfies 0 ≤
`(h(x),y) ≤ ‖M‖∞, where ‖M‖∞ = maxijMij .

Proof. The loss is non-negative due to the non-negativity of
coupling matrix and ground metric. Moreover,

`(h(x),y) ≤ 〈P,M〉 ≤ ‖M‖∞
L∑
i=1

L∑
j=1

Pij = ‖M‖∞.

Based on Sinkhorn loss defined in(3), we introduce nota-
tions of corresponding risk and empirical risk, respectively.

R(h) =
1

m

m∑
i=1

`(h(xi),yi), (4)

R̂(h) = E(x,y)∼P [`(h(x),y)]. (5)

In the following, we will utilize the notion of Rademacher
complexity (Bartlett and Mendelson 2002) to measure the
hypothesis complexity and use it to bound the risk bounds.
Definition 3. (Rademacher Complexity (Bartlett and
Mendelson 2002)) Let G be a family of functions and a fixed
sample of size m as S = (z1, · · · , zm). Then, the empirical
Rademacher complexity of G with respect to the sample S is
defined as:

R̂S(G) = Eσ

[
sup
g∈G

1

m

m∑
i=1

σig(zi)

]
where σ = (σ1, · · · , σm), with σis independent uniform
random variables taking values in {1,+1}. The random
variables σis are called Rademacher variables.

Besides, the Rademacher complexity of G is the expecta-
tion of the empirical Rademacher complexity over all sam-
ples of size m drawn according to D:

Rm(G) = ES∼Dm [R̂S(G)] (6)

Then, we are able to establish a generalization bound
based on Rademacher complexity.

Theorem 3. (Mohri, Rostamizadeh, and Talwalkar 2012)
LetL be the family of loss function associated toH, i.e.,L =
{`(h(x,y), h ∈ H}. Then, for any δ > 0, with probability
at least 1− δ, each of the following holds for all h ∈ H:

R(h) ≤ R̂(h) + 2Rm(L) + ‖M‖∞

√
log(1/δ)

2m
, (7)

where Rm(L) is Rademacher complexity of loss function
class L associated toH.

Proof of Theorem 3
The proof of Theorem 3 is standard, and we provide in here
to make the supplementary self-contained. To prove this the-
orem, we need following concentration inequality.

Support-Theorem 1. (McDiarmids inequality)
Let X1, X2, · · · , Xm ∈ Xm be a set of m ≥ 1 independent
random variables and assume that there exist c1, · · · , cm >
0 such that f : Xm → R satisfies the following conditions:

|f(x1, · · · , xi, · · · , xm)− f(x1, · · · , x′i, · · · , xm)| ≤ ci,

for all i ∈ [1,m] and any point x1, · · · , xi, · · · , xm, x′i ∈
X . Let f(S) denote f(X1, X2, · · · , Xm), then, for all ε > 0,
the following inequalities hold:

Pr[f(S)− E[f(S)] ≥ ε] ≤ exp

(
−2ε2∑m
i=1 c

2
i

)
Pr[f(S)− E[f(S)] ≤ −ε] ≤ exp

(
−2ε2∑m
i=1 c

2
i

) (8)

Based on Proposition 1 and Support-Theorem 1, we pro-
vide the detailed proof of Theorem 3 as follows,

Proof. The proof is similar to the proof of Theorem 3.1
in (Mohri, Rostamizadeh, and Talwalkar 2012). For any
sample S = (z1, · · · , zm), zi = (xi,yi) and any ` ∈
L, we denote ÊS [`] the empirical average of ` over S :

ˆES [`] = 1
m

∑m
i=1 `(zi). Now we define the function Φ as

follows,
Φ(S) = sup

`∈L
E[`]− ÊS [`].

Let S and S′ be two samples differing by exactly one
point, say zm in S and z′m in S′. Then, since the difference
of suprema does not exceed the supremum of the difference,
we have

Φ(S′)− Φ(S) ≤ sup
`∈L

Ê′S [`]− ÊS [`]

= sup
`∈L

`(zm)− `(z′m)

m

≤ ‖M‖∞/m

Similarly, we can obtain Φ(S) − Φ(S′) ≤ ‖M‖∞/m,
thus |Φ(S) − Φ(S′) ≤ ‖M‖∞/m. Then, by McDiarmids



inequality, for any δ > 0, with probability at least 1 − δ/2,
the following holds:

Φ(S) ≤ ES [Φ(S)] + ‖M‖∞

√
log 2

δ

2m
.

Now we will proceed to bound ES [Φ(S)] as follows,
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1
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sup
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1

m
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sup
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1

m
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= 2Rm(L)

(9)

Thus, we have

R(h) ≤ R̂(h) + 2Rm(L) + ‖M‖∞

√
log(1/δ)

2m
.

Proof of Useful Properties of Sinkhorn Distance
Lemma 1. For any double stochastic matrix S ∈ Rd×d+ , its
entropy H(S) satisfies H(S) ≤ 2 log d.

Proof. Since the entropy function is concave,

H(S) = −
d∑
i=1

d∑
j=1

Sij logSij

≤ −d2 · S
d2

log
S

d2
= 2 log d

(10)

where the last equation holds due to S is a double stochastic
matrix such that S =

∑d
i=1

∑d
j=1 Sij = 1.

Lemma 2. For two probability distributions r, c ∈ Σd,
Sinkhorn distance dλM (r, c) and optimal transport distance
dM (r, c) satisfy the following relationship,

dM (r, c) ≤ dλM (r, c) ≤ dM (r, c) +
2

λ
log d (11)

Proof. Let P ∗ and Pλ be corresponding coupling matrix of
dM (r, c) and dλM (r, c), i.e.,

P ∗ = arg min
P∈U(r,c)

〈P,M〉 ,

Pλ = arg min
P∈U(r,c)

〈P,M〉 − 1

λ
H(P ).

(12)

Then the left inequality is obvious since P ∗ is the optimal
solution of optimal transport distance. Moreover, due to the
optimality of Pλ for Sinkhorn distance, we have〈

Pλ,M
〉
− 1

λ
H(Pλ) ≤ 〈P ∗,M〉 − 1

λ
H(P ∗)

Therefore, we have

dλM (r, c) ≤ dM (r, c) +
1

λ
[H(Pλ)−H(P ∗)]

≤ dM (r, c) +
2

λ
log d

(13)

The last inequality holds due to Lemma 1 and the non-
negativity.

In order to establish the relationship between Rademacher
complexity of Sinkhorn distance loss and function space, we
need introduce another loss definition based on original op-
timal transport distance as

`OT (h(x),y) := dM (h(x),y) = 〈P,M〉 (14)

Then, based on Lemma 2, we know that

`OT (h(x),y) ≤ `(h(x),y) ≤ `OT (h(x),y) +
2 logL

λ

holds for any instance (x,y). Now we can relate the
Rademacher complexity associated with these two losses as
stated in Theorem 4.
Theorem 4. Let L and LOT correspond the family of loss
functions ` and `OT associated to function space H. Then
the empirical Rademacher complexities of L and LOT sat-
isfy,

Rm(L) ≤ Rm(LOT ) +
logL

λ
. (15)

Proof. Let the Rademacher random variables sequence be
σ = (σ1, · · · , σm)T, with σis independent uniform random
variables taking values in {1,+1}, then we have

σi`(h(xi),yi) ≤ σi`OT (h(xi),yi) + 1σi=1
2 logL

λ

Thus, with index summing to m, we have
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]
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2 logL
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1

m
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[
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1

m
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logL
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= R̂S(LOT ) +
logL

λ



In the second last step, we use the fact that
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1

m
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Taking the expectation w.r.t. sample set S, we can imme-
diately obtain,

Rm(L) ≤ Rm(LOT ) +
logL

λ
.

Now, we can provide the risk bound for ERM based on
the Sinkhorn loss.
Theorem 5. Let H be the family of hypothesis set, and de-
note the hypothesis returned by LALOT as ĥ. Then, for any
δ > 0, with probability at least 1− δ,

R(ĥ) ≤ inf
h∈H

R(h)+
4 logL

λ
+‖M‖∞

16LRm(H) +

√
2 log 1

δ

m

 ,

where Rm(H) is Rademacher complexity of hypothesis
classH, and ‖M‖∞ = maxijMij .

Proof of Theorem 5
The proof of Theorem 5 relies on the Rademacher Vector
Contraction Inequality (Maurer 2016).

Support-Theorem 2 (Rademacher Vector Contraction In-
equality (Maurer 2016)). Let F be a class of real functions,
andH ⊂ F = F1 × · · · × FL be a L-valued function class.
If Φ : RL → R is a G-Lipschitz continuous function and
Φ(0) = 0, then R̂S(Φ ◦ H) ≤

√
2G
∑L
i=1 R̂S(Fi).

Remark. The support-Theorem 2 here is tighter than the
typically used Generalized Talagrand’s Comparison In-
equality (Ledoux and Talagrand 2013) in this scenario.

Besides, as a well-known conclusion that optimal trans-
port distance is controlled by total variation (Villani 2008).

Support-Theorem 3. (Theorem 6.15 in (Villani 2008))
Let µ and ν be two probability measures on a Polish space
(X, d). Let p ∈ [1,∞) and x0 ∈ X . Then

Wp(µ, ν) ≤ 2
1
q

(∫
d(x0, x)pd|µ− ν|(x)

) 1
p

,
1

p
+

1

q
= 1.

Corollary 1. When p = 1, if the diameter of X is bounded
by D, this bound implies W1(µ, ν) ≤ D‖µ− ν‖TV .

Corollary 2. For the optimal transport loss defined on cost
matrix M , we have

`OT (ŷ,y) ≤ ‖M‖∞‖ŷ − y‖1 (16)

However, the Support-Theorem 2 cannot be directly ap-
plied on optimal transport distance, because for a probability

distribution, 0 is not a valid input. Thus, similar to the pro-
cessing method in (Frogner et al. 2015), we get rid of this by
adding a softmax layer before obtaining the final results,

H = {s ◦ h0 : h0 ∈ H0}
whereH0 is a function class that maps into RL, and s is the
softmax function defined as s(◦) = (s1(◦), · · · , sL(◦), with

sk(◦) =
e◦k∑L
j=1 e

◦j
, k = 1, · · · , L

Now, we could provide the Lipschitz condition for opti-
mal transport distance loss.
Support-Theorem 4. Let the map l : RL × RL defined by
l(y,y′) = `OT (s(y), s(y′)), then we have

|l(y, ŷ)− l(y′, ŷ′)| ≤ 2
√

2‖M‖∞‖(y, ŷ)− (y′, ŷ′)‖2.
Besides, l(0,0) = 0.

Proof.

|l(y, ŷ)− l(y′, ŷ′)|
= |l(y, ŷ)− l(y′, ŷ) + l(y′, ŷ)− l(y′, ŷ′)|
≤ |l(y, ŷ)− l(y′, ŷ)|+ |l(y′, ŷ)− l(y′, ŷ′)|
≤ l(y,y′) + l(ŷ, ŷ′) (17a)

≤ ‖M‖∞(‖s(y)− s(y′)‖1 + ‖s(ŷ)− s(ŷ′)‖1) (17b)

≤ 2‖M‖∞(‖y − y′‖2 + ‖ŷ − ŷ′‖2) (17c)

≤ 2
√

2‖M‖∞
(
‖y − y′‖22 + ‖ŷ − ŷ′‖22

)1/2
(17d)

= 2
√

2‖M‖∞‖(y, ŷ)− (y′, ŷ′)‖2
here, (17a) holds due to the sub-additivity of optimal trans-
port loss, and (17b) can be directly obtained by Corollary 2.
(17b) can be proved by mean value theorem, and a detailed
proof can be found in (Frogner et al. 2015). (17d) immedi-
ately follows by Cauchy-Schwarz inequality.

Based on above Support-Theorem 2, 3 and 4, we will pro-
ceed the proof of Theorem 5.

Proof. From Support-Theorem 4, we know that l defined
there is a 2

√
2‖M‖∞-Lipschitz function. Thus, we could

apply Support-Theorem 2. It holds

R̂S(LOT ) ≤
√

2 · 2
√

2‖M‖∞LRS(H) (18)
Thus,

Rm(L) ≤ Rm(LOT ) +
logL

λ

≤ 4L‖M‖∞RS(H) +
logL

λ

(19)

The conclusion in Theorem 5 follows immediately by
plugging (19) back to Theorem 3.

By plugging (19) back to Theorem 3, a generalization
bound is immediately obtained so far, namely, for any hy-
pothesis h inH,

R(h)−R̂(h) ≤ 2 logL

λ
+‖M‖∞

8LRm(H) +

√
log 1

δ

2m


(20)



To make the risk bound succeed, we only need to bound
it by uniform generalization error as follows,

R(ĥ)− inf
h∈H

R(h)

= R(ĥ)− R̂(ĥ) + R̂(ĥ)− inf
h∈H

R(h)

≤ R(ĥ)− R̂(ĥ) + R̂(h?)−R(h?)

≤ 2 sup
h∈H
|R(h)− R̂(h)|

(21)

where h? = arg infh∈HR(h), and the first inequality holds
due to the fact that ĥ is the minimizer of empirical risk. Com-
bine (20) and (21), the proposition in Theorem 5 can be im-
mediately obtained.

References
Bartlett, P. L., and Mendelson, S. 2002. Rademacher and
gaussian complexities: Risk bounds and structural results.
Journal of Machine Learning Research 3:463–482.
Cuturi, M., and Avis, D. 2014. Ground metric learning.
Journal of Machine Learning Research 15(1):533–564.
Cuturi, M. 2013. Sinkhorn distances: Lightspeed computa-
tion of optimal transport. In NIPS, 2292–2300.
Frogner, C.; Zhang, C.; Mobahi, H.; Araya-Polo, M.; and
Poggio, T. A. 2015. Learning with a Wasserstein loss. In
NIPS, 2053–2061.
Ledoux, M., and Talagrand, M. 2013. Probability in Ba-
nach Spaces: isoperimetry and processes. Springer Science
& Business Media.
Maurer, A. 2016. A vector-contraction inequality for
rademacher complexities. In Proceedings of International
Conference on Algorithmic Learning Theory (ALT), 3–17.
Mohri, M.; Rostamizadeh, A.; and Talwalkar, A. 2012.
Foundations of machine learning. MIT press.
Villani, C. 2008. Optimal transport: old and new, volume
338. Springer Science & Business Media.
Zhao, P., and Zhou, Z.-H. 2018. Label distribution learning
by optimal transport. In AAAI, 4506–4513.


