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Abstract

Non-stationary online learning has drawn much attention in recent years. In particu-
lar, dynamic regret and adaptive regret are proposed as two principled performance
measures for online convex optimization in non-stationary environments. To opti-
mize them, a two-layer online ensemble is usually deployed due to the inherent
uncertainty of the non-stationarity, in which a group of base-learners are maintained
and a meta-algorithm is employed to track the best one on the fly. However, the
two-layer structure raises the concern about the computational complexity — those
methods typically maintain O(log T ) base-learners simultaneously for a T -round
online game and thus perform multiple projections onto the feasible domain per
round, which becomes the computational bottleneck when the domain is compli-
cated. In this paper, we present efficient methods for optimizing dynamic regret and
adaptive regret, which reduce the number of projections per round from O(log T )
to 1. Moreover, our obtained algorithms require only one gradient query and one
function evaluation at each round. Our technique hinges on the reduction mecha-
nism developed in parameter-free online learning and requires non-trivial twists on
non-stationary online methods. Empirical studies verify our theoretical findings.

1 Introduction

Classic online learning minimizes the static regret, which benchmarks the online learner’s perfor-
mance against the best fixed decision in hindsight. In many real-world online applications, however,
the environments are non-stationary [Zhou, 2022] and static regret becomes less attractive since it
would be unrealistic to assume the existence of a single decision behaved satisfactorily over time.

To address the limitation, in recent years, researchers have studied more strengthened performance
measures to facilitate online algorithms with the capability of handling non-stationarity. In particular,
dynamic regret [Zinkevich, 2003; Zhang et al., 2018a] and adaptive regret [Hazan and Seshadhri,
2009; Daniely et al., 2015] are proposed as two principled metrics to guide the algorithm design.
We focus on the online convex optimization (OCO) setting [Hazan, 2016]. OCO can be deemed as
a game between the learner and the environments. At each round t ∈ [T ], the learner submits her
decision xt ∈ X from a convex feasible domain X ⊆ Rd and simultaneously environments choose a
convex function ft : X 7→ R, and subsequently the learner suffers an instantaneous loss ft(xt).

1.1 Dynamic Regret and Adaptive Regret

Dynamic regret is proposed by Zinkevich [2003] to compare the online learner’s performance against
a sequence of any feasible comparators u1, . . . ,uT ∈ X . Formally, it is defined as

D-REGT (u1, . . . ,uT ) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut). (1)
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Dynamic regret minimization enables the learner to track changing comparators. A favorable dynamic
regret bound should scale with a certain non-stationarity measure dependent on the comparators such
as the path length PT =

∑T
t=2∥ut − ut−1∥2. Notably, the classic static regret can be treated as a

special case of dynamic regret by specifying the comparators as the best fixed decision in hindsight.

Adaptive regret is proposed by Hazan and Seshadhri [2009] and further strengthened by Daniely et al.
[2015], which measures the regret over any interval I = [r, s] ⊆ [T ] with a length of τ = |I|, i.e.,

A-REGT (|I|) = max
[r,r+τ−1]⊆[T ]

{ r+τ−1∑
t=r

ft(xt)−min
u∈X

r+τ−1∑
t=r

ft(u)

}
. (2)

Since the minimizers of different intervals can be different, adaptive regret minimization also ensures
the capability of competing with changing comparators. A desired adaptive regret bound should be
as close as the minimax static regret of this interval. Algorithms with adaptive regret matching static
regret of this interval up to logarithmic terms in T are referred to strongly adaptive [Daniely et al.,
2015]. Moreover, adaptive regret includes static regret when choosing I = [T ].

It is worth noting that the relationship between dynamic regret and adaptive regret for OCO is
generally unclear [Zhang, 2020, Section 5], even though a black-box reduction from dynamic regret
to adaptive regret has been proven for the simper expert setting (i.e., online linear optimization over
simplex) [Luo and Schapire, 2015, Theorem 4]. Hence, the two measures are separately developed
and many algorithms have been proposed, including algorithms for dynamic regret [Zinkevich, 2003;
Hall and Willett, 2013; Zhang et al., 2018a; Zhao et al., 2020, 2021b,a; Baby and Wang, 2021;
Zhao et al., 2022a] and the ones for adaptive regret [Hazan and Seshadhri, 2009; Daniely et al.,
2015; Jun et al., 2017; Zhang et al., 2018b, 2019]. Note that there are also studies [Zhang et al.,
2020; Cutkosky, 2020] optimizing both measures simultaneously by an even strengthened metric∑s
t=r ft(xt)−

∑s
t=r ft(ut) over any interval [r, s] ⊆ [T ], hence called “interval dynamic regret”.

1.2 Two-layer Structure and Projection Complexity Issue

The fundamental challenge of optimizing these two non-stationary regret measures is the uncertainty
of the environmental non-stationarity. Concretely, to ensure the robustness to the unknown envi-
ronments, dynamic regret aims to compete with any feasible comparator sequence, while adaptive
regret examines the local performance over any intervals. The unknown comparators or unknown
intervals bring considerable uncertainty to online optimization. To address the issue, a two-layer
structure is usually deployed to optimize the measures, where a set of base-learners are main-
tained to handle the different possibilities of online environments and a meta-algorithm is employed
to combine them all and track the unknown best one. Such a framework successfully achieves
many state-of-the-art results, including the O(

√
T (1 + PT )) dynamic regret [Zhang et al., 2018a]

and the O(
√
(FT + PT )(1 + PT )) small-loss dynamic regret for smooth functions [Zhao et al.,

2020], where PT =
∑T
t=2∥ut − ut−1∥2 is the path length and FT =

∑T
t=1 ft(ut) is the cumu-

lative loss of comparators; as well as the O(
√
|I| log T ) adaptive regret [Jun et al., 2017] and the

O(
√
FI logFI logFT ) small-loss adaptive regret for smooth functions [Zhang et al., 2019] for any in-

terval I = [r, s] ⊆ [T ], where FI = minx∈X
∑s
t=r ft(x) and FT = minx∈X

∑T
t=1 ft(x). Besides,

anO(
√
|I|(log T + PI)) interval dynamic regret is also achieved by a two-layer (or even three-layer)

structure [Zhang et al., 2020], where PI =
∑s
t=r∥ut − ut−1∥2 is the path length over the interval.

The two-layer methods have demonstrated great effectiveness in tackling non-stationary online envi-
ronments, whereas the gain is at the price of heavier computations than the methods for minimizing
static regret. While it is believed that additional computations are necessary for more robustness,
we are wondering whether it is possible to pay for a “minimal” computation overhead for adapting
to the non-stationarity. To this end, we focus on the popular first-order online methods and aim to
streamline unnecessary computations while retaining the same regret guarantees. Arguably, the most
computationally expensive step of each round is the projection onto the convex feasible domain,
namely, the projection operation ΠX [y] = argminx∈X ∥x− y∥2 for a convex set X ⊆ Rd. Typical
two-layer non-stationary online algorithms require maintaining N = O(log T ) base-learners simulta-
neously to cover the possibility of unknown environments. Define the projection complexity of online
methods as the number of projections onto the feasible domain per round. Then, those non-stationary
methods suffer an O(log T ) projection complexity, whereas standard online methods for static regret
minimization require only one projection per round such as online gradient descent [Zinkevich, 2003].
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1.3 Our Contributions and Techniques

In this paper, we design a generic mechanism to reduce the projection complexity of many existing
non-stationary methods from O(log T ) to 1 without sacrificing the regret optimality, hence matching
the projection complexity of stationary methods. Our reduction is inspired by the recent advance in
parameter-free online learning [Cutkosky and Orabona, 2018; Mhammedi et al., 2019]. The idea is
simple: we reduce the original problem learned in the feasible domain X to an alternative one learned
in a surrogate domain Y ⊇ X such that the projection onto it is much cheaper, e.g., simply choosing
Y as a properly scaled Euclidean ball; and moreover, a carefully designed surrogate loss is necessary
for the alternative problem to retain the regret optimality. We reveal that a necessary condition for
our reduction mechanism to deploy and reduce the projection complexity is that the non-stationary
online algorithm shall query the function gradient once and evaluate the function value once per
round. Several algorithms for the worst-case dynamic regret or adaptive regret already satisfy the
requirements, so we can immediately deploy the reduction and obtain their efficient counterparts with
the same regret guarantees and 1 projection complexity. However, many non-stationary algorithms,
particularly those designed for small-loss bounds, do not satisfy the requirement. Hence, we require
non-trivial efforts to make them compatible. Due to this, we have developed a series of algorithms
that achieve worst-case/small-loss dynamic regret and adaptive regret with one projection per round
(actually, with one gradient query and one function evaluation per round as well).

Despite that the reduction mechanism of this paper has been studied in parameter-free online learning,
applying it to non-stationary online learning requires new ideas and non-trivial modifications. Here
we highlight the technical innovation. The main challenge comes from the reduction condition
mentioned earlier — as the surrogate loss involves the projection operation, our reduction requires
the algorithm query one gradient and evaluate one function value at each round. However, many non-
stationary algorithms do not satisfy the requirement, which is to be contrasted to the parameter-free
algorithms such as MetaGrad [van Erven and Koolen, 2016; Mhammedi et al., 2019] that naturally
satisfy the condition. For example, the SACS algorithm [Zhang et al., 2019] enjoys the best known
small-loss adaptive regret, yet the method requires N gradient queries and N +1 function evaluations
at each round, where N = O(log T ) is the number of base-learners. Thus, we have to dig into the
algorithm and modify it to fit our reduction. First, we replace their meta-algorithm with Adapt-ML-
Prod [Gaillard et al., 2014], an expert-tracking algorithm with a second-order regret with excess
losses to accommodate the linearized loss that is used to ensure one gradient query per round. Second,
we introduce a sequence of time-varying thresholds to adaptively determine the problem-dependent
geometric covers in contrast to a fixed threshold used in their method. In particular, we register
the cumulative loss of the final decisions rather than the base-learner’s one to compare it with the
changing thresholds, which renders the design of one function value evaluation per round and also
turns out to be crucial for achieving an improved small-loss bound that can recover the best known
worst-case adaptive adaptive regret (by contrast, SACS cannot obtain optimal worst-case adaptive
regret). To summarize, our final algorithm only requires one projection/gradient query/function
evaluation at each round, substantially improving the efficiency of SACS algorithm that requires N
projections/gradient queries/function evaluations per round.

1.4 Assumptions

We list several standard assumptions used in OCO [Shalev-Shwartz, 2012; Hazan, 2016]. Notably,
not all assumptions are always required. We will explicitly state the requirements in the theorem.

Assumption 1 (bounded gradient). The norm of the gradients of online functions over the domain X
is bounded by G, i.e., ∥∇ft(x)∥2 ≤ G, for all x ∈ X and t ∈ [T ].

Assumption 2 (bounded domain). The domain X ⊆ Rd contains the origin 0, and the diameter of
the domain X is at most D, i.e., ∥x− x′∥2 ≤ D for any x,x′ ∈ X .

Assumption 3 (non-negativity and smoothness). All the online functions are non-negative and
L-smooth, i.e., for any x,x′ ∈ X and t ∈ [T ], ∥∇ft(x)−∇ft(x′)∥2 ≤ L∥x− x′∥2.

Organization. The rest is structured as follows. Section 2 presents the reduction mechanism and
illustrates its application to dynamic regret minimization. Section 3 provides efficient methods for
optimizing adaptive regret. Section 4 reports the experiments. Section 5 concludes the paper and
makes discussions. All the proofs and omitted details for algorithms are deferred to the appendices.
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2 The Reduction Mechanism and Dynamic Regret Minimization

We start from the dynamic regret minimization. First, we briefly review existing methods in Sec-
tion 2.1, and then present our reduction mechanism and illustrate how to apply it to reducing the
projection complexity of dynamic regret methods in Section 2.2.

2.1 A Brief Review of Dynamic Regret Minimization

Zhang et al. [2018a] propose a two-layer online algorithm called Ader with an O(
√
T (1 + PT ))

dynamic regret, which is proven to be minimax optimal for convex functions. Ader maintains a
group of base-learners, each performing online gradient descent (OGD) [Zinkevich, 2003] with a
customized step size specified by the pool H = {η1, . . . , ηN}, and then uses a meta-algorithm to
combine them all. Denoted by B1, . . . ,BN the N base-learners. For each i ∈ [N ], Bi updates by

xt+1,i = ΠX [xt,i − ηi∇ft(xt)], (3)

where ηi ∈ H is the associated step size and ΠX [·] denotes the projection onto the feasible domain X
with ΠX [y] = argminx∈X ∥y− x∥2. Notably, all the base-learners share the same gradient∇ft(xt)
rather than using their individual one ∇ft(xt,i). This is because Ader optimizes the linearized loss
ℓt(x) = ⟨∇ft(xt),x⟩, which enjoys the benign property of∇ℓt(xt,i) = ∇ft(xt) for all i ∈ [N ].

Furthermore, the meta-algorithm evaluates each base-learner by ℓt(xt,i) = ⟨∇ft(xt),xt,i⟩ and
updates the weight vector pt+1 ∈ ∆N by the Hedge algorithm [Freund and Schapire, 1997], namely,

pt+1,i =
pt,i exp(−ε⟨∇ft(xt),xt,i⟩)∑N
j=1 pt,j exp(−ε⟨∇ft(xt),xt,j⟩)

, ∀i ∈ [N ], (4)

where ε > 0 is the learning rate of the meta-algorithm. The final prediction is obtained by xt+1 =∑N
i=1 pt+1,ixt+1,i. The learner submits the prediction xt+1 and then receives the loss ft+1(xt+1)

and the gradient ∇ft+1(xt+1) as the feedback of this round. Under a suitable configuration of
the step size pool H with N = O(log T ) and learning rate ε = Θ(

√
(lnN)/T ), Ader enjoys an

O(
√
T (1 + PT )) dynamic regret [Zhang et al., 2018a, Theorem 4].

For convex and smooth functions, Zhao et al. [2021b] demonstrate that a similar two-layer structure
can attain anO(

√
(FT + PT )(1 + PT )) small-loss dynamic regret under a suitable setting of the step

size poolH and time-varying learning rates of meta-algorithm {εt}Tt=1, where FT =
∑T
t=1 ft(ut) is

the cumulative loss of the comparators. This bound safeguards the minimax rate in the worst case,
while can be much smaller than O(

√
T (1 + PT )) bound in benign environments.

2.2 The Reduction Mechanism for Reducing Projection Complexity

As demonstrated in the update (3), all the base-learners require projecting the intermediate solution
onto the domain X to ensure the feasibility. As a result, O(log T ) projections are required at each
round, which is generally time-consuming particularly when the domain X is complicated.

We present a generic reduction mechanism for reducing the projection complexity and apply it to
dynamic regret methods. Our reduction builds upon the seminal work [Cutkosky and Orabona, 2018]
and a further refined result [Cutkosky, 2020], who propose a black-box reduction from constrained
online learning to the unconstrained setting (or another constrained problem with a larger domain) .

Reduction mechanism. Given an algorithm for non-stationary online learning Algo whose
projection complexity is O(log T ), our reduction mechanism builds on it to yield an algorithm
Efficient-Algo with 1 projection onto X per round and retaining the same order of regret. The
central idea is to replace expensive projections onto the original domain X with other much cheaper
projections. To this end, we introduce a surrogate domain Y defined as the minimum Euclidean ball
containing the feasible domain X , i.e., Y = {x | ∥x∥2 ≤ D} ⊇ X . Then, the reduced algorithm
Algo works on Y whose projection can be realized by a simple rescaling. More importantly, to avoid
regret degeneration, it is necessary to carefully construct the surrogate loss gt : Y 7→ R as

gt(y) = ⟨∇ft(xt),y⟩ − 1{⟨∇ft(xt),vt⟩<0} · ⟨∇ft(xt),vt⟩ · SX (y), (5)
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Algorithm 1 Efficient Algorithm for Minimizing Dynamic Regret
Input: step size poolH = {η1, . . . , ηN}, learning rate of meta-algorithm εt (or simply a fixed ε).
1: Initialization: let x1 and {y1,i}Ni=1 be any point in X ; ∀i ∈ [N ], p1,i = 1/N .
2: for t = 1 to T do
3: Receive the gradient information∇ft(xt).
4: Construct the surrogate loss gt : Y 7→ R according to Eq. (5).
5: Compute the gradient∇gt(yt) according to Lemma 1.
6: For each i ∈ [N ], the base-learner Bi produces the local decision by

ŷt+1,i = yt,i−ηi∇gt(yt), yt+1,i = ŷt+1,i

(
1{∥ŷt+1,i∥2≤D}+

D

∥ŷt+1,i∥2
·1{∥ŷt+1,i∥2≥D}

)
.

7: Meta-algorithm updates weight by pt+1,i ∝ exp(−εt+1

∑t
s=1⟨∇gs(ys),ys,i⟩), i ∈ [N ].

8: Compute yt+1 =
∑N
i=1 pt+1,iyt+1,i.

9: Submit xt+1 = ΠX [yt+1]. ▷ The only step projects onto feasible domain X per round.
10: end for

where SX (y) = infx∈X ∥y − x∥2 is the distance function to X and vt = (yt−xt)/∥yt−xt∥2 is the
vector indicating the projection direction.

The main protocol of our reduction is presented as follows. The input includes original functions
{ft}Tt=1, the feasible domain X , and the reduced algorithm Algo.

1: for t = 1, . . . , T do
2: receive the gradient information∇ft(xt);
3: construct the surrogate loss gt : Y 7→ R according to Eq. (5);
4: obtain the intermediate prediction yt+1 ← Algo(gt(·),yt,Y);
5: submit the final prediction xt+1 = ΠX [yt+1];
6: end for

Our reduction enjoys the regret safeness due to the following benign properties of surrogate loss.
Theorem 1 (Theorem 2 of Cutkosky [2020]). The surrogate loss gt : Y 7→ R defined in (5) is convex.
Moreover, we have ∥∇gt(yt)∥2 ≤ ∥∇ft(xt)∥2 and for any ut ∈ X

⟨∇ft(xt),xt − ut⟩ ≤ gt(yt)− gt(ut) ≤ ⟨∇gt(yt),yt − ut⟩. (6)

The theorem shows the convexity of the surrogate loss gt(y) and we thus have ft(xt)− ft(ut) ≤
⟨∇gt(yt),yt − ut⟩, which implies that it suffices to optimize the linearized upper bound, i.e., to
optimize function ℓt(y) = ⟨∇gt(yt),y⟩. The following lemma specifies the gradient calculation.
Lemma 1. For any y ∈ Y ,∇gt(y) = ∇ft(xt) when ⟨∇ft(xt),vt⟩ ≥ 0; and∇gt(y) = ∇ft(xt)−
⟨∇ft(xt),vt⟩·(y−ΠX [y])/∥y−ΠX [y]∥2 when ⟨∇ft(xt),vt⟩ < 0. Here vt = (yt−xt)/∥yt−xt∥2.
In particular,∇gt(yt) = ∇ft(xt)− ⟨∇ft(xt),vt⟩ · vt when ⟨∇ft(xt),vt⟩ < 0.

Reduction requirements. An important necessary condition for the reduction is to require the
reduced algorithm satisfying one gradient query and one function evaluation at each round. Indeed,
the reduction essentially updates according to the surrogate loss {gt}Tt=1. Note that the definition of
surrogate loss involves the distance function SX (y), see Eq. (5). Thus, each evaluation of gt(y) leads
to one projection onto X due to the calculation of SX (y). Similarly, each gradient query of∇gt(y)
also contributes to one projection, see Lemma 1 for details. To summarize, we can use the reduction
to ensure a 1 projection complexity, only when the reduced algorithm satisfies the requirements of
one gradient query and one function evaluation per round. Below, we demonstrate the usage of our
reduction mechanism for two methods of dynamic regret minimization that satisfy the conditions,
including the worst-case method [Zhang et al., 2018a] and the small-loss method [Zhao et al., 2021b].

Application to dynamic regret minimization. Algorithm 1 summarizes the main procedures of our
efficient methods for optimizing dynamic regret, which is an instance of the reduction mechanism by
picking Algo as Ader [Zhang et al., 2018a]. More specifically, Lines 6 – 8 are essentially performing
Ader algorithm using the surrogate loss {gt}Tt=1 over the surrogate domain Y . Note that the base
update in Line 6 is essentially performing OGD with projection onto Y , a scaled Euclidean ball, and
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thus the projection admits a simple closed form. The overall algorithm requires projecting onto X
only once per round, see Line 9. Our method provably retains the same dynamic regret.

Theorem 2. Set the step size pool as H =
{
ηi = 2i−1(D/G)

√
5/(2T ) | i ∈ [N ]

}
with

N = ⌈2−1 log2(1 + 2T/5)⌉ + 1 and the learning rate as ε =
√

(lnN)/(1 +G2D2T ). Under
Assumptions 1 and 2, our algorithm requires one projection onto X per round and enjoys

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ O
(√

T (1 + PT )
)
. (7)

For smooth and non-negative functions, the Sword++ algorithm [Zhao et al., 2021b] achieves an
O(
√
(FT + PT )(1 + PT )) small-loss dynamic regret, which requires one gradient and one function

value per iteration.1 However, notice that the surrogate loss gt(·) in Eq. (5) is neither smooth nor
non-negative, which hinders the application of our reduction to their method. Fortunately, owing to
the benign property of ∥∇gt(yt)∥2 ≤ ∥∇ft(xt)∥2 (see Theorem 1), we can still deploy the reduction
via an improved analysis and obtain a projection-efficient algorithm with the same small-loss bound.

Theorem 3. Set the step size pool as H =
{
ηi = 2i−1

√
5D2/(1 + 8LGDT ) | i ∈ [N ]

}
with

N = ⌈2−1 log2((5D
2 + 2D2T )(1 + 8LGDT )/(5D2))⌉ + 1 and the learning rate of the meta-

algorithm as εt =
√

(lnN)/(1 +D2
∑t−1
s=1 ∥∇gs(ys)∥22). Under Assumptions 1, 2, and 3, our

algorithm requires one projection onto X per round and enjoys the following dynamic regret:

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ O
(√

(FT + PT )(1 + PT )
)
, (8)

where FT =
∑T
t=1 ft(ut) is the cumulative loss of the comparators.

3 Adaptive Regret Minimization

In this section, we present our efficient methods to minimize adaptive regret. First, we briefly review
existing methods in Section 3.1, and then present our efficent methods to reducing the projection
complexity of adaptive regret methods in Section 3.2.

3.1 A Brief Review of Adaptive Regret Minimization

Adaptive regret minimization ensures the online learner to be competitive with a fixed decision over
every contiguous interval. For the worst-case bound, the best known result is the O(

√
|I| log T )

adaptive regret bound achieved by the CBCE algorithm [Jun et al., 2017]. CBCE algorithm requires
multiple gradients at each round. Wang et al. [2018] improve CBCE by using the linearized loss to
make it requiring one gradient per iteration and retaining the same adaptive regret. Moreover, the
improved CBCE algorithm only evaluates the function value once per iteration. Therefore, we can
directly apply our reduction and obtain a projection-efficient variation with the same adaptive regret.
More detailed elaborations can be found in Appendix C.1.

Now, we focus on the more challenging case of small-loss adaptive regret. The best known re-
sult is the O(

√
FI logFI logFT ) bound for any interval I = [r, s] ⊆ [T ] obtained by the SACS

algorithm [Zhang et al., 2019], where FI = minx∈X
∑s
t=r ft(x) and FT = minx∈X

∑T
t=1 ft(x).

However, SACS does not satisfy our reduction requirements, because it requires N gradient queries
(i.e.,∇ft(xt,i) for i ∈ [N ]) and N + 1 function evaluations (i.e., ft(xt,i) for i ∈ [N ], and ft(xt)) at
round t ∈ [T ], where N denotes the number of active base-learners and xt,i denotes local decision
returned by the i-th base-learner. To address so, we have to modify the algorithm to fit our purpose.

In the following, we first sketch the SACS algorithm and then present our modifications. In fact, to
optimize the adaptive regret, an online algorithm usually consists of the three components:

1Sword++ algorithm is mainly proposed for gradient-variation dynamic regret, so there are advanced
components (such as correction term and optimism) in algorithm design. It can be verified that their algorithm
can be simplified by dropping the correction term and optimism when only small-loss bound is desired.
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(i) base-algorithm: an online algorithm that can attain low (static) regret in a given interval;
(ii) scheduling: a set of intervals and each one is associated with a base-learner who aims to

minimize the static regret over the interval (from starting time to ending time);
(iii) meta-algorithm: a combining algorithm that can track the best base-learner on the fly.

The specific configurations of the SACS algorithm is as follows. First, SACS uses scale-free online
gradient descent (SOGD) [Orabona and Pál, 2018] as the base-algorithm, which ensures a small-loss
regret in a given interval. Second, SACS employs AdaNormalHedge [Luo and Schapire, 2015] as
the meta-algorithm, which supports the sleeping expert setup and also enjoys a small-loss regret.
Finally, SACS designs a clever strategy of problem-dependent geometric covers to determine the set
of intervals such that the number of active base-learners also depends on the small-loss quantity. As a
result, SACS can achieve a fully problem-dependent adaptive regret of order O(

√
FI logFI logFT ),

scaling with the cumulative loss of comparators. However, SACS also suffers from an O(log T )
projection complexity in the worst case due to a two-layer structure; and moreover, it can be observed
that SACS only attains an O(

√
|I| log |I| log T ) bound in the worst case, which exhibits an

√
log|I|

gap compared with the best known result of O(
√
|I| log T ) [Jun et al., 2017]. Below, we present an

efficient algorithm for small-loss adaptive regret, which resolves the above two issues simultaneously.

3.2 Efficient Algorithms for Adaptive Regret

As multiple gradient queries and function evaluations are involved in all the three components of
SACS, we have to make plenty of modifications to achieve an algorithm with small-loss adaptive
regret yet requiring only one gradient query and function evaluation per round. With such an algorithm
on hand, we can then deploy our reduction to achieve an efficient method with 1 projection complexity.
Below we present the details. By the reduction mechanism, it is noticeable that we only need to
consider the input online functions as surrogate loss {gt}Tt=1, where gt is defined in Eq. (5).

Base-algorithm. We use SOGD with a linearized surrogate loss ⟨∇gt(yt),y⟩ over the surrogate
domain Y . Denote by At the set of active base-learners’ indices, then the base-learner Bi updates by

yt+1,i = ΠY [yt,i − ηt,i∇gt(yt)], (9)

with ηt,i = D/
√
(δ +

∑t
s=τi
∥∇gs(ys)∥22), where τi denotes the starting time of the base-learner

i ∈ At. The projection onto Y can be easily calculated by a simple rescaling if needed. Notably,
owing to the convexity of the surrogate loss gt, we can use the same gradient ∇gt(yt) for all the
base-learners at each round, ensuring one gradient query of∇ft(xt) at each round.

Geometric Covers. The covers consist of a set of intervals that specify the alive time of base-
learners. To achieve a small-loss adaptive regret, SACS [Zhang et al., 2019] employs a clever covering
construction called problem-dependent geometric covers (PGC) — instead of initiating a base-learner
at each round t like earlier algorithms [Daniely et al., 2015; Jun et al., 2017], SACS adds a new
base-learner only when the cumulative loss exceeds a pre-defined threshold. As a result, the number
of active base-learners relates to the small-loss quantity such that the overall algorithm achieves a
fully problem-dependent adaptive regret. Notably, to determine the threshold, SACS monitors the
cumulative loss of the latest base-learner ft(xt,i†) with i† being the latest base-learner’s index, but
clearly this will introduction an additional function evaluation beyond ft(xt) at each round.

To avoid the limitation, instead of using a fixed threshold to decide the initiations of base-learners,
we design a sequence of time-varying thresholds to adaptively start a new base-learner according to
amount of cumulative loss of final decisions (e.g., ft(xt)), bypassing the requirement of additional
function evaluation. This realizes the condition of one function evaluation per round. Also, the
new design of thresholds mechanism is important to ensure that the overall small-loss bound can
simultaneously recover the best known worst-case guarantee, which SACS fails to achieve [Zhang
et al., 2019]. Let C1, C2, C3, . . . denote the sequence of thresholds, and they will be determined by a
threshold generating function G(·) : N 7→ R+ that will be specified later. Our problem-dependent
geometric covers are set as follows. We initialize the setting by s1 = 1. We set s2 as the round when
the cumulative loss of the overall algorithm (namely,

∑t
s=1 fs(xs)) exceeds the threshold C1 and

then initialize a new instance of SOGD starting at this round. The process is repeated until the end
of online game. We thus generate a sequence of points s1, s2, . . ., referred to as the markers. See
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Algorithm 2 Efficient Algorithm for Problem-dependent Adaptive Regret
Input: threshold generating function G(·) : N 7→ R+.
1: Initialize total intervals m = 1, marker s1 = 1, threshold C1 = G(1); let x1 be any point in X .
2: for t = 1 to T do
3: Receive the gradient information∇ft(xt).
4: Construct the surrogate loss gt : Y 7→ R according to Eq. (5).
5: Compute the (sub-)gradient∇gt(yt) according to Lemma 1.
6: Compute Lt = Lt−1 + ft(xt)

% constructing Problem-dependent Geometric Covers(PGC)
7: if Lt > Cm then
8: Set Lt = 0, remove base-learners Bk whose ending point ek = m+ 1.
9: Set m← m+ 1, sm ← t, Cm = G(m).

10: Initialize a new base-learner with ending point em = j satisfying [m, j − 1] ∈ C, where
C =

⋃
k∈N∪{0} Ck and Ck =

{
[i · 2k, (i+ 1) · 2k − 1] | i is odd

}
for all k ∈ N ∪ {0}.

11: Set γm = ln(1 + 2m), wt,m = 1, ηt,m = min{1/2,√γm} for the meta-algorithm.
12: end if
13: Send ∇gt(yt) to all base-learners and obtain local predictions yt+1,i for i ∈ At.
14: Meta-algorithm updates weight pt+1 ∈ ∆|At+1| according to Eq. (11), Eq. (12), and Eq. (13)
15: Compute yt+1 =

∑
i∈At+1

pt+1,iyt+1,i.
16: Submit xt+1 = ΠX [yt+1]. ▷ The only projection onto feasible domain X per round.
17: end for

the condition in Line 7, registration of markers in Line 9, and the overall updates in Lines 7 – 11 of
Algorithm 2. Those markers specify the starting time (and the ending time) of base-learners and thus
construct the PGC as

C̃ =
⋃

k∈N∪{0}
C̃k, where C̃k =

{
[si·2k , s(i+1)·2k − 1] | i is odd

}
for all k ∈ N ∪ {0}. (10)

It is noteworthy to emphasize that PGC is constructed by the language of “marker”, whose exact time
stamp is unknown ahead of time but is only determined according to the learner’s performance on the
fly. Moreover, the notation C in Lines 10 of Algorithm 2 is defined based on the registered indexes
of markers, and there is a one-one correspondence from the interval in C to that in PGC C̃. More
concretely, an interval [i ·2k, (i+1) ·2k−1] ∈ C will be mapped into the interval [si·2k , s(i+1)·2k−1]
in PGC, managing the alive time of base-learners in a geometric manner with respect to the subscripts.

Meta-algorithm. SACS uses the AdaNormalHedge [Luo and Schapire, 2015] as the meta-algorithm,
however, this is not suitable for our propose. To ensure one projection per iteration, we cannot use
multiple function values, i.e., {gt(yt,i)}Ni=1, for meta-algorithm to evaluate the loss. Instead, we
can only use the linearized loss value, namely, {⟨∇gt(yt),yt,i⟩}Ni=1 in the weight update of meta-
algorithm. The small-loss regret bound in the meta-algorithm of SACS crucially relies on the original
function values, which is unfortunately inaccessible in our case. Technically, when fed with linearized
loss, it is hard to establish a squared gradient-norm bound and then convert it to the small loss due to
the first-order regret bound of AdaNormalHedge. Based on this crucial technical observation, we
propose to use the Adapt-ML-Prod algorithm [Gaillard et al., 2014] as the meta-algorithm in our
method. The key advantage is that it enjoys a second-order regret and also supports the sleeping
expert setup. Adapt-ML-Prod maintains multiple learning rates ηt+1 and an intermediate weight
vector wt+1, which are updated by the following rule. For any active base-learner i ∈ At+1,

ηt+1,i = min

{
1

2
,

√
γi

1 +
∑t
k=si

(ℓ̂k − ℓk,i)2

}
, wt+1,i =

(
wt,i

(
1 + ηt,i(ℓ̂t − ℓt,i)

)) ηt+1,i
ηt,i

, (11)

where γi = ln(1 + 2i) is a certain scaling factor and the feedback loss is constructed as for i ∈ At
ℓ̂t = ⟨∇gt(yt),yt⟩/(2GD), and ℓt,i = ⟨∇gt(yt),yt,i⟩/(2GD). (12)

The final weight vector pt+1 ∈ ∆|At+1| is obtained by

pt+1,i =
wt+1,i · ηt+1,i∑

j∈At+1
wt+1,j · ηt+1,j

. (13)
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Notably, the meta update only uses one gradient at round t, namely, ∇gt(yt).
Finally, we compute yt+1 =

∑
i∈At+1

pt+1,iyt+1,i as the overall prediction in the surrogate domain
Y and calculate xt+1 = ΠX [yt+1] to ensure the feasibility. This is the only projection onto X at each
round. Algorithm 2 summarizes the main procedures of our efficient methods for small-loss adaptive
regret. Albeit with a similar two-layer structure as SACS, our algorithm exhibits salient differences in
base-algorithm, meta-algorithm, and geometric covers. As a benefit, we can successfully deploy our
reduction mechanism and make the overall algorithm project onto the feasible domain X once per
round, see Line 16. Our method retains the same small-loss adaptive regret as [Zhang et al., 2019].
Theorem 4. Under Assumptions 1–3, setting the threshold generating function G(m) = Θ(logm)
whose explicit form is in Eq. (46) of Appendix C, Algorithm 2 requires only one projection onto X
per round and enjoys the small-loss adaptive regret:

s∑
t=r

ft(xt)−
s∑
t=r

ft(u) ≤ O
(
min

{√
FI logFI logFT ,

√
|I| log T

})
(14)

for any interval I = [r, s] ⊆ [T ], where FI = minx∈X
∑s
t=r ft(x) and FT = minx∈X

∑T
t=1 ft(x).

Remark 1. Note that the O(
√
FI logFI logFT ) small-loss bound of Zhang et al. [2019] becomes

O(
√
|I| log|I| log T ) in the worst case, looser than the O(

√
|I| log T ) bound [Jun et al., 2017] by a

factor of log|I|. We show that this limitation can be actually avoided by the new design of thresholds
mechanism and a refined analysis. More discussions can be found in Appendix C.3. Indeed, our
result in (14) can strictly match the best known problem-independent result in the worst case.

4 Experiment

In this section, we provide empirical studies to evaluate our proposed methods.

General Setup. We conduct experiments on the synthetic data. We consider the following online
regression problem. Let T denote the number of total rounds. At each round t ∈ [T ] the learner
outputs the model parameter wt ∈ W ⊆ Rd and simultaneously receives a data sample (xt, yt) with
xt ∈ X ⊆ Rd being the feature and yt ∈ R being the corresponding label.2 The learner can then
evaluate her model by the online loss ft(wt) =

1
2 (x

⊤
t wt − yt)2 which uses a square loss to evaluate

the difference between the predictive value x⊤t wt and the ground-truth label yt, and then use the
feedback information to update the model. In the simulations, we set T = 20000, the domain diameter
as D = 6, and the dimension of the domain as d = 8. The feasible domainW is set as an ellipsoid
W =

{
w ∈ Rd | w⊤Ew ≤ λmin(E) · (D/2)2

}
, where E is a certain diagonal matrix and λmin(E)

denotes its minimum eigenvalue. Then, a projection ontoW requires solving a convex programming
that is generally expensive. In the experiment, we use scipy.optimize.NonlinearConstraint
to solve it to perform the projection onto the feasible domain.

To simulate the non-stationary online environments, we control the way to generate the date samples
{(xt, yt)}Tt=1. Specifically, for t ∈ [T ], the feature xt is randomly sampled in an Euclidean ball with
a diameter D same as the feasible domain of model parameters; and the corresponding label is set
as yt = x⊤t w

∗
t + εt, where εt is the random noise drawn from [0, 0.1] and w∗

t is the underlying
ground-truth model from the feasible domainW generated according to a certain strategy specified
below. For dynamic regret minimization, we simulate piecewise-stationary model drifts, as dynamic
regret will be linear in T and thus vacuous when the model drift happens every round due to a linear
path length measure. Concretely, we split the time horizon evenly into 25 stages and restrict the
underlying model parameter w∗

t to be stationary within a stage. For adaptive regret minimization, we
simulate gradually evolving model drifts, where the underlying model parameter w∗

t+1 is generated
based on the last-round model parameter w∗

t with an additional random walk in the feasible domain
W . The step size of random walk is set to be proportional to D/T to ensure a smooth model change.

Contenders. For both dynamic regret and adaptive regret minimization, we directly work on the
small-loss online methods. We choose the Sword algorithm [Zhao et al., 2021b] as the contender of

2With a slight abuse of notations, we here use w to denote the model parameter and W to denote the feasible
domain, while reserve the notations of x and X to denote the feature and feature space following the conventional
notations of machine learning terminologies.
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Figure 1: Performance comparisons of existing methods and our methods (indicated by “efficient”
prefix) in terms of cumulative loss and running time (in seconds). The first two figures plot the results
of methods for dynamic regret minimization, while the latter ones are for adaptive regret.

our efficient method for dynamic regret (Algorithm 1) and choose the SACS algorithm [Zhang et al.,
2019] as the contender of our efficient method for adaptive regret (Algorithm 2).

Results. We repeat the experiments for five times with different random seeds and report the results
(mean and standard deviation) in Figure 1. We use a machine with a single CPU (Intel(R) Core(TM)
i9-10900K CPU @ 3.70GHz) and 32GB main memory to conduct the experiments. We plot both
cumulative loss and running time (in seconds) for all the methods. We first examine the performance
of dynamic regret minimization, see Figure 1(a) for cumulative loss and see Figure 1(b) for running
time. The empirical results show that our method has a comparable performance to Sword without
much sacrifice of cumulative loss, while our method can achieve about 10 times speedup due to
the improved projection complexity. Second, as shown in Figure 1(c) and Figure 1(d), a similar
performance enhancement also appears in adaptive regret minimization, though the speedup is slightly
smaller due to the fact that fewer learners are required to maintain for adaptive regret. To summarize,
the empirical results show the effectiveness of our methods in retaining the regret performance and
also the efficiency in terms of the running time due to the reduced projection complexity.

5 Conclusion

In this paper, we design a generic reduction mechanism that can reduce the projection complexity
of two-layer methods for non-stationary online learning, hence approaching a clearer resolution
of necessary computational overhead for robustness to non-stationarity. Building on the reduction
mechanism, we develop a series of online algorithms for optimizing dynamic regret and adaptive
regret. All the algorithms retain the best known regret guarantees, and more importantly, require
one projection onto the feasible domain per iteration. It is further worth mentioning that, due to
the requirement of our reduction, all our algorithms only need one gradient query and one function
evaluation at each round as well, which can be appealing in situations with limited feedback.

Our reduction can also be applied to other settings to achieve light project complexity, for example,
dynamic regret of OCO with memory [Zhao et al., 2022b], OCO with switching cost [Zhang et al.,
2021], and related applications such as online non-stochastic control [Hazan et al., 2020]. Moreover,
it is possible to derive similar efficient algorithms for minimizing the interval dynamic regret, an even
stringent measure for non-stationary online convex optimization. There is one important open question
left on another type of problem-dependent bound that scales with gradient variation [Chiang et al.,
2012], which plays an important role in establishing fast convergence in zero-sum games [Syrgkanis
et al., 2015; Zhang et al., 2022]. Although Zhao et al. [2021b] have devised a two-layer method
that enjoys a gradient-variation dynamic regret and requires one gradient per iteration, it is quite
challenging to incorporate the optimistic online learning into our reduction mechanism due to the
constrained feasible domain and the complicated two-layer structure. Finally, it would be greatly
important to further understand the minimal computational overhead in response to the robustness to
non-stationarity, in particular, some information-theoretic arguments would be highly interesting.
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A Omitted Details for Reduction Mechanism

In this section, we provide the proofs of Theorem 1 and Lemma 1.

A.1 Properties of Distance Function

Before presenting the proofs, we here collect two useful lemmas regarding the distance function used
in the surrogate loss, which will be useful in the following proofs. The proofs of the two lemmas can
be found in the seminal paper of Cutkosky and Orabona [2018].

Lemma 2 (Proposition 1 of Cutkosky and Orabona [2018]). The distance function SX (y) =
infx∈X ∥y − x∥2 is convex and 1-Lipschitz for any closed convex feasible domain X ⊆ Rd.

Lemma 3 (Theorem 4 of Cutkosky and Orabona [2018]). Let X ⊆ Rd a closed convex set. Given
y ∈ Rd and y /∈ X . Let x = ΠX [y]. Then we have { y−x

∥y−x∥2
} = ∂SX (y).

A.2 Proof of Theorem 1

Theorem 1 is originally due to Cutkosky [2020], and for self-containedness we restate their proof
using our notations.

Proof. When ⟨∇ft(xt),vt⟩ ≥ 0, by the definition of the surrogate loss defined in Eq. (5), we
have gt(y) = ⟨∇ft(xt),y⟩, which is linear in y and thus convex (in fact linear in y). It is clear
that ∥∇gt(yt)∥2 = ∥∇ft(xt)∥2 and thus satisfies the claimed inequality of gradient norms in the
statement. Moreover, the inequality (6) holds evidently due to the linear surrogate loss in this case.

Let us focus on the case when ⟨∇ft(xt),vt⟩ < 0. First, it can be verified that the surrogate loss
gt(y) = ⟨∇ft(xt),y⟩ − ⟨∇ft(xt),vt⟩ · SX (y) is convex due to the convexity of SX (y) shown in
Lemma 2 and the condition of ⟨∇ft(xt),vt⟩ < 0 in this case. Next, the gradient of gt(·) at the yt
point can be calculated according to Lemma 1 as,

∇gt(yt) = ∇ft(xt)− ⟨∇ft(xt),vt⟩ · vt

where vt = (yt − xt)/∥yt − xt∥2. Notice that ∥vt∥2 = 1 and ∇gt(yt) is an orthogonal projection
of∇ft(xt) onto the subspace perpendicular to the vector vt, so we have ∥∇gt(yt)∥2 ≤ ∥∇ft(xt)∥2.
Finally, we proceed to prove the inequality (6) in this case. Since the comparator ut ∈ X is in the
feasible domain, we have SX (ut) = ∥ut − ut∥2 = 0 and get

⟨∇ft(xt),xt − ut⟩
= ⟨∇ft(xt),yt⟩+ ⟨∇ft(xt),xt − yt⟩ − ⟨∇ft(xt),ut⟩

= ⟨∇ft(xt),yt⟩ − ⟨∇ft(xt),
yt − xt
∥yt − xt∥2

⟩ · ∥yt − xt∥2 − ⟨∇ft(xt),ut⟩

= ⟨∇ft(xt),yt⟩ − ⟨∇ft(xt),vt⟩ · SX (yt)− ⟨∇ft(xt),ut⟩+ ⟨∇ft(xt),vt⟩ · SX (ut)

= gt(yt)− gt(ut)
≤ ⟨∇gt(yt),yt − ut⟩,

where the last inequality holds owing to the convexity of the surrogate loss proven earlier.

Combining the two cases finishes the proof.

A.3 Proof of Lemma 1

Lemma 1 is originally due to Cutkosky and Orabona [2018], and for self-containedness we restate
their proof using our notations.

Proof. With a slight abuse of notations, for simplicity we use the notation ∇gt(y) to denote the
(sub-)gradient of surrogate function gt(·) at point y, no matter whether the function is differentiable.

When ⟨∇ft(xt),vt⟩ ≥ 0, the surrogate loss is gt(y) = ⟨∇ft(xt),y⟩ by definition in Eq. (5).
Therefore, the gradient simply becomes∇gt(yt) = ∇ft(xt).
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When ⟨∇ft(xt),vt⟩ < 0, the surrogate loss becomes gt(y) = ⟨∇ft(xt),y⟩−⟨∇ft(xt),vt⟩ ·SX (y)
according to definition in Eq. (5). By Lemma 3, the gradient∇gt(y) can be calculated by

∇gt(y) = ∇ft(xt)− ⟨∇ft(xt),vt⟩ ·
y −ΠX [y]

∥y −ΠX [y]∥2
,

where the computation needs the projection onto domain X . In particular, for yt, we have

∇gt(yt) = ∇ft(xt)− ⟨∇ft(xt),vt⟩ ·
yt − xt
∥yt − xt∥2

= ∇ft(xt)− ⟨∇ft(xt),vt⟩ · vt.

This ends the proof.

B Omitted Details for Dynamic Regret Minimization

In this section, we provide the proofs for the theorems presented in Section 2. Specifically, we first
prove the worst-case bound (Theorem 2) and then work on the small-loss bound (Theorem 3).

B.1 Proof of Theorem 2

Proof. Notice that Zhang et al. [2018a] propose the improved Ader algorithm (see Algorithm 3
and Algorithm 4 in their paper), which uses the linearized loss as the input to make the online
algorithm requiring one gradient and one function evaluation per iteration. So the algorithm satisfies
the requirements of our reduction mechanism, and our algorithm can be regarded as the improved
Ader equipped with the projection-efficient reduction. As a consequence, we can directly obtain the
same dynamic regret guarantee and ensure 1 projection complexity at the same time, by following
the same proof of the improved Ader as well as the reduction guarantee (Theorem 1).

B.2 Proof of Theorem 3

Proof. By the reduction guarantee shown in Theorem 1, we have the following result that decomposes
the dynamic regret into the two terms.

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤
T∑
t=1

gt(yt)−
T∑
t=1

gt(ut) ≤
T∑
t=1

⟨∇gt(yt),yt − ut⟩

=

T∑
t=1

⟨∇gt(yt),yt − yt,i⟩︸ ︷︷ ︸
meta-regret

+

T∑
t=1

⟨∇gt(yt),yt,i − ut⟩︸ ︷︷ ︸
base-regret

, (15)

where in (15) the first term is called meta-regret as it measures the regret overhead of the meta-
algorithm to track the unknown best base-learner, and the second term is called the base-regret to
denote the dynamic regret of the base-learner i. Note that the above decomposition holds for any
base-learner index i ∈ [N ].

Upper bound of meta-regret. As the meta-algorithm can be regarded as a FTRL with time-varying
learning rates and a negative entropy regularizer, we apply Lemma 10 to obtain an upper bound for
the meta-regret. Indeed, by choosing ℓt,i = ⟨∇gt(yt),yt,i⟩ in Lemma 10, we can achieve that

T∑
t=1

⟨∇gt(yt),yt − yt,i⟩ ≤ 3

√√√√lnN

(
1 +

T∑
t=1

D2∥∇gt(yt)∥22

)
+
G2D2

√
lnN

2

≤ 3D

√√√√lnN

T∑
t=1

∥∇gt(yt)∥22 +
(6 +G2D2)

√
lnN

2

≤ 3D

√√√√lnN

T∑
t=1

∥∇ft(xt)∥22 +O(1)
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≤ 6D

√√√√L lnN

T∑
t=1

ft(xt) +O(1), (16)

where the first inequality holds because we have ∥ℓt∥2∞ = maxi∈[N ](⟨∇gt(yt),yt,i⟩)2 ≤
D2∥∇gt(yt)∥22 by Cauchy-Schwarz inequality and ∥∇gt(yt)∥2 ≤ ∥∇ft(xt)∥2 ≤ G (see Theo-
rem 1), the second inequality makes use of

√
a+ b ≤

√
a +
√
b, the third inequality holds by the

property of the surrogate loss (also via Theorem 1), and the last inequality is due to the self-bounding
properties of smooth functions (see Lemma 12). Note that O(lnN) = O(log log T ) can be treated
as a constant following previous studies [Luo and Schapire, 2015; Gaillard et al., 2014]

Upper bound of base-regret. According to Lemma 7 and noticing that the comparator sequence
u1, . . . ,uT ∈ X ⊆ Y and the diameter of Y equals to 2D by definition, with slight modifications,
we have the following dynamic regret bound.

T∑
t=1

⟨∇gt(yt),yt,i − ut⟩ ≤
5D2

2ηi
+
D

ηi

T∑
t=2

∥ut − ut−1∥2 + ηi

T∑
t=1

∥∇gt(yt)∥22

≤ 5D2

2ηi
+
D

ηi

T∑
t=2

∥ut − ut−1∥2 + ηi

T∑
t=1

∥∇ft(xt)∥22 (17)

≤ 5D2

2ηi
+
D

ηi

T∑
t=2

∥ut − ut−1∥2 + 4ηiL

T∑
t=1

ft(xt), (18)

where the second inequality is due to the property of the surrogate loss (see Theorem 1) and the last
one is due to the self-bounding property of smooth functions (see Lemma 12).

Note that the property of ∥∇gt(yt)∥2 ≤ ∥∇ft(xt)∥2 (see Theorem 1) plays an important role in
the above analysis. Although the surrogate functions {gt}Tt=1 are not guaranteed to be smooth and
non-negative, we can upper bound its gradient norm by that defined over the original functions
{gt}Tt=1, which are indeed smooth and non-negative. We thus can utilize the self-bounding properties
to establish a small-loss bound for the meta-regret and base-regret.

Upper bound of dynamic regret. Plugging the above upper bounds of meta-regret and base-regret
together, we achieve

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ 6D

√√√√L lnN

T∑
t=1

ft(xt)+
5D2 + 2DPT

2ηi
+4ηiL

T∑
t=1

ft(xt)+O(1), (19)

which holds for any base-learner’s index i ∈ [N ].

Next, we specify the base-algorithm Ei compared with. Indeed, we aim at choosing the one with
step size closest to the (near-)optimal step size η∗ =

√
5D2+2DPT

1+8LFx
T

, where we denote by Fx
T =∑T

t=1 ft(xt) the cumulative loss of the decisions. By Assumption 1 and Assumption 2, we have
Fx
T ∈ [0, GDT ] and then the possible minimum optimal and maximum step size are

ηmin =

√
5D2

1 + 8LGDT
, and ηmax =

√
5D2 + 2D2T .

The construction of step size pool is by discretizing the interval [ηmin, ηmax] with intervals with
exponentially increasing length. The step size of each base-learner is designed to be monotonically
increasing with respect to the index. Consequently, it is evident to verify that there exists an index
i∗ ∈ [N ] such that

ηi∗ ≤ η∗ ≤ ηi∗+1 = 2ηi∗ . (20)

As the upper bounds of meta-regret and base-regret hold for any compared base-learner, we can
choose the index as i∗ in particular. Then the second and the third terms in the inequality (19) satisfy

5D2 + 2DPT
2ηi∗

+ 4ηi∗LF
x
T
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≤ 5D2 + 2DPT
η∗

+ 4η∗LFx
T

≤
√

(5D2 + 2DPT )(1 + 8LFx
T ) +

1

2

√
(5D2 + 2DPT )(1 + 8LFx

T )

≤ 3
√
2(5D2 + 2DPT )(1 + LFx

T ). (21)

Substituting inequality (21) into inequality (19), we have,
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)

≤ 6D
√
L lnNFx

T + 3
√

2(5D2 + 2DPT )(1 + LFx
T ) +O(1)

≤
(
6D
√
L lnN + 3

√
2L(5D2 + 2DPT )

)√
Fx
T + 3

√
2(5D2 + 2DPT ) +O(1)

≤ O
(√

(1 + PT )(FT +
√
PT +O(1)) + PT + 1

)
= O

(√
(FT + PT )(1 + PT )

)
,

where the last inequality holds by Lemma 17. Hence, we complete the proof of Theorem 3.

C Omitted Details for Adaptive Regret Minimization

In this section, we present omitted details for minimizing the worst-case and small-loss adaptive
regret. First, in Appendix C.1 we describe the efficient algorithm for attaining the worst-case adaptive
regret, which provably enjoys the same guarantee as the prior best known work and meanwhile
requires one projection only per iteration. Next, we focus on the proof of the main theorem for
small-loss adaptive regret, i.e., Theorem 4. To this end, Appendix C.2 provides three key lemmas,
Appendix C.3 presents the proof of Theorem C.3, and Appendix C.4 – Appendix C.6 give the proofs
of three key lemmas.

C.1 Results for the Worst-Case Adaptive Regret

In this section, we present results for the worst-case adaptive regret omitted in the main text. The best
known result is the O(

√
|I| log T ) worst-case adaptive regret attained by the CBCE algorithm [Jun

et al., 2017], which is achieved by the coin-betting framework with the sleeping expert mechanism.
However, CBCE requires multiple gradients at each round. Wang et al. [2018] improve CBCE by
using the linearized loss to make the algorithm requiring one gradient per iteration and retaining the
same adaptive regret. Moreover, the improved CBCE algorithm only evaluates the function value
once per iteration, and the algorithm is presented in [Wang et al., 2018, Algorithm 4 and Algorithm
5] . Therefore, we can simply feed the surrogate loss gt constructed in (5) to the improved CBCE
of Wang et al. [2018], and the obtained algorithm can ensure the same order of adaptive regret and
also require only one projection onto the feasible domain per iteration.

C.2 Key Lemmas

In this part, we present three key lemmas for proving the small-loss adaptive regret, namely, Theo-
rem 4. We then prove Theorem 4 based on these lemmas in Appendix C.3. Finally, we present the
proofs for those lemmas in the following several subsections.

The first lemma gives the upper bound of meta-regret of our efficient method for small-loss adaptive
regret, which heavily relies on the structure of the problem-dependent geometric covers.

Lemma 4. Under Assumptions 2 and 3, for any interval I = [i, j] ∈ C̃ in the geometric covers
defined in Eq. (10) on which we suppose m-th base-learner is active, Algorithm 2 ensures

t∑
τ=i

⟨∇gt(yt),yt − yt,m⟩ ≤ O


√√√√log(m)

t∑
τ=i

fτ (xτ )

 ,
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which holds for any time stamp t ∈ [i, j].

Combining above lemma and the analysis of the base-regret upper bound, we can obtain the following
adaptive regret for any interval of the problem-dependent geometric covers.

Lemma 5. Under Assumptions 1, 2, and 3, for any interval [i, j] ∈ C̃ in the geometric covers defined
in Eq. (10), on which we assume m-th expert-algorithm is active, Algorithm 2 ensures

t∑
τ=i

fτ (xτ )−
t∑
τ=i

fτ (u) ≤ O


√√√√log(m)

t∑
τ=i

fτ (u)

 ,

which holds for any time stamp t ∈ [i, j] and any comparator u ∈ X .

The above two lemmas rely on the unknown variable of m, and the following lemma presents an
upper bound for m in terms of the small-loss quantity Ft.

Lemma 6. Under Assumptions 1, 2, and 3, for any interval [i, j] ∈ C̃ and any t ∈ [i, j], the variable
m specified in Lemma 4 and Lemma 5 can be bounded by

m ≤ O
(
F[1,t]

)
. (22)

This immediately implies that Algorithm 2 ensures

t∑
τ=i

fτ (xτ )−min
u∈X

t∑
τ=i

fτ (u) ≤ O
(√

F[i,t] logF[1,t]

)
,

where F[a,b] = minu∈X
∑b
τ=a fτ (u) denotes the cumulative loss of the comparator within the

interval [a, b] ⊆ [T ].

C.3 Proof of Theorem 4

Proof. Recall that Theorem 4 exhibits an O
(
min{

√
FI logFI logFT ,

√
|I| log T}

)
adaptive regret

for any interval I = [r, s] ⊆ [T ], where FI = minx∈X
∑s
t=r ft(x) and FT = minx∈X

∑T
t=1 ft(x).

The bound consists of two parts, including a small-loss bound of O(
√
FI logFI logFT ) and a

worst-case bound of O(
√
|I| log T ). Below, we present the proofs of the two bounds respectively.

Before showing the proofs, we emphasize again that our result strictly improves the small-loss bound
of Zhang et al. [2019], who give anO(

√
FI logFI logFT ) bound that becomesO(

√
|I| log|I| log T )

in the worst case and thus is looser than the O(
√
|I| log T ) problem-independent bound [Jun et al.,

2017] by a factor of log|I|. Our regret guarantee consists of the small-loss bound and another
worst-case bound acting as a safety guarantee for the worst case. Indeed, in the worst-case situation,
our bound becomes O(

√
|I| log T ) and strictly match the best known worst-case result [Jun et al.,

2017]. We note that our improvement is owing to a refined analysis in the proof as well as our careful
algorithm design that only uses one function evaluations to adaptively determine the geometric covers,
which is to be contrasted to SACS [Zhang et al., 2019] that uses the latest base-learner’s decision to
determine the covers.

Small-loss regret bound. Let sp be the smallest marker that larger than r, and let sq be the largest
marker that is not large than s, then we have

sp−1 ≤ r < sp, and sq ≤ s < sq+1.

We bound the regret over the interval [r, sp − 1] as,

sp−1∑
t=r

ft(xt)−
sp−1∑
t=r

ft(u) ≤
sp−1∑
t=r

ft(xt) ≤
sp−1∑
t=sp−1

ft(xt) ≤ Cp−1 +GD. (23)

The last inequality is because of the construction rule of marker and the fact that ft(xt) ≤ GD for
any t ∈ [T ] by Assumptions 1 – 3.
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By Lemma 11, we can find v consecutive intervals

I1 = [si1 , si2 − 1], I2 = [si2 , si3 − 1], . . . , Iv = [siv , siv+1 − 1] ∈ C̃, (24)

such that
i1 = p, iv ≤ q < iv+1, and v ≤ ⌈log2(q − p+ 2)⌉.

Notice that,

q < iv+1 ⇒ q + 1 ≤ iv+1 ⇒ sq+1 − 1 ≤ siv+1 − 1⇒ s ≤ siv+1 − 1.

For the neat presentation, we define,

α(t) = (27GD + 72D2L) ln

(
3 +

8

C1

t∑
τ=1

fτ (u)

)
+ 72D2Lµ2(t) + 9GDµ(t) + 6D

√
δ + 288D2L,

β(t) = 4D
√
L


√√√√ln

(
3 +

8

C1

t∑
τ=1

fτ (u)

)
+

µ(t)√
ln(3 + 8(

∑t
τ=1 fτ (u))/C1)

+ 2

 ,

where we use the notations µ(t) = ln(1+(1+ln(1+t))/(2e)) = O(log log t) that can be essentially
regarded as a constant and C1 = G(1), where G(·) is the threshold generating function defined in (46).

For intervals I1 to Iv , by Lemma 5,

s∑
t=sp

ft(xt)−
s∑

t=sp

ft(u) ≤
v−1∑
k=1

(
α(s) + β(s)

√
FIk

)
+ α(s) + β(s)

√
F[siv ,s]

(25)

≤ vα(s) + β(s)
√
vF[sp,s]

≤ vα(s) + β(s)
√
vFI . (26)

Combining (23) and (26), the adaptive regret on any interval i = [r, s] will be
s∑
t=r

ft(xt)−
s∑
t=r

ft(u) ≤ vα(s) + β(s)
√
vFI + Cp−1 +GD. (27)

Next, we show that v and Cp−1 are of order O(logF[r,s]) and O(logFT ) respectively. By the
definition of the time-varying threshold (see the threshold generating function Eq. (46)) and Lemma 6,
the threshold can be bounded as,

Cp−1 ≤ (54GD+168D2L) ln

(
3 +

8

C1
F[1,r]

)
+168D2Lµ2(T )+18GDµ(T )+6D

√
δ+672D2L,

which is of order O(logFT ).
With the same argument as (48), it can be shown that between markers sp and sq , for any u′ ∈ X ,

sq−1∑
t=sp

ft(u
′) ≥ C1

4
(q − p),

which suggests

q − p ≤ 4

C1

sq−1∑
t=sp

ft(u
′) ≤ 4

C1

s∑
t=r

ft(u
′).

We thus have

v ≤ ⌈log2(q − p+ 2)⌉ ≤
⌈
log2

(
4

C1
F[r,s] + 2

)⌉
= O(logF[r,s]).
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Combining the upper bounds of Cp−1 and v as well as the adaptive regret bound in (27) yields
s∑
t=r

ft(xt)−
s∑
t=r

ft(u) ≤ O(logFI logFT ) +O(
√
FI logFI logFT ) +O(logFT ) +O(1)

= O
(√

FI logFI logFT

)
,

where the last step is true as we follow the same convention in [Zhang et al., 2019] to treat the
logFI logFT as the non-leading term. Hence, we finish the proof of the small-loss adaptive regret.

Worst-case regret bound. The above proof aims at obtaining small-loss type regret bound, and one
of the key steps is to use Cauchy-Schwarz inequality to bound (25), which results in an additional
O(
√
logF[r,s]) term. Next, we show that actually this extra term can be avoided by the new design

thresholds mechanism and thus asymptotically achieve the same worst-case adaptive regret as the
best known result [Jun et al., 2017].

From (43) in Lemma 5, we have that for any interval I = [i, j] in problem-dependent covers defined
in (10), the adaptive regret is at most

j∑
t=i

ft(xt)−
j∑
t=i

ft(u) ≤ O
(√

log T · Fx
[i,j] + log T

)
,

where we use the notation Fx
[a,b] =

∑b
t=a ft(xt) to denote the cumulative loss of the returned

decisions within the interval [a, b] ⊆ [T ]. Then, we can use Lemma 6 to upper bound m ≤ O(T ) as
only the worst-case behavior matters now.

Moreover, for the consecutive intervals defined in (24), we have the following facts:

ik+1 ≤ 2 · ik, ∀k ∈ [v], and |il+1 − il| ≤
1

2
|il+2 − il+1|, ∀l ∈ [v − 1].

The first relationship between consecutive foot-indexes of time markers will be used to show that
thresholds will not grow too fast during an interval in the geometric covers, which can verified by the
construction of cover defined in (10). The second inequality indicates that the times the cumulative
loss of algorithm exceeds thresholds in an interval decreases exponentially from Iv to I1, and this can
be verified in the proof of [Zhang et al., 2019, Lemma 11].

For the interval Ik with k ∈ [v − 1] in (24), our algorithm’s cumulative loss within the interval is
upper bounded by

sik+1
−1∑

t=sik

ft(xt) ≤
( ik+1−1∑

a=ik

Ca

)
+GD|ik+1 − ik| ≤ (GD + Cik+1−1)|ik+1 − ik|. (28)

We then split a given interval [r, s] into three parts to analyze, namely, the consecutive v − 1 intervals
I1 to Iv−1, interval [r, sp − 1], and [siv , s], where notably the last two intervals are not fully covered
by any interval in geometric covers. For intervals I1 to Iv−1, we have

siv−1∑
t=si1

ft(xt)−
siv−1∑
t=si1

ft(u) ≤
v−1∑
a=1

O
(√

log T · Fx
Ia

+ log T
)

≤
v−1∑
a=1

O
(√

log T · Civ−1 · |ia+1 − ia|+ log T
)

≤
v−1∑
a=1

O

(√
log T · Civ−1 ·

|iv − iv−1|
2v−1−a + log T

)

≤ O

(
v log T +

√
log T · Civ−1 ·

+∞∑
b=0

√
|iv − iv−1|

2b

)
≤ O

(
v log T +

√
log T · Civ−1 · |iv − iv−1|

)
,
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where the second inequality is due to the monotonically increasing property of thresholds, the third
inequality is by (28), and the last inequality is by the summation of geometric sequence.

By the setting of time-varying thresholds as specified in Eq. (46), we know Civ−1 = O(log(iv)).
Furthermore, |iv − iv−1| represents the number of markers that our algorithm generates during the
interval Iv−1, so it can be upper bounded as

|iv − iv−1| ≤ O
(
GD|I|
Civ−1

)
= O

(
GD|I|

log(iv−1)

)
,

because the total loss of the algorithm during |I| is at most GD|I| and we use the smallest threshold
Civ−1

during the interval Iv−1 to calculate the maximum number of possible markers. Due to the
relationship of 2iv−1 ≥ iv by (28), we then get

siv−1∑
t=si1

ft(xt)−
siv−1∑
t=si1

ft(u) ≤ O
(
v log T +

√
log T · Civ−1 · |iv − iv−1|

)

≤ O

(
v log T +

√
log T · log(iv) ·

|I|
log(iv−1)

)

≤ O

(
v log T +

√
log T · |I|(1 + 1

log iv−1
)

)
≤ O

(
log |I| log T +

√
|I| log T

)
,

where the last inequality is due to the fact that v is of order O(logF[r,s]) = O(log |I|). Remind that
the variable v appears in our analysis by Lemma 11, which is independent of the worst-case analysis.

Now we proceed to upper bound the regret over intervals [r, sp− 1] and [siv , s]. By a similar analysis
used early, we have

sp−1∑
t=r

ft(xt)−
sp−1∑
t=r

ft(u) ≤ Cp−1 ≤ O(log T ),

and
s∑

t=siv

ft(xt)−
s∑

t=siv

ft(u) ≤ O
(
log T +

√
F[siv ,s]

log T
)
≤ O

(
log T +

√
|I| log T

)
.

Combining everything together achieves
s∑
t=r

ft(xt)−
s∑
t=r

ft(u)

≤ O
(√
|I| log T + log |I| log T

)
= O

(√(
|I|+ log T · log2 |I|

)
log T

)
= O(

√
|I| log T ).

The last step holds by considering the following cases.

• When the interval length is |I| = Θ(Tα) with α ∈ (0, 1]. Then,

O
(√(

|I|+ log T · log2 |I|
)
log T

)
= O

(√(
Tα + α2 log3 T

)
log T

)
= O

(√
Tα log T

)
= O

(√
|I| log T

)
.

• When the interval length is |I| = Θ(logβ T ), and note that β ∈ [1,+∞) as |I| = Ω(log T )
is the minimum order to ensure the adaptive regret to be non-trivial. Then,

O
(√(

|I|+ log T · log2 |I|
)
log T

)
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= O

(√(
logβ T + β2 log T · (log log T )2

)
log T

)

= O
(√

(logβ T + β2 log T ) log T

)
= O

(√
logβ T log T

)
= O

(√
|I| log T

)
,

where the second equality is true for β > 1 and otherwise we can treat O(log log T ) as a
constant following previous studies [Luo and Schapire, 2015; Gaillard et al., 2014].

Hence we finish the proof for the worst-case adaptive regret bound. Combining both small-loss bound
and the worst-case safety guarantee, we complete the proof of Theorem 4.

Discussions about the analysis of worst-case bound. We point out that the same analysis for
worst-case adaptive bound cannot be applied to SACS [Zhang et al., 2019] directly, because the new
designed time-varying thresholds mechanism plays an important role. Indeed, SACS monitors the
cumulative loss of the new-added base-learner and switches to the another one immediately after
a new marker is registered, which causes intermittent performance monitoring for the remaining
markers the base-learner may go through. Thus, we cannot employ a similar argument (like Eq. (28)
in our analysis) to bound the cumulative loss by the summation of thresholds for adaptive regret of
SACS, as the performance of base-learner on the whole active interval is absent.

Finally, we would like to emphasize the necessity of monitoring the final decisions’ cumulative loss.
To meet the one projection requirement, our base-algorithm is updated over the surrogate loss and
the provided gradient information is about the final decision only. Thus the thresholds are set on the
cumulative loss of final decisions to exploit the limited available information.

C.4 Proof of Lemma 4

Proof. First we introduce some useful variables to help us prove the adaptivity of Adapt-ML-Prod
under sleeping-expert setting. Similar to the proof technique proposed in [Daniely et al., 2015], for
any interval [i, j] ∈ C̃ in the geometric covers defined in (10), on which we suppose m-th base-learner
is active, we define the following pseudo-weight for the m-th base-learner,

w̃τ,m =


0 τ < i,
1 τ = i,(

w̃τ−1,m(1 + ητ−1(ℓ̂τ−1 − ℓτ−1,m))
) ητ,m

ητ−1,m i < τ ≤ j + 1,
w̃j+1,m τ > j + 1.

In addition, we use W̃t =
∑
k∈[T ] w̃t,k to denote the summation of pseudo-weights for all possible

base-learners up to time t. As for the problem-dependent geometric covers, in the worst case there are
at most T base-learners generated, we use [T ] to denote the indexes for all the base-learners. Notice
that the pseudo-weight w̃t is defined as 0 for asleep base-learners till time t, so we can include all
possible ones safely in the definition even though they are not generated in practical implementations
of the algorithm.

In the following, we use the classic potential argument [Gaillard et al., 2014] by showing both lower
bound and upper bound of ln W̃t+1 to establish relationships between certain concerned quantities.

Lower bound of ln W̃t+1. We claim that for t ∈ [i, j] it holds that

ln w̃t+1,m ≥ ηt+1,m

t∑
τ=i

(rτ,m − ητ,mr2τ,m). (29)

We prove the above inequality by induction on t. When t = i, by definition,

ln w̃i+1,m =
ηi+1,m

ηi,m
ln (1 + ηmri,m) ≥ ηi+1,m

ηi,m

(
ηmri,m − η2mr2i,m

)
= ηi+1,m(ri,m − ηmr2i,m),
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where the inequality is because of ln(1 + x) ≥ x− x2,∀x ≥ −1/2.

Suppose the statement holds for ln w̃t,m, then we proceed to check the situation for t+ 1 round as
follows. Indeed,

ln w̃t+1,m =
ηt+1,m

ηt,m
(ln w̃t,m + ln (1 + ηt,mrt,m))

≥ ηt+1,m

ηt,m

(
ln w̃t,m + ηt,mrt,m − η2t,mr2t,m

)
=
ηt+1,m

ηt,m
ln w̃t,m + ηt+1,m

(
rt,m − ηt,mr2t,m

)
≥ ηt+1,m

ηt,m

(
ηt,m

t−1∑
τ=i

(rτ,m − ητ,mr2τ,m)

)
+ ηt+1,m

(
rt,m − ηt,mr2t,m

)
= ηt+1,m

t∑
τ=i

(rτ,m − ητ,mr2τ,m). (30)

Then, as w̃t+1,m is positive for any m-th base-learner, we have ln W̃t+1 ≥ ln w̃t+1,m. Combin-
ing (30) obtains the desired lower bound of ln W̃t+1.

Upper bound of ln W̃t+1. By the construction of the geometric covers as specified in Eq. (10), we
know that there will be at most 2m base-learners initialized for them-th base-learner active on interval
[i, j] till her end. This is because m-th base-learner is initialized when m-th marker is recorded,
and she will expire before the moment when 2m-th marker is recorded, as demonstrated by the
construction of cover defined in Eq. (10). Owing to this property, we have W̃t+1 =

∑
k∈[2m] w̃t+1,k

as others’ pseudo-weight equals to 0 by definition. So we can upper bound W̃t+1 as,

W̃t+1 =
∑

k∈[2m]

w̃t+1,k =
∑

k∈[2m]:ik=t+1

w̃t+1,k +
∑

k∈[2m]:ik≤t

w̃t+1,k

= 1{new alg. at t+ 1}+
∑

k∈[2m]:ik≤t

w̃t+1,k, (31)

where with a slight abuse of notations, we denote by [ik, jk] ∈ C̃ the active time for k-th base-learner.

For the second term in (31), we have∑
k:ik≤t

w̃t+1,k =
∑

k∈[2m]:t∈[ik,jk]

w̃t+1,k +
∑

k∈[2m]:t>jk

w̃t+1,k

=
∑

k∈[2m]:t∈[ik,jk]

w̃t+1,k +
∑

k∈[2m]:t>jk

w̃t,k

≤
∑

k∈[2m]:t∈[ik,jk]

w̃t,k(1 + ηt,krt,k) +
1

e

(
ηt,k
ηt+1,k

− 1

)
+

∑
k∈[2m]:t>jk

w̃t,k

= W̃t +
∑

k∈[2m]:t∈[ik,jk]

ηt,kw̃t,krt,k︸ ︷︷ ︸
=0

+
∑

k∈[2m]:t∈[ik,jk]

1

e

(
ηt,k
ηt+1,k

− 1

)
, (32)

where the first equality holds by the definition of w̃t+1,k, the second inequality is by the updating
rule of w̃t+1,k and Lemma (18), and the second term in the last equality equals to 0 due to the weight
update rule in (13) and the fact of w̃t,k = wt,k for any t ∈ [ik, jk].

Combining (31), (32) and by induction, we obtain the following upper bound:

W̃t+1 ≤ 1 + 2m+
1

e

∑
k∈[2m]

t∧jk∑
τ=ik

(
ητ,k
ητ+1,k

− 1

)
, (33)
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where we denote α ∧ β = min{α, β}.
We now turn to analyze the third term in (32). Indeed, Gaillard et al. [2014] have analyzed it under
the static regret measure. For the sake of completeness, we present the proof with our notations. For
any k ∈ [2m], for any τ ∈ [ik, t ∧ jk], the relationship between ητ,k and ητ+1,k can be considered as
three cases,

• ητ,k = ητ+1,k = 1/2,

• ητ+1,k =
√
γk/(1 +

∑τ
u=ik

r2u,k) < ητ,k = 1
2 ,

• ητ+1,k ≤ ητ,k < 1/2.

In all cases, the ratio ητ,k/ητ+1,k − 1 is at most

t∧jk∑
τ=ik

(
ητ,k
ητ+1,k

− 1

)
≤

t∧jk∑
τ=ik

√√√√1 +
∑τ
u=ik

r2u,k

1 +
∑τ−1
u=ik

r2u,k
− 1


=

t∧jk∑
τ=ik

√√√√ r2τ,k

1 +
∑τ−1
u=ik

r2u,k
+ 1− 1


≤ 1

2

t∧jk∑
τ=ik

r2τ,k

1 +
∑τ−1
u=ik

r2u,k

≤ 1

2

(
1 + ln

(
1 +

t∧jk∑
u=ik

r2u,k

))
− ln(1)

≤ 1

2
(1 + ln(1 + t)) , (34)

where the second inequality uses
√
1 + x ≤ 1+x/2 and the third inequality follows from Lemma 14

with the choice of f(x) = 1/x.

Substituting (34) into (33), we get

W̃t+1 ≤ 1 + 2m+
m

e
(1 + ln (1 + t)) ≤ (1 + 2m)

(
1 +

1

2e
(1 + ln(1 + t))

)
. (35)

Further taking the logarithm over the above inequality gives the upper bound of ln W̃t+1.

Upper bound of meta-regret. Now, we can lower bound and upper bound ln W̃t+1 by (30) and (35),
with arrangement, which yields the upper bound of scaled meta-regret. Concretely,

t∑
τ=i

rτ,m ≤
t∑
τ=i

ητ,mr
2
τ,m +

ln(1 + 2m) + µ(t)

ηt+1,m

≤ 2
√
γi

√√√√1 +

t∑
τ=i

r2τ,i +
ln(1 + 2m) + µ(t)

ηt+1,m
(36)

≤ ln(1 + 2m) + µ(t) + 2γm√
γm

√√√√1 +

t∑
τ=i

r2τ,m + 2 ln(1 + 2m) + 4γm + 2µ(t)

=

(
3
√
ln(1 + 2m) +

µ(t)√
ln(1 + 2m)

)√√√√1 +

t∑
τ=i

r2τ,m + 6 ln(1 + 2m) + 2µ(t), (37)

where we denote µ(t) = ln(1 + (1 + ln(1 + t))/(2e)).The second inequality is by Lemma 14 and
choose f(x) = 1/

√
x. The last equality is by the choice of γm = ln(1 + 2m). As for the third

inequality, there are two cases to be considered:
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• when
√
1 +

∑t
τ=i r

2
τ,m > 2

√
γm, we have that (36) is at most

2
√
γm

√√√√1 +

t∑
τ=i

r2τ,m +
ln(1 + 2m) + µ(t)

√
γm

√√√√1 +

t∑
τ=i

r2τ,m.

• when
√

1 +
∑t
τ=i r

2
τ,m ≤ 2

√
γm, we have that ηt+1,m = 1/2 and (36) is at most

2 ln(1 + 2m) + 4γm + 2µ(t).

Taking both cases into account implies the third inequality.

Finally, we end the proof by evaluating the meta-regret in terms of the surrogate loss.
t∑
τ=i

⟨∇gt(yt),yt − yt,m⟩

= 2GD ·
t∑
τ=i

rτ,m

≤ 2GD

(
3
√
ln(1 + 2m) +

µ(t)√
ln(1 + 2m)

)√√√√1 +

t∑
τ=i

r2τ,m + 12GD ln(1 + 2m) + 4GDµ(t)

≤
(
3
√
ln(1 + 2m) +

µ(t)√
ln(1 + 2m)

)√√√√ t∑
τ=i

⟨∇gτ (yτ ),yτ − yτ,m⟩2 + 18GD ln(1 + 2m) + 6GDµ(t)

≤
(
3
√
ln(1 + 2m) +

µ(t)√
ln(1 + 2m)

)√√√√ t∑
τ=i

4D2∥∇gτ (yτ )∥22 + 18GD ln(1 + 2m) + 6GDµ(t)

≤ 2D

(
3
√
ln(1 + 2m) +

µ(t)√
ln(1 + 2m)

)√√√√ t∑
τ=i

∥∇fτ (xτ )∥22 + 18GD ln(1 + 2m) + 6GDµ(t)

(38)

≤ 4D

(
3
√
ln(1 + 2m) +

µ(t)√
ln(1 + 2m)

)√√√√L

t∑
τ=i

ft(xt) + 18GD ln(1 + 2m) + 6GDµ(t),

(39)

where the second inequality is true because 1 ≤
√

ln(1 + 2m) ≤ ln(1 + 2m) holds for any m ≥ 1,
the third inequality is by Cauchy-Schwarz inequality, the forth inequality is by Theorem 1 and the
last inequality is due to the self-bounded property of smooth functions (see Lemma 12).

C.5 Proof of Lemma 5

Proof. Similar to the proof of dynamic regret (see Theorem 3), we start the proof by decomposing
the interval regret into meta-regret and base-regret in terms of the surrogate loss by Theorem 1,

t∑
τ=i

fτ (xτ )−
t∑
t=i

fτ (u) ≤
t∑
τ=i

gτ (xτ )−
t∑
t=i

gτ (u) ≤
t∑
τ=i

⟨∇gτ (yτ ),yτ − u⟩

=

t∑
τ=i

⟨∇gτ (yτ ),yτ − yτ,m⟩︸ ︷︷ ︸
meta-regret

+

t∑
τ=i

⟨∇gτ (yτ ),yτ,m − u⟩︸ ︷︷ ︸
base-regret

, (40)

where our analysis will be performed by tracking the m-th base-learner, whose corresponding active
interval is exactly the analyzed one. Our analysis is satisfied to any interval since there is always a
base-learner active on it by the algorithm design.
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Upper bound of base-regret. Since the base-algorithm (SOGD) guarantees anytime regret, direct
application of Lemma 8 with the assumption of surrogate domain Y can upper bound the base-regret,

t∑
τ=i

⟨∇gτ (yτ ),yτ,m − u⟩ ≤ 4D

√√√√δ +

t∑
τ=i

∥∇gτ (yτ )∥22 ≤ 8D

√√√√L

t∑
τ=i

fτ (xτ ) + 4D
√
δ, (41)

where we skip some steps for transforming ∥∇gτ (yτ )∥22 into 4Lfτ (xτ ). The similar arguments can
be found in the proof of Theorem 3.

Upper bound of meta-regret. By Lemma 4 (see Eq. (39) for a detailed form), we can upper bound
the meta-regret as

t∑
τ=i

⟨∇gτ (yτ ),yτ − yτ,m⟩

≤ 4D

(
3
√

ln(1 + 2m) +
µ(t)√

ln(1 + 2m)

)√√√√L

t∑
τ=i

fτ (xτ ) + 18GD ln(1 + 2m) + 6GDµ(t),

(42)

where we denote µ(t) = ln(1 + (1 + ln(1 + t))/(2e)), which is of order O(log log t) and can be
treated as a constant.

Upper bound of interval regret. Substituting (41), (42) into (40) obtains the interval regret

t∑
τ=i

fτ (xτ )−
t∑
τ=i

fτ (u) ≤ O


√√√√logm ·

t∑
τ=i

fτ (xτ ) + logm

 , (43)

which is related to the returned decisions of our algorithm.

Further, by applying Lemma 17 to the preceding inequality, we can substitute
∑t
τ=i fτ (xτ ) into

decision-independent factor
∑t
τ=i fτ (u),

t∑
τ=i

fτ (xτ )−
t∑
τ=i

fτ (u)

≤ 4D
√
L

(√
ln(1 + 2m) +

µ(t)√
ln(1 + 2m)

+ 2

)√√√√ t∑
τ=i

fτ (u) + 18GD ln(1 + 2m) + 6GDµ(t) + 4D
√
δ

+ 18GD ln(1 + 2m) + 6GDµ(t) + 4D
√
δ + 16D2L

(√
ln(1 + 2m) +

µ(t)√
ln(1 + 2m)

+ 2

)2

≤ 4D
√
L

(√
ln(1 + 2m) +

µ(t)√
ln(1 + 2m)

+ 2

)√√√√ t∑
τ=i

fτ (u)

+ 27GD ln(1 + 2m) + 9GDµ(t) + 6D
√
δ + 24D2L

(√
ln(1 + 2m) +

µ(t)√
ln(1 + 2m)

+ 2

)2

≤ 4D
√
L

(√
ln(1 + 2m) +

µ(t)√
ln(1 + 2m)

+ 2

)√√√√ t∑
τ=i

fτ (u)

+ (27GD + 72D2L) ln(1 + 2m) + 72D2Lµ2(t) + 9GDµ(t) + 6D
√
δ + 288D2L. (44)

The second inequality makes use of
√
a+ b ≤

√
a+
√
b and

√
ab ≤ (a2+ b2)/2. The last inequality

holds by (a+ b+ c)2 ≤ 3(a2 + b2 + c2).

Finally, with a slight abuse of notations, we show that actually the interval regret can be related to the
best offline cumulative loss, i.e., the quantity F[i,t] = minu∈X

∑t
τ=i fτ (u). Notice that, the above
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arguments hold for any u ∈ X , so we can simply choose u∗ ∈ argminu′∈X
∑t
τ=i fτ (u

′) as the
comparator in the above arguments, and for any ů ∈ X ,

t∑
τ=i

fτ (xτ )−
t∑
τ=i

fτ (ů) ≤
t∑
τ=i

fτ (xτ )−min
u∈X

t∑
τ=i

fτ (u) ≤ O
(√

logm · F[i,t]

)
.

This ends the proof.

C.6 Proof of Lemma 6

Proof. We claim that the cumulative loss of our algorithm within every interval in the geometric
covers C̃ as defined in Eq. (10) can be upper bounded by the cumulative loss of any comparator and
the threshold set for the interval.

To see this, we denote by [ik, jk] ∈ C̃ the active interval for the k-th base-learner. By Lemma 5, for
any t′ ∈ [ik, jk] we have

t′∑
τ=ik

fτ (xτ ) ≤ 2

t′∑
τ=ik

fτ (u) +
1

2
G(k), (45)

where G(k) is the threshold generating function defined by

G(k) = (54GD+168D2L) ln(1+2k)+168D2Lµ2(T )+18GDµ(T )+6D
√
δ+672D2L, (46)

with µ(T ) = ln(1 + 1+ln(1+T )
2e ). This is true by applying ab ≤ a2/4 + b2 and (a + b + c)2 ≤

3(a2 + b2 + c2) to split
∑
ft(u) outside the root in (44).

We denote sk the k-th marker made by the algorithm and it is known that ik = sk (but sk+1− 1 ≤ jk
because the base-learner may survive several markers) by the cover mechanism. According to our
algorithm design, we set the threshold for interval [sk, sk+1 − 1] as

Ck = G(k).

By the construction rule of the markers, we have,
sk+1−1∑
τ=sk

fτ (xτ ) ≥ Ck.

For the k-th base-learner, her ending time jk should be equal or larger than sk+1 − 1, so we can
use (45) to evaluate the lower bound of the cumulative loss of the comparator by setting t′ = sk+1−1.
Indeed, we have
sk+1−1∑
τ=sk

fτ (u) ≥
1

2

(
sk+1−1∑
τ=sk

fτ (xτ )−
1

2
G(k)

)
≥ 1

2

(
Ck −

1

2
G(k)

)
=

1

2

(
Ck −

1

2
Ck

)
=

1

4
Ck.

(47)

It is worth emphasizing that, after making each marker, the cover will initialize a new base-learner
and hence the evaluation as shown above can be made between every two consecutive markers thanks
to the streaming initialized new learners.

Next, we proceed to upper boundm given in the lemma. As them-th base-learner is active on interval
[i, j], we have the following result on the interval from marker s1 to sm,

sm−1∑
τ=s1

fτ (u) ≥
1

4

m−1∑
a=1

Ca ≥
C1

4
(m− 1).

The first inequality is because of (47). The second inequality holds since Ca is increasing with respect
to its index, see the threshold generating function in Eq. (46).

Therefore, rearranging the above inequality shows that the quantitym satisfies the following inequality
for any comparator u ∈ X ,

m ≤ 1 +
4

C1

sm−1∑
τ=s1

fτ (u) ≤ 1 +
4

C1

t∑
τ=1

fτ (u),
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where the last inequality makes use of the nonnegative assumption on loss function. In particular,
we choose the comparator to be the best offline decision optimizing the cumulative loss within this
interval and thus achieve

m ≤ 1 +
4

C1
min
u∈X

t∑
τ=1

fτ (u) = O(F[1,t]), (48)

where we denote F[1,t] = minu∈X
∑t
τ=1 fτ (u).

Now combining Lemma 5 and (48), once given time t, we can upper bound the number of base-
learners by the cumulative loss of comparators,

t∑
τ=i

fτ (xτ )−
t∑
τ=i

fτ (u) ≤ O
(√

log(m)F[i,t]

)
= O

(√
ln(F[1,t]) · F[i,t]

)
,

which ends the proof of Lemma 6.

D Useful Lemmas

This section collects some lemmas useful for the proofs.

D.1 OGD and Dynamic Regret

This part provides the dynamic regret of online gradient descent (OGD) [Zinkevich, 2003] and
scale-free online gradient descent (SOGD) [Orabona and Pál, 2018] from the view of online mirror
descent (OMD), which is a common and powerful online learning framework. Following the analysis
in [Zhao et al., 2021b], we can directly obtain dynamic regret of OGD and SOGD [Orabona and Pál,
2018] in a unified view owing to the versatility of OMD.

Online mirror descent algorithm updates according to the following rule:
xt+1 = argmin

x∈X
ηt⟨∇ft(xt),x⟩+Dψ(x,xt), (49)

where ηt > 0 is the time-varying step size, ht(·) : x 7→ R is the convex loss function, and
Dψ(·, ·) is the Bregman divergence induced by the regularizer function ψ(·) defined as Dψ(x,y) =
ψ(x)− ψ(y)− ⟨∇ψ(y),x− y⟩. OMD following dynamic regret guarantee [Zhao et al., 2021b].
Theorem 5 (Theorem 1 of Zhao et al. [2021b]). Suppose that the regularizer ψ : X 7→ R is 1-strongly
convex with respect to the norm ∥ · ∥. The dynamic regret of Optimistic Mirror Descent (OMD) whose
update rule specified in (49) is bounded as follows:

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤
T∑
t=1

ηt∥∇ft(xt)∥2∗ +
T∑
t=1

1

ηt

(
Dψ(ut,xt)−Dψ(ut,xt+1)

)
−

T∑
t=1

1

ηt
Dψ(xt+1,xt),

which holds for any comparator sequence u1, . . . ,uT ∈ X .

Choosing ψ(x) = 1
2∥x∥

2
2 will lead to the update form of online gradient descent used as base learners

in our algorithm:

xt+1 = argmin
x∈X

ηt⟨∇ft(xt),x⟩+
1

2
∥x− xt∥22, (50)

where the Bregman divergence becomes Dψ(x,xt) = 1
2∥x− xt∥22 w.r.t. the choice of regularizer.

We proceed to show the dynamic regret of online gradient descent (OGD),
Lemma 7. Under Assumption 2, by choosing static step size ηt = η > 0, Online Gradient Descent
defined in equation (50) satisfies:

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤
7D2

4η
+
D

η

T∑
t=2

∥ut−1 − u2∥2 + η

T∑
t=1

∥∇ft(xt)∥22

for any comparator sequence u1, . . . ,uT ∈ X .
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Proof. Applying Theorem 5 with the choices of ψ(x) = 1
2∥x∥

2
2 and fixed step size ηt = η > 0 gives:

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)

≤ 1

2η

T∑
t=1

(
∥ut − xt∥22 − ∥ut − xt+1∥22

)
+ η

T∑
t=1

∥∇ft(xt)∥22 −
1

2η

T∑
t=1

∥xt − xt+1∥22

≤ 1

2η

T∑
t=1

(
∥xt∥22 − ∥xt+1∥22

)
+

1

η

T∑
t=1

(xt+1 − xt)
⊤
ut + η

T∑
t=1

∥∇ft(xt)∥22

≤ 1

2η
∥x1∥22 +

1

η

(
x⊤
T+1uT − x⊤

1 u1

)
+

1

η

T∑
t=2

(ut−1 − ut)
⊤xt + η

T∑
t=1

∥∇ft(xt)∥22

≤ 7D2

4η
+
D

η

T∑
t=2

∥ut−1 − u2∥2 + η

T∑
t=1

∥∇ft(xt)∥22,

where the last inequality is due to:

∥x1∥22 = ∥x1 − 0∥22 ≤ D2,

x⊤
T+1uT ≤ ∥xT+1∥2 · ∥uT ∥2 = D2,

−x⊤
1 u1 ≤

1

4
∥x1 − u1∥22 ≤

1

4
D2,

(ut−1 − ut)
⊤xt ≤ ∥ut−1 − ut∥2 · ∥xt∥2 ≤ D∥ut−1 − ut∥2.

D.2 Self-Confident Tuning

Orabona and Pál [2018] have analyzed the regret bound of SOGD. For completeness, we here
provide the regret analysis under the OMD framework. Indeed, SOGD can be treated as OMD with a
self-confident learning rate. Thus, we have the following lemma.

Lemma 8. Under assumption 1 and 2, the OMD algorithm defined in equation (49) with the choices
of regularizer ψ(x) = 1

2∥x∥
2
2 and the time-varying learning rate defined as

ηt =
D/2√

δ +
∑t−1
τ=1 ∥∇ft(xt)∥22

for some δ > 0, has the following guarantee:

T∑
t=1

ft(xt)−
T∑
t=1

ft(u) ≤ 2D ·

√√√√δ +

T∑
t=1

∥∇ft(xt)∥22,

where u ∈ X can be any comparator.

Proof. We start the proof with the application of Theorem 5. For any fixed comparator u ∈ X ,

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)

≤
T∑
t=1

1

2ηt

(
∥u− xt∥22 − ∥u− xt+1∥22

)
+

T∑
t=1

ηt∥∇ft(xt)∥22 −
T∑
t=1

1

2ηt
∥xt − xt+1∥22

≤ 1

2η1
∥u− x1∥22 +

T∑
t=2

(
1

ηt
− 1

ηt−1

)
∥u− xt∥22

2
+

T∑
t=1

ηt∥∇ft(xt)∥22
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≤ D2

2η1
+
D2

2

T∑
t=2

(
1

ηt
− 1

ηt−1

)
+

T∑
t=1

ηt∥∇ft(xt)∥22

=
D2

2ηT
+

T∑
t=1

ηt∥∇ft(xt)∥22. (51)

Applying Lemma 13 to the second term of (51) and by the definition of ηT , the regret bound becomes

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ D ·

√√√√δ +

T∑
t=1

∥∇ft(xt)∥22 +D


√√√√δ +

T∑
t=1

∥∇ft(xt)∥22 −
√
δ


≤ 2D ·

√√√√δ +

T∑
t=1

∥∇ft(xt)∥22,

which completes the proof.

To bound the meta-regret of our dynamic methods, we introduce the FTRL lemma [Orabona, 2019,
Corollary 7.8] under the time-varying learning rate.
Lemma 9 (FTRL Lemma). Suppose that the regularizer function ψ : X 7→ R is α-strongly
convex with respect to the norm ∥ · ∥. Let ft be a sequence of convex loss functions and ψt(x) =
1
ηt
(ψ(x) − minx′∈X ψ(x

′)), where ηt+1 ≤ ηt, t = 1, . . . , T . Then the decision sequence xt
generated by

xt = argmin
x∈X

(
ψt(x) +

t−1∑
τ=1

ft(x)

)
,

satisfies the following regret upper bound for any u ∈ X ,

T∑
t=1

ft(xt)− ft(u) ≤
ψ(u)−minx∈X ψ(x)

ηT+1
+

1

2α

T∑
t=1

ηt∥∇ft(xt)∥2∗.

Based on the preceding lemma, we can derive the regret upper bound for Hedge algorithm with a
self-confident learning rate.
Lemma 10. Consider the prediction with expert advice setting with N experts and the linear loss
ft(x) = ⟨ℓt,x⟩, where ℓt ∈ Rd. Then the self-confident tuning Hedge, whose initial decision is
p1 = 1/N · 1 and update rules are

pt+1,i ∝ exp

(
εt+1

t∑
τ=1

ℓτ,i

)
with εt+1 =

√
lnN

1 +
∑t
τ=1∥ℓτ∥2∞

ensures the following regret guarantee: for any i ∈ [N ]

T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,i ≤ 3

√√√√lnN ·

(
1 +

T∑
t=1

∥ℓt∥2∞

)
+

√
lnN

2
·max
t∈[T ]
∥ℓt∥2∞.

Proof. It is easy to verify that, the mentioned self-confident tuning Hedge can be treated as a special
case of the time-varying FTRL algorithm by choosing ψ(p) =

∑N
s=1 ps ln ps, which is 1-strongly

convex with respect to ∥ · ∥1, and ψt(p) = 1
εt
ψ(p). Thus, by Lemma 9, we have

T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,i ≤
lnN

εT+1
+

1

2

T∑
t=1

εt∥ℓt∥2∞

≤ lnN

εT+1
+

√
lnN

2
·

4

√√√√1 +

T∑
t=1

∥ℓt∥2∞ +max
t∈[T ]
∥ℓt∥2∞


30



= 3

√√√√lnN ·

(
1 +

T∑
t=1

∥ℓt∥2∞

)
+

√
lnN

2
·max
t∈[T ]
∥ℓt∥2∞,

where the first inequality chooses u as the one-hot vector with all entries being 0 except the i-th one
as 1, and second inequality is by Lemma 15.

D.3 Facts on Geometric Covers

Lemma 11 (Lemma 11 of Zhang et al. [2019]). Let [sp, sq] ⊆ [T ] be an arbitrary interval that
starts from a marker sp and ends at another marker sq . Then, we can find a sequence of consecutive
intervals

I1 = [si1 , si2 − 1], I2 = [si2 , si3 − 1], . . . , Iv = [siv , siv+1 − 1] ∈ C̃
such that

i1 = p, iv ≤ q < iv+1, and v ≤ ⌈log2(q − p+ 2)⌉.

D.4 Technical Lemmas

In this section, we will present several technical lemmas used in our proof.
Lemma 12 (Lemma 3.1 of Srebro et al. [2010]). For an L-smooth and nonnegative function f :
X 7→ R+,

∥∇f(x)∥2 ≤
√

4Lf(x), ∀x ∈ X .
Lemma 13 (Lemma 3.5 of Auer et al. [2002]). Let l1, . . . , lT be non-negative real numbers. Then:

T∑
t=1

lt√
δ +

∑t
i=1 li

≤ 2


√√√√δ +

T∑
t=1

lt −
√
δ

 .

Lemma 14 (Lemma 14 of Gaillard et al. [2014]). Let a0 > 0 and a1, . . . , am ∈ [0, 1] be real
numbers and let f : (0,+∞) 7→ [0,+∞) be a non-increasing function. Then

m∑
i=1

aif(a0 + · · ·+ ai−1) ≤ f(a0) +
∫ a0+a1+···+am

a0

f(u)du.

Lemma 15 (Lemma 4.8 of Pogodin and Lattimore [2019]). Let a1, a2, . . . , aT

T∑
t=1

at√
1 +

∑t−1
s=1 as

≤ 4

√√√√1 +

T∑
t=1

at +max
t∈[T ]

at.

Lemma 16 (Lemma 5 of Shalev-Shwartz [2007]). For any x, y, a ∈ R+ that satisfies x− y ≤
√
ax,

x− y ≤ √ay + a.

Based on Lemma 16, we can achieve the following result.
Lemma 17. For any x, y, a, b ∈ R+ that satisfies x− y ≤

√
ax+ b,

x− y ≤
√
ay + ab+ a+ b.

Lemma 18 (Lemma 13 of Gaillard et al. [2014]). For all x > 0 and all α ≥ 1, we have

x ≤ xα +
α− 1

e
.
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