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Abstract. In many clustering applications, real world data are often
collected from multiple sources or with features from multiple channels.
Thus, multi-view clustering has attracted much attention during the past
few years. It is noteworthy that in many situations, in addition to the
data samples, there is some side information describing the relation be-
tween instances, such as must-links and cannot-links. Though side infor-
mation has been well exploited in single-view clustering, they have rarely
been studied in multi-view scenario. Considering that matrix completion
has sound theoretical properties and demonstrates excellent performance
in single-view clustering, in this paper, we propose the first matrix com-
pletion based approach for multi-view clustering with side information.
Instead of concatenating multiple views into a single one, we enforce the
consistency of clustering results on different views as constraints for al-
ternative optimization, and the global optimal solution is obtained since
the objective function is jointly convex. The proposed Multi-View Ma-
trix Completion (MVMC) approach exhibits impressive performance in
experiments.
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1 Introduction

Data clustering is one of the most important tasks in machine learning and data
mining. Aiming at grouping data instances into different clusters based on the
similarity, clustering has plenty of real applications, such as data summariza-
tion [9], text mining [24], bioinformatics [8], etc.

In many applications, data are collected from multiple sources or with feature
from different channels. For example, the content and hyperlink information can
be thought of two views for webpage dataset [3]. Another example is that the
representations in various languages can be regarded as different views for multi-
lingual information retrieval [12]. Since feature information from different views
are complementary to each other, multi-view clustering dedicates to leverage
information from multiple views to improve the performance of clustering.
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It’s noteworthy that while plenty of unsupervised clustering algorithms have
been widely used, clustering with limited side (supervised) information has grad-
ually obtained more attentions. In general, side information can be divided into
two groups, instance-level and label-level. Usually, label-level one is difficult to
gather. In contrast, it is often more convenient to collect instance-level infor-
mation among which the pairwise constraint is one of the most common repre-
sentations. Pairwise constraints are consisted of two parts: must-link(M) and
cannot-link(C). A must-link (cannot-link) specifies that the pair of instances
should (not) be assigned into the same cluster. Pairwise relationship occurs in
a variety of applications and domains. For example, when clustering various
movies, we may only know two of them should (not) be assigned into the same
style which can be viewed as a must-link (cannot-link). Another example is our
knowledge that two proteins always co-occur in the Database of Interacting Pro-
teins (DIP) dataset, which can be regarded as a must-link when performing gene
clustering [13]. Generally speaking, it is convenient to gather pairwise constraints
along with collecting the unlabelled data. Thus, in this paper, we only consider
pairwise constraints prototype side information.

Similarly, clustering with side information is also useful for data collected
from multiple sources. Existing multi-view clustering approaches cannot directly
handle side information properly. Admittedly, by concatenating all the features
from multiple views into a single one, one can handle it with a semi-supervised
clustering algorithm. However, a simple concatenation has several drawbacks.
First, the dimension of concatenation feature matrices is usually high which
may trigger the curse of dimensionality and result in a high computational cost.
Secondly, the approach of concatenation, in fact, treats different views equally
which is not appropriate since the difference between views is ignored. Thus, it’s
still difficult to efficiently utilize side information in multi-view clustering, due
to the trade-off between diversity of feature in multiple views and consistency
of side information constraints.

To address this issue, in this paper, we propose a novel clustering approach
to utilize side information called Multi-View Matrix Completion (MVMC).
Firstly, MVMC constructs a pairwise similarity matrix Sv for the v-th view in-
dependently and cast clustering task into a matrix completion problem based on
given pairwise constraints and feature information from multiple views. Then,
the final pairwise similarity matrix S is learned by controlling S and Sv in dif-
ferent views to approach each other. The global optimal solution is obtained
by projective alternative optimization since the objective function is jointly con-
vex. Experimental results on benchmark datasets demonstrate that the proposed
MVMC can efficiently utilize side information and outperform other state-of-the-
art approaches. Our major contribution is the development of the first approach
to tackle constrained multi-view clustering based on matrix completion.

In the following, we start with a brief review of some related work. Then,
we propose our MVMC approach and examine the empirical performance of
proposed method on several benchmark datasets. Finally, we conclude the paper.
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2 Related Work

Multi-view learning has attracted much attention since many real world data
are collected from multiple sources or intrinsically have multi-faceted feature
representations. In general, various multi-view learning algorithms in different
areas can be classified into three groups: 1) co-training, 2) multiple kernel learn-
ing, and 3) subspace learning [33]. Multi-view co-training constructs two learners
each from one view, and then lets them to provide pseudo-labels for the other
learner [3]. And some studies [28, 29] show that the diversity of multiple views is
the essence of co-training. Multiple kernel learning (MKL) is suitable for multi-
view learning because kernels in MKL naturally correspond to different views to
improve learning performance [1, 15]. Subspace learning algorithms aim at ob-
taining a common subspace shared by multiple views and then learning models
in that shared subspace [17, 19].

Multi-view clustering aims at leveraging information from multiple views to
improve clustering performance, various multi-view clustering algorithms have
been proposed. Roughly, they can be categorized into spectral approaches, sub-
space approaches and late-fusion approaches. Spectral approaches extend spec-
tral clustering [27] into multi-view data by constructing a measure of similarity
between instances [18, 23]. The subspace approaches assume that multiple views
are generated from a common low-dimensional subspace where the representa-
tions of similar instances are close [6, 30]. The late-fusion approaches learn a
clustering solution from each single view, and then fuse all these intermediate
outputs based on consensus [4, 35]. The proposed approach in this paper belongs
to the first stream.

Clustering with side information in single view scenario has been well devel-
oped. Inspired by the work proposed in [32], plenty of algorithms are proposed
based on distance metric learning. For example, ITML proposed in [7] learns a
metric matrix with side information based on information theory. MCCC pro-
posed in [37] converts clustering to a matrix completion problem.

Matrix Completion (MC) problem was originally proposed for collabative
filtering [10]. Assuming that the matrix to be recovered is low-rank, MC finds
a matrix X that minimizes the difference with the given observation. However,
it is still challenging because rank minimization problem is NP-hard. A major
breakthrough in [5] states that minimizing rank(X), under broad conditions, can
be achieved using the minimizer obtained with its convex envelope, the nuclear
norm, ‖X‖∗. In addition, [34] proposed an approach to speed up the process of
MC by utilizing side information.

Due to a solid mathematical foundation of MC, it was recently exploited into
clustering. For example, a graph-based clustering proposed by [11] identifies clus-
ters from partially observed unweighted graphs via MC. In [36], a crowdsourced
clustering is proposed to use the crowd information to recover a similarity met-
ric, which can then be applied on large, growing collections. Besides, a related
clustering approach proposed in [37] convert clustering into a MC problem based
on side information, which performs well in single view scenario.
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All these previous studies on clustering cannot efficiently handle the scene
where some side information is provided for multiple views. To the best of our
knowledge, this is the first study on multi-view clustering by matrix completion
with side information.

3 Our Proposed MVMC Approach

In this section, the matrix completion multi-view clustering assisted with side
information model is introduced. Let D = {O1, O2, · · · , On} be n instances, and
the feature of each instance is collected from m views (channels). Feature in the
v-th view is denoted as Xv = (xv1;xv2; · · · ;xvn), where xvi ∈ R1×dv is the feature
of Oi in the v-th view, and dv is dimension of the v-th view. Let M (C) denote
the set of must-link (cannot-link) constraints, (i, j) ∈ M ((i, j) ∈ C) implies Oi
and Oj should (not) be assigned into the same cluster. We define Ω =M∪C to
represent all the pairwise constraints. Meanwhile, let r be the number of clusters.

3.1 Similarity Matrix Construction

For each view, let uvi ∈ {0, 1}n be the membership vector of the i-th cluster
in the v-th view, where uvi,j = 1 if Oj is assigned to the i-th cluster and zero,
otherwise. Then the pairwise similarity matrix Sv ∈ {0,+1}n×n is defined as

Sv =
∑r

i=1
uvi (u

v
i )

T (1)

Evidently, [Sv]i,j = 1 if Oi and Oj are assigned to the same cluster from the
perspective of feature information provided in the v-th view, and zero, otherwise.
Furthermore, it is easy to verify that rank(Sv) ≤ r, which implicates a low-rank
property of similarity matrix.

3.2 Single-View Clustering by Matrix Completion

For a specific view (the subscribe v is omitted in this part for simplicity), finding
the best data partition is equivalent to recovering the binary matrix S. Appar-
ently, pairwise constraints are tightly associated with the similarity matrix. More
specifically, [Sv]i,j = 1 if (i, j) ∈M and [Sv]i,j = 0 if (i, j) ∈ C for v = 1, · · · ,m.
Thus, clustering problem with pairwise constraints can be cast into a matrix
completion problem, i.e., filling out the missing entries in binary similarity ma-
trix S based on M and C (i.e., the partial observations, called Sob) and the
feature information from multiple views.

Formally, for a specific view, the binary similarity matrix S can be recovered
from the following matrix completion problem,

min
S

‖S‖∗

s.t. RΩ(S) = RΩ(Sob)
(2)
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where ‖ · ‖∗ is nuclear norm, and RΩ(·) : Rn×n 7→ Rn×n is a linear operator
which preserve the entry of S in Ω and 0 outside.

However, feature information is not utilized. To efficiently exploit feature
information, let Z = [z1, · · · , zk] be the first k left singular vectors of X cor-
responding to the k largest singular values, where k ≥ r. And we make an
assumption to reveal the relationship between X and S:

Assumption: the cluster membership vectors {ui}ri=1 lie in the subspace of
the first k left singular vectors of feature matrix {zi}ki=1.

A similar assumption is used by the spectral clustering algorithm [22], matrix
completion [34] and some others. When assumption holds, i.e., Span(u1, · · · ,ur) ⊆
Span(z1, · · · , zk), we know that ∀i = 1, · · · , r,ui = Zθi, where θi ∈ Rk. Then
the similarity matrix S can be derived as

S =
∑r

i=1
uiu

T
i =

∑r

i=1
Zθi(Zθi)

T = ZMZT,

where M =
∑r
i=1 θiθ

T
i ∈ Rk×k. Obviously, M is a symmetric positive semidefi-

nite matrix, i.e., M ∈ Sk+, where Sk+ = {X ∈ Rk×k|X = XT and X � 0}.
It’s proved in [34] that ‖AXB‖∗ = ‖X‖∗ holds when A and B are orthonor-

mal matrices, i.e.,ai
Taj = δi,j and bi

Tbj = δi,j for any i and j, where δi,j is
the Kronecker delta function that outputs 1 if i = j and 0, otherwise. Hence,
‖S‖∗ = ‖ZMZT‖∗ = ‖M‖∗.

Besides, since pairwise constraints usually express a belief rather than cer-
tainty in many cases, soft constraints are introduced. Incorporating with feature
information, Eq. 2 can be reformulated as follows:

min
M
‖M‖∗ + C‖RΩ(ZMZT)−RΩ(Sob)‖2F (3)

where C > 0 is the regularization parameter introduced to trade off between
low-rank property and the consistency of recovery and given side information.

In [37], the fast stochastic subgradient descent method is adopted to solve
this optimization problem. And when S has been recovered, spectral clustering
algorithm is applied to find the best data partition. This single-view clustering
approach is referred as Matrix Completion Constrained Clustering (MCCC).

3.3 From Single-View to Multi-View

When managing to solve the multi-view clustering problem, a simple idea to
come up with is to convert multi-view features to a single one. There are two
types: the first one is concatenating all the features of multiple views, and then
performing semi-supervised single-view algorithms directly on the concatenation;
the second one is clustering on each view independently, and selecting the best
one w.r.t. the preferred performance measurement index.

Besides, for MCCC, another approach based on the late-fusion arises natu-
rally which performs clustering with pairwise constraints in each view indepen-
dently, and then concatenates results above all views to obtain final clustering
results. Concretely speaking, the pairwise similarity matrix Sv in each view can
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be recovered with side information and feature information independently. Then,
S1, · · · , Sm are fused into a final similarity matrix S as S = 1

m

∑m
v=1 Sv. We refer

to this approach as MCCC fusion.
As the information from multiple views is usually complementary to each

other, all above fail to combine feature information from multiple views efficiently
nevertheless. To address this problem, we directly restrict pairwise similarity
matrix Sv and learn the final S. Because the final clustering result should be
consistent over all multiple views, the consistency of multiple similarity matrices
Sv is enforced. To utilize multi-view feature information, we incorporate them
via the assumption claimed previously. Then Sv is expanded as ZvMvZ

T
v , where

Mv ∈ Rk×k and Zv = [zv1, · · · , zvk], the first k left singular vectors of feature in
the v-th view Xv. In fact, k is able to vary over different views. However, it does
not make difference to the essence of the problem. Thus, we set k in various
views the same in the following.

It’s noteworthy to mention that the original nuclear norm term ‖Sv‖∗ or
‖Mv‖∗ is non-smooth, which implies that it is inevitable to adopt sub-gradient
or proximal approach. Fortunately, since Mv is constrained as a positive semi-
definite matrix, then ‖Mv‖∗ =

∑k
i=1 |σi| =

∑k
i=1 eigi = tr(Mv), where σi and

eigi are the i-th singular value and eigenvalue of M , respectively. Thus, the
optimization problem can be formulated as follows:

min
S,{Mv}mv=1

m∑
v=1

(
tr(Mv) + C1‖RΩ(ZvMvZ

T
v − Sob)‖2F + C2‖ZvMvZ

T
v − S‖2F

)
s.t. 0 ≤ Si,j ≤ 1, ∀i, j ∈ {1, · · · , N},

Mv ∈ Sk+, v = 1, · · · ,m.

(4)

where C1, C2 > 0 are two regularization parameters. The optimization object
function is consisted of three terms, the first two terms are generated from single-
view matrix completion, and the last term measures the difference among Sv
from multiple views. If we split the Frobenius norm into the square sum of
entries, in fact, it is the entry-variance of multiple similarity matrix.

After converting the non-smooth term ‖Mv‖∗ to a smooth term tr(Mv),
projected gradient descend is adopted which is pretty easy to implement.

3.4 Optimization

In Eq. 4, the constraint regions are convex sets and the objective function is
jointly convex w.r.t S and {Mv}mv=1. Thus, we developed an iterative algorithm
to find the global optimal solution. Firstly, {Mv}mv=1 and S are initialized by the
given observation Sob. Then the following two steps are repeated until conver-
gence: minimizing {Mv}mv=1 over S; and then minimizing S over {Mv}mv=1.

1) Initialization {Mv}mv=1 and S:
Since the observation Sob is given, then {Mv}mv=1 and S can be initialized
as follows:

Mv = ZT
v SobZv, S = Sob. (5)
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Because each pairwise constraint corresponds to a pair entries in Sob and
the value of each entry in Sob is 0/1, this initialization meets the constraint
condition in Eq. 4.

2) Minimizing object over S with fixed {Mv}mv=1:

Ŝ = arg min
0≤Si,j≤1

C2

∑m

v=1
‖S − ZvMvZ

T
v ‖2F

Obviously, this sub-problem has a closed-form solution,

Ŝ = Proj1

(
1

m

m∑
v=1

ZvMvZ
T
v

)
(6)

where Proj1(·) is defined as

[Proj1(X)]i,j =


0 if Xi,j < 0;

1 if Xi,j > 1;

Xi,j otherwise.

(7)

3) Minimizing object over Mv(v = 1, · · · ,m) with fixed S:
Obviously, when fixing S, each Mv can be solved independently. The objec-
tive function of sub-problem is

L(Mv) = tr(Mv) + C1‖RΩ(ZvMvZ
T
v − Sob)‖2F + C2‖ZvMvZ

T
v − S‖2F (8)

And the optimal solution of sub-problem is

M̂v = arg min
Mv∈Sk

+

L(Mv) (9)

L(Mv) is differential and its gradient ∇L(Mv) is

∇L(Mv) = I + 2C1Z
T
v (RΩ(ZvMvZ

T
v − Sob))Zv + 2C2Z

T
v (ZvMvZ

T
v − S)Zv

Besides, it’s easy to verify that∇L(Mv) is Lipschitz continuous with constant
L = 2(C1‖Zv‖4F + C2). The projective gradient descend method is adopted,
the update sequence is defined as:

M (`+1)
v = Proj2

(
M (`)
v − η∇L(M (`)

v )
)
. (10)

where η is chosen as 1/L for a linear convergence referring to [21]. Proj2 is
a operator projecting Mv back to semi-definite positive cone Sk+ defined as:

Proj2(X) = U max(σ, 0)UT (11)

where U and σ correspond to the eigenvectors and eigenvalues of X.

When obtaining final pairwise similarity matrix S, we apply spectral clustering
algorithms [27] on S to find the best data partition. The proposed clustering
approach above is referred as MVMC (Multi-View Matrix Completion), which
is summarized in Algorithm 1.
Convergence Analysis: Because objective function in Eq. 4 is jointly convex
with a convex constraints region, Algorithm 1 converges to a global optima.
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Algorithm 1 MVMC (Multi-View Matrix Completion)

Input:
1) Multi-view feature: X = {Xv}mv=1, where Xv = (x1;x2; · · · ;xn)v ∈ RN×dv ;
2) The set of pairwise constraints: Ω =M∪ C;
3) Regularization parameters: C1 and C2;
4) The number of clusters: r.

Output:
Pairwise similarity matrix S and clustering results.

1: Initialize S and {Mv}mv=1 by Eq. 5;
2: repeat
3: Fixing {Mv}mv=1 to optimize the objective, update S by Eq. 6 ;
4: Fixing S to optimize the objective, update {Mv}mv=1 by Eq. 10;
5: until objective function in Eq. 4 converges.
6: Performing spectral clustering on S to obtain final clustering results.

4 Experiment

In this section, we compare the performance of proposed approach MVMC with
several baseline methods over different real world datasets. The baseline meth-
ods are representations from two paradigms: multi-view clustering and semi-
supervised clustering. The muti-view clustering algorithms are (a) Co-Reg, the
co-regularized spectral clustering [14], (b) MKKM, the multi-view kernel k-
means algorithm [26], (c) RMSC, robust multi-view spectral clustering based
on Markov chain. [31]; The semi-supervised clustering algorithms are (d) ITML,
the information theoretic metric learning algorithm [7], (e) MCCC, matrix com-
pletion based constraint clustering [37]. Since there are two ways, i.e., concate-
nation and best view selection, for semi-supervised algorithms to handle mul-
tiple views, ITML and MCCC are separated as ITML best , ITML concat and
MCCC best , MCCC concat. Besides, as we mentioned before, MCCC fusion is
also added into comparison.

4.1 General Experiment Settings

Datasets: The WebKB dataset [3] has been widely used in multi-view learn-
ing, which contains webpages collected from four universities: Cornell, Texas,
Washington and Wisconsin. The webpages are distributed over five clusters and
described by two views: the content and citation view. BBCSport consists of 2
views from news articles [14]. The Reuters dataset [2] is built from the Reuters
Multilingual test collection, multi-view information is created from different lan-
guages, i.e., English, French, German, Italian and Spanish [2]. Statistics of these
datasets are summarized in Table 1.
Parameter Settings: There are two regularization parameters C1 and C2,
cross-validation is applied because of the existence of side information [36, 37]. To
choose an appropriate k, a trade-off need to be balanced between computational
efficiency and violation of assumption. It’s noteworthy to mention that k in
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Table 1. Statistics of six datasets, the first four datasets are subsets of WebKB and
dv denotes the dimension of the v-th view of datasets.

Data Set #size #view #cluster dimension of each view dv(v = 1, · · · ,m)

Cornell 195 2 5 1703, 195
Texas 187 2 5 1703, 187
Washington 230 2 5 1703, 230
Wisconsin 265 2 5 1703, 265
BBCSport 737 2 5 3183, 3208
Reuters 1600 5 6 2000 for each

each view, in fact, can be different. However, in our experiments, k is chosen as
min(100, dv) for convenience, where dv is the dimension of the v-th view.

Side Information: In our experiments, we follow the typical routine of experi-
ments with side information [38, 39], where each pairwise constraint is generated
by randomly selecting a pair of samples. A must-link constraint is formed if they
belong to the same cluster, and cannot-link, otherwise. RATIO is used to mea-
sure quantity of side information, i.e. |Ω| = RATIO · n2. We vary RATIO from
[0.01, 0.02, · · · , 0.1].

Evaluation: In all the experiments, to evaluate the effectiveness of the pro-
posed approach, we use six different and widely-used criteria to measure cluster-
ing performances: F-score, precision, recall, the normalized mutual information
(NMI) [25], adjusted rand index(Adj-RI) [20] and average entropy. Note that all
the other criteria except for average entropy lie in interval [0, 1], and a higher
value indicates a better performance. Meanwhile, a lower average entropy means
a more competitive performance.

0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8

0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8

0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8

0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8

0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

NM
I

R A T I O

NM
I

R A T I O

C o r n e l l               T e x a s W a s h i n g t o n      W i s c o n s i n

C o r n e l l               T e x a s W a s h i n g t o n      W i s c o n s i n

 M V M C      M C C C _ f u s i o n      M C C C _ c o n c a t      M C C C _ b e s t      I T M L _ c o n c a t      I T M L _ b e s t      C o - R e g      M K K M      R M S C  

NM
I

R A T I O

NM
I

R A T I O

Ad
j-R

I

R A T I O

Ad
j-R

I

R A T I O

Ad
j-R

I

R A T I O

Ad
j-R

I

R A T I O

Fig. 1. Comparisons of clustering performance with other approaches on WebKB dataset (with
4 subsets) w.r.t. NMI and Adjust Rand-Index (the higher, the better). RATIO is used to mea-
sure amount of side information which varies from 0.01 to 0.1. On each dataset, 10 test runs were
conducted and the average performance as well as standard deviation are presented.
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4.2 Results

Due to the space limitation, we only present Figure 1 and Table 2 in experi-
ments part to demonstrate MVMC approach. Figure 1 summarizes the results
w.r.t NMI and Adj-RI on WebKB dataset. 10 test runs were conducted and the
average performance as well as standard deviation are presented.

From Figure 1 we can see that, for all four datasets, firstly, the performance
of proposed approach MVMC is gradually better as RATIO increases, which
means MVMC can handle side information efficiently. Secondly, comparing with
the multi-view clustering, when the side information is extremely scarce, the
behavior of MVMC is relatively poor. However, MVMC is able to demonstrate
a much better performance with plenty of side information. The reason is that
matrix completion cannot give a satisfying recovery with an exceedingly small
amount of side information, and when a relatively large amount is given, MVMC
can take advantage of side information while multi-view clustering approaches
cannot. Thirdly, comparing with the semi-supervised clustering, MVMC almost
outperforms all the time especially along with the growth of RATIO. This phe-
nomenon implicates that simple concatenation or late-fusion does not leverage
information from multiple views. By exploiting different views via minimizing
variance of similarity matrix, MVMC is validated to be effective.

Table 2. Comparisons of clustering performance on BBC (abbrv. for BBCSport), REU (abbrv. for
Reuters) w.r.t six criteria (except that a lower entropy indicates a better performance, the others lie
in [0,1] and the higher, the better). The number of pairwise constraints is chosen as 5,000. On each
dataset, 10 test runs were conducted and the average performance as well as standard deviation are
presented. Besides, • (◦) indicates that MVMC is significantly better (worse) than the compared
method (paired t-tests at 95% significance level).

dataset method Fscore↑ Precision↑ Recall↑ NMI↑ Adj-RI↑ Avg Entropy↓

BBC

CoReg .385±.002• .285±.003• .606±.011• .173±.005• .090±.005• 1.881±0.010•
MKKM .745±.013• .774±.020• .719±.023• .661±.016• .669±.016• 0.724±0.046•
RMSC .452±.017• .472±.017• .434±.021• .297±.020• .290±.020• 1.527±0.043•

ITML concat .681±.072• .633±.097• .742±.048• .624±.056• .568±.104• 0.882±0.153•
ITML best .560±.065• .452±.072• .740±.041• .518±.054• .373±.100• 1.198±0.127•

MCCC concat .823±.070• .783±.085• .869±.052• .805±.053• .772±.088• 0.476±0.135•
MCCC best .768±.057• .721±.066• .823±.047• .750±.047• .702±.072• 0.609±0.112•

MCCC fusion .861±.088• .822±.109• .906±.063• .867±.053• .822±.112• 0.336±0.142•
MVMC .990±.003 .989±.003 .991±.003 .982±.005 .987±.004 0.040±0.011

REU

CoReg .346±.001• .316±.004• .384±.006• .274±.002• .200±.003• 1.902±0.008•
MKKM .345±.002• .319±.015• .377±.020• .274±.006• .201±.009• 1.897±0.028•
RMSC .369±.008 .342±.018• .402±.020• .303±.017• .231±.014• 1.825±0.054•

ITML concat .360±.010• .294±.017• .466±.022• .294±.021• .197±.018• 1.895±0.064•
ITML best .362±.015• .298±.015• .464±.033 .305±.020• .201±.020• 1.866±0.051•

MCCC concat .351±.033• .359±.034• .343±.033• .246±.038• .218±.041• 1.918±0.097•
MCCC best .334±.029• .338±.029• .331±.030• .231±.033• .200±.035• 1.976±0.083•

MCCC fusion .459±.051• .489±.028• .437±.071• .377±.071• .193±.036• 1.496±0.081•
MVMC .528±.030 .559±.024 .499±.037 .472±.027 .427±.038 1.294±0.061

Table 2 summarizes the results w.r.t all the six criteria on BBCSport and
Reuters. The number of pairwise constraints |Ω| is both chosen as 5,000. We
can see that, MVMC demonstrates a surprisingly better performance than all
the other approaches on almost all criteria. It’s noteworthy to mention that the
randomly sampled pairwise constraints, in fact, only accounts for about 0.9%
and 0.2% for BBCSport and Reuters, respectively. It is encouraging that, with
such a limited side information, MVMC can still yield a satisfying performance.
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5 Conclusions

In this paper, we present MVMC, which is possibly the first attempt to efficiently
handle multi-view clustering with side information based on matrix completion.
By constructing similarity matrix for each view, we cast clustering into a matrix
completion problem. Instead of concatenating multi-views into a single view, we
enforce the consistency of clustering results on different views as constraints for
alternative optimization, and the global optimal solution is obtained. The pro-
posed MVMC approach exhibits impressive performance in experiments. Study-
ing partial multi-view clustering [16] where each view suffers from some missing
features assisted by side information will be an interesting future issue.
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