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Abstract—Most studies about deep learning are based on neural network models, where many layers of parameterized nonlinear
differentiable modules are trained by backpropagation. Recently, it has been shown that deep learning can also be realized by non-
differentiable modules without backpropagation training called deep forest. We identify that deep forest has high time costs and
memory requirements—this has inhibited its use on large-scale datasets. In this paper, we propose a simple and effective approach
with three main strategies for efficient learning of deep forest. First, it substantially reduces the number of instances that needs to be
processed through redirecting instances having high predictive confidence straight to the final level for prediction, by-passing all the
intermediate levels. Second, many non-informative features are screened out, and only the informative ones are used for learning at
each level. Third, an unsupervised feature transformation procedure is proposed to replace the supervised multi-grained scanning
procedure. Our theoretical analysis supports the proposed approach in varying the model complexity from low to high as the number of
levels increases in deep forest. Experiments show that our approach achieves highly competitive predictive performance with reduced
time cost and memory requirement by one to two orders of magnitude.

Index Terms—Ensemble methods, deep forest, confidence screening, feature screening

1 INTRODUCTION

EEP learning has achieved great success in various appli-
Dcations, particularly with visual and speech informa-
tion [1], [2], [3]. Most studies about deep learning are based on
neural network models, or more accurately, many layers of
parameterized nonlinear differentiable modules that can be
trained by backpropagation. By recognizing that the key of
deep learning may lie in the layer-by-layer processing, in-
model feature transformation and sufficient model complex-
ity, Zhou and Feng [4] proposed a deep learning method
named gcForest, which is realized by non-differentiable mod-
ules without backpropagation training.

Essentially, gcForest is a novel decision tree ensemble
method with predictive accuracy highly competitive to deep
neural networks in a broad range of tasks. Besides, gcForest is
much easier to train because it has fewer hyper-parameters. It
has been shown that gcForest can achieve high predictive
accuracy on datasets across different domains by using almost
the same settings of hyper-parameters. Another advantage is
that the model complexity of gcForest can be determined auto-
matically in a data-dependent way. In contrast, deep neural
networks needs to determine the network architecture before
training, and this may make deep models more complicated
than necessary [5].

A deep forest ensemble with a cascade structure enables
gcForest to do representation learning. In this cascade struc-
ture, each level consists of an ensemble of decision tree for-
ests [6], [7], i.e, an ensemble of ensembles [8]. Each level
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receives augmented features as input, which is the output of
its preceding level. For textual or structural data, gcForest fur-
ther enhances its representational learning ability by a tech-
nique called multi-grained scanning.

Although the results in [5] suggest that larger models
might tend to offer better accuracy, Zhou and Feng [4] have
not tried larger models with a larger number of forests and
trees (in each forest). This is because deep forest is limited
by the high time cost and memory requirement.

We identify that the main cause of this limitation owes
much to two aspects. First, gcForest passes all instances
through all levels of the cascade, and uses all features for
learning, leading to a linear increase of time complexity as
the number of levels increases. Second, multi-grained
scanning usually converts one (original) instance into hun-
dreds or even thousands of new instances, which signifi-
cantly increases the number of training instances; and it
also produces a high-dimensional input for the cascade
procedure.

To address these issues, we introduce two screening
mechanisms in the general framework of deep forest, with
the aim to reduce time cost and memory requirement. First,
confidence screening categorizes instances at every level of
the cascade into two subsets: one is easy to predict; and the
other is hard. If an instance is easy to predict, its final pre-
diction is produced at the current level. Only if an instance
is hard to predict, it needs to go through the next level (and
potentially multiple levels after the next).

Second, feature screening categorizes the original features at
every level of the cascade into two subsets: one is used for
learning of the current level; and the other is reserved for the
following levels. At each level, only the most informative fea-
tures that are important for improving the prediction perfor-
mance are selected for learning. Feature screening not only
enhances the efficiency but also benefits the efficacy to a certain
extent, in that it balances the attention to the augmented fea-
tures and the original long feature vector.
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(b) Feature re-representation using sliding window scanning

Fig. 1. gcForest: illustration of the cascade forest structure and feature re-representation using sliding window scanning [4], [5]. (a) Suppose
each level of the cascade consists of two random forests (black) and two completely-random tree forests (blue). Suppose there are three
classes to predict. Given an instance, each forest produces a 3-dimensional class vector. At each level (except the last one), these four
class vectors are concatenated with the original feature vector to input to the next level. At the last level, all the four class vectors are aver-
aged as the final class vector, and the class with the highest probability is the final prediction of the instance. (b) Suppose there are three
classes, the raw features are 400-dim and the sliding window is 100-dim in the first row; the raw features are 20 x 20-dim and the sliding

window is 10 x 10-dim in the second row.

In the multi-grained scanning procedure, subsampling
the generated instances can reduce the number of training
instances and the dimension of the transformed feature vec-
tor. However, a supervised feature transformation still
requires a high time cost. Instead, we propose to replace the
supervised multi-grained scanning procedure with an
unsupervised version called completely-random forest trans-
formation. It produces transformed features by constructing
an unsupervised completely-random forest with the gener-
ated instances, which only has a linear time complexity.

Our theoretical analysis supports the proposed approach
as the key means to vary the model complexity from low to
high as the number of levels increases in deep forest. We
use low model complexities at the first few levels, and
increase the model complexity as the level increases. In
other words, the high model complexity is only needed to
produce an accurate model for hard-to-predict instances
instead of all the instances. This variable model complexity
mechanism further improves the efficiency of the first
few levels.

In a nutshell, we propose an efficient deep forest
called gcForests. For the cascade procedure, gcForestg
adopts confidence screening and feature screening, cou-
pled with a method to vary model complexity. For the
multi-grained scanning procedure, gcForestg replaces the
supervised feature transformation with an unsupervised
one based on the completely-random forest. Our experi-
ments show that gcForests achieves predictive accuracy
comparable to or better than gcForest, with one to two
orders of magnitude lower memory requirement and
faster runtime.

Note that we focus on deep learning with non-NN mod-
ules and aim to improve the efficiency of gcForest which is
a seminal work towards non-NN deep models. Our work is
a step advancement of gcForest by significantly reducing
both memory requirements and time costs. This enables
more widespread applications of deep forest and promotes
the exploration of non-NN deep models on large-scale data-
sets that would otherwise be impossible.

The rest of this paper is organized as follows. Section 2
introduces deep forest and explains the reasons for its high
cost of memory and time. Section 3 proposes our method
gcForests. Section 4 presents the theoretical analysis of the
confidence screening mechanism. Section 5 provides the
discussion. Section 6 reports the empirical results. Section 7
studies the influence of confidence screening and feature
screening. Section 8 concludes this paper.

2 DEEP FOREST

In this section we briefly introduce two key components of
deep forest [4], namely, cascade forest structure and multi-
grained scanning, and explain the reasons why these proce-
dures increase the memory and time costs.

2.1 Cascade Forest Structure

Zhou and Feng [4] proposed gcForest with a cascade struc-
ture, as illustrated in Fig. la. In their structure, each level
consists of an ensemble of decision tree forests, i.e., an
ensemble of ensembles [8]. Each level of cascade receives
feature information processed by its preceding level, and
outputs its processing result to the next level. The process-
ing result of one level is composed of class vectors gener-
ated by its forests. An example of the class vector generated
by a forest is shown in Fig. 2. Given a test instance, each for-
est produces an estimate of class distribution by counting
the percentage of different classes of training examples at
the corresponding leaf node; and the final output is an aver-
age over the outputs from all trees in the same forest. The
class vector produced by each forest can be generated by
k-fold cross validation to reduce the risk of overfitting. The
training procedure automatically terminates if there is no
significant performance gain on the validation set.

A cascade forest can be formalized as follows. Consider
the supervised learning problem of learning a mapping
from the feature space X to the label space ), where Y =
{1,2,...,C}. Let Z=10, 1]C and training set S=
{(x1;91)s -+, Xm;ym)} be drawn independently and
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identically from the underlying distribution D. A cascade
forest with 7" levels can be defined by a pair (h, f) where

e h=(hy,...,hr), where h; is the ensemble of forests
atlevel ¢, and h; is a member of hypothesis class H;.

e f=1(f,..., fr), where f; is the cascade of ensembles
of forests up to level ¢.

Atlevelt € {1,...,T}, fi: X — Zis defined as follows:

h1 (X)

t=1,
fix) = {ht([x,ftfl(x)}) £ >

1. M)

At every level ¢, hy(-) and f;(-) output a class vector
[p},...,pk], where p; is the prediction confidence of class 1.
The input of h; is [x, fi—1(x)] except that at level ¢ =1, its
input is x.

Each pair (h, f) defines a deep forest model g: X — ),

9(x) = arg max[fr(x)],, (2)

where [f7(x)], is the cth element of the label vector f7(x).

Training an ensemble of forests is time-consuming and
requires a lot of memory. The computational complexity of
decision tree based methods is proportional to the number
of samples and the dimension of features. For example,
computational complexity of building a complete decision
tree is O(d x m logm); building a random forest takes
O(# trees x d' x m logm) where d’ (usually set as v/d) is the
number of features selected for each node.

Cascading many levels in gcForest is computationally
expensive because every instance (in the training or testing
set) is required to pass through all the levels, and all the
original features are used for learning. The time complexity
grows linearly with the number of levels in the cascade.

2.2 Multi-Grained Scanning

gcForest enhances cascade forest with a multi-grained scan-
ning procedure. It is a feature representation method which
transforms each instance represented with raw features to
one represented with new features.

In multi-grained scanning, sliding windows are used to
scan the raw features. As shown in the first example in Fig. 1b,
one instance with 400 raw features is converted into 301 new
instances of 100-dim by using a 100-dim sliding window. The
second example demonstrates that one instance with 20 x 20
raw features (pixels of an image) is converted into 121 new
instances of size 10 x 10 by using a 10 x 10 sliding window.
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This is the first part of the procedure; and it takes advantage of
feature relationships (e.g., spatial or sequential feature rela-
tionships) and helps improve performance [4].

The second part of the procedure uses the converted
instances to train a set of forests. For each converted
instance, each forest outputs probabilistic prediction for
each class. For each original instance, which has a set of con-
verted instances, the prediction confidences of all these con-
verted instances are concatenated to form a new instance.
This new instance is the final output of multi-grained scan-
ning; and it is used to train a cascade forest.

This aforementioned procedure increases the number of
instances substantially. For example, suppose there are
10,000 images with 20 x 20 raw pixels. Then a 10 x 10 slid-
ing window will produce a total of 1,210,000 instances of
size 10 x 10, as the input of the new learning problem,
whose scale is substantially larger than the original prob-
lem. This problem becomes even more severe when there
are multiple sizes of sliding windows.

In addition, the transformed feature dimension can be
much larger than the original raw input feature dimension.
For example, as shown in Fig. 1b, there are 3 classes and 2
forests; then the transformed feature vector is 726-dim. If
there are 10 classes and 8 forests; then the transformed fea-
ture vector is 9,680-dim. As a result, multi-grained scanning
significantly increases the time cost and the memory
requirement of the learning problem because of the dramat-
ically increased numbers of instances and dimensions.

These above issues can be tackled by exploiting distrib-
uted implementation [9] or hardware facilitation. We
believe, however, there is demand to tackle them via algo-
rithmic improvement.

3 THE PROPOSED APPROACH

In this section, we propose a framework for efficient learn-
ing of deep forest against the number of samples and the
dimension of features, and design an efficient deep forest
approach gcForests.

To deal with a large number of samples, we propose a confi-
dence screening mechanism coupled with variable model com-
plexity. To handle high-dimensional features, we design a
feature screening mechanism. As for the multi-grained scanning
procedure, an unsupervised completely-random forest transfor-
mation is proposed as a replacement in gcForests.

In order to study the influence of each element, we
also use gcForestcs and gcForestg, for comparison, where
gcForestcs has the confidence screening mechanism, and
gcPoresty, has the feature screening mechanism.

3.1 Confidence Screening
Rather than requiring all instances to go through all levels of
cascade, we reduce the computation by only passing selective
instances through the next level. The selection criterion is
based on the prediction confidence which is the maximum value
of the estimated class vector of one instance. For example, in a
3-class classification problem, as shown in Fig. 2, the estimated
class vector of an instance is [0.7,0.2,0.1], then its prediction
confidenceis 0.7.

The basic idea is that an instance is pushed to the next
level only if it is determined to require a higher level of



PANG ET AL.: IMPROVING DEEP FOREST BY SCREENING

Input Feature Vector

WS nm/uju/u nju/uujsu
Final Prediction

wcatenate

a
o

Level 1 Level 2 Level T

(a) Cascade forest with confidence screening

4301

-E For sequence data
L e
S 5 . 1
Mopns | -pppioms: B4 0
Sl -0i8 : 8.§ = 90
5 — = 2 H ~dim
2 301 instancesl"| 30 instances L

30 Concatenate

. For image-style data
10-dim  gjiging

— 10 L]
8 L3 00
Py ] py[Eeestal>-RLL -dim
- £
gl

Raw Input Features

% Concatenate

(b) Feature re-representation using sliding window scanning with
subsampling

Fig. 3. gcForestcs: illustration of the cascade forest structure with confidence screening and feature re-representation using sliding window scanning
with subsampling regime. (a) Suppose there are two random forests (black) and two completely-random forests (blue) at each level of the cascade.
For a three-class problem, each forest outputs a three-dimensional class vector, which is concatenated for re-representation of the original input.
Instances with high prediction confidence (Y) at level i are predicted directly—they do not go through all the levels. Only instances with low prediction
confidence (N) traverse to the next level. (b) Suppose there are three classes. Raw features are 400-dim, sliding window is 100-dim and subsampling
size is 30 for the sequence data; raw features are 20 x 20-dim, sliding window is 10 x 10-dim and subsampling size is 10 for the image-style data.

learning; otherwise, it is predicted using the model at the
current level. Based on this idea, we propose the deep forest
structure with gates for confidence screening as shown
in Fig. 3a.

There are two main differences in the cascade forest
structure between gcForestcs and gcForest. First, gcForestcs
has gates at each level to categorize instances into two sub-
sets: one which is easy to predict; and the other is hard. As
illustrated in Fig. 3a, instances with high prediction confi-
dence (Y) at each level are predicted directly using the
model at the current level; and only instances with low pre-
diction confidence (N) are passed to the next cascade level
for further improvement of the prediction. Second, as the
level increases, gcForestcs uses more complex forests (e.g.,
more trees in each forest) for the remaining “hard” instan-
ces, while gcForest uses forests with the fixed setting at all
levels. The effectiveness of the gcForestcs structure design
is also verified from the theoretical view in Section 4.

A deep forest model with confidence screening can be
defined by a triplet (h, f, ) where h and f are defined in the
same way as in the cascade forest without confidence
screening (before Eq. (1)), and « = (ky,...,k7r) with x; as a
screener function. Screener «;(x) = 1 if x is predicted by f,
and «;(x) = 0 otherwise.

Screener «,(-) at level ¢ is defined based on prediction
confidence and confidence threshold 7,,

r(x) = {(1)

Let «; (1) denote the set of instances such that «;(x) =1,
namely, the set of instances with high confidence at level ¢.
«;1(0) is similarly defined for those with low confidence.

At level ¢, if the prediction confidence of one instance is
larger than threshold 7,, then its final prediction is produced
at the current level; otherwise it needs to go through the
next level (and potentially all levels in the cascade).

As aforementioned, the deep forest with confidence
screening is defined by the triplet (h, f, k), and the final pre-
dictive function g : X — ) is defined as follows:

10l > e "

otherwise.

4)

©
=
*
=
Il
o
-
03
—
=]
&
B
=
e’

where t' = arg,cy 1y [ii(x) = 1].

The key issue here is how to set the confidence threshold
n; at each level. In principle, one can define an optimization
framework in which the confidence threshold at each level
is set to trade off between minimizing the expected number
of instances to be passed to the next level and maximizing
the expected number of instances that can be corrected at
the next level (which are misclassified at the current level).
Unfortunately, finding such an optimum is quite difficult.

Instead, we use a simple rule to produce an effective cas-
cade forest in a highly efficient way. The prediction confi-
dence threshold 7; at level ¢ is determined automatically
based on the cross-validated error rate ¢, of all the training
instances. Let hyper-parameter a € (0, 1) be a fraction of ;.
All the training instances are sorted in the descending order
of their prediction confidences, where ¢; is the prediction
confidence of x;. Then, the threshold 7, is set as follows:

n, = min{eg|L(x1, ..., Xp) < ae, k€ {1,,2,...,m}},

(5)

where L(xq,...,x;) = %Zle 1[g:(x;) # y;] is the error rate of
the k instances with the largest prediction confidences. Note
that the coefficient a is the only additional hyper-parameter
for confidence screening, compared with gcForest.

Variable Model Complexity. Because the remaining instan-
ces become increasingly hard-to-predict as the level
increases, we use increasingly complex forests at high lev-
els, i.e., increasing the number of trees in each forest linearly
as the number of remaining instances decreases.

The above strategy follows the result of the theoretical
analysis in Section 4. It suggests that varying the model
complexity from low to high as the level increases in the cas-
cade can lead to better generalization performance. This
design further reduces memory requirement and time cost;
and the model complexity only increases as the level
increases when it is most needed to produce an accurate
model for hard-to-predict instances.
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Subsampling Multi-Grained Scanning. Multi-grained scan-
ning in gcForest [4] increases the memory consumption and
runtime heavily. To address this issue, as suggested in [4],
gcForestcs uses a subsampling regime. Specifically,
gcForestcs randomly samples from the set of the converted
instances produced in multi-grained scanning. As Fig. 3b
illustrates, subsampling not only reduces the number of
converted instances, but also reduces the number of dimen-
sions of the transformed features by an order of magnitude
from 903 to 90. At each level, subsampling multi-grained
scanning generates new transformed features, and the fea-
tures from the recent three levels are concatenated to clas-
sify the remaining instances which are fewer and “harder”.

We design the deep forest approach gcForestcs which
has the key confidence screening mechanism coupled with
variable model complexity and subsampling multi-grained
scanning.] Algorithm 1 summarizes gcForestcs.

Algorithm 1. gcForest,

Input: Training set S, validation set S,, learning algorithm A,
confidence screening parameter a, and the maximal number of
cascade levels T'.

Output: The gcForestcs model g.

Initialize: S = S, ¢y =1landt =1

Process:

1 while ¢t < T do
2 ht = A(St)
3 Get f; according to Eq. (1)
4: Get «; according to Eq. (3)
5: Get g; according to Eq. (4)
6: Compute the validation error ¢, = Lg, (g;)
7 if ¢, > ¢,_; then
8

: returng
9: end if
10: 9= 9

11: S =S\ k71 (1)
12: t=t+1

13:  end while

14:  returng

3.2 Feature Screening

In the cascade structure, each level of the cascade concate-
nates the original features with transformed features of its
preceding level. Rather than using all the original features
for learning at each level, we reduce the computation by
selecting features that are important for improving the per-
formance of the cascade.

The cascade forest with feature screening and confidence
screening in gcForests can be defined by a triplet (h, f, k) in
a similar way to the cascade forest of gcForestcs. The key
difference is that gcForests uses selective features instead of
all at each level. Specifically, in gcForests, at level ¢ €
{1,...,T}, the predictive function f; is defined as follows:

hl( 1) t= 1’
50 = { el s ¢ 5 1 v

1. Note that subsampling multi-grained scanning can be used to
provide a new representation at each level.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 9, SEPTEMBER 2022

where z; is a subset of the original features x that is used by
the ensemble of forests at level ¢.

Feature screening benefits deep forest in three aspects.
First, a lower dimension of features reduces the time cost
and the memory requirement. Second, screening irrelevant
features increases the chance that relevant features are
selected at each split of each decision tree. It can enhance
the performance of each forest in case the fraction of rele-
vant features is small [10]. Third, even if the high-dimen-
sional original features are all relevant, a small number of
augmented features are very likely to be drowned out in the
original features [5]. Feature screening can balance between
the augmented information and the original information,
and may further improve the performance of deep forest.

At each level, the main goal of feature screening is to
select features that are important for improving the perfor-
mance. Note that tree-based methods are naturally suitable
for calculating the relative importance of each feature [10].
Based on the importance ranking of an extra forest, a direct
method is to select the top features, which is named FS-
rank. At each level, FS-rank recalculates feature importan-
ces, and selects features with importances greater than a
threshold r > 0, i.e.,

S={j|T > t,j=1,....d},

where 77 is the importance of feature X;.
In detail, for a single decision tree DT, the importance of
feature X is calculated by

L
7= all(n = j),
=1

where L is the number of internal nodes of the tree. At node
le{1,2,...,L}, feature X, is used to split this internal
node, and (; is the estimated improvement of purity corre-
sponding to the splitting. The importance of feature X; is
the sum of such improvements over all the internal nodes in
which feature X is the splitting feature.

For a forest, the importance of feature X; is simply aver-
aged over trees

1 N

IJZNZI-;,].

n=1

Different kinds of forests are different in measuring esti-
mated improvement i which is depends on their purity
measurements. For classification trees, I is measured by
Gini index; for regression trees, i is measured by squared
error.

Although feature importances measure the prediction
strength of each feature, FS-rank has two main issues that
affect the efficiency and efficacy of feature screening. First,
it takes a high cost of computation to determine the thresh-
old . For each candidate value of 7, one needs to remove
features with smaller importances, and refit the classifier
to assess its performance. Second, the greedy selection strat-
egy does not consider the redundancy of features. The
remaining features with large importances may contain
redundancy [6]. Given a selection size budget, selecting
redundant features means informative features with smaller
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Fig. 4. gcForests: illustration of the overall procedure. Suppose there are three classes to predict, raw features are 400-dim, sliding window is 100-
dim, the re-represented features of completely-random forest transformation are 240-dim. Feature screening is abbreviated as FS and d; is the selec-

tion size of the features at level i.

importances are discarded which may degrade the predic-
tion performance.

In this paper, we take both feature redundancy and non-
linear feature importances into consideration, and propose
a feature screening method named FS-reg. FS-reg can be for-
mulated as follows.

B = argmin
B

d
Y- Z x;B;
=1

2 d
FAY (@ -T)l, O
2 j=1

where 7" is the maximum value of {Z',7%,...,7%} and
A > 0. The objective function aims to minimize the squared
loss with a weighted [, regularization.

We solve this optimization problem via the least angle
regression which can compute the solutions for all the val-
ues of A\ extremely efficiently [11]. The computation com-
plexity is in the same order as a single least squares. FS-reg
selects the best solution among all the solutions with HﬂHO
less than the given selection size budget.

At each level of the cascade, gcForests automatically selects
features with non-zero coefficients of 3. Class vectors gener-
ated by FS-reg can also be used as augmented features. Feature
importance values are updated at each level. At the first level,
feature importance is calculated by classification trees where
the learning target is the labels; at each of the following levels,
feature importance is calculated by regression trees based on
the remaining samples of this level where the learning target is
the residual of the last level. Thus, Eq. (7) tends to select fea-
tures that are important for improving the performance of
deep forest. Besides, we name the deep forest with only feature
screening as gchorest.

3.3 Completely-Random Forest Transformation

In order to handle feature relationships, gcForest adds a plug-
in module, multi-grained scanning, which results in high
memory requirements and time costs. To address this issue,
we replace the supervised multi-grained scanning procedure
with an unsupervised one, named completely-random forest

(CRF) transformation, which has linear time complexity with
low memory requirements.

CRF transformation combines completely-random forest
with a variant of random subspace for feature transforma-
tion. As shown in Fig. 5, sliding windows scan the raw fea-
tures, and each instance x; can generate r new instances
{z},z?,...,2!}. A completely-random forest is constructed
based on a dataset subsampling from these new instances.
Because a completely-random tree generates a node parti-
tion by randomly selecting an attribute and then randomly
selecting a split value between the maximum and minimum
values of the selected attribute, the growth of completely-
random forest does not require labels, and label information
is only used to label leaf nodes for classification.

After getting u leaf nodes {l1,ls, . ..,1,}, we can use trans-
formation function ¢(z’,l;) to get the transformed feature
D; . € IR for each pair of instance z’ and leaf node ;. Thus,
for each original instance x, we can get a real value matrix
D € IR™*". In this work, we use the mean of instances in leaf
node [, ie. ¢ to represent l;; transformation function
a2, 1) = 12/ — el

Consider that the transformed feature vector with
dimension r x u might be too long, we group the converted
instances {z',z*,...,z"} into r, groups {Gi,Gs,...,G,,},
where each group contains r/r, consecutive instances.
Thus, we can get a smaller transformed feature D' € IR"*"
with D), = Zjegj/ llz/ — cil],.

In a similar way, data with spatial relationships (e.g.,
image data), can also be processed by CRF transformation.

Fig. 4 summarizes the overall procedure of gcForests.”
There are two main differences between gcForests and
gcForestcs. First, for the cascade procedure, gcForests com-
bines feature screening with confidence screening where
FS-reg selects a subset of features at each level. Second, to
handle feature relationships, an unsupervised CRF transfor-
mation replaces the supervised multi-grained scanning.

2. Note that multiple window sizes can be used, and one window
size is used here as a simplified example.
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Fig. 5. lllustration of completely-random forest transformation. Suppose
raw input features are 400-dim, sliding window is 100-dim, the forest has
20 trees, each tree has 4 leaves, and group size is 3.

4 THEORETICAL ANALYSIS

In this section, we provide theoretical justifications for both
confidence screening and variable model complexity. In
particular, we are interested in the effect of splitting all
instances into two parts according to prediction confidence,
and thus, we ignore the concatenation of previous label pre-
dictions in the analysis. Specifically, we perform the gener-
alization analysis, based on the notion of Rademacher
Complexity [12].

Let S = {(x;,y;)} =, be the training sample set of size m
drawn independently according to underlying distribution
D, where x; e R? is a training instance and y; €)Y =
{1,2,...,C} is the associated class label. Besides, denote by
¢:Y xY— IR the loss function. For any hypothesis h, the
expected risk is defined over the underlying distribution D,

= Exy)~ll(h(x), )],

whose empirical version called empirical risk is defined over
the training sample set .S,

= 3 ). ),

R(h)

In the following, we will utilize the notion of Rade-
macher complexity to measure the hypothesis complexity
and then use it to establish the generalization error bounds.

Definition 1 (Rademacher Complexity [12]). Let G be a
family of functions and a fixed sample of size m as S =
{z1,...,2y}, where z; = (x;,y;). Then, the empirical Rade-
macher complexity of G with respect to the sample S is
defined as

R 1 m
Rs(9) = Eq [Supgegm > Uig(li)] :
i=1

where o = (o4, ..., am)T, with o;s independent uniform ran-
dom variables taking values in {—1,+1}.

Besides, the Rademacher complexity of G is the expecta-
tion of the empirical Rademacher complexity over all samples
of size m drawn according to D

R, (G) = Eg.pn [Rs(G)). (®)

The illustration of cascade structure is plotted in Fig. 6. Sup-
pose the cascade level is 7', and denote the corresponding
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Fig. 6. The structure of the cascade forest with confidence screening.
There is a total of T" levels, where the instances are split into two parts at
each level: the left part contains instances with high confidence, and the
right part contains those with low confidence and thus needs to be fur-
ther processed at higher levels.

classifier as h = (hy,...,hr) with h : X — [-1,+1] (or
{—1,+1}) the classifier at level ¢, which belongs to the hypoth-
esis set H;, wheret = 1,...,T. We denote by CascaDg; the set
of all the feasible classifier h. Note that we only consider the
binary scenario here for simplicity.

Furthermore, we denote by

Wy = {X — St(X)ht(X) 1S € St,ht S Ht},

the family of the products of the screener function and the
classifier at level ¢. Then we have the following results
regarding the generalization bound of the learned model.

Theorem 1. Fix p > 0. Assume that the function in H, takes val-
ues in [—1,+1] for all the level t € {1,...,T}, and the training
sample set S is of size m drawn independently and identically from
the underlying distribution D. Then, for any § > 0, with probabil-
ity at least 1 — 8, the following holds for all h € CAsCADEy:

R(h) < Rg(h

+me{49%5(//t) } + C(m, p)

+ mingcr 71>(71-1/p Z (# — 4R4( ,/‘/t))

ez
log (4/3)
2m
where
logT logT 02m
= — 1
Cim.p) m p2m °8 <logT ’ ©

and my is the number of screened instances at level t, i.e.,
my = |SY|. Moreover, T is the set of level t whose
screening  ratio greater than 4Rs(7,), namely,
T = {k : mt/m > 45?{5( /‘/t)}.

To simplify the presentation, we ignore the non-leading
terms and only keep the terms regarding cascade level T,
instance number m and Rademacher complexity terms, and
provide the following simpler form of the result:

h) + ET: min{4§{5( /,‘,),%} +0 (T@) .

t=1

R(h) < Rs(
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Proof. The proof mainly has two steps, first introducing
the convex ensembles with multiple hypothesis set, and
then relating the deep cascade structure to the convex
ensemb]es.

First, we introduce the convex ensembles with multi-
ple hypothesis set g,. For any a € A7, denote g, as fol-
lows,

T
= Z a5 (x)hy(X),

where Ay is the simplex in R”. Since Je 1S @ convex com-
bination of the mappings x — s;(x)h;(x), we can apply
the result of Theorem 1 in [13] and obtain that

R(h) < infugAT {Rg,p(g,,) + %25:1 Oltg‘{g( /‘/,t)}

log (4/8)
2m

(10)

+ C(m,p) +

where C(m, p) is defined in Eq. (9) and

ZZ

t=1 s(x;,k)=1

Rs p(9a) = Myioshs(xi) < p).

Here, 1I]-] is the indicator function.

The second step is to provide the upper bound for the
first term in r.h.s. of Eq. (10). Following the analysis
in [14], it can be bounded by,

infaeAT {Rs,p(ga) + %23:1 (XtQA‘{S( /‘/t)}
< Rs(h) + X7, min{4Rs(+,), ™}
ARs( 7).

an

—+ IIllnch JZI>|T)-1/p Ztef(m

Hence, we complete the proof of the statement by
combining (10) and (11). ]

Remark 1. Our goal is to design efficient deep forests with
better generalization ability. To deal with a large number
of instances efficiently, we design a confidence screening
mechanism. Because most of the instances will be
screened at the first few levels, the screening ratio m;/m
is large when ¢ is small. Note that the second term of the
generalization error bound in Theorem 1 is the minimiza-
tion of screening ratio m;/m and complexity term
49Rs( 7). Instead of using models with the same com-
plexity at each level, this term indicates that one should
reduce the corresponding complexity term at the first few
levels in order to make the generalization error bound
tighter. This is the theoretical basis in which we vary the
model complexity in the cascade from low to high (by
increasing the ensemble size) as the level ¢ increases.

5 DISCUSSION

The cascade procedure with confidence screening has some
connections with two lines of research. First, confidence
screening is related to boosted cascade [15] which aims to
reject many negative instances and has achieved success in
visual object detection problems. Although the cascade
structure appears to be similar on the surface, the boosted
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cascade procedure is not suitable for classification tasks
because the nature of the object detection tasks is different.

Second, there are some studies which add the output of
one classifier as an additional input for another classifier in
a series of multiple classifiers to improve the accuracy of a
single classifier [16], [17]. Like gcForest, these methods pass
all instances through all the classifiers which are inefficient.

Feature screening reduces the number of features used at
each level, and more features are used for the low-confi-
dence instances. It is related to the time-efficient feature
extraction approaches [18], [19], [20], [21]. For test instances,
these approaches only extract cheap and sufficient features,
and when the classification confidence is high enough, the
test instance will be classified. There are two main differen-
ces between these works and ours. First, their goal is to
reduce the test time cost, while our goal is to reduce both
the training and test time cost of deep forest. Second, the
main concern is the time cost of feature extraction in their
setting, while all the features are provided in deep forest
and the main problem is to improve the efficiency of the
learning process.

Recently, Extra-PCTs [22] was proposed and extended
extremely randomized trees to structured output prediction
(SOP) problems. Consider that ExtrRA-PCTs not only has the
best prediction performance, it can also learn good feature
rankings which makes feature screening feasible. It is possi-
ble to use Extra-PCTs as building blocks in our proposal to
construct deep forest models for SOP problems.

There have been many sparse-learning based methods
proposed for feature selection [23], [24], [25], [26]. The repre-
sentative work is least angle regression [11], where the
sparse regularization forces many feature coefficients to
become smaller. In the cascade forest structure, we need to
select informative features for improving the performance.
Different from the related works, our feature screening
method readjusts importance weights of features based on
the feature importances (acquired from random forest).

The multi-grained scanning procedure, which uses mul-
tiple sliding windows to scan the raw features, is related to
multi-resolution examination procedures [27]. One sliding
window producing a set of instances from one training
example is related to bag generators [28] of multi-instance
learning [29], [30], [31]. For example, if applied to images, it
can be regarded as the SB image bag generator [32].

The subsampling strategy is related to sampling strate-
gies for bag-of-features image classification [33], [34]. By
treating an image as a collection of independent patches,
random sampling gives equal or better representative selec-
tion than the sophisticated multiscale interest operators. In
this paper, we use a simple random sampling strategy for
gcForestcs and show that it works in the context of deep
forest. It is interesting to explore other sampling strate-
gies [35], [36].

Completely-random forest transformation is related to
random trees embedding [37], [38], while the latter trans-
forms the original features into a sparse representation by
using a one-hot encoding of all the leaves.

Stochastic discrimination (SD) [39] is a general method to
combine components with weak discriminative power to
construct strong classifiers. The stochastic discrimination
theory studied the combination of different ways to
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partition feature spaces. In this perspective, completely-ran-
dom forest transformation is related to SD, which increases its
discriminative ability by combining various completely-ran-
dom trees. Extreme learning machine [40] randomly assigns
input weights for hidden nodes, and the input feature vectors
can be viewed as being randomly projected onto different
nodes; this is a random initialization of neural networks, like a
random initialization of RBF neural networks, very different
from decision tree growth in completely-random trees.

A comprehensive review of the relationship between
deep forest and existing ensemble methods [8] is provided
by Zhou and Feng [4], e.g., Boosting [41], Bagging as base
learners for Boosting [42]; stacking [43], [44], [45], [46].

The cascade forest (casForest) structure is crucial for the
layer-by-layer processing. Recently, Lyu et al. [47] gave a
theoretical explanation about the success of casForest from
the perspective of margin theory.

There have been quite a few works applying gcForest to
different applications. Utkin and Ryabinin [48] modified
gcForest and proposed a Siamese deep forest as an alterna-
tive to the Siamese neural networks to solve the metric
learning tasks. Yang et al. [49] proposed MLDF which
extended gcForest into multi-label learning by replacing the
forest block with random forest of predictive clustering
trees [50]. gcForest also achieved superior performance in
many other tasks, e.g., software defect prediction [51],
hyperspectral image classification [52], self-interacting pro-
teins prediction [53] and so on. Because our target is to
improve the efficiency of deep forest, our method can help
to improve the efficiency of Siamese deep forest, MLDF and
other modified applications of gcForest as well.

6 EXPERIMENTS

Our work focuses on efficient learning of deep forest. The
goal is to validate that gcForests can achieve predictive
accuracy comparable to or better than gcForest with much
less memory and time cost. gcForests contains three main
elements: confidence screening, feature screening and
completely-random forest transformation. To analyze the
effect of each element, we also design gcForestcs and
gcForestg, for comparison, which are based on confidence
screening and feature screening, respectively.

The experiments are divided into two categories: with
and without multi-grained scanning to examine the effects
in these two scenarios.

6.1 Experimental Setup
Parameter Settings. In all experiments, gcForest, gcForestcs,
gcForesty and gcForests all use the same cascade structure.
Every level consists of v random forests and v completely-
random forests [7] in the experiments, where v =4 with
multi-grained scanning and v = 1 without. The class vector
of each forest is generated by three-fold cross validation.
For gcForest, every forest has 500 trees which is its rec-
ommended setting [4]. For both gcForestcs and gcForests,
each forest at the first level has w trees and the number of
trees is increased linearly as the number of instances at the
subsequent levels decreases, in the accordance to the result
of the theoretical analysis. In the comparisons, w = 100 are
used for both methods. Furthermore, in the experiments
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without multi-grained scanning, w = 20, 50, 100 to exam-
ine their effects on the efficacy of gcForestcs. For gcForesty,
all the settings are the same as gcForests, except that
gcForestp, does not use confidence screening.

The number of cascade levels stops increasing when the
current level does not improve the accuracy of the previous
level for all these deep forests.

For gcForestcs, the prediction confidence threshold » at
each level is determined automatically according to Eq. (5).
Hyper-parameter a is set according to a simple rule as fol-
lows. If experiments with multi-grained scanning, a = 1,/20.
Otherwise, a is set according to the training accuracy of the
first level €. If e > 90%, a = 1/10; otherwise, a = 1/3. For
gcForests, we set the feature selection budget as |d/2]. In
other words, at most half of the original features are selected
at each level. Feature importance is calculated by an extra
random forest with 100 trees at each level. Consider that
least angle regression produces a full solution path of
Eq. (7) which contains the results for all the values of \. It
produces the estimated class vectors via a 3-fold cross vali-
dation. The other settings are the same as gcForestcs.

In (subsampling) multi-grained scanning, gcForest uses
three window sizes with sizes of |d/16], |[d/8], |d/4];
gcForestcs and gcForests use one window size with size
|d/16] for d raw features. For CRF transformation, the maxi-
mum depth of completely-random trees is set as 6; leaf
nodes which contain more than 1/4 of the instances or less
than 1/400 are discarded, since they are unrepresentative;
the group size is set as 3 for sequential datasets and 4 for
image datasets. By using both CRF transformation and
multi-grained scanning (with restricted tree depths for effi-
ciency), gcForests can further improve the prediction per-
formance on complex image datasets. Note that gcForestcs
and gcForests can surely adopt multiple window sizes,
which might offer a better accuracy as suggested by Zhou
and Feng [4]. Nevertheless, it is sufficient to use only one
window size for gcForestcs and gcForests to achieve a satis-
fying performance with even less time cost and memory
requirement.

Datasets. Experiments are performed on all the datasets’
used by gcForest, i.e., LETTER and ADULT from UCI repos-
itory, IMDB [54], MNIST [55], sEMG [56], CIFAR10 [57]. In
addition, we also employ two high-dimensional datasets
EPS20K and EPSILON.* The data characteristics of these
datasets are summarized in Table 1.

Evaluation Metrics and Methodology. We adopt the predic-
tive accuracy as the classification performance measure-
ment which is suitable for these balanced datasets. Logloss
is also used as a measurement criterion. Note that if deep
forests with and without confidence screening have the
same predicted label for an instance, the former replaces its
predicted probabilities with the latter’s so that logloss can
better measure the influence of confidence screening. Train-
ing time, test time and memory usage are used to evaluate
the efficiency. Experiments on the datasets SEMG, MNIST,
CIFAR10 and EPSILON are evaluated on the given training

3. Three small datasets, i.e., ORL, GTZAN and YEAST are excluded
which have little to do with our purpose of improving the efficiency.

4. https:/ /www.csientu.edu.tw/  cjlin/libsvmtools/datasets/binary.
html. EPS20K contains 20,000 samples randomly selected from EPSILON.
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TABLE 1
Description of Datasets
Datasets #train inst. #test inst. #dim #label
sEMG 1,260 540 3,000 6
LETTER 14,000 6,000 16 26
EPS20K 14,000 6,000 2,000 2
ADULT 34,189 14,653 113 2
IMDB 35,000 15,000 5,000 2
CIFAR10 50,000 10,000 1,024 10
MNIST 60,000 10,000 784 10
EPSILON 400,000 100,000 2,000 2

and testing sets. On the other datasets, we conduct 10 inde-
pendent runs.

Hardware. In the experiments without multi-grained
scanning, we use a machine with 4 x 2.10 GHz CPUs and
32GB main memory. In the experiments with multi-grained
scanning, we use a machine with 28 x 2.40 GHz CPUs and
756GB main memory. This is because 32 GB main memory
is not enough for the multi-grained scanning procedure of
gcForest (although gcForestes and gcForests has no bar-
riers). An exception is the EPSILON dataset which is con-
ducted on the latter device, since gcForest cannot get its
results in 24 hours on the former device.

6.2 Results With Multi-Grained Scanning

The datasets sEMG, MNIST and CIFAR10 are used here
because they hold spatial or sequential relationships among
the raw features; and the other datasets do not. Deep forest
methods are compared, and comparisons with state-of-the-art
neural networks are included in the supplementary, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TKDE.2020.
3038799.

Table 2 shows that gcForests improves the predictive
accuracy with one to two orders of magnitude less memory
and faster runtime. Notably, on the SEMG dataset, the accu-
racy is improved by more than 6 percent, and the runtime
speedup is more than 500 times; on the CIFAR10 dataset,
the accuracy is improved by more than 4 percent, and the
runtime speedup is more than 20 times.

By using subsampling multi-grained scanning, gcForestcs
also reduces the memory usage by an order of magnitude.
However, the supervised feature transformation still requires
a high time cost. By replacing the supervised procedure with
CRF transformation, gcForests substantially speeds up the
training and testing of deep forest, while the predictive accura-
cies are also improved.

Interestingly, if gcForest adopts subsampling multi-grained
scanning at each level (the same as gcForestcs) instead of
multi-grained scanning, its accuracy will degrade heavily, e.g.,
it achieves 67.78 percent on sSEMG which is much lower than
the original gcForest and gcForestcs. Thus we report the results
of the original gcForest only. This outcome further verifies the
effectiveness of confidence screening.

We also compare eight combinations of the three major
components, i.e., completely-random forest transformation,
confidence screening and feature screening. The experi-
ments are categorized into experiments with and without
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TABLE 2
Comparison Results (With Multi-Grained Scanning) of gcForest,
gcForestcs and gcForests on Accuracy (in Percents), Training
Time (in CPU Seconds), Test Time (in CPU Seconds) and
Memory Usage (in Megabytes)

Datasets Method Accuracy Trainingtime Testtime Memory
(%) (s) (s) (MB)
sEMG  gcForest 71.30 34323.78 2288.29 41,789
gcForestes  72.59 1547.62 77.48 4,348
gcForests  77.41 61.61 3.85 3,239
MNIST  gcForest 99.26 27840.39 464.27 50,518
gcForestcs  99.26 1060.65 9.64 4,997
gcForestg 99.32 951.49 9.52 4,269
CIFAR10 gcForest 61.78 63068.32 2102.71 73,826
gcForestcs  62.62 13341.68 667.08 6,875
gcForestg 66.21 2051.38 91.85 6,458
TABLE 3

Accuracies (in Percents) of gcForest, gcForestcs, gcForesty,
and gcForestg With and Without Completely-Random Forest
Transformation (CRF-trans)

Accuracy (%) Method  sEMG MNIST CIFAR10

With CRF-trans gcForest 75.74 98.89 65.03
gcForestes  75.74 99.20 65.01
gcForestr,  76.67 98.96 65.31
gcForestg 77.41 99.32 66.21

Without CRF-trans  gcForest 48.15 98.02 52.03
gcForestes  47.78 98.30 52.47
gcForestg,  50.93 98.25 53.41
gcForestg 51.67 98.29 54.12

If CRF-trans is used, all methods use the same transformed features; otherwise,
all methods use original features.

completely-random forest transformation (CRF-trans). In the
experiments with CRF-trans, all methods use transformed fea-
tures as input features. In the experiments without CRF-trans,
all methods use original features as input features. The results
in Table 3 validate that all the three major components and
their combinations help improve performance.

The CRF transformation enables gcForest and gcForestcgs
to achieve much better accuracy than the original gcForest
and gcForestcs using the supervised procedure on both
sEMG (e.g., from 71.30 to 75.74 percent in gcForest) and
CIFAR10 (e.g., from 61.78 to 65.03 percent in gcForest). This
is despite the fact that the accuracy degrades slightly on
MNIST (e.g., from 99.26 to 98.89 percent in gcForest). These
outcomes show that the CRF transformation not only
improves the efficiency, it may also enhances the feature re-
representation process.

6.3 Results Without Multi-Grained Scanning
In this part, we conduct experiments without multi-grained
scanning on the datasets that do not hold spatial or sequential
relationships among the raw features. Deep forest methods
are compared, and comparisons with other classical methods
are included in the supplementary, available online.

Table 4 shows that gcForestcs(100) achieves accuracies
and logloss comparable to or better than gcForest on all five


http://doi.ieeecomputersociety.org/10.1109/TKDE.2020.3038799
http://doi.ieeecomputersociety.org/10.1109/TKDE.2020.3038799

4308

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 9, SEPTEMBER 2022

TABLE 4

Comparison Results (Without Multi-Grained Scanning) of gcForest, gcForestcs, gcForesty, and gcForests on Accuracy (in Per-
cents), Logloss, Training Time (in CPU Seconds), Test Time (in CPU Seconds) and Memory Usage (in megabytes)

Datasets Method Accuracy (%) Logloss Training time (s) Test time (s) Memory (MB)
LETTER gcForest 97.08 £0.25 0.124 £ 0.006 86.42 3.17 4526
gcForestcs(20) 96.42 £+ 0.35 0.125 4 0.006 13.39 0.41 206
gcForests(50) 96.93 + 0.36 0.120 £ 0.006 17.16 1.25 472
gcForests(100) 97.08 £0.32 0.117 4 0.006 75.23 2.23 915
gcForesty 97.04 £ 0.29 0.131 £ 0.007 66.89 2.81 2834
gcForestg 97.09 + 0.41 0.130 4 0.008 18.27 2.79 542
EPS20K gcForest 83.17 £ 0.52 0.475 £ 0.004 4291.10 1538.60 2103
gcForestcs(20) 76.34 +1.35 0.498 £ 0.003 112.28 18.85 1587
gcForestcg(50) 83.31 +0.52 0.470 4+ 0.003 266.82 59.43 1634
gcForestcs(100) 83.52 £0.53 0.470 4+ 0.004 576.76 179.10 1684
gcForestg, 86.11+0.24 0.334 4+ 0.009 219.37 43.42 1572
gcForestg 86.52 £0.30 0.338 £0.010 191.99 52.19 1421
ADULT gcForest 86.06 + 0.17 0.312 + 0.002 198.85 12.24 3002
gcForestcg(20) 86.04 £ 0.08 0.317 £ 0.008 27.47 2.18 173
gcForestcs(50) 86.04 £0.20 0.322 4 0.006 45.19 4.12 351
gcForestcs(100) 86.11 +0.14 0.316 £ 0.003 95.48 6.86 648
gcForest, 86.24 +£0.13 0.302 £ 0.006 53.31 5.45 1322
gcForestg 86.30 £ 0.15 0.312 £ 0.005 51.72 2.71 605
IMDB gcForest 89.20 +0.29 0.305 4 0.005 11633.65 152.2 3750
gcForestcgs(20) 89.19+0.23 0.304 £ 0.004 590.79 16.63 1518
gcForestcs(50) 89.40 +0.23 0.302 4+ 0.003 974.07 23.19 1802
gcForestcs(100) 89.57 +0.21 0.301 & 0.004 1623.11 32.05 1992
gcPorestg 89.49 +0.26 0.281 4 0.005 864.01 13.92 1755
gcForestg 89.56 £ 0.15 0.281 + 0.004 582.92 15.85 1627
EPSILON gcForest 86.45 0.382 50398.47 1161.60 27932
gcForestcg(20) 85.45 0.385 2244.89 118.01 7735
gcForestcg(50) 85.67 0.386 4401.69 134.44 9112
gcForestcs(100) 86.52 0.381 7836.05 150.57 11006
gcForestg, 88.77 0.277 3746.32 71.14 16427
gcForestg 89.17 0.276 2600.84 36.65 9929

EPSILON has the provided training and testing sets. On the other datasets, 10 test runs are conducted and the average accuracies as well as the standard devia-

tions are presented.

datasets, while the memory usage and the runtime are both
substantially reduced. The runtime speedup is about 6
times on EPS20K, IMDB and EPSILON. The memory
improvement rate is about 5 times on LETTER and ADULT.
This verifies the effectiveness of confidence screening.

Compared with gcForest, gcForesty, attains substantial
improvement of efficiency. Especially on the high-dimen-
sional datasets, i.e., EPS20K, IMDB and EPSILON, gcForest,
achieves better prediction performance with an order of
magnitude smaller time costs. This verifies the effectiveness
of feature screening.

By combining confidence screening and feature screening,
gcForestg further improves the prediction performance while
reducing the memory usage and time cost. Notably, on
EPS20K and EPSILON, the accuracy is improved by about
3 percent, while the test time speedup is about 30 times.

Since there are different requirements for the runtime and
the memory usage on different applications and different devi-
ces, we need to adjust the number of trees of each forest to meet
these requirements. The results in [5] show that the larger
models with more trees tend to offer better performance. In
other words, decreasing the number of trees of each forest may
degrade the performance of deep forest. In our proposed
method, the variable model complexity strategy increases the

number of trees linearly as the number of remaining instances
decreases, which means the computational complexity of each
level is no more than the first level. To study the effect of vari-
able model complexity against different requirements, we con-
duct experiments on gcForestcs with different numbers of
trees of each forest at the first level, i.e., 20, 50 and 100.

As shown in Table 4, gcForestcs has close enough accura-
cies on these three settings; and the maximal gap among them
is about 1 percent (except on EPS20K). In contrast, gcForest has
a large accuracy gap. For example, gcForest(500) achieves
83.17, 89.20 and 86.45 percent on EPS20K, MNIST and EPSI-
LON, respectively; while gcForest(20) achieves respective
accuracies 73.79, 88.21 and 82.63 percent which has much
larger accuracy gaps than gcForestcs. Thus, when the runtime
and memory usage are limited, variable model complexity
combined with confidence screening leads to more robust per-
formances than gcForest. These results validate the effective-
ness of the variable model complexity strategy, which are also
consistent with the theoretical analysis.

7 INFLUENCE OF SCREENING MECHANISMS

The effectiveness of confidence screening and feature
screening have been validated in the last section. We further
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Fig. 7. The examples of gcForestcs and gcForest. (a) Ratio of remaining
instances at each level of gcForestcs on IMDB and MNIST; (b) Test
accuracy at each level of gcForestcs and gcForest on IMDB.

investigate the influence of these two screening mechanisms
at each level of deep forest.

7.1 Influence of Confidence Screening

In this part, we aim to study the influence of confidence
screening that links the decreasing number of instances
with the improvement at each level in terms of accuracy,
memory and runtime. The examples are the results of one
test run based on IMDB and MNIST, and the results are sim-
ilar on other datasets.

The number of instances to be screened is adaptive to the
problem at hand. As shown in Fig. 7a, gcForestcs screens 64
and 84 percent of the test instances of IMDB and MNIST,
respectively, at the first level.” At the last level, only 28 and
7 percent test instances of IMDB and MNIST, respectively,
are passed through all the levels. In contrast, all the test
instances are passed through all the levels in gcForest. The
results are similar on training. This leads directly to the
high improvement rates in terms of memory and runtime.

We demonstrate the test accuracy at each level of
gcForestcs and gcForest on IMDB in Fig. 7b. Both gcForestcs
and gcForest have 8 levels. At the first level, gcForest is
slightly better than gcForestcs because gcForest uses more
complex forests with more trees. After the first level,
gcForestcs gets better accuracy.

We further demonstrate how confidence screening influ-
ences the classification result. As Fig. 8a shows, the accumu-
lated number of screened instances increases as the number
of levels increases. Because instances are screened if their
predictions have high confidence, the accuracy of the
screened instances is about 95 percent which is much higher
than the overall accuracy (< 90%). Interestingly, gcForestcs
and gcForest have the same predictions on the screened
instances except two of them.

The result of the remaining instances is shown in Fig. 8b:
the blue line plots the number of remaining instances which
are correctly classified at the current level; and the orange
line represents the number of those correctly classified at
the next level. Fig. 8b shows that the accuracy of remaining
instances increases when they are passed from the current
level to the next level—due to the model used in the next
level. At the final level, the number of correctly classified
instances of gcForestcs is 80 instances more than that of
gcForest. This outcome indicates that confidence screening

5.1f none of the test instances have high enough confidences,
gcForestcg lets all the instances pass to the next level.
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of gcForestcs. (a) The accumulated numbers of screened instances and
correctly classified screened instances up to a certain level of
gcForestcs; (b) The number of remaining instances at each level of
gcForestcs. At each level, the remaining instances are passed to the
next level. The number of correctly classified remaining instances
increases from the current level to the next level.
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Fig. 9. The examples of gcForests, gcForestcs and gcForest. (a, c) Num-
ber of features used at each level; (b, d) Test accuracy at each level of
gcForests, gcForestcs and gcForest. The first row and the second row
are based on EPS20K and IMDB, respectively.

encourages models at each level to better focus on the hard-
to-predict instances that leads directly to their better
predictions.

7.2 Influence of Feature Screening

In this part, we analyze the influence of feature screening
that selects variational number of features at each level. The
examples are the results of one test run based on EPS20K
and IMDB, and the results are similar on other datasets.

The number of selected features is adaptive to each level
of gcForests. At each level, gcForests selects a subset of fea-
tures that can bring in the most improvement. As shown in
Fig. 9, gcForestg screens about 90 (70 percent) of the features
at each level on EPS20K (IMDB), while gcForest and
gcForestcs use all the features.

Feature screening brings two main benefits to deep for-
est. First, feature screening improves the efficiency of deep
forest as fewer features are used. Second, feature screening
emphasizes the importance of transformed features, espe-
cially when the original feature vector is much longer than
the transformed feature vector. As shown in Fig. 9, by using
fewer original features, it balances between the original fea-
tures and the transformed features, which can make better
use of the cascade structure and lead to better predictions.
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TABLE 5
Accuracies of gcForestg With Different Strategies of Feature
Screening Including FS-Rank, FS-Sparse and FS-Reg

gcForests (%) EPS20K IMDB EPSILON
FS-rank 85.35 89.00 87.89
FS-sparse 86.37 89.28 89.01
FS-reg 86.52 89.56 89.17

Experiments are conducted on three high-dimensional datasets, i.e., EPS20K,
IMDB and EPSILON.

As discussed in Section 3.2, feature screening can be done in
different strategies. We conduct experiments on three high-
dimensional datasets to compare three strategies for feature
screening. The first method, FS-rank, selects features with the
highest feature importance directly. The second method, FS-
sparse, selects features by a sparse regularization where each
feature is treated equally. The third method, FS-reg, selects fea-
tures by a reweighted sparse regularization where each feature
is reweighted according to its feature importance. In this
paper, we adopt FS-reg for feature screening, which considers
both feature redundancy and non-linear feature importances.
As shown in Table 5, gcForests with FS-reg achieves the best
prediction performance.

8 CONCLUSION

In this paper, we focus on improving the efficiency of deep
forest, which extends our preliminary research [58]. We first
identify two deficiencies of gcForest and then introduce two
screening mechanisms and the unsupervised CRF transfor-
mation to address these issues. The confidence screening
splits the instances into easy-to-predict and hard-to-predict
subsets at each level, which substantially reduces the num-
ber of instances passed to the next level. The feature screen-
ing selects informative features, rather than using all
features at each level, which considerably reduces the num-
ber of dimensions used for learning. The CRF transforma-
tion constructs an unsupervised completely-random forest,
which has linear time complexity only. All three strategies
significantly improve the efficiency of deep forest.

Our theoretical analysis supports the proposed approach in
varying the model complexity from low to high as the number
of levels increases in deep forest. Thus, the screening process is
coupled with this variable model complexity mechanism,
which substantially reduces the memory requirements and
time costs of deep forest at the first few levels.

The effectiveness of the approach is validated in our eval-
uation that it achieves more with less, i.e., gcForests has pre-
dictive accuracy comparable to or better than gcForest—this
is achieved with one to two orders of magnitude smaller
time costs and memory requirements.

gcForests is a step advancement of gcForest that is instru-
mental in more widespread applications of deep forest and
further explorations of non-NN deep models. An interesting
future work is to incorporate gcForestg into the recently pro-
posed abductive learning [59] paradigm to enable a more effi-
cient connection between machine learning and logical
reasoning since trees are more amenable to symbolic repre-
sentation and with fewer theoretical mysteries [60] than
neural networks.
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please visit our Digital Library at www.computer.org/csdl.
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