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Abstract

Non-stationary online learning has drawn much attention in recent years. In particular,
dynamic regret and adaptive regret are proposed as two principled performance measures for
online convex optimization in non-stationary environments. To optimize them, a two-layer
online ensemble is usually deployed due to the inherent uncertainty of the non-stationarity,
in which a group of base-learners are maintained and a meta-algorithm is employed to
track the best one on the fly. However, the two-layer structure raises the concern about
the computational complexity — those methods typically maintain O(log T ) base-learners
simultaneously for a T -round online game and thus perform multiple projections onto the
feasible domain per round, which becomes the computational bottleneck when the domain
is complicated. In this paper, we present efficient methods for optimizing dynamic regret
and adaptive regret, which reduce the number of projections per round from O(log T ) to
1. Moreover, our obtained algorithms require only one gradient query and one function
evaluation at each round. Our technique hinges on the reduction mechanism developed
in parameter-free online learning and requires non-trivial twists on non-stationary online
methods. Empirical studies verify our theoretical findings.

1. Introduction

Classic online learning focuses on minimizing the static regret, which evaluates the online
learner’s performance against the best fixed decision in hindsight (Hazan, 2016). However, in
many real-world applications, the environments are often non-stationary. In such scenarios,
minimizing static regret becomes less attractive, since it would be unrealistic to assume the
existence of a single decision behaved satisfactorily throughout the entire time horizon.

To address the limitation, in recent years, researchers have studied more strengthened
performance measures to facilitate online algorithms with the capability of handling non-
stationarity. In particular, dynamic regret (Zinkevich, 2003; Zhang et al., 2018a) and
adaptive regret (Hazan and Seshadhri, 2009; Daniely et al., 2015) are proposed as two
principled metrics to guide the algorithm design. We focus on the online convex optimization
(OCO) setting (Hazan, 2016). OCO can be deemed as a game between the learner and
the environments. At each round t ∈ [T ], the learner submits her decision xt ∈ X from a
convex feasible domain X ⊆ Rd and simultaneously environments choose a convex function
ft : X 7→ R, and subsequently the learner suffers an instantaneous loss ft(xt).
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1.1 Dynamic Regret and Adaptive Regret

Dynamic regret is proposed by Zinkevich (2003) to compare the online learner’s performance
against a sequence of any feasible comparators u1, . . . ,uT ∈ X . Formally, it is defined as

D-RegT (u1, . . . ,uT ) =

T∑

t=1

ft(xt)−
T∑

t=1

ft(ut). (1)

Dynamic regret minimization enables the learner to track changing comparators. A favorable
dynamic regret bound should scale with a certain non-stationarity measure dependent on
the comparators such as the path length PT =

∑
t=2∥ut − ut−1∥2. Notably, the classic static

regret can be treated as a special case of dynamic regret by specifying the comparators as
the best fixed decision in hindsight.

Adaptive regret is proposed by Hazan and Seshadhri (2009) and further strengthened
by Daniely et al. (2015), which measures the regret over any interval I = [r, s] ⊆ [T ] with a
length of τ = |I| and hence is also referred to as the interval regret. The specific definition is

A-RegT (|I|) = max
[r,r+τ−1]⊆[T ]

{ r+τ−1∑

t=r

ft(xt)−min
u∈X

r+τ−1∑

t=r

ft(u)

}
. (2)

Since the minimizers of different intervals can be different, adaptive regret minimization
also ensures the capability of competing with changing comparators. A desired adaptive
regret bound should be as close as the minimax static regret of this interval. Algorithms
with adaptive regret matching static regret of this interval up to logarithmic terms in T are
referred to as strongly adaptive (Daniely et al., 2015). Moreover, it can be observed that
adaptive regret can include the static regret when choosing I = [T ].

It is worth noting that the relationship between dynamic regret and adaptive regret
for OCO is generally unclear (Zhang, 2020, Section 5), even though a black-box reduction
from dynamic regret to adaptive regret has been proven for the simper expert setting (i.e.,
online linear optimization over simplex) (Luo and Schapire, 2015, Theorem 4). Hence, the
two measures are separately developed and many algorithms have been proposed, including
algorithms for dynamic regret (Zinkevich, 2003; Hall and Willett, 2013; Zhang et al., 2018a;
Zhao et al., 2020, 2021b,a; Baby and Wang, 2021; Jacobsen and Cutkosky, 2022) and
the ones for adaptive regret (Hazan and Seshadhri, 2009; Daniely et al., 2015; Jun et al.,
2017; Zhang et al., 2018b, 2019). Note that there are also studies (Zhang et al., 2020;
Cutkosky, 2020) optimizing both measures simultaneously by an even strengthened metric∑s

t=r ft(xt)−
∑s

t=r ft(ut) over any interval [r, s] ⊆ [T ], hence called “interval dynamic regret”.

1.2 Two-layer Structure and Projection Complexity Issue

The fundamental challenge of optimizing these two non-stationary regret measures is the
uncertainty of the environmental non-stationarity. Concretely, to ensure the robustness
to the unknown environments, dynamic regret aims to compete with any feasible com-
parator sequence, while adaptive regret examines the local performance over any intervals.
The unknown comparators or unknown intervals bring considerable uncertainty to online
optimization. To address the issue, a two-layer structure is usually deployed to optimize
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the measures, where a set of base-learners are maintained to handle the different possibil-
ities of online environments and a meta-algorithm is employed to combine them all and
track the unknown best one. Such a framework successfully achieves many state-of-the-
art results, including the O(

√
T (1 + PT )) dynamic regret (Zhang et al., 2018a) and the

O(
√

(FT + PT )(1 + PT )) small-loss dynamic regret for smooth functions (Zhao et al., 2020),
where PT =

∑T
t=2∥ut − ut−1∥2 is the path length and FT =

∑T
t=1 ft(ut) is the cumulative

loss of comparators; as well as the O(
√
|I| log T ) adaptive regret (Jun et al., 2017) and the

O(√FI logFI logFT ) small-loss adaptive regret for smooth functions (Zhang et al., 2019) for
any interval I = [r, s] ⊆ [T ], where FI = minx∈X

∑s
t=r ft(x) and FT = minx∈X

∑T
t=1 ft(x).

Besides, an O(
√
|I|(log T + PI)) interval dynamic regret is also achieved by a two-layer (or

even three-layer) structure (Zhang et al., 2020), where PI =
∑s

t=r∥ut − ut−1∥2 is the path
length over the interval.

The two-layer methods have demonstrated great effectiveness in tackling non-stationary
online environments, whereas the gain is at the price of heavier computations than the
methods for minimizing static regret. While it is believed that additional computations are
necessary for more robustness, we are wondering whether it is possible to pay for a “minimal”
computation overhead for adapting to the non-stationarity. To this end, we focus on the
popular first-order online methods and aim to streamline unnecessary computations while
retaining the same regret guarantees. Arguably, the most computationally expensive step of
each round is the projection onto the convex feasible domain, namely, the projection operation
ΠX [y] = argminx∈X ∥x − y∥2 for a convex set X ⊆ Rd. Typical two-layer non-stationary
online algorithms require maintaining N = O(log T ) base-learners simultaneously to cover
the possibility of unknown environments. Define the projection complexity of online methods
as the number of projections onto the feasible domain per round. Then, those non-stationary
methods suffer an O(log T ) projection complexity, whereas standard online methods for
static regret minimization require only one projection per round such as online gradient
descent (Zinkevich, 2003).

1.3 Our Contributions and Techniques

In this paper, we design a generic mechanism to reduce the projection complexity of many
existing non-stationary methods from O(log T ) to 1 without sacrificing the regret optimality,
hence matching the projection complexity of stationary methods. Our reduction is inspired
by the recent advance in parameter-free online learning (Cutkosky and Orabona, 2018;
Mhammedi et al., 2019). The idea is simple: we reduce the original problem learned in the
feasible domain X to an alternative one learned in a surrogate domain Y ⊇ X such that the
projection onto it is much cheaper, e.g., simply choosing Y as a properly scaled Euclidean
ball; and moreover, a carefully designed surrogate loss is necessary for the alternative problem
to retain the regret optimality. We reveal that a necessary condition for our reduction
mechanism to deploy and reduce the projection complexity is that the non-stationary online
algorithm shall query the function gradient once and evaluate the function value once per
round. Several algorithms for the worst-case dynamic regret or adaptive regret already satisfy
the requirements, so we can immediately deploy the reduction and obtain their efficient
counterparts with the same regret guarantees and 1 projection complexity. However, many
non-stationary algorithms, particularly those designed for small-loss bounds, do not satisfy
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the requirement. Hence, we require non-trivial efforts to make them compatible. Due to this,
we have developed a series of algorithms that achieve worst-case/small-loss dynamic regret
and adaptive regret with one projection per round (actually, with one gradient query and
one function evaluation per round as well).

Despite that the reduction mechanism of this paper has been studied in parameter-
free online learning, applying it to non-stationary online learning requires new ideas and
non-trivial modifications. Here we highlight the technical innovation. The main challenge
comes from the reduction condition mentioned earlier — as the surrogate loss involves
the projection operation, our reduction requires the algorithm query one gradient and
evaluate one function value at each round. However, many non-stationary algorithms do not
satisfy the requirement, which is to be contrasted to the parameter-free algorithms such as
MetaGrad (van Erven and Koolen, 2016; Mhammedi et al., 2019) that naturally satisfy the
condition. For example, the SACS algorithm (Zhang et al., 2019) enjoys the best known
small-loss adaptive regret, yet the method requires N gradient queries and N + 1 function
evaluations at each round, where N = O(log T ) is the number of base-learners. Thus, we
have to dig into the algorithm and modify it to fit our reduction. First, we replace their
meta-algorithm with Adapt-ML-Prod (Gaillard et al., 2014), an expert-tracking algorithm
with a second-order regret with excess losses to accommodate the linearized loss that is used
to ensure one gradient query per round. Second, we introduce a sequence of time-varying
thresholds to adaptively determine the problem-dependent geometric covers in contrast to a
fixed threshold used in their method. In particular, we register the cumulative loss of the
final decisions rather than the base-learner’s one to compare it with the changing thresholds,
which renders the design of one function value evaluation per round and also turns out
to be crucial for achieving an improved small-loss bound that can recover the best known
worst-case adaptive adaptive regret (by contrast, SACS cannot obtain optimal worst-case
adaptive regret). To summarize, our final algorithm only requires one projection/gradient
query/function evaluation at each round, substantially improving the efficiency of SACS
algorithm that requires N projections/gradient queries/function evaluations per round.

1.4 Assumptions

In this part, we list several standard assumptions used in OCO (Shalev-Shwartz, 2012; Hazan,
2016). Notably, not all these assumptions are always required. We will explicitly state the
requirements in the theorem.

Assumption 1 (bounded gradient). The norm of the gradients of online functions over the
domain X is bounded by G, i.e., ∥∇ft(x)∥2 ≤ G, for all x ∈ X and t ∈ [T ].

Assumption 2 (bounded domain). The domain X ⊆ Rd contains the origin 0, and the
diameter of the domain X is at most D, i.e., ∥x− x′∥2 ≤ D for any x,x′ ∈ X .

Assumption 3 (non-negativity and smoothness). All the online functions are non-negative
and L-smooth, i.e., for any x,x′ ∈ X and t ∈ [T ], ∥∇ft(x)−∇ft(x′)∥2 ≤ L∥x− x′∥2.

1.5 Paper Outline

The remainder of the paper is structured as follows. In Section 2, we delineate the reduction
mechanism and illustrate its application to dynamic regret minimization. Section 3 offers
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efficient methods for optimizing adaptive regret. Subsequently, Section 4 gives the results for
optimizing an even stronger performance measure – interval dynamic regret. In Section 5
we provide two applications of our proposed reduction mechanism for non-stationary online
learning. Experimental validations are reported in Section 6. Finally, we conclude the paper
and make several discussions in Section 7. All the proofs and omitted details for algorithms
are deferred to the appendices.

2. The Reduction Mechanism and Dynamic Regret Minimization

We start from the dynamic regret minimization. First, we briefly review existing methods
in Section 2.1, and then present our reduction mechanism and illustrate how to apply it to
reducing the projection complexity of dynamic regret methods in Section 2.2.

2.1 A Brief Review of Dynamic Regret Minimization

Zhang et al. (2018a) propose a two-layer online algorithm called Ader with an O(
√
T (1 + PT ))

dynamic regret, which is proven to be minimax optimal for convex functions. Ader maintains
a group of base-learners, each performing online gradient descent (OGD) (Zinkevich, 2003)
with a customized step size specified by the pool H = {η1, . . . , ηN}, and then uses a meta-
algorithm to combine them all. Denoted by B1, . . . ,BN the N base-learners. For each i ∈ [N ],
the base-learner Bi updates by

xt+1,i = ΠX [xt,i − ηi∇ft(xt)], (3)

where ηi ∈ H is the associated step size and ΠX [·] denotes the projection onto the feasible
domain X with ΠX [y] = argminx∈X ∥y − x∥2. Notably, all the base-learners share the
same gradient ∇ft(xt) rather than using their individual one ∇ft(xt,i). This is because
Ader optimizes the linearized loss ℓt(x) = ⟨∇ft(xt),x⟩, which enjoys the benign property of
∇ℓt(xt,i) = ∇ft(xt) for all i ∈ [N ].

Furthermore, the meta-algorithm evaluates each base-learner by the linearized loss
ℓt(xt,i) = ⟨∇ft(xt),xt,i⟩ and updates the weight vector pt+1 ∈ ∆N by the Hedge algo-
rithm (Freund and Schapire, 1997), namely,

pt+1,i =
pt,i exp(−ε⟨∇ft(xt),xt,i⟩)∑N
j=1 pt,j exp(−ε⟨∇ft(xt),xt,j⟩)

, ∀i ∈ [N ], (4)

where ε > 0 is the learning rate of the meta-algorithm. The final prediction is obtained by
xt+1 =

∑N
i=1 pt+1,ixt+1,i. The learner submits the prediction xt+1 and then receives the loss

ft+1(xt+1) and the gradient ∇ft+1(xt+1) as the feedback of this round. Under a suitable
configuration of the step size poolH with N = O(log T ) and learning rate ε = Θ(

√
(lnN)/T ),

Ader enjoys an O(
√
T (1 + PT )) dynamic regret (Zhang et al., 2018a, Theorem 4).

For convex and smooth functions, Zhao et al. (2021b) demonstrate that a similar two-layer
structure can attain an O(

√
(FT + PT )(1 + PT )) small-loss dynamic regret under a suitable

setting of the step size pool H and time-varying learning rates for the meta-algorithm {εt}Tt=1,
where FT =

∑T
t=1 ft(ut) is the cumulative loss of the comparators. This bound safeguards

the minimax rate in the worst case, while it can be much smaller than O(
√
T (1 + PT ))

bound in the benign environments.
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2.2 The Reduction Mechanism for Reducing Projection Complexity

As demonstrated in the update (3), all the base-learners require projecting the intermediate
solution onto the domain X to ensure feasibility. As a result, O(log T ) projections are
required at each round, which is generally time-consuming particularly when the domain X
is complicated. To address so, we present a generic reduction mechanism for reducing the
projection complexity and apply it to dynamic regret methods. Our reduction builds upon the
seminal work (Cutkosky and Orabona, 2018) and a further refined result (Cutkosky, 2020),
who propose a black-box reduction from constrained online learning to the unconstrained
setting (or another constrained problem with a larger domain).

Reduction mechanism. Given an algorithm for non-stationary online learning Algo whose
projection complexity is O(log T ), our reduction mechanism builds on it to yield an algorithm
Efficient-Algo with 1 projection onto X per round and retaining the same order of regret. The
central idea is to replace expensive projections onto the original domain X with other much
cheaper projections. To this end, we introduce a surrogate domain Y defined as the minimum
Euclidean ball containing the feasible domain X , i.e., Y = {x | ∥x∥2 ≤ D} ⊇ X . Then, the
reduced algorithm Algo works on Y whose projection can be realized by a simple rescaling.
More importantly, to avoid regret degeneration, it is necessary to carefully construct the
surrogate loss gt : Y 7→ R as

gt(y) = ⟨∇ft(xt),y⟩ − 1{⟨∇ft(xt),vt⟩<0} · ⟨∇ft(xt),vt⟩ · SX (y), (5)

where SX (y) = infx∈X ∥y− x∥2 is the distance function to X and vt = (yt−xt)/∥yt−xt∥2 is the
vector indicating the projection direction.

The main protocol of our reduction is presented as follows. The input includes original
functions {ft}Tt=1, the feasible domain X , and the reduced algorithm Algo.
1: for t = 1, . . . , T do
2: receive the gradient information ∇ft(xt);
3: construct the surrogate loss gt : Y 7→ R according to Eq. (5);
4: obtain the intermediate prediction yt+1 ← Algo(gt(·),yt,Y);
5: submit the final prediction xt+1 = ΠX [yt+1];
6: end for

Our reduction enjoys the regret safeness due to the benign properties of surrogate loss.

Theorem 1 (Theorem 2 of Cutkosky (2020)). The surrogate loss gt : Y 7→ R defined in (5)
is convex. Moreover, we have ∥∇gt(yt)∥2 ≤ ∥∇ft(xt)∥2 and for any ut ∈ X

⟨∇ft(xt),xt − ut⟩ ≤ gt(yt)− gt(ut) ≤ ⟨∇gt(yt),yt − ut⟩. (6)

The theorem shows the convexity of the surrogate loss gt(y) and we thus have ft(xt)−
ft(ut) ≤ ⟨∇gt(yt),yt − ut⟩, which implies that it suffices to optimize the linearized loss
ℓt(y) = ⟨∇gt(yt),y⟩. The following lemma further specifies the gradient calculation.

Lemma 1. For any y ∈ Y, ∇gt(y) = ∇ft(xt) when ⟨∇ft(xt),vt⟩ ≥ 0; and ∇gt(y) =
∇ft(xt)− ⟨∇ft(xt),vt⟩ · (y−ΠX [y])/∥y−ΠX [y]∥2 when ⟨∇ft(xt),vt⟩ < 0. Here vt = (yt−
xt)/∥yt − xt∥2. In particular, ∇gt(yt) = ∇ft(xt)− ⟨∇ft(xt),vt⟩ · vt when ⟨∇ft(xt),vt⟩ < 0.
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Algorithm 1 Efficient Algorithm for Minimizing Dynamic Regret
Input: step size pool H = {η1, . . . , ηN}, learning rate of meta-algorithm εt (or simply a

fixed one εt = ε).
1: Initialization: let x1 and {y1,i}Ni=1 be any point in X ; ∀i ∈ [N ], p1,i = 1/N .
2: for t = 1 to T do
3: Receive the gradient information ∇ft(xt).
4: Construct the surrogate loss gt : Y 7→ R according to Eq. (5).
5: Compute the gradient ∇gt(yt) according to Lemma 1.
6: For each i ∈ [N ], the base-learner Bi produces the local decision by

ŷt+1,i = yt,i − ηi∇gt(yt), yt+1,i = ŷt+1,i

(
1{∥ŷt+1,i∥2≤D} +

D

∥ŷt+1,i∥2
· 1{∥ŷt+1,i∥2≥D}

)
.

7: Meta-algorithm updates weight by pt+1,i ∝ exp(−εt+1
∑t

s=1⟨∇gs(ys),ys,i⟩), i ∈ [N ].
8: Compute yt+1 =

∑N
i=1 pt+1,iyt+1,i.

9: Submit xt+1 = ΠX [yt+1]. ▷ the only projection onto feasible domain X per round
10: end for

Reduction requirements. An important necessary condition for the reduction is to
require the reduced algorithm satisfying one gradient query and one function evaluation at
each round. Indeed, the reduction essentially updates according to the surrogate loss {gt}Tt=1.
Note that the definition of surrogate loss involves the distance function SX (y), see Eq. (5).
Thus, each evaluation of gt(y) leads to one projection onto X due to the calculation of SX (y).
Similarly, each gradient query of ∇gt(y) also contributes to one projection, see Lemma 1
for details. To summarize, we can use the reduction to ensure a 1 projection complexity,
only when the reduced algorithm satisfies the requirements of one gradient query and one
function evaluation per round. Below, we demonstrate the usage of our reduction mechanism
for two methods of dynamic regret minimization that satisfy the conditions, including the
worst-case method (Zhang et al., 2018a) and the small-loss method (Zhao et al., 2021b).

Application to dynamic regret minimization. Algorithm 1 summarizes the main
procedures of our efficient methods for optimizing dynamic regret, which is an instance of
the reduction mechanism by picking Algo as Ader (Zhang et al., 2018a). More specifically,
Lines 6 – 8 are essentially performing Ader algorithm using the surrogate loss {gt}Tt=1 over
the surrogate domain Y . Note that the base update in Line 6 is essentially performing OGD
with projection onto Y, a scaled Euclidean ball, and thus the projection admits a simple
closed form. The overall algorithm requires projecting onto X only once per round, see Line 9.
Our method provably retains the same dynamic regret.

Theorem 2. Set the step size pool as H =
{
ηi = 2i−1(D/G)

√
5/(2T ) | i ∈ [N ]

}
with

N = ⌈2−1 log2(1 + 2T/5)⌉+ 1 and the learning rate as ε =
√
(lnN)/(1 +G2D2T ). Under

Assumptions 1 and 2, our algorithm requires one projection onto X per round and enjoys

T∑

t=1

ft(xt)−
T∑

t=1

ft(ut) ≤ O
(√

T (1 + PT )
)
. (7)
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For smooth and non-negative functions, the Sword++ algorithm (Zhao et al., 2021b)
achieves an O(

√
(FT + PT )(1 + PT )) small-loss dynamic regret, which requires one gradient

and one function value per iteration.1 However, notice that the surrogate loss gt(·) in Eq. (5)
is neither smooth nor non-negative, which hinders the application of our reduction to
their method. Fortunately, owing to the benign property of ∥∇gt(yt)∥2 ≤ ∥∇ft(xt)∥2
(see Theorem 1), we can still deploy the reduction via an improved analysis and obtain a
projection-efficient algorithm with the same small-loss bound.

Theorem 3. Set the step size pool as H =
{
ηi = 2i−1

√
5D2/(1 + 8LGDT ) | i ∈ [N ]

}
with

N = ⌈2−1 log2((5D
2 + 2D2T )(1 + 8LGDT )/(5D2))⌉+ 1 and the learning rate of the meta-

algorithm as εt =
√
(lnN)/(1 +D2

∑t−1
s=1 ∥∇gs(ys)∥22). Under Assumptions 1, 2, and 3, our

algorithm requires one projection onto X per round and enjoys the following dynamic regret:

T∑

t=1

ft(xt)−
T∑

t=1

ft(ut) ≤ O
(√

(FT + PT )(1 + PT )
)
,

where FT =
∑T

t=1 ft(ut) is the cumulative loss of the comparators.

3. Adaptive Regret Minimization

In this section, we present our efficient methods to minimize adaptive regret. First, we briefly
review existing methods in Section 3.1, and then present our efficent methods to reduce the
projection complexity of adaptive regret methods in Section 3.2.

3.1 A Brief Review of Adaptive Regret Minimization

Adaptive regret minimization ensures that the online learner is competitive with a fixed
decision across every contiguous interval I ⊆ [T ]. Typically, an online algorithm to achieve
this consists of three components:

(i) base-algorithm: an online algorithm attaining low (static) regret in a given interval;

(ii) scheduling: a series of intervals that can cover the entire time horizon [T ], which might
overlap. Each interval is associated with a base-learner whose goal is to minimize static
regret over the duration of that interval (from its start to end);

(iii) meta-algorithm: a combining algorithm that can track the best base-learner on the fly.

By dividing the entire algorithm into these three main components, it becomes more conve-
nient to compare various algorithms and highlight the effectiveness of individual components.

For the worst-case bound, the best known result is the O(
√
|I| log T ) adaptive regret

achieved by the CBCE algorithm (Jun et al., 2017). We omit its details but mention that
CBCE requires multiple gradients at each round. Wang et al. (2018) improve CBCE by
employing the linearized loss for updating both meta-algorithm and base-algorithm. This

1. The Sword++ algorithm is primarily designed to attain gradient-variation dynamic regret, incorporating
advanced components like a correction term and optimism into its algorithmic design (Zhao et al., 2021b).
Nonetheless, it can be verified that when seeking a small-loss bound only, the algorithm’s complexity can
be reduced by omitting both the correction term and optimism.
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revision allows it to require only one gradient per iteration while maintaining the same
adaptive regret. Furthermore, this improved CBCE algorithm evaluates the function value
only once per iteration. As a result, our reduction can be directly applied, yielding a
projection-efficient variant with the same adaptive regret.

Now, we focus on the more challenging case of small-loss adaptive regret. The best
known result is the O(√FI logFI logFT ) adaptive regret for any interval I = [r, s] ⊆ [T ]
obtained by the SACS algorithm (Zhang et al., 2019), where FI = minx∈X

∑s
t=r ft(x) and

FT = minx∈X
∑T

t=1 ft(x). However, SACS does not satisfy our reduction requirements. This
is because it requires N gradient queries (specifically, ∇ft(xt,i) for i ∈ [N ]) and N + 1
function evaluations (specifically, ft(xt,i) for i ∈ [N ], and ft(xt)) at round t ∈ [T ]. Here, N
denotes the number of active base-learners, and xt,i denotes the local decision returned by
the i-th base-learner. Therefore, we have to modify the algorithm to fit our purpose.

To this end, we need to review the construction of the SACS algorithm. First, SACS
uses the scale-free online gradient descent (SOGD) (Orabona and Pál, 2018) as its base-
algorithm, which ensures a small-loss regret in a given interval. Second, SACS employs
AdaNormalHedge (Luo and Schapire, 2015) as the meta-algorithm, which supports the
sleeping expert setup and also the small-loss regret. Finally, SACS introduces a novel
scheduling strategy called the problem-dependent geometric covering intervals. This ensures
that the number of maintained base-learners also depends on small-loss quantities. Owing
to these designs, SACS can achieve a fully problem-dependent adaptive regret of order
O(√FI logFI logFT ), which scales according to the cumulative loss of comparators.

However, there are also some pitfalls. SACS also suffers from an O(log T ) projection
complexity in the worst case due to its two-layer structure. Further, it can be observed
that SACS only attains an O(

√
|I| log |I| log T ) bound in the worst case, which exhibits an

O(
√

log|I|) gap compared with the best known result of O(
√
|I| log T ) (Jun et al., 2017).

In the next subsection, we will present an efficient algorithm for small-loss adaptive regret
minimization, which resolves the above two issues simultaneously.

3.2 Efficient Algorithms for Adaptive Regret

Since SACS involves multiple gradient and function queries in all its three components, we
need to make modifications to achieve an algorithm that attains the same small-loss adaptive
regret while demanding merely one gradient query and function evaluation per iteration.
Once equipped with such an algorithm, we can deploy our reduction scheme to obtain an
efficient method with 1 projection complexity.

The overall procedures of our proposed algorithm are summarized in Algorithm 2. Below,
we will present the details of the three components. In particular, we will elucidate the
scheduling design, i.e., the construction of covering intervals, which is paramount in achieving
a fully problem-dependent bound (even improving upon the previously best known result
of Zhang et al. (2019)) and reducing the number of gradient and function evaluations needed.

By the reduction mechanism, it is noticeable that we only need to consider the input
online functions as surrogate loss {gt}Tt=1, where gt : Y 7→ R is defined in Eq. (5).

Scheduling. Adaptive regret examines every contiguous interval I ⊆ [T ], which demands a
rapid adaptation to potential environment changes. A natural way to construct the scheduling
is to initiate a base-learner at each round and enable her to make predictions till the end of the
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t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 · · ·
markers s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 · · ·

unit intervals [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ] · · ·
C0 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] · · ·
C1 [ ] [ ] [ ] [ ] [ ] [ ] · · ·
C2 [ ] [ ] [ ] · · ·
C3 [ ] · · ·
C4 [ · · ·

Figure 1: Geometric Covering Intervals (Zhang et al., 2019, Figure 2).

whole time horizon (Hazan and Seshadhri, 2007). While this approach can effectively maintain
many base-learners to handle the non-stationarity, it is computationally expensive due to
maintaining O(t) base-learners at round t. For enhanced efficiency, alternative scheduling is
proposed to set the length of each learner’s active time in a geometric manner (Hazan and
Seshadhri, 2007; Daniely et al., 2015). To elucidate the design, we introduce two concepts: the
unit interval and the marker. The unit intervals partition the time horizon [T ], of which the
adaptive algorithm chooses geometric many to construct the active time as illustrated later.
The markers denote the starting and ending time stamps of the unit intervals. Formally, the
i-th unit interval is represented by [si, si+1− 1] with the time stamps s1, . . . , sM determining
the intervals (referred to as markers). Notice that, these unit intervals are disjoint and
consecutive. The second and third rows of Figure 1 provide an illustrative example of unit
intervals and markers. Based on the two concepts, we can then illustrate how to generate
geometric covering intervals, also referred to as the scheduling above. The distinction between
unit intervals and geometric intervals merits emphasis. The geometric covering intervals are
the active time of each base-learner, and our adaptive algorithm manages the prediction
period of the base-learners according to these intervals. The unit intervals partition the time
horizon, and the covering intervals are generated based on these unit intervals by selecting
a geometric number of them. The adaptive algorithm initializes a base-learner once at the
beginning time of each unit interval, say at time stamp sm, and determines the active time
based on the indexes of the markers,

[si·2k , s(i+1)·2k − 1], (8)

where m = i · 2k, k ∈ {0} ∪ N and k is the largest number made the factorization. The
setting indicates that the base-learner initialized at time sm remains active across 2k − 1 unit
intervals, leading to an exponentially number of unit intervals. This scheduling diversifies
multiple base-learners to capture the non-stationarity across different time durations, and
meanwhile ensures that at most O(log T ) base-learners are maintained per round.

Conventionally, previous studies set st = t (Hazan and Seshadhri, 2007; Daniely et al.,
2015), where the increasing of markers coincidences with one of the time stamps. This leads
to the standard geometric covering intervals C as shown in Figure 1, formally defined below,

C =
⋃

k∈N∪{0}
Ck, where Ck =

{
[i · 2k, (i+ 1) · 2k − 1] | i is odd

}
for all k ∈ N ∪ {0}, (9)
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t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 · · ·
markers s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 · · ·

unit intervals [ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ · · ·
C̃0 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] · · ·
C̃1 [ ] [ ] [ ] [ ] · · ·
C̃2 [ ] [ ] · · ·
C̃3 [ ] · · ·
C̃4 [ · · ·

Figure 2: Problem-dependent Geometric Covering Intervals (Zhang et al., 2019, Figure 4).

which are derived from Eq. (8) by registering the marker at each round. However, this
manner of initializing base-learners is problem-independent, which introduces a

√
log T factor

to the adaptive regret bound of order O(
√
|I| log T ), given that the meta-algorithm requires

combining O(T ) (sleeping-)experts in total. To address the issue, Zhang et al. (2019) propose
the problem-dependent scheduling aiming to achieve a small-loss adaptive regret. In this
paper, we further refine their design in order to reduce the gradient and function value
queries at each round, which also helps improve their small-loss bound slightly.

Specifically, we aim to develop a fully data-dependent adaptive regret bound of order
O(√FI logFI logFT ) with 1 projection complexity. This bound replaces the O(√log T ) factor
by O(√logFT logFI), which under specific beneficial conditions is considerably smaller. We
postpone the discussion of the additional factor O(√logFI) in Remark 1. To achieve this
result, the SACS algorithm (Zhang et al., 2019) modifies the generation mechanism of the
markers, which registers a marker only when the cumulative loss exceeds a pre-defined fixed
threshold, instead of setting st = t. As a result, the number of active base-learners relates to
the small-loss quantity, leading the overall algorithm to achieve a fully problem-dependent
adaptive regret. The underlying rationale for this design stems from the potential inefficiency
of the prior scheduling mechanism (which sets st = t and initializes a base-learner at each
round), since it is unnecessary to initialize a fresh new base-learner when the environment is
relatively stable, or more precisely, when the cumulative loss is not large enough. Figure 2
provides an illustrative example of problem-dependent geometric covering intervals. Therefore,
we are in the position to determine the threshold. SACS sets the threshold by monitoring
the cumulative loss of the latest base-learner ft(xt,i†) with i† being the latest base-learner’s
index, but this will introduce an additional function evaluation in addition to ft(xt) at each
round. To avoid the limitation, we design the following two important improvements:

• we register markers and start a new base-learner according to the cumulative loss of
final decisions, i.e., {ft(xt)}Tt=1, bypassing the additional function evaluation;

• we introduce a sequence of time-varying thresholds with a careful design, instead of
using a fixed threshold over the time horizon.

This configuration of covering intervals realizes the condition of one function evaluation per
round. Additionally, the new design of the thresholds mechanism is crucial to ensure that
the small-loss bound can simultaneously recover the best known worst-case guarantee, which

11



cannot be achieved by prior best small-loss adaptive regret bound (Zhang et al., 2019). More
discussions are presented in Remark 1.

We are now ready to introduce our efficient algorithm for optimizing the small-loss
adaptive regret. Let C1, C2, C3, . . . denote the sequence of thresholds, determined by a
threshold generating function G(·) : N 7→ R+, which we will specify later. Our problem-
dependent geometric covering intervals are defined as follows. We initialize the setting by
s1 = 1. We set s2 as the round when the cumulative loss of the overall algorithm (namely,∑t

s=1 fs(xs)) exceeds the threshold C1 and then initialize a new instance of SOGD starting
at this round. The process is repeated until the end of the online learning process. We
thus generate a sequence of markers {s1, s2, . . .}. See the condition in Line 7, registration of
markers in Line 9, and the overall updates in Lines 7 – 11 of Algorithm 2. Those markers
specify the starting time (and the ending time) of base-learners and further we can construct
the problem-dependent covering intervals as

C̃ =
⋃

k∈N∪{0}
C̃k, where C̃k =

{
[si·2k , s(i+1)·2k − 1] | i is odd

}
for all k ∈ N ∪ {0}. (10)

This construction matches exactly the method of selecting geometric many of the unit
intervals as described in Eq. (8). It is worth noting that the problem-dependent covering
intervals, unlike the standard ones which set st = t, are constructed using markers that cannot
be specified with exact time stamps in advance. Instead, they are determined according to the
learner’s performance on the fly. However, this does not hinder the practice of our algorithm,
as it activates or deactivates base-learners based on the marker indices it maintains.

Base-algorithm. We employ SOGD as the base-algorithm, running with a linearized loss
⟨∇gt(yt),y⟩ over the surrogate domain Y. Denote by At the set of active base-learners’
indices, then the base-learner Bi updates by

yt+1,i = ΠY [yt,i − ηt,i∇gt(yt)],

with ηt,i = D/
√

(δ +
∑t

s=τi
∥∇gs(ys)∥22), where τi denotes the starting time of the base-

learner i ∈ At. The projection onto Y can be easily calculated by a simple rescaling if needed.
Notably, owing to the convexity of the surrogate loss gt, we can use the same gradient ∇gt(yt)
for all the base-learners at each round, ensuring one gradient query of ∇ft(xt) at each round.

Meta-algorithm. SACS uses the AdaNormalHedge (Luo and Schapire, 2015) as the meta-
algorithm, however, this is not suitable for our proposal. To ensure one projection per iteration,
we cannot use multiple function values, i.e., {gt(yt,i)}|At|

i=1 , for meta-algorithm to evaluate
the loss. Instead, we can only use the linearized loss value, namely, {⟨∇gt(yt),yt,i⟩}|At|

i=1 in
the weight update of meta-algorithm. The small-loss regret bound in the meta-algorithm
of SACS crucially relies on the original function values, which is unfortunately inaccessible
in our case. Technically, when fed with linearized loss, it is hard to establish a squared
gradient-norm bound and then convert it to the small loss due to the first-order regret
bound of AdaNormalHedge. Based on this crucial technical observation, we propose to use
the Adapt-ML-Prod algorithm (Gaillard et al., 2014) as the meta-algorithm in our method.
The key advantage is that it enjoys a second-order regret and also supports the sleeping
expert setup. Adapt-ML-Prod maintains multiple learning rates ηt+1 ∈ [0, 1]|At+1| and an
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Algorithm 2 Efficient Algorithm for Problem-dependent Adaptive Regret
Input: threshold generating function G(·) : N 7→ R+.
1: Initialize total intervals m = 1, marker s1 = 1, threshold C1 = G(1); let x1 be any point

in X ; let At denote the set of indexes for the active base-learners at time t.
2: for t = 1 to T do
3: Receive the gradient information ∇ft(xt).
4: Construct the surrogate loss gt : Y 7→ R according to Eq. (5).
5: Compute the (sub-)gradient ∇gt(yt) according to Lemma 1.
6: Compute Lt = Lt−1 + ft(xt).

% constructing Problem-dependent Geometric Covers(PGC)

7: if Lt > Cm then
8: Set Lt = 0, remove base-learners Bk whose deactivating time stamp is before the

registration of (m+ 1)-th marker.
9: Set m← m+ 1, register marker sm ← t, update threshold Cm = G(m).

10: Initialize a new base-learner whose active span is [sn·2k , s(n+1)·2k − 1] where m =

n · 2k, k ∈ {0} ∪ N and k is the largest number made the factorization.
11: Set γm = ln(1 + 2m), wt,m = 1, ηt,m = min{1/2,√γm} for the meta-algorithm.
12: end if
13: Send ∇gt(yt) to all base-learners and obtain local predictions yt+1,i for i ∈ At.
14: Meta-algorithm updates weight pt+1 ∈ ∆|At+1| by Eq. (11), Eq. (12), and Eq. (13)
15: Compute yt+1 =

∑
i∈At+1

pt+1,iyt+1,i.
16: Submit xt+1 = ΠX [yt+1]. ▷ the only projection onto feasible domain X per round
17: end for

intermediate weight vector wt+1 ∈ R|At+1|, which are updated by the following rule. For any
active base-learner i ∈ At+1,

ηt+1,i = min

{
1

2
,

√
γi

1 +
∑t

k=si
(ℓ̂k − ℓk,i)2

}
, wt+1,i =

(
wt,i
(
1 + ηt,i(ℓ̂t − ℓt,i)

)) ηt+1,i
ηt,i , (11)

where γi = ln(1 + 2i) is a certain scaling factor and the feedback loss is constructed in the
following way, for i ∈ At, set

ℓ̂t = ⟨∇gt(yt),yt⟩/(2GD), and ℓt,i = ⟨∇gt(yt),yt,i⟩/(2GD). (12)

The final weight vector pt+1 ∈ ∆|At+1| is obtained by

pt+1,i =
wt+1,i · ηt+1,i∑

j∈At+1
wt+1,j · ηt+1,j

. (13)

Notably, the meta update only uses one gradient at round t, namely, ∇gt(yt).
Finally, we compute yt+1 =

∑
i∈At+1

pt+1,iyt+1,i as the overall prediction in the surrogate
domain Y and calculate xt+1 = ΠX [yt+1] to ensure the feasibility. This is the only projection
onto X at each round. Algorithm 2 summarizes the main procedures of our efficient method for
small-loss adaptive regret. Albeit with a similar two-layer structure as SACS, our algorithm
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exhibits salient differences in base-algorithm, meta-algorithm, and covering intervals. As a
benefit, we can successfully deploy our reduction mechanism and make the overall algorithm
project onto the feasible domain X once per round, see Line 16. Our method retains the
same small-loss adaptive regret as (Zhang et al., 2019).

Theorem 4. Under Assumptions 1–3, setting the threshold generating function G : N 7→ R,

G(m) = (54GD + 168D2L) ln(1 + 2m) + 168D2Lµ2T + 18GDµT + 6D
√
δ + 672D2L, (14)

where µT = ln(1 + (1 + ln(1 + T ))/(2e)) and thus G(m) = O(logm), Algorithm 2 requires
only one projection onto the feasible domain X per round and enjoys the following small-loss
adaptive regret for any interval I = [r, s] ⊆ [T ]:

s∑

t=r

ft(xt)−
s∑

t=r

ft(u) ≤ O
(
min

{√
FI logFI logFT ,

√
|I| log T

})
, (15)

where FI = minx∈X
∑s

t=r ft(x) and FT = minx∈X
∑T

t=1 ft(x).

Remark 1. Note that the O(√FI logFI logFT ) small-loss bound of Zhang et al. (2019)
becomes O(

√
|I| log|I| log T ) in the worst case, looser than the O(

√
|I| log T ) bound (Jun

et al., 2017) by a factor of
√

log|I|. We show that this limitation can be actually avoided by
the new design of the threshold mechanism and a refined analysis, both of which are crucial
for obtaining the additional O(

√
|I| log T ) worst-case regret guarantee. Indeed, our result

in (15) can strictly match the best known problem-independent result in the worst case.

4. Interval Dynamic Regret Minimization

As mentioned in Section 1.1, adaptive regret and dynamic regret are not directly comparable
under the general OCO settings. So researchers consider optimizing them simultaneously via
a more stringent measure termed interval dynamic regret, which competes with any changing
comparator sequence over any interval (Zhang et al., 2020; Cutkosky, 2020).

4.1 A Brief Review of Interval Dynamic Regret Minimization

Zhang et al. (2020) propose the AOA algorithm to optimize the interval dynamic regret
and obtain a worst-case bound of

∑s
t=r ft(xt)−

∑s
t=r ft(ut) ≤ O(

√
|I|(log T + PI)) for any

interval I = [r, s] ⊆ [T ], where PI =
∑s

t=r+1∥ut − ut−1∥2 denotes the path-length. The
overall structure of AOA aligns similarly to the adaptive algorithm framework described in
Section 3.2, and the major difference is that AOA now employs Ader (Zhang et al., 2018a), a
two-layer structure algorithm, as the base-algorithm to minimize dynamic regret in a given
interval. So the projection complexity of their method is O(log2 T ) as each base-learner
requires O(log T ) projections and AOA employs O(log T ) many of them.

4.2 Efficient Algorithms for Interval Dynamic Regret

Although AOA itself does not satisfy the condition of one gradient query and one function
evaluation per round, it can be verified that simply using a linearized loss for AOA can
achieve the same bound and also satisfy the reduction requirement. Thus, deploying the
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reduction mechanism yields an efficient algorithm that enjoys the same worst-case bound
and improves the projection complexity from O(log2 T ) to 1.2

To the best of our knowledge, there is no small-loss type bound for the interval dynamic
regret. We present the first such result for non-negative convex and smooth functions, and our
algorithm ensures a 1 projection complexity. To achieve this, we employ the same structure
of AOA, whereas we now use linearized loss for base-learners and use Adapt-ML-Prod as the
meta-algorithm, and additional efforts are required in constructing the problem-dependent
geometric covers. Algorithm 3 summarizes the main procedures. The algorithm admits a
similar structure to our algorithm for small-loss adaptive regret (see Algorithm 2). The key
difference is that we now replace the base-algorithm from SOGD with our efficient method
for dynamic regret (specifically, Algorithm 1). This is due to the necessity of managing dual
uncertainties inherent in interval dynamic regret minimization, stemming from the unknown
interval and the unknown comparator sequence. Intuitively, such a design of the interval
dynamic algorithm can be thought of as a three-layer structure, because aside from using
Adapt-ML-Prod to combine base-learners’ decisions, each base-learner also generates her
own decision by combining several maintained sub-routines (OGD) with a meta-algorithm
(Hedge with time-varying learning rates). The details are as follows.

Scheduling and Meta-algorithm. To optimize the small-loss interval dynamic regret,
we employ the same scheduling mechanism and meta-algorithm as Algorithm 2, namely,
we use the problem-dependent geometric covering intervals determined by a sequence of
time-varying thresholds and use the Adapt-ML-Prod as the meta-algorithm. One can refer
to Section 3.2 for detailed elaborations.

Base-algorithm. As mentioned, we now employ our efficient method for dynamic regret
minimization (i.e., Algorithm 1) as the base-algorithm, which consists two layers. We specify
the update procedure of the i-th base-learner. At round t+ 1, the base-learner will submit
the decision as yt+1,i =

∑N
j=1 pt+1,jyt+1,i,j , where

base:base-level: yt+1,i,j = ΠY [yt+1,i,j − ηj∇gt(yt)] , j ∈ [N ], (16)

base:meta-level: pt+1,i,j ∝ exp

(
−εi,t+1

t∑

s=istart

⟨∇gs(ys),ys,i,j⟩
)
, j ∈ [N ], (17)

We employ the prefix “base:” to signify that these formulas are updated as part of the
base-algorithm utilized by Algorithm 3. The local decision yt+1,i,j is returned from the j-th
base:base-learner in the base-algorithm, N denotes the number of base:base-learners, istart
denotes the starting time stamp for the i-th base-learner and pt+1,i,j denotes its corresponding
combination weight. Note that these base-level updates are conducted within the domain
Y, where the algorithm can benefit from a rapid projection. Moreover, it is also worth
mentioning the choice of step size ηj . Ideally, it should be scaled with the length of the
active interval |I| of the associated base-learner, nevertheless, we actually set it based on T
in Theorem 5 due to the problem-dependent covering intervals. Technically, since the active
time of each base-learner is determined on the fly, we can only set potentially over-estimated

2. Cutkosky (2020) employs a fundamentally different framework from the two-layer structure, attaining an
interval dynamic regret that scales with gradient norms. Indeed, our method can achieve exactly the
same gradient-norm bound (without smoothness). Further details can be found in Remark 2.
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Algorithm 3 Efficient Algorithm for Problem-dependent Interval Dynamic Regret
Input: step size pool H = {η1, . . . , ηN}, learning rate setting εi,t for the i-th base-learner,

and the threshold generating function G(·) : N 7→ R+.
1: Set total intervals m = 1, marker s1 = 1, threshold C1 = G(1); let x1 ∈ X be any point;

let At denote the set of indexes for the active base-learners at time t.
2: for t = 1 to T do
3: Receive the gradient information ∇ft(xt).
4: Construct the surrogate loss gt : Y 7→ R according to Eq. (5).
5: Compute the (sub-)gradient ∇gt(yt) according to Lemma 1.
6: Compute Lt = Lt−1 + ft(xt).

% constructing Problem-dependent Geometric Covers(PGC)

7: if Lt > Cm then
8: Set Lt = 0, remove base-learners Bk whose deactivating time stamp is before the

registration of (m+ 1)-th marker.
9: Set m← m+ 1, register marker sm ← t, update threshold Cm = G(m).

10: Initialize a new base-learner according to Eq. (16) and Eq. (17), whose active span
is [sn·2k , s(n+1)·2k − 1] where m = n · 2k, k ∈ {0} ∪ N and k is the largest number
made the factorization.

11: Set the required inputs with step size pool H, learning rate for Hedge used in
base-algorithm as εi,t with i = m.

12: Set γm = ln(1 + 2m), wt,m = 1, ηt,m = min{1/2,√γm} for the meta-algorithm.
13: end if
14: Send ∇gt(yt) to all base-learners and obtain local predictions yt+1,i for i ∈ At.
15: Meta-algorithm updates weight pt+1 ∈ ∆|At+1| by Eq. (11), Eq. (12), and Eq. (13).
16: Compute yt+1 =

∑
i∈At+1

pt+1,iyt+1,i.
17: Submit xt+1 = ΠX [yt+1]. ▷ the only projection onto feasible domain X per round
18: end for

learning rates to ensure that the dynamic regret is guaranteed whenever the base-learner
is deactivated. As stated in Lemma 8, such a configuration equips base-learners with an
anytime dynamic regret bound.

Bringing all components together, in the following theorem, we establish the small-loss
interval dynamic regret for Algorithm 3.

Theorem 5. Under Assumptions 1–3, employing the step size pool for base:base-algorithm
(defined at Eq. (16)) as H = {ηj = 2j−1

√
5D2/(1 + 8LGDT ) | j ∈ [N ]} with N =

⌈2−1 log2((5D
2+2D2T )(1+8LGDT )/(5D2))⌉+1, setting the meta-algorithm’s learning rate

of the i-th base-learner (defined at Eq. (17)) as εi,t =
√
(lnN)/(1 +D2

∑t−1
s=istart

∥∇gs(ys)∥22)
with istart denoting its starting time stamp, setting the threshold generating function

G(m) = 7L
(
12D

√
ln(1 + 2m) + 4DµT + 6D

√
lnN

)2

+ 54GD ln(1 + 2m) + 18GDµT +
3(6 +G2D2)

√
lnN

2
+ (630L+ 23)D2 + 9,

(18)
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where µT = ln(1 + (1 + ln(1 + T ))/(2e)) and thus G(m) = O(logm), Algorithm 3 requires
only one projection onto X per round and enjoys the following interval dynamic regret:

s∑

t=r

ft(xt)−
s∑

t=r

ft(ut) ≤ O
(√

(FI + PI) ·
(
PI + log(FT + PT )

)
· log(FI + PI)

)
(19)

for any interval I = [r, s] ⊆ [T ], where PI =
∑s

t=r+1∥ut − ut−1∥2 denotes the path length of
comparators within the interval, FI = minx∈X

∑s
t=r ft(x) and FT = minx∈X

∑T
t=1 ft(x).

The proofs can be found in Appendix D. When competing with a fixed comparator, the
path length PI = 0 and interval dynamic regret (19) becomesO(√FI logFI logFT ), recovering
the small-loss adaptive regret exhibits in Theorem 4. Furthermore, when considering the
entire time horizon with I = [T ], meaning that we examine the global non-stationarities,
the regret bound becomes O(

√
(FT + PT )(PT + log(FT + PT )) log(FI + PI)), which nearly

matches the O(
√

(FT + PT )(1 + PT )) dynamic regret in Theorem 3 up to logarithmic factors
in PT + FT . We note that a similar logarithmic gap of O(log T ) also exists in the study of
the worst-case interval dynamic regret (Zhang et al., 2020, Theorem 5).

Remark 2. Algorithm 3 actually enjoys the same gradient-norm bound as Cutkosky (2020,
Theorem 7) (in fact even stronger by logarithmic factors in T ) under Assumptions 1 and 2
(without requiring the smoothness assumption). More specifically, our analysis is conducted
in terms of ∥∇gt(yt)∥2 (see Eq. (62) and Eq. (63)), which can then be related to ∥∇ft(xt)∥2
by Lemma 1. Following the same convention of Cutkosky (2020), who uses the Õ(·)-notation
to hide the logarithmic dependence in T , Algorithm 3 can obtain an Õ(

√
GI(PI + 1) + PI)

interval dynamic regret for any interval I = [r, s] ⊆ [T ] without any modification on the
learning rates, where PI =

∑s
t=r+1 ∥ut − ut−1∥2 and GI =

∑s
t=r ∥∇ft(xt)∥22. More impor-

tantly, our method enjoys 1 projection complexity, whereas the method of Cutkosky (2020)
requires O(log T ) projections onto the feasible domain (or onto an even more complicated
lifted domain) per round and it is unclear how to reduce the projection complexity by our
reduction due to a saliently different framework.

5. Applications

In this section, we provide two applications of our proposed reduction mechanism for non-
stationary online learning, including minimizing the dynamic regret of online non-stochastic
control and minimizing the adaptive regret of online principal component analysis.

It is important to note that both problems are adaptations of the standard online learning
settings with essential modifications. Specifically, there are three key points worth mentioning:
(i) both problems operate over the matrix space instead of the vector space studied in previous
sections; (ii) for online non-stochastic control, our reduction mechanism is further enhanced
to account for the switching cost of algorithmic decisions (Anava et al., 2015; Agarwal et al.,
2019a), a crucial characteristic of this decision-theoretic problem; (iii) for online principal
component analysis, we actually present the first strongly adaptive regret result (still with
one projection per round), improving the regret bound upon the previously best known
result (Yuan and Lamperski, 2019) that only achieves weakly adaptive regret.
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5.1 Online Non-Stochastic Control

In this part, we apply our reduction mechanism to an important online decision-making
problem, online non-stochastic control, which attracts much attention these years in online
learning and control theory community (Agarwal et al., 2019b; Foster and Simchowitz, 2020;
Hazan et al., 2020; Gradu et al., 2020; Zhao et al., 2022; Hazan and Singh, 2022).

5.1.1 Problem Formulation

We focus on the online control of linear dynamical system (LDS) defined as xt+1 = Axt+But+
wt, where xt is the state, ut is the control, wt is a disturbance to the system. The controller
suffers cost ct(xt, ut) with convex function ct : Rdx × Rdu 7→ R. Throughout this subsection,
we follow the convention of notations in the non-stochastic control community to use unbold
fonts to represent vectors and matrices. In online non-stochastic control, since there are no
statistical assumptions imposed on system disturbance wt and additionally the cost function
can be chosen adversarially. The adversarial nature of the control setting hinders us from
precomputing the optimal policy, as is possible in classical control theory (Kalman, 1960),
and therefore requires modern online learning techniques to tackle adversarial environments.

We adopt dynamic policy regret (Zhao et al., 2022) to benchmark the performance of the
designed controller with a sequence of arbitrary time-varying controllers π1, . . . , πT ∈ Π,

D-Reg(π1, . . . , πT ) =
T∑

t=1

ct(xt, ut)−
T∑

t=1

ct(x
πt
t , u

πt
t ). (20)

For this problem, the pioneering work (Agarwal et al., 2019a) investigates the static regret
as (20) with π1, . . . , πT ∈ argminπ∈Π

∑T
t=1 ct(x

π
t , u

π
t ). The authors propose a gradient-based

controller with Õ(
√
T ) static regret. Specifically, they propose to employ the Disturbance-

Action Controller (DAC) policy class π(K,M), which is parametrized by a fixed matrix
K ∈ Rdu×dx and parameters matrix tuple M = (M [1], . . . ,M [H]) ∈ (Rdu×dx)H with a memory
length H. At each round, DAC makes the decision as a linear map of the past disturbances
with an offset linear controller ut = −Kxt +

∑H
i=1M

[i]wt−i. This parametrization makes the
action as a linear function of the past disturbances and further can reduce the online non-
stochastic control to online convex optimization with memory (OCO with Memory) (Anava
et al., 2015) with truncated loss, and thus one can further apply techniques developed for
OCO with memory to handle the non-stochastic control.

For online non-stochastic control, Zhao et al. (2022) propose an online control approach
with an Õ(

√
T (1 + PT )) dynamic policy regret, where PT =

∑T
t=2∥M∗

t−1−M∗
t ∥F denotes the

cumulative variation of comparators. The algorithm leverage an online ensemble structure
equipped with O(log T ) base-learners, which leads to an O(log T ) projection complexity. In
the sequel, we will investigate the computational complexity of the projection operation.
Our aim is to refine the method through our efficient reduction mechanism, obtaining an
algorithm that retains the same regret guarantee while requiring one projection per round.

5.1.2 Projection Computational Complexity

Previous studies project the parameters matrix tuple M onto the following domain,

M =
{
M ≜ (M [1], . . . ,M [H]) ∈

(
Rdu×dx

)H
| ∥M [i]∥op ≤ ci

}
, (21)
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where ∥·∥op denotes the operator norm and ci is some fixed constant. The projection can
be done by projecting each matrix M [i], i ∈ [H], onto spectral norm ball with radius ci
sequentially. For each M [i], the projection involves the dominant process of diagonalization
and project the singular values onto ℓ∞ ball. Thus, the projection computational complexity
ontoM is in order of O

(
Hmin{d2udx, dud2x}

)
, which dominates the computational expense

in the base-learners, given that the gradient descent step requires O(H · dudx) time only.

5.1.3 Efficient Reduction

In this part, we apply our efficient reduction mechanism to Scream.Control (Zhao et al.,
2022), which can improve the projection complexity and maintain the theoretical guarantee.
The algorithm is summarized in Algorithm 4 and we introduce the main ingredients below.

To facilitate the efficient reduction, we design the following surrogate domain,

M′ =

{
M = (M [1], . . . ,M [H]) ∈

(
Rdu×dx

)H
| ∥M [i]∥F ≤ ci

√
d

}
, (22)

as the replacement of the original one defined at Eq. (21), where we denote by d = min{dx, du}.
Notice that Scream.Control already satisfies the reduction requirements of querying only one
function value and one gradient value per round (Zhao et al., 2022). Also, this algorithm
utilizes linearized cost function to perform update for meta-learner and base-learners, enabling
the extension of surrogate loss defined at Eq. (5) to matrix version gt(·) :MH+2 7→ R:

gt(M) = ⟨∇f̃(Mt),M⟩ − 1{⟨∇f̃(Mt),Vt⟩<0} · ⟨∇f̃(Mt), Vt⟩ · SM(M), (23)

where SM(M) = infA∈M∥A − M∥F is the distance function to M and we denote by
Vt = (M ′

t −Mt)/∥M ′
t −Mt∥F the projection direction with Mt,M

′
t defined in Algorithm 4.

We denote by f̃t(·) the unary truncated loss function constructed from cost ct(·, ·) and refer
the interested readers to Section 5.3 of Zhao et al. (2022) for more details, as in this paper
we mainly focus on the projection issues. It is worth emphasizing that the truncated loss
circumvents the growing of memory length with time, enabling the application of techniques
from OCO with memory, while the gap between f̃t(·) and ct(·, ·) will not be too large.

The caveat to apply efficient method to Scream.Control remains that we should ensure
the adoption of surrogate loss and surrogate domain will not ruin the transformation from
non-stochastic control to OCO with memory, which requires the algorithm to account for the
switching cost ∥Mt−1 −Mt∥F between parameters as well. Inspecting the algorithm derived
from the efficient reduction closely, for two parameters M ′

t−1,M
′
t in the surrogate domain and

the submitted parameters Mt−1 = ΠM[M ′
t−1],Mt = ΠM[M ′

t], the nonexpanding property
of the projection operator in the Hilbert space implies that ∥ΠM[M ′

t−1] − ΠM[M ′
t]∥F ≤

∥M ′
t−1−M ′

t∥F (Nemirovski et al., 2009), meaning that the switching cost ∥Mt−1−Mt∥F can
be controlled when applying efficient reduction mechanism. Therefore we can safely apply
the efficient reduction to Scream.Control and improve the projection efficiency. Algorithm 4
enjoys the following theoretical guarantee with the proof sketch presented in Appendix E.1.

Theorem 6. Under Assumptions 4-6, by choosing H = Θ(log T ), Algorithm 4 enjoys the
dynamic regret of

∑T
t=1 ct(xt, ut)−

∑T
t=1 ct(x

πt
t , u

πt
t ) ≤ Õ

(√
T (1 + PT )

)
, with one projection

per round. Here, the comparators can be any feasible policies in Π = {π(K,M) |M ∈M}
with πt = π(K,M∗

t ) for t ∈ [T ], and PT =
∑T

t=2∥M∗
t−1 −M∗

t ∥F measures the variation.
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Algorithm 4 Efficient Control Algorithm for Dynamic Policy Regret
Input: Scream.Control algorithm A.
1: Initialization: let A project onto domainM′; submit MH ∈M in [1, H] rounds.
2: for t = H + 1 to T do
3: Observe ct(·, ·) and calculate the gradient of truncated loss function ∇f̃t(Mt).
4: Construct the surrogate loss gt(·) according to Eq. (23).
5: Compute the (sub-)gradient ∇gt(M ′

t) by Lemma 1 with extension to matrix.
6: Send linearized loss ht(M) = tr (∇gt(M ′

t) ·M) to A for update.
7: Obtain decision M ′

t+1 from A and submit Mt+1 = ΠM[M ′
t+1].

8: end for

Remark 3. The original algorithm of Zhao et al. (2022) requires maintaining O (log T )
base-learners, resulting in a computational cost of O

(
H · log T ·min{d2udx, dud2x}

)
per round.

In our variant algorithm, it permits the base-learners to project onto M′, which can be
achieved by simply rescaling the matrix. Consequently, the computational complexity can
be significantly reduced by a factor of O(log T ) as depicted in Algorithm 4.

5.2 Online Principal Component Analysis

Principal Component Analysis (PCA) is a crucial dimensionality reduction technique, widely
used in data processing, machine learning, and many more. Unlike the conventional offline
PCA, online PCA is designed for scenarios where data arrive sequentially, thereby necessitating
to conduct dimensionality reduction in an online manner.

5.2.1 Problem Formulation

Online (uncentered-)PCA problem requires algorithms to forecast the optimal projection
subspace upon receiving a series of streaming data on the fly (Warmuth and Kuzmin, 2008;
Arora et al., 2013; Nie et al., 2016). Concretely, at each time t the algorithm receives an
instance xt ∈ Rd (or in a more general setting, the algorithm receives an instance matrix
Xt ∈ Rd×d) and needs to project it onto a k-dimensional subspace (k < d) represented by a
rank-k projection matrix Pt ∈ Pk. The domain of rank-k projection matrices is defined as

Pk =
{
P ∈ Sd | σi(P) ∈ {0, 1}, rank(P) = k

}
, (24)

where Sd denotes the set of real-valued d× d symmetric matrices and σi(·) denotes the i-th
eigenvalue of the given matrix.

Online PCA uses compression loss ft(P) = ∥Pxt − xt∥22 to measure the reconstruction
error at round t. Many prior works considers minimizing static regret for the online PCA
problem, which benchmarks the cumulative compression loss of the learner against the fixed
projection matrix in hindsight. However, in many environments the online data distributions
can change over time, it is crucial to consider the non-stationarity issue in the algorithmic
design. To this end, we investigate the adaptive regret for online PCA, which requires the
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algorithm to perform well for any interval I ⊆ [T ] with length τ = |I|, defined as

A-Reg(|I|) = max
[r,r+τ−1]⊆[T ]

{
r+τ−1∑

t=r

ft(Pt)− min
P∈Pk

r+τ−1∑

t=r

ft(P)

}
. (25)

Yuan and Lamperski (2019) examine a regret notion similar to but weaker than Eq. (25),
defined as WA-Reg(T ) = max[r,q]⊆[T ] {

∑q
t=r ft(Pt)−minP∈Pk

∑q
t=r ft(P)}. This variant

is usually termed as the weakly adaptive regret (Hazan and Seshadhri, 2007; Zhang et al.,
2018b), which lacks the guarantee for intervals with |I| ≤ O(

√
T ). It should be noted

that Yuan and Lamperski (2019) propose an algorithm with an Õ(
√
T ) weakly adaptive

regret for online PCA, and to the best of our knowledge, current literature lacks algorithms
with an Õ(

√
|I|) strongly adaptive regret for online PCA. We not only design the first

algorithm with such a strongly adaptive regret guarantee, but also implement our reduction
mechanism to ensure that it enjoys a projection complexity of 1.

5.2.2 Projection Computational Complexity

Before delving into the efficient projection mechanism concerned in our paper, we initiate
with a brief overview on the projection challenge (due to the non-convexity issue) and its
solution in the existing online PCA literature.

Notice that the feasible domain Pk defined in Eq. (24) is inherently non-convex, making
it hard to apply OCO techniques. To remedy this, the convex hull of Pk is usually employed
as a surrogate during the update, defined as P̂k =

{
P ∈ Sd | 0 ⪯ P ⪯ I, tr(P) = k

}
.

Nonetheless, the online PCA protocol requires the algorithm provide the decision within
Pk. To this end, the pioneering study of Warmuth and Kuzmin (2008) decomposes P̂ into a
convex combination of, at most, d rank-k projection matrices represented as P̂ =

∑d
i=1 λiPi,

where λi ∈ [0, 1] constitutes a distribution, and each Pi ∈ Pk is a rank-k projection matrix.
Following this decomposition, one can leverage the composite coefficients λi to sample a
projection matrix as the submitted decision.

The gradient descent algorithm (Nie et al., 2016) can obtain O(
√
kT ) static regret for

online PCA, which mainly consists of the following steps:

P̂′
t+1 = P̂t − η∇ft(Pt), P̂t+1 = argmin

P∈P̂k
∥P− P̂′

t+1∥F,

where η > 0 represents the step size and ∇ft(Pt) denotes the gradient with respect to Pt.
Then the algorithm samples a rank-k projection matrix based on P̂t+1 to submit. The
gradient descent step requires O(d2) time expense, while the primary bottleneck is the
projection step onto P̂k, which typically demands O(d3) computational complexity, owing to
the matrix diagonalization process, as illustrated by Lemma 13 in Appendix E.2.

5.2.3 Efficient Reduction

In this part, we provide our efficient algorithm for online PCA with the strongly adaptive
regret guarantee. The algorithm is presented in Algorithm 5 and we introduce the necessary
components in the below paragraphs.
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By inspecting the convex surrogate domain P̂k carefully, onto which the algorithm projects,
we propose the surrogate domain P̂sk defined by the Frobenius norm as,

P̂sk =
{
P ∈ Sd | ∥P∥F ≤

√
k
}
, (26)

which admits a fast projection by a simple rescaling.
At first glance, the compression loss ft(P) = ∥Pxt − xt∥22 seems to be quadratic, but

indeed it is coordinate-wise linear with parameter P as shown below,

ft(P) = ∥Pxt − xt∥22 = tr
(
(I−P)2xtx

⊤
t

)
= tr

(
(I−P)xtx

⊤
t

)
, (27)

where the second equality is by the property of projection matrix P. To ensure our algorithm’s
adaptability across varied scenarios, we consider a general setting, where the algorithm receives
any semi-positive matrix Xt ∈ Rd×d as input instance rather than vector. Therefore, the loss
function considered at Eq. (27) becomes ft(P) = tr ((I−P)Xt). We extend the surrogate
loss defined at Eq. (5) to online PCA as

gt(P) = tr(∇ft(P̂t) ·P)− 1{tr(∇ft(P̂t)·Vt)<0} · tr(∇ft(P̂t) ·Vt) · SP̂k
(P), (28)

where SP̂k
(P) = inf

Q∈P̂k
∥P − Q∥F is the minimum distance from P to the domain P̂k

and Vt = (P̂t − P̂s
t )/∥P̂t − P̂s

t∥F denotes the matrix indicating the projection direction
with P̂t, P̂

s
t defined in Algorithm 5. This surrogate loss enjoys the benign properties, as

illustrated by Theorem 1 and Lemma 1. These two theoretical results are indeed consistent
with the nearest-point projection in the Hilbert space. As for online PCA, the loss function
is defined by the trace operator, and we employ the Frobenius norm as the distance metric
for projection, which implies our optimization operates within a Hilbert space, making the
aforementioned results directly applicable.

Given the absence of a strongly adaptive algorithm for the online PCA problem in the
literature, we offer a detailed description of our algorithm (as opposed to the black-box
reduction style for online non-stochastic control). We propose the algorithm by incorporating
the gradient descent method (Nie et al., 2016) as the base-algorithm, Adapt-ML-Prod as
the meta-algorithm, and the covering intervals defined at Eq. (9). Our efficient online PCA
algorithm satisfies the following theorem, and we provide a proof sketch in Appendix E.2:

Theorem 7. Assuming that ∥Xt∥F ≤ 1 for any t ∈ [T ] and k ≤ d
2 , then Algorithm 5 requires

only one projection onto the domain P̂k per round and enjoys the following adaptive regret for
any interval I = [r, s] ⊆ [T ]: E

[∑s
t=r ft(Pt)

]
−minP∈Pk

∑s
t=r ft(P) ≤ Õ

(√
k · |I|

)
, where

we adopt the general setting by choosing ft(P) = tr ((I−P)Xt) and the expectation is due to
the randomness introduced by the sampling of the algorithm.

Remark 4. The projection operation onto P̂k is dominated by the matrix diagonalization
which is of O(d3) under general instances assumption. The vanilla adaptive PCA algorithm
incurs O(d3 log T ) computational cost by maintaining O(log T ) base-learners. Our efficient
algorithm requires one projection and improves the computational cost to O(d3) per round.

6. Experiment

In this section, we provide empirical studies to evaluate our proposed methods.
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Algorithm 5 Efficient Algorithm for Adaptive Regret under PCA Setting
1: Initialization: let P1 = P̂1 be any point in Pk; let At denote the set of indexes for the

active base-learners at time t.
2: for t = 1 to T do
3: Receive instance matrix Xt ∈ Sd.
4: Construct the surrogate loss gt(·) according to (28).
5: Compute the (sub-)gradient ∇gt(P̂s

t ) by Lemma 1 with extension to this problem.
6: Remove base-learners whose deactivating time is t according to C defined at Eq. (9).
7: Initialize base-learner whose start time is t + 1 and set the learning rate for her

ηt+1 =
k(d−k)
d|It+1| where It+1 is the active span according to C defined at Eq. (9).

8: Send ∇gt(P̂s
t ) to each base-learner for update.

9: For each i ∈ At, the base-learner updates the decision within P̂sk defined at Eq. (26),

P̂s,′
t+1,i = P̂s

t,i−ηi∇gt(P̂s
t ), P̂s

t+1,i = P̂s,′
t+1,i

(
1{∥P̂s,′

t+1,i∥F≤
√
k}+

√
k

∥P̂t+1∥F
1{∥P̂s,′

t+1,i∥F>
√
k}

)
.

10: Meta-algorithm updates weight pt+1 ∈ ∆|At+1| according to Eq. (11), Eq. (12),

and Eq. (13) with ℓ̂t = tr
(
∇gt(P̂s

t ) · P̂s
t

)
/2
√
k and ℓt,i = tr

(
∇gt(P̂s

t ) · P̂s
t,i

)
/2
√
k.

11: Compute P̂s
t+1 =

∑
i∈At+1

pt+1,i · P̂s
t+1,i, and P̂t+1 = ΠP̂k

[P̂s
t+1].

12: Sample a projection matrix Pt+1 ∼ P̂t+1 to submit.
13: end for

General Setup. We conduct experiments on the synthetic data. We consider the following
online regression problem. Let T denote the number of total rounds. At each round t ∈ [T ]
the learner outputs the model parameter wt ∈ W ⊆ Rd and simultaneously receives a data
sample (xt, yt) with xt ∈ X ⊆ Rd being the feature and yt ∈ R being the corresponding label.3

The learner can then evaluate her model by the online loss ft(wt) =
1
2(x

⊤
t wt−yt)2 which uses

a square loss to evaluate the difference between the predictive value x⊤t wt and the ground-
truth label yt, and then use the feedback information to update the model. In the simulations,
we set T = 20000, the domain diameter as D = 6, and the dimension of the domain as d = 8.
The feasible domain W is set as an ellipsoid W =

{
w ∈ Rd | w⊤Ew ≤ λmin(E) · (D/2)2

}
,

where E is a certain diagonal matrix and λmin(E) denotes its minimum eigenvalue. Then, a
projection onto W requires solving a convex programming that is generally expensive. In
the experiment, we use scipy.optimize.NonlinearConstraint to solve it to perform the
projection onto the feasible domain.

To simulate the non-stationary online environments, we control the way to generate the
date samples {(xt, yt)}Tt=1. Specifically, for t ∈ [T ], the feature xt is randomly sampled in an
Euclidean ball with a diameter D same as the feasible domain of model parameters; and
the corresponding label is set as yt = x⊤t w

∗
t + εt, where εt is the random noise drawn from

3. With a slight abuse of notations, we here use w to denote the model parameter and W to denote the
feasible domain, and meanwhile we reserve the notations of x and X to denote the feature and feature
space following the conventional notations of machine learning terminologies.
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[0, 0.1] and w∗
t is the underlying ground-truth model from the feasible domain W generated

according to a certain strategy specified below. For dynamic regret minimization, we simulate
piecewise-stationary model drifts, as dynamic regret will be linear in T and thus vacuous
when the model drift happens every round due to a linear path length measure. Concretely,
we split the time horizon evenly into 25 stages and restrict the underlying model parameter
w∗
t to be stationary within a stage. For adaptive regret minimization, we simulate gradually

evolving model drifts, where the underlying model parameter w∗
t+1 is generated based on the

last-round model parameter w∗
t with an additional random walk in the feasible domain W.

The step size of random walk is set proportional to D/T to ensure a smooth model change.

Contenders. For both dynamic regret and adaptive regret, we directly work on the small-
loss online methods. We choose the Sword algorithm (Zhao et al., 2021b) as the contender of
our efficient method for dynamic regret (Algorithm 1) and choose the SACS algorithm (Zhang
et al., 2019) as the contender of our efficient method for adaptive regret (Algorithm 2).

Results. We repeat the experiments for five times with different random seeds and report
the results (mean and standard deviation) in Figure 3. We use a machine with a single
CPU (Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz) and 32GB main memory to conduct
the experiments. We plot both cumulative loss and running time (in seconds) for all the
methods. We first examine the performance of dynamic regret minimization, see Figure 3(a)
for cumulative loss and see Figure 3(b) for running time. The empirical results show that our
method has a comparable performance to Sword without much sacrifice of cumulative loss,
while achieving about 10 times speedup due to the improved projection complexity. Second,
as shown in Figure 3(c) and Figure 3(d), a similar performance enhancement also appears in
adaptive regret minimization, though the speedup is slightly smaller due to the fact that
fewer learners are required to maintain for adaptive regret. To summarize, the empirical
results show the effectiveness of our methods in retaining regret performance and also the
efficiency in terms of running time due to the reduced projection complexity.

7. Conclusion

In this paper, we design a generic reduction mechanism that can reduce the projection
complexity of two-layer methods for non-stationary online learning, thereby approaching a
clearer resolution of necessary computational overhead for robustness to non-stationarity.
Building on the reduction mechanism, we develop a collection of online algorithms that
optimize dynamic regret, adaptive regret, and interval dynamic regret. All the algorithms
retain the best known regret guarantees, and more importantly, require a single projection
onto the feasible domain per iteration. Notably, due to the requirement of our reduction, all
our algorithms only perform one gradient query and one function evaluation at each round as
well, making them particularly attractive in scenarios with limited feedback and a need for
lightweight updates. Furthermore, we present two applications with light project complexity,
including online non-stochastic control and online principal component analysis. Finally, our
empirical studies also corroborate the theoretical findings.

One important open question remains regarding another type of problem-dependent bound
that scales with gradient variation (Chiang et al., 2012). This bound plays a crucial role in
achieving fast convergence in zero-sum games (Syrgkanis et al., 2015; Zhang et al., 2022).

24



0 2500 5000 7500 10000 12500 15000 17500 20000
iterations

0

20

40

60

80

100

120

140
cu

m
ul

at
iv

e 
lo

ss
dynamic
efficient-dynamic

(a) dynamic regret (loss)

0 2500 5000 7500 10000 12500 15000 17500 20000
iterations

0

50

100

150

200

ru
nn

in
g 

tim
e

dynamic
efficient-dynamic

(b) dynamic regret (time)

0 2500 5000 7500 10000 12500 15000 17500 20000
iterations

0

20

40

60

80

100

120

140

cu
m

ul
at

iv
e 

lo
ss

adaptive
efficient-adaptive

(c) adaptive regret (loss)
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(d) adaptive regret (time)

Figure 3: Performance comparisons of existing methods and our methods (indicated by
“efficient” prefix) in terms of cumulative loss and running time (in seconds). The
first two figures plot the results of methods for dynamic regret minimization, while
the latter ones are for adaptive regret.

While Zhao et al. (2021b) have developed a two-layer method that attains a gradient-variation
dynamic regret and necessitates only one gradient per iteration, integrating optimistic online
learning into our reduction mechanism remains quite challenging due to the constrained
feasible domain and the complicated two-layer structure. Another important problem is to
understand the minimal computational overhead required for robustness to non-stationarity,
in particular, some information-theoretic arguments would be highly interesting.
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Appendix A. Omitted Details for Reduction Mechanism

In this section, we provide the proofs of Theorem 1 and Lemma 1.

A.1 Properties of Distance Function

Before presenting the proofs, we here collect two useful lemmas regarding the distance
function used in the surrogate loss, which will be useful in the following proofs. The proofs
of the two lemmas can be found in the seminal paper of Cutkosky and Orabona (2018).

Lemma 2 (Proposition 1 of Cutkosky and Orabona (2018)). The distance function SX (y) =
infx∈X ∥y − x∥2 is convex and 1-Lipschitz for any closed convex feasible domain X ⊆ Rd.

Lemma 3 (Theorem 4 of Cutkosky and Orabona (2018)). Let X ⊆ Rd a closed convex set.
Given y ∈ Rd and y /∈ X . Let x = ΠX [y]. Then we have { y−x

∥y−x∥2 } = ∂SX (y).

A.2 Proof of Theorem 1

Theorem 1 is originally due to Cutkosky (2020), and for self-containedness we restate their
proof using our notations.

Proof. When ⟨∇ft(xt),vt⟩ ≥ 0, by the definition of the surrogate loss defined in Eq. (5), we
have gt(y) = ⟨∇ft(xt),y⟩, which is linear in y and thus convex. It is clear that ∥∇gt(yt)∥2 =
∥∇ft(xt)∥2 and thus satisfies the claimed inequality of gradient norms in the statement.
Moreover, the inequality (6) holds evidently due to the linear surrogate loss in this case.

Let us focus on the case when ⟨∇ft(xt),vt⟩ < 0. First, it can be verified that the
surrogate loss gt(y) = ⟨∇ft(xt),y⟩ − ⟨∇ft(xt),vt⟩ · SX (y) is convex due to the convexity
of SX (y) shown in Lemma 2 and the condition of ⟨∇ft(xt),vt⟩ < 0 in this case. Next, the
gradient of gt(·) at the yt point can be calculated according to Lemma 1 as,

∇gt(yt) = ∇ft(xt)− ⟨∇ft(xt),vt⟩ · vt

where vt = (yt−xt)/∥yt−xt∥2. Notice that ∥vt∥2 = 1 and∇gt(yt) is an orthogonal projection
of ∇ft(xt) onto the subspace perpendicular to the vector vt, so we have ∥∇gt(yt)∥2 ≤
∥∇ft(xt)∥2. Finally, we proceed to prove the inequality (6) in this case. Since the comparator
ut ∈ X is in the feasible domain, we have SX (ut) = ∥ut − ut∥2 = 0 and get

⟨∇ft(xt),xt − ut⟩
= ⟨∇ft(xt),yt⟩+ ⟨∇ft(xt),xt − yt⟩ − ⟨∇ft(xt),ut⟩

= ⟨∇ft(xt),yt⟩ − ⟨∇ft(xt),
yt − xt
∥yt − xt∥2

⟩ · ∥yt − xt∥2 − ⟨∇ft(xt),ut⟩

= ⟨∇ft(xt),yt⟩ − ⟨∇ft(xt),vt⟩ · SX (yt)− ⟨∇ft(xt),ut⟩+ ⟨∇ft(xt),vt⟩ · SX (ut)
= gt(yt)− gt(ut)
≤ ⟨∇gt(yt),yt − ut⟩,

where the last inequality holds owing to the convexity of the surrogate loss proven earlier.
Combining the two cases finishes the proof.
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A.3 Proof of Lemma 1

Lemma 1 is originally due to Cutkosky and Orabona (2018), and for self-containedness we
restate their proof using our notations.

Proof. With a slight abuse of notations, we simply use ∇gt(y) to denote the (sub-)gradient
of surrogate function gt(·) at point y, no matter whether the function is differentiable.

When ⟨∇ft(xt),vt⟩ ≥ 0, the surrogate loss is gt(y) = ⟨∇ft(xt),y⟩ by definition in Eq. (5).
Therefore, the gradient simply becomes ∇gt(yt) = ∇ft(xt).

When ⟨∇ft(xt),vt⟩ < 0, the surrogate loss becomes gt(y) = ⟨∇ft(xt),y⟩ − ⟨∇ft(xt),vt⟩ ·
SX (y) according to definition in Eq. (5). By Lemma 3, the gradient can be calculated by

∇gt(y) = ∇ft(xt)− ⟨∇ft(xt),vt⟩ ·
y −ΠX [y]

∥y −ΠX [y]∥2
,

where the computation needs the projection onto domain X . In particular, for yt, we have

∇gt(yt) = ∇ft(xt)− ⟨∇ft(xt),vt⟩ ·
yt − xt
∥yt − xt∥2

= ∇ft(xt)− ⟨∇ft(xt),vt⟩ · vt.

This ends the proof.

Appendix B. Omitted Details for Dynamic Regret Minimization

In this section, we provide the proofs for the theorems presented in Section 2. Specifically,
we first prove the worst-case bound (Theorem 2) and then the small-loss bound (Theorem 3).

B.1 Proof of Theorem 2

Proof. Notice that Zhang et al. (2018a) propose the improved Ader algorithm (see Algorithm 3
and Algorithm 4 in their paper), which uses the linearized loss as the input to make the online
algorithm requiring one gradient and one function evaluation per iteration. So the algorithm
satisfies the requirements of our reduction mechanism, and our algorithm (Algorithm 1
with specifications in Theorem 1) can be regarded as the improved Ader equipped with the
projection-efficient reduction. As a consequence, we can directly obtain the same dynamic
regret guarantee and meanwhile ensure 1 projection complexity by following the same proof
of the improved Ader as well as the reduction guarantee (Theorem 1).

B.2 Proof of Theorem 3

Proof. By the reduction guarantee shown in Theorem 1, we have the following result that
decomposes the dynamic regret into the two terms.

T∑

t=1

ft(xt)−
T∑

t=1

ft(ut) ≤
T∑

t=1

gt(yt)−
T∑

t=1

gt(ut) ≤
T∑

t=1

⟨∇gt(yt),yt − ut⟩

=
T∑

t=1

⟨∇gt(yt),yt − yt,i⟩
︸ ︷︷ ︸

meta-regret

+

T∑

t=1

⟨∇gt(yt),yt,i − ut⟩
︸ ︷︷ ︸

base-regret

, (29)
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where in (29) the first term is called meta-regret as it measures the regret overhead of
the meta-algorithm to track the unknown best base-learner, and the second term is called
the base-regret to denote the dynamic regret of the base-learner i. Note that the above
decomposition holds for any base-learner index i ∈ [N ].

Upper bound of meta-regret. Since the meta-algorithm is essentially FTRL with time-
varying learning rates and a negative entropy regularizer, we apply Lemma 18 to obtain the
meta-regret upper bound by choosing ℓt,i = ⟨∇gt(yt),yt,i⟩ and obtain that

T∑

t=1

⟨∇gt(yt),yt − yt,i⟩ ≤ 3

√√√√lnN

(
1 +

T∑

t=1

D2∥∇gt(yt)∥22

)
+
G2D2

√
lnN

2

≤ 3D

√√√√lnN

T∑

t=1

∥∇gt(yt)∥22 +
(6 +G2D2)

√
lnN

2

≤ 3D

√√√√lnN
T∑

t=1

∥∇ft(xt)∥22 +O(1)

≤ 6D

√√√√L lnN

T∑

t=1

ft(xt) +O(1), (30)

where the first inequality holds because we have ∥ℓt∥2∞ = maxi∈[N ](⟨∇gt(yt),yt,i⟩)2 ≤
D2∥∇gt(yt)∥22 by Cauchy-Schwarz inequality and ∥∇gt(yt)∥2 ≤ ∥∇ft(xt)∥2 ≤ G by Theo-
rem 1, and the last inequality is due to the self-bounding properties of smooth functions
(see Lemma 20). Note that O(lnN) = O(log log T ) can be treated as a constant following
previous studies (Luo and Schapire, 2015; Gaillard et al., 2014; Zhao et al., 2021b)

Upper bound of base-regret. According to Lemma 14 and noticing that the comparator
sequence u1, . . . ,uT ∈ X ⊆ Y and the diameter of Y equals to 2D by definition, with slight
modifications, we have the following dynamic regret bound.

T∑

t=1

⟨∇gt(yt),yt,i − ut⟩ ≤
5D2

2ηi
+
D

ηi

T∑

t=2

∥ut − ut−1∥2 + ηi

T∑

t=1

∥∇gt(yt)∥22

≤ 5D2

2ηi
+
D

ηi

T∑

t=2

∥ut − ut−1∥2 + ηi

T∑

t=1

∥∇ft(xt)∥22

≤ 5D2

2ηi
+
D

ηi

T∑

t=2

∥ut − ut−1∥2 + 4ηiL

T∑

t=1

ft(xt),

where the second inequality is due to the property of the surrogate loss (see Theorem 1) and
the last one is due to the self-bounding property of smooth functions (see Lemma 20).

Note that the property of ∥∇gt(yt)∥2 ≤ ∥∇ft(xt)∥2 plays an important role in the above
analysis. Although the surrogate functions {gt}Tt=1 are not guaranteed to be smooth and non-
negative, we can upper bound its gradient norm by that defined over the original functions
{gt}Tt=1, which are indeed smooth and non-negative. We thus can utilize the self-bounding
properties to establish a small-loss bound for the meta-regret and base-regret.
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Upper bound of dynamic regret. Combining the upper bounds meta-regret and base-
regret together yields the following dynamic regret:

T∑

t=1

ft(xt)−
T∑

t=1

ft(ut) ≤ 6D

√√√√L lnN
T∑

t=1

ft(xt)+
5D2 + 2DPT

2ηi
+4ηiL

T∑

t=1

ft(xt)+O(1), (31)

which holds for any base-learner’s index i ∈ [N ].
Next, we specify the base-learner Ei compared with. Indeed, we aim at choosing the one

with step size closest to the (near-)optimal step size η∗ =
√

5D2+2DPT
1+8LFx

T
, where we denote by

Fx
T =

∑T
t=1 ft(xt) the cumulative loss of the decisions. By Assumption 1 and Assumption 2,

we have Fx
T ∈ [0, GDT ] and then the possible minimum optimal and maximum step size are

ηmin =

√
5D2

1 + 8LGDT
, and ηmax =

√
5D2 + 2D2T .

The construction of step size pool is by discretizing the interval [ηmin, ηmax] with intervals
with exponentially increasing length. The step size of each base-learner is designed to be
monotonically increasing with respect to the index. Consequently, it is evident to verify that
there exists an index i∗ ∈ [N ] such that ηi∗ ≤ η∗ ≤ ηi∗+1 = 2ηi∗ . As the upper bounds of
meta-regret and base-regret hold for any compared base-learner, we can choose the index as
i∗ in particular. Then the second and the third terms in the inequality (31) satisfy

5D2 + 2DPT
2ηi∗

+ 4ηi∗LF
x
T

≤ 5D2 + 2DPT
η∗

+ 4η∗LFx
T

≤
√

(5D2 + 2DPT )(1 + 8LFx
T ) +

1

2

√
(5D2 + 2DPT )(1 + 8LFx

T )

≤ 3
√

2(5D2 + 2DPT )(1 + LFx
T ). (32)

Substituting inequality (32) into inequality (31), we have,

T∑

t=1

ft(xt)−
T∑

t=1

ft(ut)

≤ 6D
√
L lnNFx

T + 3
√
2(5D2 + 2DPT )(1 + LFx

T ) +O(1)

≤
(
6D
√
L lnN + 3

√
2L(5D2 + 2DPT )

)√
Fx
T + 3

√
2(5D2 + 2DPT ) +O(1)

≤ O
(√

(1 + PT )(FT +
√
PT +O(1)) + PT + 1

)

= O
(√

(FT + PT )(1 + PT )
)
,

where the last inequality holds by Lemma 25. Hence, we complete the proof of Theorem 3.
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Appendix C. Omitted Details for Adaptive Regret Minimization

In this section, we present omitted details for minimizing the worst-case and small-loss
adaptive regret bounds with a focus on proving the main theorem of small-loss bound,
i.e., Theorem 4. Appendix C.1 provides key lemmas, Appendix C.2 presents the proof of
Theorem 4, and Appendix C.3 – Appendix C.6 give the proofs of these key lemmas.

C.1 Key Lemmas

In this part, we present three key lemmas for proving Theorem 4, based on which we prove
Theorem 4 in Appendix C.2. We will prove those lemmas in the following several subsections.

The first lemma gives the second-order regret bound for the meta-algorithm (Adapt-ML-
Prod) (Gaillard et al., 2014), which plays a crucial role in applying our reduction. Though
Adapt-ML-Prod can be applied to the sleeping-expert setting directly, we need more careful
analysis to obtain the fully small-loss adaptive regret bound, otherwise the direct reduction
of results from Gaillard et al. (2014) will incur an undesired O(log T ) factor.

Lemma 4. Under Assumptions 2 and 3, for any interval I = [i, j] ∈ C̃ in the geometric
covers defined in Eq. (10) at the beginning of which we suppose the m-th base-learner is
initialized, Algorithm 2 ensures

t∑

τ=i

gτ (yτ )− gτ (yτ,m) ≤
t∑

τ=i

⟨∇gτ (yτ ),yτ − yτ,m⟩

≤ 4D

(
3
√
ln(1 + 2m) +

µt√
ln(1 + 2m)

)√√√√L

t∑

τ=i

ft(xt) + 18GD ln(1 + 2m) + 6GDµt

= O



√√√√log(m)

t∑

τ=i

fτ (xτ ) + log(m)


 ,

where we denote µt = ln(1 + (1 + ln(1 + t))/(2e)).

Combining the above lemma with the regret bound for base-learners, we can obtain the
adaptive regret for any interval in the geometric covering intervals C̃ defined in Eq. (10).

Lemma 5. Under Assumptions 1, 2, and 3, for any interval [i, j] ∈ C̃ in the geometric
covering intervals defined in Eq. (10), at the beginning of which we assume the m-th base-
learner is initialized, Algorithm 2 ensures for any time t ∈ [i, j] and any comparator u ∈ X ,

t∑

τ=i

fτ (xτ )−
t∑

τ=i

fτ (u)

≤ 4D
(
3
√

ln(1 + 2m) + µt + 2
)
√√√√L

t∑

τ=i

fτ (xτ ) + 18GD ln(1 + 2m) + 6GDµt + 4D
√
δ

= O



√√√√log(m)

t∑

τ=i

fτ (xτ ) + log(m)


 ,
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where we denote µt = ln(1 + (1 + ln(1 + t))/(2e)).
Also, Algorithm 2 ensures the bound in terms of the cumulative loss of the comparator,

t∑

τ=i

fτ (xτ )−
t∑

τ=i

fτ (u)

≤ 4D

(√
ln(1 + 2m) + µt + 2

)√√√√L
t∑

τ=i

fτ (u)

+ (27GD + 72D2L) ln(1 + 2m) + 72D2Lµ2t + 9GDµt + 6D
√
δ + 288D2L (33)

= O



√√√√log(m)

t∑

τ=i

fτ (u) + log(m)


 .

It is worth emphasizing that, the regret bound in terms of the cumulative loss of final
decision {xt} plays a key role in proving the worst-case adaptive regret bound in Theorem 4.

The next lemma states that by the smooth and non-negative nature of loss functions, we
can estimate the cumulative loss of any comparator u ∈ X by the markers maintained by
the problem-dependent scheduling.

Lemma 6. Under Assumptions 1, 2, and 3, for any interval [sm, sm+1 − 1] determined by
two consecutive intervals sm and sm+1, where we denote by sm the m-th marker, Algorithm 2
ensures that for any comparator u ∈ X ,

sm+1−1∑

t=sm

ft(u) ≥
1

4
Cm, (34)

where Cm = G(m) is the m-th threshold with the threshold function G(·) defined at Eq. (14).

The above lemmas rely on the unknown variable of m, which represents the number
of base-learners initialized till time stamp t. The following lemma shows that m is of the
same order with the cumulative loss

∑t
τ=1 fτ (u) of any comparator u ∈ X , owing to the

construction of the problem-dependent covering intervals.

Lemma 7. Under Assumptions 1, 2, and 3, for any interval [i, j] ∈ C̃ and any t ∈ [i, j], the
variable m specified in Lemma 4 and Lemma 5 can be bounded by

m ≤ 1 +
4

C1
min
u∈X

t∑

τ=1

fτ (u) = O
(
F[1,t]

)
,

where C1 is a constant calculated by the threshold function as C1 = G(1) defined in Eq. (14).
Moreover, for any t ∈ [i, j] Algorithm 2 ensures,

t∑

τ=i

fτ (xτ )−min
u∈X

t∑

τ=i

fτ (u) ≤ α(t) + β(t)

√√√√min
u∈X

t∑

τ=i

fτ (u) = O
(√

F[i,t] logF[1,t]

)
,
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where

α(t) = (27GD + 72D2L) ln

(
3 +

8

C1

t∑

τ=1

fτ (u)

)
+ 72D2Lµ2t + 9GDµt + 6D

√
δ + 288D2L,

β(t) = 4D
√
L



√√√√ln

(
3 +

8

C1

t∑

τ=1

fτ (u)

)
+ µt + 2


 ,

µt = ln(1 + (1 + ln(1 + t))/(2e)), and F[a,b] = minu∈X
∑b

τ=a fτ (u) denotes the cumulative
loss of the comparator within the interval [a, b] ⊆ [T ].

C.2 Proof of Theorem 4

Proof. The statement in Theorem 4 consists of two parts, including a small-loss bound of
O(√FI logFI logFT ) and a worst-case bound of O(

√
|I| log T ). Below, we present the proofs

of the two bounds respectively.

Small-loss regret bound. Given any interval [r, s] ⊆ [T ], we will identify a series of
intervals I1, . . . , Iv in the schedule C̃ that almost covers the entire interval [r, s]. Then, we
can use Lemma 7 to ensure low regret over these intervals. By further demonstrating that
the regret on the uncovered interval can be well-controlled and that the number of intervals
v is not large, we can ultimately achieve the desired bound. Below, we provide formal proof.

Recall in the algorithmic procedures, the algorithm will register a series markers s1, s2, . . ..
Let sp be the smallest marker that is larger than r, and let sq be the largest marker that is
not large than s. As a result, we have sp−1 ≤ r < sp, and sq ≤ s < sq+1.

We bound the regret over the interval [r, sp − 1] that is not covered by the schedule as

sp−1∑

t=r

ft(xt)−
sp−1∑

t=r

ft(u) ≤
sp−1∑

t=r

ft(xt) ≤
sp−1∑

t=sp−1

ft(xt) ≤ Cp−1 +GD. (35)

The first and the second inequalities are by the non-negative property of loss functions.
The last inequality is due to

∑sp−2
t=sp−1

ft(xt) ≤ Cp−1, which is determined by the threshold
mechanism, and the fact that ft(xt) ≤ GD by Assumptions 1 to 3.

Next, we focus on the interval [sp, s], which can be covered by geometric covering intervals.
By Lemma 19, we can find v consecutive intervals

I1 = [si1 , si2 − 1], I2 = [si2 , si3 − 1], . . . , Iv = [siv , siv+1 − 1] ∈ C̃, (36)

such that i1 = p, iv ≤ q < iv+1, and v ≤ ⌈log2(q − p+ 2)⌉. Also notice that,

q < iv+1 ⇒ q + 1 ≤ iv+1 ⇒ sq+1 − 1 ≤ siv+1 − 1⇒ s ≤ siv+1 − 1.

By Lemma 7, our algorithm has anytime regret bounds on intervals I1 to Iv, since they
belong to the covering intervals C̃,

s∑

t=sp

ft(xt)−
s∑

t=sp

ft(u) =
v−1∑

k=1

∑

t∈Ik

(ft(xt)− ft(u)) +
∑

t∈[siv ,s]

(ft(xt)− ft(u))
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≤
v−1∑

k=1

(
α(sik+1

− 1) + β(sik+1
− 1)

√
FIk

)
+ α(s) + β(s)

√
F[siv ,s]

≤
v−1∑

k=1

(
α(s) + β(s)

√
FIk

)
+ α(s) + β(s)

√
F[siv ,s]

(37)

≤ vα(s) + β(s)
√
vF[sp,s]

≤ vα(s) + β(s)
√
vFI , (38)

where the second inequality is because α(·), β(·) are monotonically increasing, and the last
inequality is by the non-negativity of loss functions.

Combining (35) with (38), the adaptive regret on any interval [r, s] will be

s∑

t=r

ft(xt)−
s∑

t=r

ft(u) =

sp−1∑

t=r

(ft(xt)− ft(u)) +
s∑

t=sp

(ft(xt)− ft(u))

≤ Cp−1 +GD + vα(s) + β(s)
√
vFI . (39)

Furthermore, we show that Cp−1 and v are of orderO(logFT ) andO(logF[r,s]) respectively.
By the definition of the time-varying threshold (see the threshold generating function Eq. (14))
and the upper bound of m in Lemma 7, the threshold can be bounded as,

Cp−1 ≤ (54GD + 168D2L) ln

(
3 +

8

C1
F[1,r]

)
+ 168D2Lµ2T + 18GDµT + 6D

√
δ + 672D2L,

with C1 and µT defined in Lemma 7. Notice that, we treat µT = O(log log T ) as a constant
following previous studies (Luo and Schapire, 2015; Gaillard et al., 2014; Zhao et al., 2021b).

Through [sp, sq− 1], the algorithm registers q− p markers, i.e., sp, sp+1, . . . , sq−1, then by
Lemma 6 we can lower bound the cumulative loss of comparator u⋆ ≜ argminu∈X

∑s
t=r ft(u)

by the corresponding thresholds,

sq−1∑

t=sp

ft(u
⋆) =

q−1∑

i=p

∑

t∈[si,si+1−1]

ft(u
⋆) ≥ 1

4

q−1∑

i=p

Ci ≥
C1

4
(q − p),

where the the last inequality is because the thresholds are monotonically increasing. The
above inequality immediately implies that q − p ≤ 4

C1

∑sq−1
t=sp ft(u

⋆) ≤ 4
C1

∑s
t=r ft(u

⋆) by the
non-negativity of loss functions. We estimate the number of intervals v with Lemma 19,

v ≤ ⌈log2(q − p+ 2)⌉ ≤
⌈
log2

(
4

C1
F[r,s] + 2

)⌉
= O(logF[r,s]). (40)

Combining the upper bounds of Cp−1 and v, the adaptive regret bound in (39) as well as
the definition of α(·), β(·) in Lemma 7 yields,

s∑

t=r

ft(xt)−
s∑

t=r

ft(u) ≤ Cp−1 + vα(s) + β(s)
√
vFI +GD
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≤ O (logFT ) +O (logFI logFT ) +O
(√

FI logFI logFT

)
+O (1)

= O
(√

FI logFI logFT

)
,

where the last step is true as we follow the same convention in (Zhang et al., 2019) to treat
the O(logFI logFT ) as the non-leading term. We finish the proof for small-loss regret bound.

Worst-case regret bound. The above proof aims at obtaining small-loss type regret
bound, and one of the key steps is to use Cauchy-Schwarz inequality to bound (37), which
results in an additional O(√logF[r,s]) term. Next, we show that asymptotically this extra
term can be avoided thanks to the new-designed thresholds mechanism. Thus, our algorithm
achieves the same worst-case adaptive regret as the best known result (Jun et al., 2017).

The primary insight for this proof lies in employing the summation for a geometric series
instead of using the Cauchy-Schwarz inequality to combine the regret bounds on the intervals
I1, . . . , Iv. The crucial ingredient is to demonstrate that the worst-case regret bound on each
interval scales with the number of markers within it, and that the number of these markers
within each interval constitutes a geometric series.

From Lemma 5, we have that for any interval I = [i, j] in problem-dependent schedule
defined in (10), the adaptive regret is at most

j∑

t=i

ft(xt)−
j∑

t=i

ft(u) ≤ O
(√

log T · Fx
[i,j] + log T

)
, (41)

where we use the notation Fx
[a,b] =

∑b
t=a ft(xt) to denote the cumulative loss of the final

decisions within the interval [a, b] ⊆ [T ], and we apply Lemma 7 to upper bound m ≤ O(T )
as only the worst-case behavior matters now.

For the intervals Ik = [sik , sik+1
− 1], k ∈ [v] defined in (36), we have the following facts:

ik+1 ≤ 2 · ik, ∀k ∈ [v], and |ik+1 − ik| ≤
1

2
|ik+2 − ik+1|, ∀k ∈ [v − 1]. (42)

The first inequality above, which can verified by the construction of cover defined in (10), is
used to show that the time-varying thresholds do not grow too fast. The second inequality,
which can be found in the proof of (Zhang et al., 2019, Lemma 11), indicates that the number
of markers within each interval decreases exponentially from Iv to I1.

For any interval Ik with k ∈ [v − 1] in (36), our algorithm’s cumulative loss within the
interval can be upper bounded as

sik+1
−1∑

t=sik

ft(xt) =

ik+1−1∑

a=ik



( ∑

t∈[sp,sp+1−2]

ft(xt)

)
+ fsa+1−1(xsa+1−1)




≤
( ik+1−1∑

a=ik

Ca

)
+GD|ik+1 − ik| ≤ (GD + Cik+1−1)|ik+1 − ik|. (43)

where the first inequality is by the threshold mechanism and the fact that ft(x) ∈ [0, GD].

38



We then split a given interval [r, s] into three parts to analyze, namely, the consecutive
v− 1 intervals I1 to Iv−1, interval [r, sp− 1], and [siv , s], where notably the last two intervals
are not fully covered by any interval in geometric covering intervals,

s∑

t=r

ft(xt)−
s∑

t=r

ft(u) =

sp−1∑

t=r

ft(xt)− ft(u) +
siv−1∑

t=sp

ft(xt)− ft(u) +
s∑

t=siv

ft(xt)− ft(u)

=

sp−1∑

t=r

ft(xt)− ft(u)
︸ ︷︷ ︸

term-(a)

+

v−1∑

k=1

∑

t∈Ik

ft(xt)− ft(u)
︸ ︷︷ ︸

term-(b)

+

s∑

t=siv

ft(xt)− ft(u)
︸ ︷︷ ︸

term-(c)

.

(44)

We analyze term-(b) first, since it is the most intricate part in this proof. From interval I1
to Iv−1, beginning with Eq. (41) we have

term-(b) ≤
v−1∑

k=1

O
(√

log T · Fx
Ik

+ log T
)

≤
v−1∑

k=1

O
(√

log T · Civ−1 · |ik+1 − ik|+ log T
)

≤
v−1∑

k=1

O
(√

log T · Civ−1 ·
|iv − iv−1|
2v−1−k + log T

)

≤ O
(
v log T +

√
log T · Civ−1 ·

+∞∑

b=0

√
|iv − iv−1|

2b

)

≤ O
(
v log T +

√
log T · Civ−1 · |iv − iv−1|

)
, (45)

where the second inequality is by (43) and together with the monotonically increasing
property of thresholds, the third inequality is by the second inequality listed in (42), and the
last inequality is by the summation of geometric sequence. We emphasize that the second
inequality is upheld due to the newly-designed problem-dependent schedule mechanism. This
mechanism, which monitors the cumulative loss of final decisions {ft(xt)}, enables us to
associate the Fx

Ik
factor with the number of markers |ik+1 − ik| and further to apply the

summation of geometric series.
In the subsequent analysis, our objective is to demonstrate that Civ−1 · |iv−iv−1| = O(|I|).

Employing the mechanism of the time-varying threshold as defined in Eq. (14), we have

Civ−1 = G(iv − 1) ≤ O(log(iv)).

Moreover, since |iv − iv−1| denotes the number of markers generated by our algorithm during
the interval Iv−1, it can be bounded above by

|iv − iv−1| ≤
GD|I|
Civ−1

= O
(

GD|I|
log(iv−1)

)
.
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This stems from the fact that the cumulative loss of the algorithm over I does not exceed
GD|I|, and we leverage the smallest threshold Civ−1 during the interval Iv−1 to determine
the upper limit on the number of markers.

Plugging the upper bounds for Civ−1 and |iv − iv−1| into Eq. (45), we have

term-(b) ≤ O
(
v log T +

√
log T · Civ−1 · |iv − iv−1|

)

≤ O
(
v log T +

√
log T · log(iv) ·

|I|
log(iv−1)

)

≤ O
(
v log T +

√
log T · |I|(1 + 1

log iv−1
)

)

≤ O
(
log |I| log T +

√
|I| log T

)
.

The third inequality follows from the first inequality presented in (42). The concluding
inequality is by the fact that v ≤ O(logF[r,s]) ≤ O(log |I|) as proved in (40). This is true
because the variable v is introduced in our analysis by Lemma 19, which is independent of
the worst-case analysis.

As shown in Eq. (35), we can upper bound the term-(a) as,

term-(a) ≤ Cp−1 ≤ O(log T ).
Using again Lemma 7, the term-(c) is bounded as,

term-(c) ≤ O
(
log T +

√
F[siv ,s]

log T
)
≤ O

(
log T +

√
|I| log T

)
.

Now we are ready to derive the worst-case adaptive regret by plugging the upper bounds
from term-(a) to term-(c) into Eq. (44),

s∑

t=r

ft(xt)−
s∑

t=r

ft(u)

=

sp−1∑

t=r

ft(xt)− ft(u) +
v−1∑

k=1

∑

t∈Ik

ft(xt)− ft(u) +
s∑

t=siv

ft(xt)− ft(u)

≤ O (log T ) +O
(
log |I| log T +

√
|I| log T

)
+O

(
log T +

√
|I| log T

)

= O
(√
|I| log T + log |I| log T

)
= O

(√(
|I|+ log T · log2 |I|

)
log T

)
= O(

√
|I| log T ).

The last step holds by considering the following cases.

• When the interval length is |I| = Θ(Tα) with α ∈ (0, 1]. Then,

O
(√(

|I|+ log T · log2 |I|
)
log T

)

= O
(√(

Tα + α2 log3 T
)
log T

)

= O
(√

Tα log T
)
= O

(√
|I| log T

)
.
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• When the interval length is |I| = Θ(logβ T ), and note that β ∈ [1,+∞) as |I| = Ω(log T )
is the minimum order to ensure the adaptive regret to be non-trivial. Then,

O
(√(

|I|+ log T · log2 |I|
)
log T

)

= O
(√(

logβ T + β2 log T · (log log T )2
)
log T

)

= O
(√

(logβ T + β2 log T ) log T

)

= O
(√

logβ T log T

)
= O

(√
|I| log T

)
.

Hence we finish the proof for the worst-case adaptive regret bound. Combining both small-loss
bound and the worst-case safety guarantee, we complete the proof of Theorem 4.

C.3 Proof of Lemma 4

Proof. First we introduce some useful variables to help us prove the adaptivity of Adapt-ML-
Prod under sleeping-expert setting. Similar to the proof technique of Daniely et al. (2015),
for any interval [i, j] ∈ C̃ in the geometric covers defined in (10), on which we suppose the
m-th base-learner is active, we define the following pseudo-weight for the m-th base-learner,

w̃τ,m =





0 τ < i,
1 τ = i,

(
w̃τ−1,m(1 + ητ−1(ℓ̂τ−1 − ℓτ−1,m))

) ητ,m
ητ−1,m i < τ ≤ j + 1,

w̃j+1,m τ > j + 1.

In addition, we use W̃t =
∑

k∈[T ] w̃t,k to denote the summation of pseudo-weights for all
possible base-learners up to time t. As for the problem-dependent geometric covers, in the
worst case there are at most T base-learners generated, we use [T ] to denote the indexes for
all the base-learners. Notice that the pseudo-weight w̃t is defined as 0 for asleep base-learners
till time t, so we can include all possible ones safely in the definition even though they are
not generated in practical implementations of the algorithm.

Below, we use the potential argument (Gaillard et al., 2014) to prove the desired result.
Specifically, we establish the regret bound by lower and upper bounding the quantity ln W̃t+1.

Lower bound of ln W̃t+1. We claim that for t ∈ [i, j] it holds that

ln w̃t+1,m ≥ ηt+1,m

t∑

τ=i

(rτ,m − ητ,mr2τ,m).

We prove the above inequality by induction on t. When t = i, by definition,

ln w̃i+1,m =
ηi+1,m

ηi,m
ln (1 + ηmri,m) ≥

ηi+1,m

ηi,m

(
ηmri,m − η2mr2i,m

)
= ηi+1,m(ri,m − ηmr2i,m),

where the inequality is because of ln(1 + x) ≥ x− x2, ∀x ≥ −1/2.
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Suppose the statement holds for ln w̃t,m, then we proceed to check the situation for t+ 1
round as follows. Indeed,

ln w̃t+1,m =
ηt+1,m

ηt,m
(ln w̃t,m + ln (1 + ηt,mrt,m))

≥ ηt+1,m

ηt,m

(
ln w̃t,m + ηt,mrt,m − η2t,mr2t,m

)

=
ηt+1,m

ηt,m
ln w̃t,m + ηt+1,m

(
rt,m − ηt,mr2t,m

)

≥ ηt+1,m

ηt,m

(
ηt,m

t−1∑

τ=i

(rτ,m − ητ,mr2τ,m)
)

+ ηt+1,m

(
rt,m − ηt,mr2t,m

)

= ηt+1,m

t∑

τ=i

(rτ,m − ητ,mr2τ,m). (46)

Then, as w̃t+1,m is positive for any m-th base-learner, we have ln W̃t+1 ≥ ln w̃t+1,m. Thus
by (46) we obtain the desired lower bound of ln W̃t+1.

Upper bound of ln W̃t+1. By the construction of the geometric covers as specified
in Eq. (10), we know that there will be at most 2m base-learners initialized for the m-th
base-learner active on interval [i, j] till her end. This is because m-th base-learner is initialized
when m-th marker is recorded, and she will expire before the moment when 2m-th marker is
recorded, as demonstrated by the construction of cover defined in Eq. (10). Owing to this
property, we have W̃t+1 =

∑
k∈[2m] w̃t+1,k as others’ pseudo-weight equals to 0 by definition.

So we can upper bound W̃t+1 as,

W̃t+1 =
∑

k∈[2m]

w̃t+1,k =
∑

k∈[2m]:ik=t+1

w̃t+1,k +
∑

k∈[2m]:ik≤t

w̃t+1,k

= 1{new alg. at t+ 1}+
∑

k∈[2m]:ik≤t

w̃t+1,k, (47)

where we denote by [ik, jk] ∈ C̃ the active time for k-th base-learner.
For the second term in (47), we have
∑

k:ik≤t
w̃t+1,k =

∑

k∈[2m]:t∈[ik,jk]

w̃t+1,k +
∑

k∈[2m]:t>jk

w̃t+1,k

=
∑

k∈[2m]:t∈[ik,jk]

w̃t+1,k +
∑

k∈[2m]:t>jk

w̃t,k

≤
∑

k∈[2m]:t∈[ik,jk]

w̃t,k(1 + ηt,krt,k) +
1

e

(
ηt,k
ηt+1,k

− 1

)
+

∑

k∈[2m]:t>jk

w̃t,k

= W̃t +
∑

k∈[2m]:t∈[ik,jk]

ηt,kw̃t,krt,k

︸ ︷︷ ︸
=0

+
∑

k∈[2m]:t∈[ik,jk]

1

e

(
ηt,k
ηt+1,k

− 1

)
, (48)
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where the first equality holds by the definition of w̃t+1,k, the second inequality is by the
updating rule of w̃t+1,k and Lemma (26), and the second term in the last equality equals to
0 due to the weight update rule in (13) and the fact of w̃t,k = wt,k for any t ∈ [ik, jk].

Combining (47), (48) and by induction, we obtain the following upper bound:

W̃t+1 ≤ 1 + 2m+
1

e

∑

k∈[2m]

min{t,jk}∑

τ=ik

(
ητ,k
ητ+1,k

− 1

)
. (49)

We now turn to analyze the third term in (48). Indeed, Gaillard et al. (2014) have
analyzed it under the static regret measure. For the sake of completeness, we present the
proof with our notations. For any k ∈ [2m], for any τ ∈ [ik,min{t, jk}], the relationship
between ητ,k and ητ+1,k can be considered as three cases,

• ητ,k = ητ+1,k = 1/2,

• ητ+1,k =
√
γk/(1 +

∑τ
u=ik

r2u,k) < ητ,k =
1
2 ,

• ητ+1,k ≤ ητ,k < 1/2.

In all cases, the ratio ητ,k/ητ+1,k − 1 is at most

min{t,jk}∑

τ=ik

(
ητ,k
ητ+1,k

− 1

)
≤

min{t,jk}∑

τ=ik



√√√√1 +

∑τ
u=ik

r2u,k

1 +
∑τ−1

u=ik
r2u,k
− 1




=

min{t,jk}∑

τ=ik



√√√√ r2τ,k

1 +
∑τ−1

u=ik
r2u,k

+ 1− 1




≤ 1

2

min{t,jk}∑

τ=ik

r2τ,k

1 +
∑τ−1

u=ik
r2u,k

≤ 1

2


1 + ln


1 +

min{t,jk}∑

u=ik

r2u,k




− ln(1)

≤ 1

2
(1 + ln(1 + t)) , (50)

where the second inequality uses
√
1 + x ≤ 1 + x/2 and the third inequality follows from

Lemma 22 with the choice of f(x) = 1/x. Substituting (50) into (49), we get

W̃t+1 ≤ 1 + 2m+
m

e
(1 + ln (1 + t)) ≤ (1 + 2m)

(
1 +

1

2e
(1 + ln(1 + t))

)
. (51)

Further taking the logarithm over the above inequality gives the upper bound of ln W̃t+1.
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Upper bound of meta-regret. Now, we can lower bound and upper bound ln W̃t+1

by (46) and (51). Then, rearranging the terms yields the upper bound of scaled meta-regret,

t∑

τ=i

rτ,m ≤
t∑

τ=i

ητ,mr
2
τ,m +

ln(1 + 2m) + µt
ηt+1,m

≤ 2
√
γi

√√√√1 +

t∑

τ=i

r2τ,i +
ln(1 + 2m) + µt

ηt+1,m
(52)

≤ ln(1 + 2m) + µt + 2γm√
γm

√√√√1 +
t∑

τ=i

r2τ,m + 2 ln(1 + 2m) + 4γm + 2µt

≤
(
3
√

ln(1 + 2m) + µt

)
√√√√1 +

t∑

τ=i

r2τ,m + 6 ln(1 + 2m) + 2µt,

where we denote µt = ln(1 + (1 + ln(1 + t))/(2e)).The second inequality is by Lemma 22
and choose f(x) = 1/

√
x. The last inequality is by the choice of √γm =

√
ln(1 + 2m) ≥√

ln(3) ≥ 1. As for the third inequality, there are two cases to be considered:

• when
√
1 +

∑t
τ=i r

2
τ,m > 2

√
γm, we have that (52) is at most 2

√
γm

√
1 +

∑t
τ=i r

2
τ,m +

ln(1+2m)+µt√
γm

√
1 +

∑t
τ=i r

2
τ,m.

• when
√
1 +

∑t
τ=i r

2
τ,m ≤ 2

√
γm, we have that ηt+1,m = 1/2 and (52) is at most

2 ln(1 + 2m) + 4γm + 2µt.

Taking both cases into account implies the desired inequality.
Finally, we end the proof by evaluating the meta-regret in terms of the surrogate loss.

t∑

τ=i

⟨∇gt(yt),yt − yt,m⟩

= 2GD ·
t∑

τ=i

rτ,m

≤ 2GD

(
3
√
ln(1 + 2m) + µt

)√√√√1 +
t∑

τ=i

r2τ,m + 12GD ln(1 + 2m) + 4GDµt

≤
(
3
√

ln(1 + 2m) + µt

)√√√√
t∑

τ=i

⟨∇gτ (yτ ),yτ − yτ,m⟩2 + 18GD ln(1 + 2m) + 6GDµt

≤
(
3
√
ln(1 + 2m) + µt

)√√√√
t∑

τ=i

4D2∥∇gτ (yτ )∥22 + 18GD ln(1 + 2m) + 6GDµt
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≤ 2D

(
3
√
ln(1 + 2m) + µt

)√√√√
t∑

τ=i

∥∇fτ (xτ )∥22 + 18GD ln(1 + 2m) + 6GDµt

≤ 4D

(
3
√

ln(1 + 2m) + µt

)√√√√L
t∑

τ=i

ft(xt) + 18GD ln(1 + 2m) + 6GDµt,

where the second inequality is true because 1 ≤
√
ln(1 + 2m) ≤ ln(1 + 2m) holds for any

m ≥ 1, the third inequality is by Cauchy-Schwarz inequality, the forth inequality is by
Theorem 1 and the last inequality is due to the self-bounding property of smooth and
non-negative functions (see Lemma 20).

C.4 Proof of Lemma 5

Proof. We start the proof by decomposing the adaptive regret into meta-regret and base-regret
in terms of the surrogate loss by Theorem 1,

t∑

τ=i

fτ (xτ )−
t∑

t=i

fτ (u) ≤
t∑

τ=i

gτ (xτ )−
t∑

t=i

gτ (u) ≤
t∑

τ=i

⟨∇gτ (yτ ),yτ − u⟩

=
t∑

τ=i

⟨∇gτ (yτ ),yτ − yτ,m⟩
︸ ︷︷ ︸

meta-regret

+
t∑

τ=i

⟨∇gτ (yτ ),yτ,m − u⟩
︸ ︷︷ ︸

base-regret

, (53)

where our analysis will be performed by tracking the m-th base-learner, whose corresponding
active interval is exactly the analyzed one. Our analysis is satisfied to any interval since
there is always a base-learner active on it ought to our algorithm design.

Upper bound of base-regret. Since the base-algorithm (SOGD) guarantees anytime
regret, direct application of Lemma 16 with the assumption of surrogate domain Y can upper
bound the base-regret,

t∑

τ=i

⟨∇gτ (yτ ),yτ,m − u⟩ ≤ 4D

√√√√δ +

t∑

τ=i

∥∇gτ (yτ )∥22 ≤ 8D

√√√√L

t∑

τ=i

fτ (xτ ) + 4D
√
δ, (54)

where we skip some steps for transforming ∥∇gτ (yτ )∥22 into 4Lfτ (xτ ). The similar arguments
can be found in the proof of Theorem 3.

Upper bound of meta-regret. By Lemma 4, we can upper bound the meta-regret as

t∑

τ=i

⟨∇gτ (yτ ),yτ − yτ,m⟩

≤ 4D
(
3
√
ln(1 + 2m) + µt

)
√√√√L

t∑

τ=i

fτ (xτ ) + 18GD ln(1 + 2m) + 6GDµt,

(55)

where we denote µt = ln(1 + (1 + ln(1 + t))/(2e)).
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Upper bound of adaptive regret. Substituting (54), (55) into (53) obtains
t∑

τ=i

fτ (xτ )−
t∑

τ=i

fτ (u)

≤ 4D
(
3
√

ln(1 + 2m) + µt + 2
)
√√√√L

t∑

τ=i

fτ (xτ ) + 18GD ln(1 + 2m) + 6GDµt + 4D
√
δ

= O



√√√√log(m) ·

t∑

τ=i

fτ (xτ ) + log(m)


 , (56)

which proves the first part of the results.
Furthermore, by applying the standard technical lemma presented in Lemma 25, we can

convert the cumulative loss of final decisions in the above regret bound,
∑t

τ=i fτ (xτ ), into
the comparator’s cumulative loss,

∑t
τ=i fτ (u),

t∑

τ=i

fτ (xτ )−
t∑

τ=i

fτ (u)

≤ 4D
√
L

(√
ln(1 + 2m) + µt + 2

)√√√√
t∑

τ=i

fτ (u) + 18GD ln(1 + 2m) + 6GDµt + 4D
√
δ

+ 18GD ln(1 + 2m) + 6GDµt + 4D
√
δ + 16D2L

(√
ln(1 + 2m) + µt + 2

)2

≤ 4D
√
L

(√
ln(1 + 2m) + µt + 2

)√√√√
t∑

τ=i

fτ (u)

+ 27GD ln(1 + 2m) + 9GDµt + 6D
√
δ + 24D2L

(√
ln(1 + 2m) + µt + 2

)2

≤ 4D
√
L

(√
ln(1 + 2m) + µt + 2

)√√√√
t∑

τ=i

fτ (u)

+ (27GD + 72D2L) ln(1 + 2m) + 72D2Lµ2t + 9GDµt + 6D
√
δ + 288D2L.

The second inequality makes use of
√
a+ b ≤ √a +

√
b and

√
ab ≤ (a2 + b2)/2. The last

inequality holds by (a+ b+ c)2 ≤ 3(a2 + b2 + c2).

C.5 Proof of Lemma 6

Proof. For interval [sm, sm+1−1], there must exist an interval [i, j] ∈ C̃ such that [sm, sm+1−
1] ⊆ [i, j] with i = sm. Therefore, we can apply Eq. (33) presented in Lemma 5 to upper
bound the regret during [sm, sm+1 − 1] for any comparator u ∈ X ,

sm+1−1∑

t=sm

ft(xt)−
sm+1−1∑

t=sm

ft(u) ≤ 4D

(√
ln(1 + 2m) + µT + 2

)√√√√L

j∑

t=i

ft(u)
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+ (27GD + 72D2L) ln(1 + 2m) + 72D2Lµ2T + 9GDµT

+ 6D
√
δ + 288D2L, (57)

where we use the monotonically increasing property that µsm+1−1 ≤ µT .
Incorporating some basic inequalities, specifically ab ≤ a2/4 + b2 and (a + b + c)2 ≤

3(a2 + b2 + c2), we can isolate
∑sm+1−1

t=sm ft(u) from the square root in (57):

sm+1−1∑

t=sm

ft(xt) ≤ 2

sm+1−1∑

t=sm

ft(u) + (27GD + 84D2L) ln(1 + 2m)

+ 84D2Lµ2T + 9GDµT + 3D
√
δ + 336D2L

= 2

sm+1−1∑

t=sm

ft(u) +
1

2
G(m), (58)

where the equality is by the definition in Eq. (14).
By the problem-dependent schedule mechanism, as stated in Lines 7, the cumulative

loss between [i, j] exceeds the threshold Cm = G(m), i.e.,
∑sm+1−1

t=sm ft(xt) ≥ Cm. Therefore,
together with Eq. (58), we can lower bound the cumulative loss of comparator u as,

sm+1−1∑

t=sm

ft(u) ≥
1

2

(
sm+1−1∑

t=sm

ft(xt)−
1

2
G(m)

)
≥ 1

2

(
Cm −

1

2
G(m)

)
=

1

4
Cm,

where the last equality is by the definition of threshold.

C.6 Proof of Lemma 7

Proof. We assume that the m-th base-learner is initialized at the beginning of interval
[i, j] ∈ C̃, in other words, i = sm, where sm denotes the m-th marker. Before time stamp i,
the schedule has registered m− 1 markers, i.e., from s1 to sm−1. By Lemma 6, we can lower
bound the cumulative loss of any comparator u ∈ X as,

sm−1∑

τ=s1

fτ (u) ≥
1

4

m−1∑

k=1

Ca ≥
C1

4
(m− 1).

The second inequality holds since Ck is monotonically increasing with respect to its index,
see the threshold generating function in Eq. (14).

Therefore, rearranging the above inequalities gives upper bound of quantity m,

m ≤ 1 +
4

C1

sm−1∑

τ=s1

fτ (u) ≤ 1 +
4

C1

t∑

τ=1

fτ (u),

where the last inequality makes use of the non-negative assumption on loss functions.
Choosing u ∈ argmina∈X

∑t
τ=1 fτ (a) as the minimizer for the given interval [i, j] gives

m ≤ 1 +
4

C1
min
u∈X

t∑

τ=1

fτ (u). (59)
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Plugging Eq. (59) into Eq. (33) in Lemma 5, we prove the second result in this lemma,

t∑

τ=i

fτ (xτ )−min
u∈X

t∑

τ=i

fτ (u) ≤ α(t) + β(t)

√√√√min
u∈X

t∑

τ=i

fτ (u) = O
(√

F[i,t] logF[1,t]

)
,

where

α(t) = (27GD + 72D2L) ln

(
3 +

8

C1

t∑

τ=1

fτ (u)

)
+ 72D2Lµ2t + 9GDµt + 6D

√
δ + 288D2L,

β(t) = 4D
√
L



√√√√ln

(
3 +

8

C1

t∑

τ=1

fτ (u)

)
+ µt + 2


 ,

with µt = ln(1 + (1 + ln(1 + t))/(2e)).

Appendix D. Omitted Details for Interval Dynamic Regret Minimization

In this section, we present the proof of Theorem 5, the small-loss type interval dynamic regret
bound with 1 projection complexity. Appendix D.1 presents several key lemmas to prove the
main theorem, which can be viewed as extensions of lemmas presented in Appendix C.1 for
adaptive regret. Notably, we now enhance them by considering time-varying comparators
due to the interval dynamic regret, instead of a fixed comparator (within an interval) in the
adaptive regret. Appendix D.2 contains the proof of Theorem 5, and subsequent subsections
provide proofs for the aforementioned key lemmas.

D.1 Key Lemmas

This part collects several key lemmas for proving small-loss interval dynamic regret (Theo-
rem 5). The first lemma shows that our base-algorithm enjoys an anytime dynamic regret.

Lemma 8. Under Assumptions 1, 2, and 3, setting the step size pool as H =
{
ηj =

2j−1
√
5D2/(1 + 8LGDT ) | j ∈ [N ]

}
with N = ⌈2−1 log2((5D

2+2D2T )(1+8LGDT )/(5D2))⌉+
1 and εi,τ =

√
(lnN)/(1 +D2

∑τ−1
s=i ∥∇gs(ys)∥22), assume that the m-th base-learner de-

scribed in Algorithm 3 is initialized at the beginning of an interval [i, j] ∈ C̃, then this
base-learner ensures the following dynamic regret

t∑

τ=i

⟨∇gτ (yτ ),yτ,m − uτ ⟩

≤ 6D
√
L(lnN)Fx

[i,t] + 3
√
2(5D2 + 2DP[i,t])(1 + LFx

[i,t]) +
(6 +G2D2)

√
lnN

2

= O
(√

Fx
[i,t](1 + P[i,t])

)
,

which holds for any time stamp t ∈ [i, j] and any comparators sequence ui, . . . ,ut ∈ X . In
above, yτ,m denotes the decision of the m-th base-learner at time stamp τ , F[i,t] =

∑t
τ=i fτ (uτ )

denotes the cumulative loss of the comparators and P[i,t] =
∑t

τ=i+1∥uτ − uτ−1∥2 is the path-
length of comparators within the interval [i, t].
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Combining above lemma with the analysis of the meta-algorithm Adapt-ML-Prod (see
Lemma 4), we can obtain the interval dynamic regret for intervals in the problem-dependent
geometric covering intervals C̃.
Lemma 9. Under Assumptions 1, 2, and 3, for any interval I = [i, j] ∈ C̃ in the geometric
covers defined in Eq. (10), at the beginning of which we assume the m-th base-learner is
initialized, Algorithm 3 ensures

t∑

τ=i

fτ (xτ )− fτ (uτ )

≤
(
12D

√
ln(1 + 2m) + 4Dµt + 6D

√
lnN + 3

√
2(5D2 + 2DP[i,t])

)√
LF[i,t]

+
3L

2

(
12D

√
ln(1 + 2m) + 4Dµt + 6D

√
lnN + 3

√
2(5D2 + 2DP[i,t])

)2

+ 27GD ln(1 + 2m) + 9GDµt +
9

2

√
2(5D2 + 2DP[i,t]) +

3(6 +G2D2)
√
lnN

4
(60)

= O
(√

F[i,t]

(
P[i,t] + logm

)
+ P[i,t]

)
,

which holds for any time stamp t ∈ [i, j] and any comparators sequence ui, . . . ,ut ∈ X .
In above, F[i,t] =

∑t
τ=i fτ (uτ ) denotes the cumulative loss of the comparators and P[i,t] =∑t

τ=i+1∥uτ − uτ−1∥2 is the path-length of comparators within the interval [i, t].

As an analog to Lemma 6, with the components at hand, we would like to estimate
the cumulative loss

∑
t∈I ft(ut) in terms of the thresholds. However, our analysis shows

that, we cannot estimate the cumulative loss alone, instead with the path length together,
FI +PI =

∑
t∈I ft(ut) +

∑
t∈I∥ut−ut−1∥2 when comparing with a sequence of time-varying

comparators. Indeed, a similar phenomenon appears also in the generalization of small-loss
static regret to dynamic regret (Zhao et al., 2021b).

Lemma 10. Under Assumptions 1, 2, and 3, for any interval [sm, sm+1 − 1] determined by
two consecutive intervals sm and sm+1, where we denote by sm the m-th marker, Algorithm 3
ensures that for any comparators usm , . . . ,usm+1−1 ∈ X , we have

2

sm+1−1∑

t=sm

ft(ut) + (126L+ 5)

sm+1−1∑

t=sm+1

∥ut − ut−1∥2 ≥
1

2
Cm,

where Cm = G(m) is the m-th threshold with the threshold function G(·) defined at Eq. (18).

Lemma 11. Under Assumptions 1, 2, and 3, for any interval I = [i, j] ∈ C̃ in the geometric
covers and any time stamp t ∈ [i, j], the variable m specified in Lemma 9 can be bounded by

m ≤ O
(
F[i,t] + P[i,t]

)
.

This result can further imply that Algorithm 3 satisfies
t∑

τ=i

fτ (xτ )−
t∑

τ=i

fτ (uτ ) ≤ O
(√

F[i,t]

(
P[i,t] + log(P[1,t] + F[1,t])

)
+ P[i,t]

)
,

where F[i,t] =
∑t

τ=i fτ (uτ ) denotes the cumulative loss of the comparators and P[i,t] =∑t
τ=i+1∥uτ − uτ−1∥2 is the path-length of comparators within the interval [i, t].
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D.2 Proof of Theorem 5

Proof. The proof closely follows that of Theorem 4, with only the key steps outlined here.
For a comprehensive understanding of the techniques, readers may check the proofs in
Appendix C.2, where the problem setting is simpler with only a fixed comparator conisdered.

By a standard argument, we can identify markers sp and sq such that sp−1 ≤ r < sp
and sq ≤ s < sq+1. Drawing upon Lemma 19, a sequence of intervals I1, . . . , Iv exists where
i1 = p, iv ≤ q < iv+1, and v ≤ ⌈log2(q − p+ 2)⌉.

For the interval [r, sp − 1], we can directly bound the regret by the threshold of the
cumulative loss and obtain that

∑s
t=r ft(xt)−

∑s
t=q ft(ut) ≤

∑sp−1
t=sp−1

ft(xt) ≤ Cp−1 +GD,
due to the threshold mechanism and the non-negative property of loss functions. The threshold
generating function specified in Eq. (18) further indicates Cp−1 ≤ O (log(FT + PT )).

By Lemma 11, since I1 to Iv belong to the covering intervals, then our algorithm can enjoy
O(PIk +

√
FIk(PIk + log(PIk + FIk))) regret bound for k ∈ [v]. Summing up the interval

dynamic regret from I1 to Iv gives

s∑

t=sp

ft(xt)−
s∑

t=sp

ft(u) =

v−1∑

k=1

∑

t∈Ik

(ft(xt)− ft(u)) +
∑

t∈[siv ,s]

(ft(xt)− ft(u))

≤
v−1∑

k=1

O
(
PIk +

√
FIk

(
PIk + log(P[1,s] + F[1,s])

))

+O
(
P[iv ,s] +

√
F[iv ,s]

(
P[iv ,s] + log(P[1,s] + F[1,s])

))

≤ O
(
PI +

√
FI
(
PI + log(P[1,s] + F[1,s])

)
· v
)
,

where the last inequality makes use of Cauchy-Schwarz inequality and v denotes the number
of combined intervals. With Lemma 10, we can upper bound v through following steps,

F[sp,sq−1] + P[sp,sq−1] ≥
1

4

q−1∑

i=p

Ci ≥
C1

4
(q − p)⇒ v ≤ ⌈log2(q − p+ 2)⌉ ≤ O (log (FI + PI)) .

Combining the upper bounds of Cp−1 and v yields the following interval dynamic regret,

s∑

t=r

ft(xt)−
s∑

t=q

ft(ut)

≤ O
(
PI +

√
FI (PI + log(PT + FT )) · v

)
+ Cp−1 +GD

≤ O
(
PI +

√
FI (PI + log(PT + FT )) · log(PI + FI)

)
+O (log(FT + PT )) +GD

= O
(√

(FI + PI) (PI + log(PT + FT )) · log(PI + FI)
)
.

We mention that using a similar worst-case regret analysis to that in Appendix C.2 can
ensure a safety guarantee, which can strictly match the worst-case interval dynamic regret
bound in (Zhang et al., 2020). Details are omitted here.

50



D.3 Proof of Lemma 8

Proof. The proof is closely analogous to that of Theorem 3, except that this result can enjoy
the anytime dynamic regret. For any time stamp t ∈ [i, j], we can decompose the dynamic
regret into meta-regret and base-regret, and bound them respectively. Notice that, we add
the prefix “base:” to indicate that the regret analysis is over the base-algorithm level, as
Algorithm 3 actually has three layers.

t∑

τ=i

⟨∇gτ (yτ ),yτ,m − uτ ⟩ =
t∑

τ=i

⟨∇gτ (yτ ),yτ,m − yτ,m,k⟩
︸ ︷︷ ︸

base:meta-regret

+

t∑

τ=i

⟨∇gτ (yτ ),yτ,m,k − uτ ⟩
︸ ︷︷ ︸

base:base-regret

, (61)

where yτ,m,k denotes the k-th decision maintained by the m-th base-learner in Algorithm 3.

Upper bound of base:meta-regret. Notice that the meta-algorithm used for our dynamic
algorithm is Hedge with self-confident tuning learning rates, so we have

t∑

τ=i

⟨∇gτ (yτ ),yτ,m − yτ,m,k⟩ ≤ 3D

√√√√lnN

t∑

τ=i

∥∇gτ (yτ )∥22 +
(6 +G2D2)

√
lnN

2

≤ 6D

√√√√L lnN
t∑

τ=i

fτ (xτ ) +
(6 +G2D2)

√
lnN

2
. (62)

for any base:base-learner k ∈ [N ]. The above reasoning is similar to Eq. (30).

Upper bound of base:base-regret. By Theorem 8 and Lemma 14, it is easy to verify
once the learning rate is set, OGD ensures the following dynamic bound before tuning,

t∑

τ=i

⟨∇gτ (yτ ),yτ,m,k − uτ ⟩ ≤
5D2

2ηk
+
D

ηk

t∑

τ=i+1

∥uτ−1 − uτ∥2 + ηk

t∑

τ=i

∥∇gτ (yτ )∥22

≤ 5D2

2ηk
+
D

ηk

t∑

τ=i+1

∥uτ−1 − uτ∥2 + 4ηkL

t∑

τ=i

fτ (xτ ), (63)

for any base:base-learner k ∈ [N ].

Upper bound of anytime dynamic regret. Plugging (62) and (63) into (61), we can
obtain the dynamic regret by tracking k-th base-learner,

t∑

τ=i

⟨∇gτ (yτ ),yτ,m − uτ ⟩

≤ 6D

√√√√L lnN

t∑

τ=i

fτ (xτ ) +
5D2 + 2DP[i,t]

2ηk
+ 4ηkL

t∑

τ=i

fτ (xτ ) +
(6 +G2D2)

√
lnN

2
. (64)

Next, we specific the base-learner to compare with. We are aiming to choose the one

with a step size closest to the (near-)optimal step size till time t, η∗t =
√

5D2+2DPt
1+8LFx

[i,t]
, where

51



we denote Fx
[i,t] =

∑t
τ=i fτ (xτ ). With the same argument as the proof of Theorem 3, we can

identify the base-learner k satisfying ηk ≤ η∗t ≤ 2ηk. Tuning Eq. (64) with learning rate ηk
specified above demonstrates that the dynamic regret can be upper bounded by

6D

√√√√L lnN

t∑

τ=1

fτ (xτ ) + 3
√

2(5D2 + 2DP[i,t])(1 + LFx
[i,t]) +

(6 +G2D2)
√
lnN

2
. (65)

This ends the proof.

D.4 Proof of Lemma 9

Proof. By Theorem 1 and the combination of our algorithm, we can upper bound the interval
dynamic on interval I into two terms as before,

t∑

τ=i

fτ (xτ )− fτ (uτ ) ≤
t∑

τ=i

⟨∇gτ (yτ ),yτ − uτ ⟩

=

t∑

τ=i

⟨∇gτ (yτ ),yτ − yτ,m⟩︸ ︷︷ ︸
meta-regret

+ ⟨∇gτ (yτ ),yτ,m − uτ ⟩︸ ︷︷ ︸
base-regret

,

where the base-learner’s decision yτ,m comes from m-th base-learner, namely the efficient
dynamic algorithm, which is also a combination of several OGD algorithms and active on the
considered interval. Our algorithm is a three-layer structure indeed, but we hide the details
of the efficient dynamic algorithm by Lemma 8.

Upper bound of meta-regret. Our interval dynamic algorithm uses essentially the same
meta-algorithm and cover as efficient adaptive algorithm (see Algorithm 2), so we can directly
use Lemma 4 to upper bound the meta-regret,

t∑

τ=i

⟨∇gt(yt),yt − yt,m⟩ ≤ 4D
(
3
√
ln(1 + 2m) + µt

)√
LFx

[i,t] + 18GD ln(1 + 2m) + 6GDµt,

where we denote µt = ln(1 + (1 + ln(1 + t))/(2e)) and Fx
[a,b] =

∑b
τ=a fτ (xτ ).

Upper bound of base-regret. By the step size pool setting and Lemma 8, we know that
for any t ∈ [i, j], our base-algorithm ensures anytime dynamic regret,

t∑

τ=i

⟨∇gτ (yτ ),yτ,m − uτ ⟩ ≤ 6D
√
L lnNFx

[i,t] + 3
√
2L(5D2 + 2DPt)Fx

[i,t]

+ 3
√

2(5D2 + 2DP[i,t]) +
(6 +G2D2)

√
lnN

2
.

Upper bound of interval dynamic regret. Combining the meta-regret and base-regret
discussed above, applying Lemma 25 and omitting tedious calculations, we have

t∑

τ=i

fτ (xτ )− fτ (uτ )
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≤
(
12D

√
ln(1 + 2m) + 4Dµt + 6D

√
lnN + 3

√
2(5D2 + 2DP[i,t])

)√
LF[i,t]

+ 27GD ln(1 + 2m) + 9GDµt +
9

2

√
2(5D2 + 2DP[i,t]) +

3(6 +G2D2)
√
lnN

4

+
3L

2

(
12D

√
ln(1 + 2m) + 4Dµt + 6D

√
lnN + 3

√
2(5D2 + 2DP[i,t])

)2

≤ O
(√

F[i,t]

(
P[i,t] + logm

)
+ P[i,t] + logm

)
.

D.5 Proof of Lemma 10

Proof. We introduce the notation F[a,b] =
∑b

t=a ft(ut) to denote the cumulative loss of
comparators and P[a,b] =

∑b
t=a+1∥ut − ut−1∥2 to denote the path length of comparators. By

Lemma 9 and derivations, we can isolate FI and PI from the square root in (60), where we
choose I = [sm, sm+1 − 1] as there always exists an interval in the schedule to cover it:

∑

t∈I
fτ (xτ ) ≤ 2

∑

t∈I
fτ (uτ ) + (126L+ 5)DPI +

1

2
G(k),

where G(·) is the threshold function defined at Eq. (18). By the threshold mechanism, we
know that the cumulative loss within I exceeds Cm, which implies

2FI + (126L+ 5)DPI ≥
∑

t∈I
ft(xt)−

1

2
G(k) ≥ Ck −

1

2
G(k) = 1

2
Ck.

D.6 Proof of Lemma 11

Proof. We assume that the m-th base-learner is initialized at the beginning of interval
[i, j] ∈ C̃ (in other words, i = sm), where sm denotes the m-th marker. Before time stamp i,
the schedule has registered m− 1 markers, i.e., from s1 to sm−1. By Lemma 10, we have

m−1∑

k=1

(
2F[sk,sk+1−1] + (126L+ 5)DP[sk,sk+1−1]

)
≥ 1

2

m−1∑

u=1

Cu ≥
C1

2
(m− 1).

Rearranging the above inequality provides the upper bound of m as

m ≤ 1 +
2

C1

(
m−1∑

u=1

2F[su,su+1−1] + (126L+ 5)DP[su,su+1−1]

)

≤ 1 +
2

C1

(
2F[s1,sm−1] + (126L+ 5)DP[s1,sm−1]

)

≤ 1 +
2

C1

(
2F[1,t] + (126L+ 5)DP[1,t]

)
.

Substituting the upper bound of m into Lemma 9 finishes the proof.
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Appendix E. Omitted Details for Efficient Projection Examples

In this section, we present the omitted details for the two applications of our proposed
efficient projection scheme.

E.1 Online Non-stochastic Control

In this subsection, we provide the required assumptions for online non-stochastic control and
then provide the proof of Theorem 6.

E.1.1 Assumptions

The following assumptions are required by Theorem 6, which are commonly used in the
non-stochastic control analysis (Hazan and Singh, 2022; Zhao et al., 2023).

Assumption 4. The system matrices are bounded, i.e., ∥A∥op ≤ κA and ∥B∥op ≤ κB.
Besides, the disturbance ∥wt∥ ≤W holds for any t ∈ [T ].

Assumption 5. The cost function ct(x, u) is convex. Further, when ∥x∥, ∥u∥ ≤ D, it holds
that |ct(x, u)| ≤ βD2 and ∥∇xct(x, u)∥, ∥∇uct(x, u)∥ ≤ GcD.

Assumption 6. DAC controller π(K,M) satisfies

1. K is (κ, γ)-strongly stable, i.e., there exist matrices L,H satisfying A−BK = HLH−1,
such that,

(a) The spectral norm of L satisfies ∥L∥ ≤ 1− γ.
(b) The controller and transforming matrices and bounded, i.e., ∥K∥ ≤ κ and
∥H∥, ∥H−1∥ ≤ κ.

2. M ∈M such that
{
M = (M [1], . . . ,M [H]) ∈

(
Rdu×dx

)H | ∥M [i]∥op ≤ κBκ3(1− γ)i
}

.

E.1.2 Proof of Theorem 6

The challenge in proving Theorem 4 lies in accounting for the switching-cost while improving
the efficiency. The crucial observation is given by ∥Mt−1 −Mt∥F ≤ ∥M ′

t−1 −M ′
t∥F. This

relationship is derived by the nonexpanding property of projection operator (Nemirovski et al.,
2009). This implies that the switching-cost within the original domain can be constrained by
that in the surrogate domain, which the algorithm is designed to minimize.

Proof. The proof mainly follows the one of Scream.Control. We present the essential steps
to demonstrate the application of efficient reduction here and refer the interested readers to
Appendix C.2.3 in Zhao et al. (2022) for comprehensive proof.

We denote by ft(·) :MH+2 7→ R the truncated loss and the dynamic regret enjoys the
following decomposition:

T∑

t=1

ct(xt, ut)−
T∑

t=1

ct(x
πt
t , u

πt
t )
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=
T∑

t=1

ct(x
K
t (M0:t−1), u

K
t (M0:t))−

T∑

t=1

ct(x
K
t (M∗

0:t−1), u
K
t (M∗

0:t))

=
T∑

t=1

ct(x
K
t (M0:t−1), u

K
t (M0:t))−

T∑

t=1

ft(Mt−1−H:t)

︸ ︷︷ ︸
AT

+
T∑

t=1

ft(Mt−1−H:t)−
T∑

t=1

ft(M
∗
t−1−H:t)

︸ ︷︷ ︸
BT

+

T∑

t=1

ft(M
∗
t−1−H:t)−

T∑

t=1

ct(x
K
t (M∗

0:t−1), u
K
t (M∗

0:t))

︸ ︷︷ ︸
CT

.

Notice that AT and CT represent the approximation error induced by the truncated loss,
which does not involve the efficient reduction and can be bounded effectively. As for BT :

BT ≤
T∑

t=1

f̃t (Mt)−
T∑

t=1

f̃t (M
∗
t ) + λ

T∑

t=2

∥Mt−1 −Mt∥F + λ

T∑

t=2

∥∥M∗
t−1 −M∗

t

∥∥
F

≤
T∑

t=1

〈
∇f̃t (Mt) ,Mt −M∗

t

〉
+ λ

T∑

t=2

∥Mt−1 −Mt∥F + λ

T∑

t=2

∥∥M∗
t−1 −M∗

t

∥∥
F

≤
T∑

t=1

〈
∇gt

(
M ′
t

)
,M ′

t −M∗
t

〉
+ λ

T∑

t=2

∥Mt−1 −Mt∥F + λ

T∑

t=2

∥∥M∗
t−1 −M∗

t

∥∥
F

≤
T∑

t=1

〈
∇gt

(
M ′
t

)
,M ′

t −M∗
t

〉
+ λ

T∑

t=2

∥∥M ′
t−1 −M ′

t

∥∥
F
+ λ

T∑

t=2

∥∥M∗
t−1 −M∗

t

∥∥
F
,

where λ = (H + 2)2Lf is a constant. The first inequality is by the coordiante-Lipschitz
continuity of truncated function ft(·). The third inequality is by the reduction mechanism
and the final inequality is by ∥Mt−1−Mt∥F ≤ ∥M ′

t−1−M ′
t∥F derived from the nonexpanding

property of projection (Nemirovski et al., 2009) and that one can verify in general this
property holds for nearest point projection in Hilbert space.

Remind that Scream.Control employed in Algorithm 4 aim at minimizing the dynamic
regret with switching-cost in domainM′, which can guarantee Õ(

√
T (1 + PT )) regret bound

by Theorem 4 in Zhao et al. (2022). Thus, by taking into account that ∥∇gt (M ′
t)∥F ≤

∥∇f̃t (Mt)∥F by the efficient reduction mechanism, which is true under non-stochastic control
setting since the algorithm optimizes the linearized loss and employs the Frobenius norm as
the projection distance metric, we can derive our result.

E.2 Online Principal Component Analysis

This section provides omitted details for the online PCA problem. In Appendix E.2.1 we
provide the guarantee for base-algorithm and the lemma justifying the projection complexity.
Appendix E.2.2 presents the overall proof of Theorem 7.

E.2.1 Key Lemmas

The following lemma presents the base-regret for the employed gradient-based algorithm.
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Lemma 12. Assuming ∥Xt∥F ≤ 1 and k ≤ d
2 , then any base-algorithm employed in Algo-

rithm 5 specified as,

P̂s,′
t+1,i = P̂s

t,i − ηi∇gt(P̂s
t ), P̂s

t+1,i = P̂s,′
t+1,i

(
1{∥P̂s,′

t+1,i∥F≤
√
k} +

√
k

∥P̂t+1∥F
1{∥P̂s,′

t+1,i∥F>
√
k}

)
,

which is active during time span I = [r, s] ⊆ [T ] and is indexed by number i ∈ [T ], ensures
the following regret bound for any comparator P ∈ Pk by tuning learning rate as η = k(d−k)

d|I| ,

s∑

t=r

tr
(
∇gt(P̂s

t ) · P̂s
t,i

)
−

s∑

t=r

tr
(
∇gt(P̂s

t ) ·P
)
≤ O

(√
k · |I|

)
,

The above claim can be verified by the proof in Appendix. B of Nie et al. (2016) together
with ∥∇gt(P̂s

t )∥F ≤ ∥∇ft(P̂t)∥F, which can be verified by noticing that the loss function
ft(P) is coordiante-wise linear with P and we use Frobenius norm as the distance metric.

The following lemma provides the details to project decision onto domain P̂k.

Lemma 13 (Lemma 3.2 of Arora et al. (2013)). Let P′ ∈ Rd×d be a symmetric matrix, with
eigenvalues σ′1, . . . , σ

′
d and associated eigenvectors v′

1, . . . ,v
′
d . Its projection P = ΠP̂k

[P′]

onto the domain P̂k with respect to the Frobenius norm, is the unique feasible matrix which
has the same eigenvectors as P′, with the associated eigenvalues σ1, . . . , σd satisfying:

σi = max
(
0,min(1, σ′i + S)

)
, i ∈ [d],

with S ∈ R being chosen in such a way that
∑d

i=1 σi = k. Moreover, there exists an algorithm
to find S in an O(d log d) running time complexity.

E.2.2 Proof of Theorem 7

The proof of Theorem 7 enjoys much similarity as the one of efficient adaptive algorithm.
We refer the readers to Appendix 3 for more details.

Proof. We mainly present the key steps for applying our reduction. For any interval I =
[r, s] ⊆ [T ] and any comparator P ∈ Pk, starting with the linearity of expectation, we have,

s∑

t=r

E [ft (Pt)]− ft(P) =

s∑

t=r

E [tr ((I−Pt)Xt)]− tr ((I−P)Xt)

=

s∑

t=r

tr
(
(I− P̂t)Xt

)
− tr ((I−P)Xt)

=
s∑

t=r

tr
(
∇ft(P̂t) · P̂t

)
− tr

(
∇ft(P̂t) ·P

)

≤
s∑

t=r

tr
(
∇gt(P̂s

t ) · P̂s
t

)
− tr

(
∇gt(P̂s

t ) ·P
)
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=

s∑

t=r

tr
(
∇gt(P̂s

t ) · P̂s
t

)
−

s∑

t=r

tr
(
∇gt(P̂s

t ) · P̂s
t,i

)

︸ ︷︷ ︸
meta-regret

+
s∑

t=r

tr
(
∇gt(P̂s

t ) · P̂s
t,i

)
−

s∑

t=r

tr
(
∇gt(P̂s

t ) ·P
)

︸ ︷︷ ︸
base-regret

,

where the first inequality is by Theorem 1, which is true under online PCA setting, since the
optimization operates within the Hilbert space.

Since we employ Adapt-ML-Prod and standard geometric covering schedule to ensem-
ble the base-learners, then one can expect that meta-regret ≤ O

(√
k · |I| · log T

)
. By

Lemma 12, the base-regret is of order base-regret ≤ O(
√
k · |I|). Combining these two

bounds together, we finish the proof.

Appendix F. Useful Lemmas

This section collects some lemmas useful for the proofs.

F.1 OGD and Dynamic Regret

This part provides the dynamic regret of online gradient descent (OGD) (Zinkevich, 2003)
and scale-free online gradient descent (SOGD) (Orabona and Pál, 2018) from the view of
online mirror descent (OMD), which is a common and powerful online learning framework.
Following the analysis in (Zhao et al., 2021b), we can obtain dynamic regret of OGD and
SOGD in a unified view owing to the versatility of OMD. Specifically, OMD updates by

xt+1 = argmin
x∈X

ηt⟨∇ft(xt),x⟩+Dψ(x,xt), (66)

where ηt > 0 is the time-varying step size, ft(·) : x 7→ R is the convex loss function, and Dψ(·, ·)
is the Bregman divergence induced by ψ(·) defined as Dψ(x,y) = ψ(x)−ψ(y)−⟨∇ψ(y),x−y⟩.
OMD enjoys the following dynamic regret guarantee (Zhao et al., 2021b).

Theorem 8 (Theorem 1 of Zhao et al. (2021b)). Suppose that the regularizer ψ : X 7→ R is
1-strongly convex with respect to the norm ∥ · ∥. The dynamic regret of Optimistic Mirror
Descent (OMD) whose update rule specified in (66) is bounded as follows:

T∑

t=1

ft(xt)−
T∑

t=1

ft(ut)

≤
T∑

t=1

ηt∥∇ft(xt)∥2∗ +
T∑

t=1

1

ηt

(
Dψ(ut,xt)−Dψ(ut,xt+1)

)
−

T∑

t=1

1

ηt
Dψ(xt+1,xt),

which holds for any comparator sequence u1, . . . ,uT ∈ X .
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Choosing ψ(x) = 1
2∥x∥22 will lead to the update form of online gradient descent used as

base learners in our algorithm:

xt+1 = argmin
x∈X

ηt⟨∇ft(xt),x⟩+
1

2
∥x− xt∥22, (67)

where the Bregman divergence becomes Dψ(x,xt) = 1
2∥x− xt∥22. We proceed to show the

dynamic regret of online gradient descent (OGD),

Lemma 14. Under Assumption 2, by choosing static step size ηt = η > 0, Online Gradient
Descent defined in Eq. (67) satisfies:

T∑

t=1

ft(xt)−
T∑

t=1

ft(ut) ≤
7D2

4η
+
D

η

T∑

t=2

∥ut−1 − u2∥2 + η
T∑

t=1

∥∇ft(xt)∥22

for any comparator sequence u1, . . . ,uT ∈ X .

Proof. Applying Theorem 8 with the ψ(x) = 1
2∥x∥22 and fixed step size ηt = η > 0 gives

T∑

t=1

ft(xt)−
T∑

t=1

ft(ut)

≤ 1

2η

T∑

t=1

(
∥ut − xt∥22 − ∥ut − xt+1∥22

)
+ η

T∑

t=1

∥∇ft(xt)∥22 −
1

2η

T∑

t=1

∥xt − xt+1∥22

≤ 1

2η

T∑

t=1

(
∥xt∥22 − ∥xt+1∥22

)
+

1

η

T∑

t=1

(xt+1 − xt)
⊤ ut + η

T∑

t=1

∥∇ft(xt)∥22

≤ 1

2η
∥x1∥22 +

1

η

(
x⊤
T+1uT − x⊤

1 u1

)
+

1

η

T∑

t=2

(ut−1 − ut)
⊤xt + η

T∑

t=1

∥∇ft(xt)∥22

≤ 7D2

4η
+
D

η

T∑

t=2

∥ut−1 − u2∥2 + η
T∑

t=1

∥∇ft(xt)∥22,

where the last inequality is due to the domain boundedness. This ends the proof.

Lemma 15 (Stability Lemma). Suppose the regularizer ψ : X 7→ R is 1-strongly convex with
respect to the norm ∥·∥. The subsequent decisions xt+1,xt specialized in the OMD update
rule (66) satisfy ∥xt+1 − xt∥ ≤ ∥ηt∇ft(xt)∥∗.

F.2 Self-confident Tuning

Orabona and Pál (2018) proved the regret bound of SOGD, and for completeness, we here
provide the regret analysis under the OMD framework. Indeed, SOGD can be treated as
OMD with a self-confident learning rate. Thus, we have the following lemma.
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Lemma 16. Under Assumptions 1 and 2, the OMD algorithm defined in equation (66) with
the choices of regularizer ψ(x) = 1

2∥x∥22 and time-varying learning rates ηt = D

2
√
δ+

∑t−1
s=1 ∥∇fs(xs)∥22

with δ > 0 enjoys the following guarantee:

T∑

t=1

ft(xt)−
T∑

t=1

ft(u) ≤ 2D ·

√√√√δ +
T∑

t=1

∥∇ft(xt)∥22.

Proof. Applying Theorem 8, we have that for any comparator u ∈ X ,

T∑

t=1

ft(xt)−
T∑

t=1

ft(ut)

≤
T∑

t=1

1

2ηt

(
∥u− xt∥22 − ∥u− xt+1∥22

)
+

T∑

t=1

ηt∥∇ft(xt)∥22 −
T∑

t=1

1

2ηt
∥xt − xt+1∥22

≤ 1

2η1
∥u− x1∥22 +

T∑

t=2

(
1

ηt
− 1

ηt−1

) ∥u− xt∥22
2

+

T∑

t=1

ηt∥∇ft(xt)∥22

≤ D2

2η1
+
D2

2

T∑

t=2

(
1

ηt
− 1

ηt−1

)
+

T∑

t=1

ηt∥∇ft(xt)∥22

=
D2

2ηT
+

T∑

t=1

ηt∥∇ft(xt)∥22.

Then, applying Lemma 21 to the second term and using the definition of ηT , we obtain the
following regret bound:

T∑

t=1

ft(xt)−
T∑

t=1

ft(ut) ≤ D ·

√√√√δ +
T∑

t=1

∥∇ft(xt)∥22 +D



√√√√δ +

T∑

t=1

∥∇ft(xt)∥22 −
√
δ




≤ 2D ·

√√√√δ +
T∑

t=1

∥∇ft(xt)∥22,

which completes the proof.

To bound the meta-regret of our dynamic methods, we introduce the FTRL lemma (Orabona,
2019, Corollary 7.8) under the time-varying learning rates.

Lemma 17 (FTRL Lemma). Suppose that the regularizer function ψ : X 7→ R is α-strongly
convex with respect to the norm ∥ · ∥. Let ft be a sequence of convex loss functions and
ψt(x) = 1

ηt
(ψ(x) − minx′∈X ψ(x

′)), where ηt+1 ≤ ηt holds for t ∈ [T ]. Then the decision
sequence xt generated by the following FTRL update rule

xt = argmin
x∈X

{
ψt(x) +

t−1∑

τ=1

ft(x)

}
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satisfies the following regret upper bound for any u ∈ X ,

T∑

t=1

ft(xt)− ft(u) ≤
ψ(u)−minx∈X ψ(x)

ηT+1
+

1

2α

T∑

t=1

ηt∥∇ft(xt)∥2∗.

Based on it, we can derive the regret upper bound for the Hedge algorithm with self-
confident learning rates.

Lemma 18. Consider the prediction with expert advice setting with N experts and the linear
loss ft(x) = ⟨ℓt,x⟩, where ℓt ∈ Rd. Then the self-confident tuning Hedge, whose initial
decision is p1 = 1/N · 1 and update rules are

pt+1,i ∝ exp

(
εt+1

t∑

τ=1

ℓτ,i

)
with εt+1 =

√
lnN

1 +
∑t

τ=1∥ℓτ∥2∞

ensures the following regret guarantee: for any i ∈ [N ]

T∑

t=1

⟨pt, ℓt⟩ −
T∑

t=1

ℓt,i ≤ 3

√√√√lnN ·
(
1 +

T∑

t=1

∥ℓt∥2∞

)
+

√
lnN

2
·max
t∈[T ]
∥ℓt∥2∞.

Proof. It is easy to verify that this Hedge update can be treated as a special case of the
time-varying FTRL algorithm by choosing ψ(p) =

∑N
s=1 ps ln ps, which is 1-strongly convex

with respect to ∥ · ∥1, and ψt(p) = 1
εt
ψ(p). Thus, by Lemma 17, we have

T∑

t=1

⟨pt, ℓt⟩ −
T∑

t=1

ℓt,i ≤
lnN

εT+1
+

1

2

T∑

t=1

εt∥ℓt∥2∞

≤ lnN

εT+1
+

√
lnN

2
·


4

√√√√1 +

T∑

t=1

∥ℓt∥2∞ +max
t∈[T ]
∥ℓt∥2∞




= 3

√√√√lnN ·
(
1 +

T∑

t=1

∥ℓt∥2∞

)
+

√
lnN

2
·max
t∈[T ]
∥ℓt∥2∞,

where the first inequality chooses u as the one-hot vector with all entries being 0 except the
i-th one as 1, and second inequality is by Lemma 23.

F.3 Facts on Geometric Covers

Lemma 19 (Lemma 11 of Zhang et al. (2019)). Let [sp, sq] ⊆ [T ] be an arbitrary interval
that starts from a marker sp and ends at another marker sq. Then, we can find a sequence
of consecutive intervals I1 = [si1 , si2 − 1], I2 = [si2 , si3 − 1], . . ., Iv = [siv , siv+1 − 1] ∈ C̃ such
that i1 = p, iv ≤ q < iv+1, and v ≤ ⌈log2(q − p+ 2)⌉.
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F.4 Technical Lemmas

In this part, we present several technical lemmas used in the proofs.

Lemma 20 (Lemma 3.1 of Srebro et al. (2010)). For an L-smooth and non-negative function
f : X 7→ R+, it holds for all x ∈ X that ∥∇f(x)∥2 ≤

√
4Lf(x).

Lemma 21 (Lemma 3.5 of Auer et al. (2002)). Let l1, . . . , lT be non-negative real numbers.
Then

T∑

t=1

lt√
δ +

∑t
i=1 li

≤ 2



√√√√δ +

T∑

t=1

lt −
√
δ


 .

Lemma 22 (Lemma 14 of Gaillard et al. (2014)). Let a0 > 0 and a1, . . . , am ∈ [0, 1] be real
numbers and let f : (0,+∞) 7→ [0,+∞) be a non-increasing function. Then

m∑

i=1

aif(a0 + · · ·+ ai−1) ≤ f(a0) +
∫ a0+a1+···+am

a0

f(u) du.

Lemma 23 (Lemma 4.8 of Pogodin and Lattimore (2019)). Let a1, a2, . . . , aT be non-negative
real numbers. Then

T∑

t=1

at√
1 +

∑t−1
s=1 as

≤ 4

√√√√1 +
T∑

t=1

at +max
t∈[T ]

at.

Lemma 24 (Lemma 5 of Shalev-Shwartz (2007)). For any x, y, a ∈ R+ satisfying x−y ≤ √ax,
we have x− y ≤ √ay + a.

Based on Lemma 24, we can achieve the following variant.

Lemma 25. For any x, y, a, b ∈ R+ satisfying x− y ≤ √ax+ b, x− y ≤ √ay + ab+ a+ b.

Lemma 26 (Lemma 13 of Gaillard et al. (2014)). For all x > 0 and α ≥ 1, x ≤ xα + α−1
e .
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