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Abstract
In this note, we revisit non-stationary linear bandits, a variant of stochastic linear bandits with
a time-varying underlying regression parameter. Existing studies develop various algorithms and
show that they enjoy an Õ(T 2/3P

1/3
T ) dynamic regret, where T is the time horizon and PT is

the path-length that measures the fluctuation of the evolving unknown parameter. However, we
discover that a serious technical flaw makes the argument ungrounded. We revisit the analysis
and present a fix. Without modifying original algorithms, we can prove an Õ(T 3/4P

1/4
T ) dynamic

regret for these algorithms, slightly worse than the rate as was anticipated. We also show some
impossibility results for the key quantity concerned in the regret analysis. Note that the above
dynamic regret guarantee requires an oracle knowledge of the path-length PT . Combining the
bandit-over-bandit mechanism, we can also achieve the same guarantee in a parameter-free way.

1. Introduction

Non-stationary linear bandits (Cheung et al., 2019a) is a variant of classical stochastic linear bandits,
in which the underlying regression parameter can change over time. Concretely speaking, at itera-
tion t, the player makes a decision Xt from a feasible set X ⊆ Rd, and then observes the reward rt
satisfying E[rt|Xt] = X>t θt, where θt is the unknown regression parameter at iteration t. Different
from the standard stochastic setting, non-stationary linear bandits allows the unknown parameter to
vary over time, whose evolution is often called path-length defined as PT =

∑T
t=2‖θt−1 − θt‖2,

naturally measuring the non-stationarity of environments. The player’s goal is to minimize the
(pseudo) dynamic regret, defined as

D-RegretT =

T∑
t=1

max
x∈X

x>θt −
T∑
t=1

X>t θt, (1)

namely, the cumulative regret against the optimal strategy that has full information of unknown
parameters. The upper bound of dynamic regret depends on both horizon T and path-length PT .

Related work. In the pioneering work (Cheung et al., 2019a), the authors propose the non-
stationary linear bandits model and establish the minimax lower bound of Ω(T 2/3P

1/3
T ). On the

upper bound sides, Cheung et al. (2019a) design the WindowUCB algorithm to deal with changing
environments via the upper confidence bound strategy with sliding-window least square estimator,
and they prove an Õ(T 2/3P

1/3
T ) dynamic regret when the path-length PT is known a priori. The

Õ(·)-notation suppresses logarithmic factors in T . When such prior information is unavailable, the
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authors further develop the bandit-over-bandit mechanism to attain a parameter-free algorithm with-
out requiring knowledge of PT , but with a suboptimal rate of Õ(T 2/3(max{PT , d−1/2T 1/4})1/3).
In the subsequent studies, Russac et al. (2019) propose the WeightUCB algorithm based on the
weighted least square estimator and also prove an Õ(T 2/3P

1/3
T ) dynamic regret; Zhao et al. (2020)

develop the RestartUCB algorithm and show that this simple restarted strategy is sufficient to
achieve the same dynamic regret guarantee. There are also other variants based on perturbation
methods (Kim and Tewari, 2020) and extensions to generalized linear bandits (Russac et al., 2020).

Our result. In this note, we reveal that the proof of a key lemma in previous analysis (Cheung
et al., 2019b, Lemma 3) has serious technical flaw, which makes the final dynamic regret guaran-
tee ungrounded. We provide a fix for the analysis and prove an Õ(T 3/4P

1/4
T ) dynamic regret for

the three mainstream algorithms (WindowUCB (Cheung et al., 2019a), WeightUCB (Russac et al.,
2019), and RestartUCB (Zhao et al., 2020)). The attained dynamic regret bound is slightly worse
than the Õ(T 2/3P

1/3
T ) bound as was anticipated. We further show some impossibility results for the

quantity concerned in the regret analysis. Note that the aforementioned dynamic regret guarantees
require an oracle knowledge of the path-length PT . It turns out that combining the bandit-over-
bandit mechanism, this Õ(T 3/4P

1/4
T ) dynamic regret bound is also achievable in a parameter-free

way, namely, without requiring prior knowledge of PT ahead of time.

2. Our Result

In this section, we revisit a key technical lemma that is commonly used for regret analysis in
non-stationary linear bandits algorithms including WindowUCB, WeightUCB, and RestartUCB.
For simplicity, we will focus on the RestartUCB algorithm, since the simple restarted strategy is
sufficient to deliver the same dynamic regret guarantee as indicated by Zhao et al. (2020).

We first restate the problem setup and assumptions below, and then review the RestartUCB algo-
rithm in Section 2.1. Next, we spot the technical flaws of original proofs in Section 2.2. We present
new analysis for a fix and further discussion some impossibility results in Section 2.3. Finally, we
give the overall dynamic regret analysis in Section 2.4.

Problem Setup. In non-stationary (infinite-armed) linear bandits, at each iteration t, let xt ∈ X ⊆
Rd be the contextual information and rt be the reward that is linearly parameterized by

rt = x>t θt + ηt, (2)

where θt ∈ Rd is the unknown parameter and ηt is the noise with tail conditions specified below.

Assumptions. The noise ηt is conditionally R-sub-Gaussian with a fixed constant R > 0, i.e.,
E[ηt|X1:t, η1:t−1] = 0 and ∀λ ∈ R, E[exp(ληt)|X1:t, η1:t−1] ≤ exp(λ2R2/2). The feasible set and
unknown parameters are bounded, i.e., ∀x ∈ X , ‖x‖2 ≤ L, and ‖θt‖2 ≤ S holds for all t ∈ [T ].

2.1 RestartUCB Algorithm

The RestartUCB algorithm (Zhao et al., 2020) proceeds in epochs. At each iteration, the algo-
rithm first estimates the unknown regression parameter from historical data within the epoch, and
then constructs upper confidence bounds of the expected reward for selecting the arm. Finally, the
algorithm is periodically restarted to be resilient to the drift of underlying parameter θt.
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Algorithm 1 RestartUCB (Zhao et al., 2020)
Input: time horizon T , epoch size H , confidence δ, regularizer λ, scaling parameters S and L
1: Set epoch counter j = 1
2: while j ≤ dT/He do
3: Set τ = (j − 1)H
4: Initialize Xτ ∈ X
5: Vτ = λId, Sτ = 0
6: for t = τ + 1, . . . , τ +H − 1 do
7: Compute θ̂t = V −1t−1St, and βt by (5) with t0 = τ

8: Select Xt = arg maxx∈X {x>θ̂t + βt‖x‖V −1
t−1
}

9: Receive the reward rt
10: Update Vt = Vt−1 +XtX

>
t , St = St−1 + rtXt

11: end for
12: Set j = j + 1
13: end while

Specifically, at iteration t, RestartUCB adopts the regularized least square estimator by only
exploiting data in the current epoch,

θ̂t = arg min
θ

λ‖θ‖22 +

t−1∑
s=t0

(X>s θ − rs)2, (3)

where t0 is the starting point of the current epoch, and λ > 0 is the regularization coefficient.
Clearly, θ̂t admits a closed-form solution as θ̂t = V −1t−1

(∑t−1
s=t0

rsXs

)
, where Vt−1 = λI +∑t−1

s=t0
XsX

>
s . The algorithm adopts the principle of “optimism in the face of uncertainty” (Auer,

2002) and chooses the arm that maximizes its upper confidence bound,

Xt = arg max
x∈X

{
x>θ̂t + βt‖x‖V −1

t−1

}
, (4)

where βt is the radius of confidence region set by

βt =
√
λS +R

√
2 log

1

δ
+ d log

(
1 +

(t− t0)L2

λd

)
. (5)

The overall algorithm is summarized in Algorithm 1.

2.2 Technical flaws in previous analysis

Previous studies show an Õ(T 2/3P
1/3
T ) dynamic regret for non-stationary linear bandits (including

WindowUCB, WeightUCB, and RestartUCB, etc), however, the technical reasoning suffers from
some gaps and makes the overall regret guarantee ungrounded. In the following, we will spot the
flaws of their original proofs, and then present the new analysis for a fix in the next subsection.

Indeed, the flaw appears in a key technical lemma for regret analysis of WindowUCB, the pi-
oneering study of non-stationary linear bandits (Cheung et al., 2019b, Lemma 3). The flaw is
unfortunately inherited by the later studies, including WeightUCB (Russac et al., 2019, Theorem 2),
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RestartUCB (Zhao et al., 2020, Lemma 3), and perturbation based method (Kim and Tewari, 2020,
Theorem 7). To be more concrete, Lemma 3 of Cheung et al. (2019b) (also see Lemma 3 of Zhao
et al. (2020)) claims that for any t ∈ [T ],∥∥∥∥∥V −1t−1

( t−1∑
s=t0

XsX
>
s (θs − θt)

)∥∥∥∥∥
2

≤
t−1∑
p=t0

‖θp − θp+1‖2. (6)

We restate their proof of the above claim (Cheung et al., 2019b, Appendix B) as follows:∥∥∥∥∥V −1t−1

( t−1∑
s=t0

XsX
>
s (θs − θt)

)∥∥∥∥∥
2

=

∥∥∥∥∥V −1t−1

( t−1∑
s=t0

XsX
>
s

( t−1∑
p=s

(θp − θp+1)
))∥∥∥∥∥

2

=

∥∥∥∥∥V −1t−1

( t−1∑
p=t0

( p∑
s=t0

XsX
>
s (θp − θp+1)

))∥∥∥∥∥
2

≤
t−1∑
p=t0

∥∥∥∥∥V −1t−1

( p∑
s=t0

XsX
>
s

)
(θp − θp+1)

∥∥∥∥∥
2

≤
t−1∑
p=t0

σmax

(
V −1t−1

( p∑
s=t0

XsX
>
s

))
‖θp − θp+1‖2

≤
t−1∑
p=t0

‖θp − θp+1‖2, (7)

where σmax(·) is the largest singular value. The key is the last step (7) but its proof is questionable:
they need to show the following results holds universally for all p ∈ {t0, . . . , t− 1},

σmax

(
V −1t−1

( p∑
s=t0

XsX
>
s

))
≤ 1. (8)

To this end, denoted by A =
∑p

s=t0
XsX

>
s , the authors show that V −1t−1A shares the same charac-

teristics polynomial with V −1/2t−1 AV
−1/2
t−1 , namely, det(ηI − V −1t−1A) = det(ηI − V −1/2t−1 AV

−1/2
t−1 )

holds for any η. Since V −1/2t−1 AV
−1/2
t−1 is clearly symmetric positive semi-definite, they claim that

z>V −1t−1Az ≥ 0 (9)

also holds for z ∈ S(1) = {x | ‖x‖2 = 1}, which is crucial for their remaining proof.

σmax

(
V −1t−1

( p∑
s=t0

XsX
>
s

))
= sup

z∈S(1)
z>V −1t−1

(
p∑

s=t0

XsX
>
s

)
z (10)

(9)
≤ sup

z∈S(1)

z>V −1t−1

( p∑
s=t0

XsX
>
s

)
z + z>V −1t−1

( t−1∑
s=p+1

XsX
>
s

)
z + λz>V −1t−1z

 (11)

= sup
z∈S(1)

z>V −1t−1Vt−1z = 1.
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However, we identify that there are two issues in the above arguments, First, the step in (10) doubt-
ful. For a matrix M ∈ Rm×n, we have ‖M‖2 = sup‖x‖2=1 sup‖y‖2=1|y>Mx|, while it is not
warranted that ‖M‖2 = sup‖z‖2=1|z>Mz| which is seemingly important for the following argu-
ments. Regardless of this first issue, the second issue about the claim (9) and the result in (11). We
discover that the claim (9) is even more severe. We discover that the claim (9) is ungrounded (at
least its current proof cannot stand for the correctness). The big caveat is that V −1t−1A ∈ Rd×d is not
guaranteed to be symmetric. The logic behind the claim is that, suppose P,Q ∈ Rd×d are with the
same characteristics polynomial, i.e., det(ηI −Q) = det(ηI − P ) holds for any η, and meanwhile
P is symmetric positive semi-definite (which guarantees z>Pz ≥ 0 for any z ∈ Rd), then we can
also have z>Qz ≥ 0 for any z ∈ Rd. Unfortunately, the reasoning is not correct, and we give a
simple counterexample. Let P be the 2-dim identity matrix [1, 0; 0, 1], and Q = [1,−10; 0, 1] is an
asymmetric matrix, then clearly det(ηI−P ) = det(ηI−Q) = (η− 1)2 is true for any η; however,
z>Qz ≥ 0 does not hold in general, for example, z>Qz = −8 < 0 when z = (1, 1)>.

To logic behind the claim is that, suppose P,Q ∈ Rd×d are with the same characteristics poly-
nomial, i.e., det(ηI −Q) = det(ηI − P ) holds for any η, and meanwhile P is symmetric positive
semi-definite (which guarantees z>Pz ≥ 0 for any z ∈ Rd), then we can also have z>Qz ≥ 0
for any z ∈ Rd. Unfortunately, the reasoning is not correct, and we give a simple counterexample.
Let P be the 2-dim identity matrix [1, 0; 0, 1], and Q = [1,−10; 0, 1] is an asymmetric matrix, then
clearly det(ηI − P ) = det(ηI − Q) = (η − 1)2 is true for any η; however, z>Qz ≥ 0 does not
hold in general, for example, z>Qz = −8 < 0 when z = (1, 1)>.

2.3 New analysis

We provide a new analysis to fix the technical flaw and give a valid upper bound for the key quantity
σmax

(
V −1t−1

(∑p
s=t0

XsX
>
s

))
. As shown below, there will be an extra L2

√
dH/λ coefficient in our

result, comparing with the claim in (6) as was anticipated. At the end of this subsection, we will
further show that the square-root dependence on restarting period H is dishearteningly necessary.

Lemma 1. For any t ∈ [T ], we have∥∥∥∥∥V −1t−1

( t−1∑
s=t0

XsX
>
s (θs − θt)

)∥∥∥∥∥
2

≤ L
√
dH

λ

t−1∑
p=t0

‖θp − θp+1‖2.

Proof We continue arguments presented in (7). Denote by S(1) = {x | ‖x‖2 = 1} the unit sphere.∥∥∥∥∥V −1t−1

( p∑
s=t0

XsX
>
s

)∥∥∥∥∥
2

= sup
z∈S(1)

sup
z̃∈S(1)

∣∣∣∣∣z>V −1t−1

( p∑
s=t0

XsX
>
s

)
z̃

∣∣∣∣∣
=

∣∣∣∣∣z>∗ V −1t−1

( p∑
s=t0

XsX
>
s

)
z̃∗

∣∣∣∣∣ (let z∗, z̃∗ denote the optimizer)

≤ ‖z∗‖V −1
t−1

∥∥∥∥∥
p∑

s=t0

Xs(X
>
s z̃∗)

∥∥∥∥∥
V −1
t−1

≤ ‖z∗‖V −1
t−1

∥∥∥∥∥
p∑

s=t0

Xs‖Xs‖2‖z̃∗‖2

∥∥∥∥∥
V −1
t−1
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≤ L√
λ

∥∥∥∥∥
p∑

s=t0

Xs

∥∥∥∥∥
V −1
t−1

≤ L√
λ

p∑
s=t0

‖Xs‖V −1
t−1

≤ L√
λ

√
H

√√√√ p∑
s=t0

‖Xs‖2V −1
t−1

(by Cauchy-Schwarz inequality)

≤ L
√
dH

λ
.

In above, the first equation makes use of the property of the matrix 2-norm: for a matrixM ∈ Rm×n,
‖M‖2 = sup‖x‖2=1 sup‖y‖2=1|x>My|, whose proof can be found from the book (Meyer, 2000,
Chapter 5, Eq. (5.2.9)). Moreover, we use the fact that for any x, we have ‖x‖V −1

t−1
≤ ‖x‖2/

√
λ as

Vt−1 � λI . Besides, the last step follows from the fact: for any p ∈ {t0, . . . , t− 1},
p∑

s=t0

‖Xs‖2V −1
t−1

=

p∑
s=t0

Tr(X>s V
−1
t−1Xs) = Tr

(
V −1t−1

p∑
s=t0

XsX
>
s

)

≤ Tr

(
V −1t−1

p∑
s=t0

XsX
>
s

)
+

t−1∑
s=p+1

X>s V
−1
t−1Xs + λ

d∑
i=1

e>i V
−1
t−1ei (12)

= Tr

(
V −1t−1

p∑
s=t0

XsX
>
s

)
+ Tr

V −1t−1

t−1∑
s=p+1

XsX
>
s

+ Tr

(
V −1t−1λ

d∑
i=1

eie
>
i

)
= Tr(Id) = d.

Hence, we complete the proof.

Impossibility. We final note that the desirable claim (8) is actually impossible. In the following,
we will construct a hard problem instance to show that the key quantity σmax

(
V −1t−1

(∑p
s=t0

XsX
>
s

))
cannot be universally upper bounded by any constant without square-root dependence on H .

For notational convenience, we focus on the first restarting epoch, so the starting index t0 = 1.
Let L = 1 and λ = 1. We construct the feature as

X1 = . . . = Xp =

[
1
√
p
,

√
p− 1
√
p

]>
, and Xp+1 = . . . = XH =

[
1√

H − p
,

√
H − p− 1√
H − p

]>
.

(13)
Denote by A =

∑p
s=1XsX

>
s and B =

∑H
s=p+1XsX

>
s , then the covariance matrix is Vt−1 =

A+B + Id. Under such cases, considering the checkpoint of p = bH/3c, we can prove that

‖V −1t−1A‖2 = σmax(V −1t−1A) ≥ 0.0564
√
H. (14)

The proof involves some tedious calculations and is included in Appendix A. Moreover, we report
some numerical results for validation: when H = 3000, σmax(V −1t−1A) = 5.852 and the theoretical
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lower bound is 0.0564
√
H = 3.087; when H = 30000, σmax(V −1t−1A) = 18.474 and the theoretical

lower bound is 0.0564
√
H = 9.763.

2.4 Regret Analysis

Based on key technical lemma in Lemma 1, we have the following estimation error bound.

Lemma 2. For any t ∈ [T ] and δ ∈ (0, 1), with probability at least 1 − δ, the following holds for
all x ∈ X ,

|x>(θt − θ̂t)| ≤ L2

√
dH

λ

t−1∑
p=t0

‖θp − θp+1‖2 + βt‖x‖V −1
t−1
, (15)

where βt is the radius of confidence region same as defined in (5).

Comparing with the original result (Zhao et al., 2020, Lemma 1), the difference lies in the
coefficient of the path-length

∑t−1
p=t0
‖θp − θp+1‖2. The original coefficient is 1, but its proof has

serious flaws; the new analysis gives L2
√
dH/λ, which isO(

√
dH) worse than the anticipated one.

Based on Lemma 2, we can upper-bound the dynamic regret within each epoch (Theorem 3),
and then sum over epochs to obtain the guarantee of the whole time horizon (Theorem 4).

Theorem 3. For each epoch E whose size is H and any δ ∈ (0, 1), with probability at least 1− 2δ,
the dynamic regret within the epoch is upper bounded by

D-Regret(E) ≤ 2L2

√
d

λ
·H

3
2P(E) + 2βH

√
2dH log

(
1 +

L2H

λd

)
,

where βH =
√
λS +R

√
2 log(1/δ) + d log

(
1 + HL2

λd

)
is the confidence radius of the epoch, and

P(E) denotes the path-length within epoch E , i.e., P(E) =
∑

t∈E‖θt−1 − θt‖2.

By summing regret over epochs, we obtain dynamic regret over of the whole time horizon.

Theorem 4. With probability at least 1 − 1/T , the dynamic regret of RestartUCB (Algorithm 1)
over the whole time horizon is upper bounded by

D-RegretT =
T∑
t=1

max
x∈X

x>θt −
T∑
t=1

X>t θt ≤ Õ
(
d

1
2H

3
2PT + dT/

√
H
)
, (16)

where PT =
∑T

t=2‖θt−1 − θt‖2 is the path-length, and H is the restarting period. We adopt the
Õ(·)-notation to suppress logarithmic factors in the time horizon T .

Furthermore, by setting the restarting period optimally as H = min{bd1/4(T/PT )1/2c, T},
RestartUCB achieves the following dynamic regret,

D-RegretT ≤

Õ
(
d

7
8T

3
4P

1
4
T

)
when PT ≥

√
d/T,

Õ(d
√
T ) when PT <

√
d/T.

(17)
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The proofs of Theorem 3 and Theorem 4 are basically the same as analysis in previous work (Zhao
et al., 2020, Section 5), so we omit the details here.

Notice that the optimal tuning in Theorem 4 requires the prior knowledge of path-length PT =∑T
t=2‖θt−1 − θt‖2, which is generally unavailable. To (partially) address the issue, it is possible

to use the Bandit-over-Bandit (BOB) mechanism (Cheung et al., 2019a) to compensate the lack
of this information, with an O(T 3/4) regret overhead (cf. the proof of Theorem 4 in (Zhao et al.,
2020)). Combining the analysis and Theorem 3, we can prove that RestartUCB together with BOB
mechanism leads to the following dynamic regret without requiring the prior knowledge of PT .

Theorem 5. RESTARTUCB together with the Bandit-over-Bandit (BOB) mechanism enjoys the
dynamic regret of

D-RegretT ≤ Õ
(
d

7
8T

3
4P

1
4
T

)
, (18)

without requiring the path-length PT ahead of time.
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Appendix A. Proof of Impossibility Result

Proof For simplicity of notation, let y =
√
p− 1 and z =

√
H − p− 1. By the constructed

example in (13), we have

A =

p∑
s=1

XsX
>
s =

[
1 y
y y2

]
and B =

H∑
s=p+1

XsX
>
s =

[
1 z
z z2

]
.

For convenience, we will write the covariance matrix Vt simply V when no confusion can arise. So
the concerned matrix V −1A can be calculated as

V −1A =

[
2 + λ y + z
y + z y2 + z2 + λ

]−1 [
1 y
y y2

]
=

1

(2 + λ)(y2 + z2 + λ)− (y + z)2

[
y2 + z2 + λ −(y + z)
−(y + z) 2 + λ

] [
1 y
y y2

]
=

1

(1 + λ)(y2 + z2)− 2yz + (2 + λ)λ

[
z2 − yz + λ yz2 − y2z + λy
(1 + λ)y − z (1 + λ)y2 − yz

]
.

Denote by s = (1 + λ)(y2 + z2)− 2yz + (2 + λ)λ, α = z2 − yz + λ, and β = (1 + λ)y − z, we
then have

V −1A(V −1A)> =
1 + y2

s2

[
α2 αβ
αβ β2

]
.

The eigenvalues (we denote them by λ̄, to distinguish the notation with the regularizer coefficient λ)
of matrix [α2, αβ;αβ, β2] should satisfy (α2 − λ̄)(β2 − λ̄)− α2β2 = 0. By solving the equation,
we can obtain that

λ̄max = α2 + β2 = (z2 − yz + λ)2 + ((1 + λ)y − z)2 ≥ (z2 − yz + λ)2.

When λ = 1 and p = aH (here we assume aH is an integer for simplicity), we further have

λ̄max ≥ (z2 − yz + λ)2

=
(

(1− a)p− 1−
√
p− 1

√
(1− a)p− 1 + 1

)2
≥
(

(1− a)H −
√
a(1− a)H

)2
= (1− a)(

√
1− a−

√
a)2H2. (19)

Note that we require a ∈ (0, 1/2) to make the second inequality hold. On the other hand,

1 + y2

s2
=

p

(2(y2 + z2)− 2yz + 3)2
≥ p

(2(y2 + z2) + 4)2
=

a

4H
. (20)

Combining (19) and (20), we have

σmax(V −1A) =
√
λmax (V −1A(V −1A)>) ≥

√
λ̄max ·

1 + y2

s2
≥
√
a′

4
·
√
H,

where a′ = (1− a)a(
√

1− a−
√
a)2 is a universal constant. When choosing a = 1/3 as selected

in the main paper, a′ = 0.0127 and the lower bound is σmax(V −1A) ≥ 0.0564
√
H .
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