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Constrained optimization

𝑚𝑖𝑛𝑥∊𝒳 𝑓 𝑥

𝑠. 𝑡. 𝑔𝑖 𝑥 = 0, 1 ≤ 𝑖 ≤ 𝑞;

ℎ𝑖 𝑥 ≤ 0, 𝑞 + 1 ≤ 𝑖 ≤ 𝑚

General formulation:

objective function

equality constraints 

inequality 
constraints 

The goal: find a feasible solution minimizing the objective 𝑓

A solution is (in)feasible if it does (not) satisfy the constraints
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Example – knapsack

Knapsack problem: given 𝑛 items, each 
with a weight 𝑤𝑖 and a value 𝑣𝑖, to select 
a subset of items maximizing the sum of 
values while keeping the summed 
weights within some capacity 𝑊𝑚𝑎𝑥

arg𝑚𝑎𝑥𝒙∈{0,1}𝑛 ∑𝑖=1
𝑛 𝑣𝑖𝑥𝑖 𝑠. 𝑡. ∑𝑖=1

𝑛 𝑤𝑖𝑥𝑖 ≤ 𝑊𝑚𝑎𝑥

𝑥𝑖 = 1: the 𝑖-th item is included

objective function constraint
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Example – minimum spanning tree

Minimum spanning tree problem:

given an undirected connected 
graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices and 
𝑚 edges with positive weights 
𝑤:𝐸 → R+, to find a connected 
subgraph 𝐸′ ⊆ 𝐸 with the 
minimum weight

arg𝑚𝑖𝑛𝒙∈{0,1}𝑚 ∑𝑖=1
𝑚 𝑤𝑖𝑥𝑖 𝑠. 𝑡. 𝑐 𝒙 = 1

𝑥𝑖 = 1: the 𝑖-th edge is selectedobjective function constraint

𝑐 𝒙 : the number of connected components
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Example – traveling salesman

Traveling salesman problem:

given an undirected connected 
graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices and 
𝑚 edges with positive weights 
𝑤:𝐸 → R+, to find a Hamilton 
cycle with the minimum weight

arg𝑚𝑖𝑛𝑥 𝑤(𝑥) 𝑠. 𝑡. 𝑥 is a Hamilton cycle

Objective function: the sum of 
the edge weights on the cycle

Constraint: visit each vertex exactly once, 
starting and ending in the same vertex
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EAs for constrained optimization

How to deal with constraints when EAs 
are used for constrained optimization?

The optimization problems in real-world applications

often come with constraints
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Constraint handling strategies

The final output solution must satisfy the constraints

Common constraint handling strategies

• Penalty functions

• Repair functions

• Restricting search to the feasible region

• Decoder functions
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Penalty functions

unconstrained

𝑚𝑖𝑛 𝑓 𝑥 + ∑𝑖=1
𝑚 𝜆𝑖 ⋅ 𝑓𝑖(𝑥)

the 𝑖-th constraint 
violation degree

𝑓𝑖 𝑥 =  
𝑔𝑖 𝑥 1 ≤ 𝑖 ≤ 𝑞

max{0, ℎ𝑖(𝑥)} 𝑞 + 1 ≤ 𝑖 ≤ 𝑚

constrained

𝑚𝑖𝑛 𝑓 𝑥

𝑠. 𝑡. 𝑔𝑖 𝑥 = 0, 1 ≤ 𝑖 ≤ 𝑞;

ℎ𝑖 𝑥 ≤ 0, 𝑞 + 1 ≤ 𝑖 ≤ 𝑚

Penalty functions: add penalties on the fitness of 
infeasible solutions



http://www.lamda.nju.edu.cn/qianc/

Penalty functions

unconstrained

𝑚𝑖𝑛 𝑓 𝑥 + ∑𝑖=1
𝑚 𝜆𝑖 ⋅ 𝑓𝑖(𝑥)

constrained

𝑚𝑖𝑛 𝑓 𝑥

𝑠. 𝑡. 𝑔𝑖 𝑥 = 0, 1 ≤ 𝑖 ≤ 𝑞;

ℎ𝑖 𝑥 ≤ 0, 𝑞 + 1 ≤ 𝑖 ≤ 𝑚

Penalty functions: add penalties on the fitness of 
infeasible solutions

Requirement: the optimal solutions of the original and 
transformed problems should be consistent

• e.g., all 𝜆𝑖 are equal, and large enough: compare the 
constraint violation degrees first; if they are the same, 
compare the objective values 𝑓
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Penalty functions

Minimum spanning tree problem:

given an undirected connected graph 

𝐺 = (𝑉, 𝐸) on 𝑛 vertices and 𝑚 edges 

with positive weights 𝑤:𝐸 → R+, to 

find a connected subgraph 𝐸′ ⊆ 𝐸

with the minimum weight

arg𝑚𝑖𝑛𝒙∈{0,1}𝑚 ∑𝑖=1
𝑚 𝑤𝑖𝑥𝑖 𝑠. 𝑡. 𝑐 𝒙 = 1

Fitness function:

𝑚𝑖𝑛 𝑐 𝒙 − 1 ∙ 𝑤𝑢𝑏 + ∑𝑖:𝑥𝑖=1𝑤𝑖

Original objective 
function

Constraint 
violation degree 𝑛2 ∙ 𝑤𝑚𝑎𝑥
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Repair functions

Repair functions: repair infeasible solutions to feasible

Example - Knapsack: given 𝑛 items, each with a 
weight 𝑤𝑖 and a value 𝑣𝑖, to select a subset of items 
maximizing the sum of values while keeping the 
summed weights within some capacity 𝑊𝑚𝑎𝑥

1 1 0 1 1 0 1 1

1 1 0 1 1 0 0 1

arg𝑚𝑎𝑥𝒙∈{0,1}𝑛 ∑𝑖=1
𝑛 𝑣𝑖𝑥𝑖 𝑠. 𝑡. ∑𝑖=1

𝑛 𝑤𝑖𝑥𝑖 ≤ 𝑊𝑚𝑎𝑥

Repairing: scan from 
left to right, and keep 
the value 1 if the 
summed weight does 
not exceed 𝑊𝑚𝑎𝑥

𝑣𝑖: 4,2,6,10,4,3,7,2; 𝑤𝑖: 2,3,3,8,6,5,7,1; 𝑊𝑚𝑎𝑥 = 25

infeasible

feasible
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Restricting search to the feasible region

Restricting search to the feasible region: preserving 
feasibility by special initialization and reproduction

Example - traveling salesman: given an 
undirected connected graph 𝐺 = (𝑉, 𝐸) on 
𝑛 vertices and 𝑚 edges with positive 
weights 𝑤:𝐸 → R+, to find a Hamilton 
cycle with the minimum weight

arg𝑚𝑖𝑛𝑥 𝑤(𝑥) 𝑠. 𝑡. 𝑥 is a Hamilton cycle

1 6 2 5 7 4 8 3

Integer vector representation:
the order of visiting vertexes

Initialize with permutation;
Apply mutation and 
recombination operators for 
permutation representation

Permutation 
is feasible
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Decoder functions

Decoder functions: map each genotype to a feasible phenotype

Example - Knapsack: given 𝑛 items, each with a 
weight 𝑤𝑖 and a value 𝑣𝑖, to select a subset of items 
maximizing the sum of values while keeping the 
summed weights within some capacity 𝑊𝑚𝑎𝑥

1 1 0 1 1 0 1 1

1 1 0 1 1 0 0 1

arg𝑚𝑎𝑥𝒙∈{0,1}𝑛 ∑𝑖=1
𝑛 𝑣𝑖𝑥𝑖 𝑠. 𝑡. ∑𝑖=1

𝑛 𝑤𝑖𝑥𝑖 ≤ 𝑊𝑚𝑎𝑥

Decoding: scan from 
left to right, and keep 
the value 1 if the 
summed weight does 
not exceed 𝑊𝑚𝑎𝑥

𝑣𝑖: 4,2,6,10,4,3,7,2; 𝑤𝑖: 2,3,3,8,6,5,7,1; 𝑊𝑚𝑎𝑥 = 25

genotype

phenotype
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Constraint handling strategies

The final output solution must satisfy the constraints

Common constraint handling strategies

• Penalty functions

• Repair functions

• Restricting search to the feasible region

• Decoder functions

Other effective constraint handling strategies?
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(1+1)-EA for MST 

Minimum spanning tree (MST):

• Given: an undirected connected graph 𝐺 = (𝑉, 𝐸) on 
𝑛 vertices and 𝑚 edges with positive integer weights 
𝑤:𝐸 → ℕ+

• The Goal: find a connected subgraph 𝐸′ ⊆ 𝐸 with the 
minimum weight

arg𝑚𝑖𝑛𝒙∈{0,1}𝑚 ∑𝑖=1
𝑚 𝑤𝑖𝑥𝑖 𝑠. 𝑡. 𝑐 𝒙 = 1

𝑥𝑖 = 1 means that edge 𝑒𝑖 is selected

𝒙 ∈ {0,1}𝑚 ↔ a subgraph

Formulation:
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(1+1)-EA: Given a pseudo-Boolean function 𝑓:

1. 𝒙 ≔ randomly selected from {0,1}𝑛.
2. Repeat until some termination criterion is met
3. 𝒙′ ≔ flip each bit of 𝒙 with probability 1/𝑛.
4. if  𝑓 𝒙′ ≤ 𝑓(𝒙)
5. 𝒙 = 𝒙′.

(1+1)-EA for MST 

Theorem. [Neumann & Wegener, TCS’07; Doerr et al., Algorithmica’12] The 
expected running time of the (1+1)-EA solving the MST problem 
is 𝑂(𝑚2(log 𝑛 + log𝑤𝑚𝑎𝑥)).

Fitness function:

𝑚𝑖𝑛 𝑐 𝒙 − 1 ∙ 𝑤𝑢𝑏 + ∑𝑖:𝑥𝑖=1𝑤𝑖

Original objective 
function

Constraint 
violation degree 𝑛2 ∙ 𝑤𝑚𝑎𝑥

Using the strategy of 
penalty functions
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MST by MOEAs

Bi-objective reformulation 𝑚𝑖𝑛 (𝑐 𝒙 , ∑𝑖:𝑥𝑖=1𝑤𝑖)

Theorem. [Neumann & Wegener, Nature Computing’05] The expected running 
time of the GSEMO solving the MST problem is 𝑂(𝑚𝑛 (𝑛 + log𝑤𝑚𝑎𝑥)).

arg𝑚𝑖𝑛𝒙∈{0,1}𝑚 ∑𝑖=1
𝑚 𝑤𝑖𝑥𝑖 𝑠. 𝑡. 𝑐 𝒙 = 1

Penalty functions: 𝑂(𝑚2(log 𝑛 + log𝑤𝑚𝑎𝑥))

Bi-objective reformulation: 𝑂(𝑚𝑛(𝑛 + log𝑤𝑚𝑎𝑥))

Bi-objective reformulation is better 
for dense graphs, e.g., 𝑚 ∈ Θ(𝑛2)
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MST by MOEAs

Bi-objective reformulation 𝑚𝑖𝑛 (𝑐 𝒙 , ∑𝑖:𝑥𝑖=1𝑤𝑖)

arg𝑚𝑖𝑛𝒙∈{0,1}𝑚 ∑𝑖=1
𝑚 𝑤𝑖𝑥𝑖 𝑠. 𝑡. 𝑐 𝒙 = 1

GSEMO: Given a pseudo-Boolean function vector 𝒇:

1. 𝒙 ≔ randomly selected from {0,1}𝑛.
2. 𝑃 ≔ {𝒙}.
3. Repeat until some termination criterion is met
4. Choose 𝒙 from 𝑃 uniformly at random.
5. 𝒙′ ≔ flip each bit of 𝒙 with probability 1/𝑛.
6. if  ∄ 𝒛 ∈ 𝑃 such that 𝒛 ≺ 𝒙′
7. 𝑃:= 𝑃 − 𝒛 ∈ 𝑃| 𝒙′ ≼ 𝒛 ∪ {𝒙′}.

Keep the non-dominated
solutions generated so-far
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Proof

Main idea:

(1)  obtain the empty subgraph 0𝑛

(2)  obtain a minimum spanning tree

The analysis of phase (1): 𝑚𝑖𝑛 (𝑐 𝒙 , 𝑤 𝒙 = ∑𝑖:𝑥𝑖=1𝑤𝑖)

Using multiplicative drift analysis:

• design the distance function: 𝑉 𝑃 = 𝑚𝑖𝑛 𝑤 𝒙 𝒙 ∈ 𝑃}

• analyze the expected drift:

Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡 = 𝑃] ≥
1

𝑛
∙
1

𝑚
(1 −

1

𝑚
)𝑚−1 ∙ ∑𝑖=1

|𝒙∗|
𝑤 𝒙∗ − 𝑤(𝒚𝒊)

select the solution 𝒙∗ with the smallest 𝑤(𝒙) value, and flip only one 1-bit

the minimum weight 
in the population

the resulting solution
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Proof

=
1

𝑛
∙
1

𝑚
(1 −

1

𝑚
)𝑚−1∙ 𝑤 𝒙∗

=
1

𝑛
∙
1

𝑚
(1 −

1

𝑚
)𝑚−1∙ 𝑉 𝜉𝑡

Main idea:

(1)  obtain the empty subgraph 0𝑛

(2)  obtain a minimum spanning tree

The analysis of phase (1): 𝑚𝑖𝑛 (𝑐 𝒙 , 𝑤 𝒙 = ∑𝑖:𝑥𝑖=1𝑤𝑖)

Using multiplicative drift analysis:

• design the distance function: 𝑉 𝑃 = 𝑚𝑖𝑛 𝑤 𝒙 𝒙 ∈ 𝑃}

• analyze the expected drift:

Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡 = 𝑃] ≥
1

𝑛
∙
1

𝑚
(1 −

1

𝑚
)𝑚−1 ∙ ∑𝑖=1

|𝒙∗|
𝑤 𝒙∗ − 𝑤(𝒚𝒊)
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Proof

Main idea:

(1)  obtain the empty subgraph 0𝑛

(2)  obtain a minimum spanning tree

The analysis of phase (1): 𝑚𝑖𝑛 (𝑐 𝒙 , 𝑤 𝒙 = ∑𝑖:𝑥𝑖=1𝑤𝑖)

Using multiplicative drift analysis:

• design the distance function: 𝑉 𝑃 = 𝑚𝑖𝑛 𝑤 𝒙 𝒙 ∈ 𝑃}

• analyze the expected drift: Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡 = 𝑃] ≥
1

𝑒𝑚𝑛
∙ 𝑉 𝜉𝑡

Upper bound on the expected running time:

∑𝑃 𝜋0(𝑃) ∙
1 + ln (𝑉 𝑃 /𝑉𝑚𝑖𝑛)

𝛿

𝑉 𝑃 ≤ 𝑚𝑤𝑚𝑎𝑥 𝑉𝑚𝑖𝑛 ≥ 1

≤ 𝑒𝑚𝑛(1 + ln (𝑚𝑤𝑚𝑎𝑥))
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Proof

Main idea:

(1)  obtain the empty subgraph 0𝑛

(2)  obtain a minimum spanning tree

The analysis of phase (1): 𝑚𝑖𝑛 (𝑐 𝒙 , 𝑤 𝒙 = ∑𝑖:𝑥𝑖=1𝑤𝑖)

Using multiplicative drift analysis:

• design the distance function: 𝑉 𝑃 = 𝑚𝑖𝑛 𝑤 𝒙 𝒙 ∈ 𝑃}

• analyze the expected drift: Ε 𝑉 𝜉𝑡 − 𝑉 𝜉𝑡+1 𝜉𝑡 = 𝑃] ≥
1

𝑒𝑚𝑛
∙ 𝑉 𝜉𝑡

Upper bound on the expected running time:

∑𝑃 𝜋0(𝑃) ∙
1 + ln (𝑉 𝑃 /𝑉𝑚𝑖𝑛)

𝛿
≤ 𝑒𝑚𝑛(1 + ln (𝑚𝑤𝑚𝑎𝑥))

∈ 𝑂(𝑚𝑛 (log 𝑛 + log𝑤𝑚𝑎𝑥))



http://www.lamda.nju.edu.cn/qianc/

Proof

The analysis of phase (2):

• the found Pareto optimal solutions will always be kept

• follow the path: 𝒙𝒏 → 𝒙𝒏−𝟏 → ⋯ → 𝒙𝟐 → 𝒙𝟏

the probability is at least : 
1

𝑛
∙
1

𝑚
(1 −

1

𝑚
)𝑚−1

The expected running time is at most:   (𝑛 − 1) ∙ 𝑒𝑚𝑛 ∈ 𝑂(𝑚𝑛2)

The expected running time of phase (1): 𝑂(𝑚𝑛(log 𝑛 + log𝑤𝑚𝑎𝑥))

The total expected running time: 𝑂(𝑚𝑛(𝑛 + log𝑤𝑚𝑎𝑥))

𝒙𝒊: the Pareto optimal solution with 𝑖 connected components 

0𝑛

a minimum spanning tree

≥
1

𝑒𝑚𝑛

𝑚𝑖𝑛 (𝑐 𝒙 , 𝑤 𝒙 = ∑𝑖:𝑥𝑖=1𝑤𝑖)
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MST by MOEAs

Bi-objective reformulation 𝑚𝑖𝑛 (𝑐 𝒙 , ∑𝑖:𝑥𝑖=1𝑤𝑖)

arg𝑚𝑖𝑛𝒙∈{0,1}𝑚 ∑𝑖=1
𝑚 𝑤𝑖𝑥𝑖 𝑠. 𝑡. 𝑐 𝒙 = 1

Penalty functions: 𝑂(𝑚2(log 𝑛 + log𝑤𝑚𝑎𝑥))

Bi-objective reformulation: 𝑂(𝑚𝑛(𝑛 + log𝑤𝑚𝑎𝑥))

Bi-objective reformulation is better 
for dense graphs, e.g., 𝑚 ∈ Θ(𝑛2)

Theorem. [Neumann & Wegener, Nature Computing’05] The expected running 
time of the GSEMO solving the MST problem is 𝑂(𝑚𝑛 (𝑛 + log𝑤𝑚𝑎𝑥)).
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More examples

Penalty functions Bi-objective reformulation

Set cover 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑂(𝑚𝑛(log 𝑐𝑚𝑎𝑥 + log 𝑛))

[Friedrich et al., ECJ’10] 

Minimum cut 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑂(𝐹𝑚(log 𝑐𝑚𝑎𝑥 + log 𝑛))

[Neumann et al., Algorithmica’11] 

Minimum label
spanning tree

Ω(𝑘𝑢𝑘) 𝑂(𝑘2log 𝑘)

[Lai et al., TEC’14] 

Problem

Minimum cost
coverage

𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑂(𝑁𝑛 log 𝑛 + log𝑤𝑚𝑎𝑥 + 𝑁 )

[Qian et al., IJCAI’15] 

Better
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Bi-objective reformulation

1. transform the original constrained optimization 
problem into a bi-objective optimization problem

bi-objective

𝑚𝑖𝑛 (𝑓 𝑥 , ∑𝑖=1
𝑚 𝑓𝑖(𝑥))

constraint 
violation degree

𝑓𝑖 𝑥 =  
𝑔𝑖 𝑥 1 ≤ 𝑖 ≤ 𝑞

max{0, ℎ𝑖(𝑥)} 𝑞 + 1 ≤ 𝑖 ≤ 𝑚

constrained

𝑚𝑖𝑛 𝑓 𝑥

𝑠. 𝑡. 𝑔𝑖 𝑥 = 0, 1 ≤ 𝑖 ≤ 𝑞;

ℎ𝑖 𝑥 ≤ 0, 𝑞 + 1 ≤ 𝑖 ≤ 𝑚

Main idea:
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Bi-objective reformulation

1. transform the original constrained optimization 
problem into a bi-objective optimization problem

Main idea:

2. employ a multi-objective EA to solve the transformed 
problem

bi-objective

𝑚𝑖𝑛 (𝑓 𝑥 , ∑𝑖=1
𝑚 𝑓𝑖(𝑥))

3. output the feasible solution from the generated non-
dominated solution set

constraint violation degree = 0

constrained

𝑚𝑖𝑛 𝑓 𝑥

𝑠. 𝑡. 𝑔𝑖 𝑥 = 0, 1 ≤ 𝑖 ≤ 𝑞;

ℎ𝑖 𝑥 ≤ 0, 𝑞 + 1 ≤ 𝑖 ≤ 𝑚
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Constraint handling strategies

The final output solution must satisfy the constraints

Common constraint handling strategies

• Penalty functions

• Repair functions

• Restricting search to the feasible region

• Decoder functions

• Bi-objective reformulation

Search only 
in the 
feasible 
region

allow infeasible solutions 
in the search

Better algorithms? 
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Subset selection

Subset selection is to select a subset of size 𝑘 from a total set 
of 𝑛 items for optimizing some objective function

Formally stated: given all items 𝑉 = {𝑣1, … , 𝑣𝑛}, an objective function
𝑓: 2𝑉 → R and a budget 𝑘, to find a subset 𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝑘.

Ground set 𝑉 Subset 𝑋 ⊆ 𝑉
max 𝑓(𝑋)

𝑋 ≤ 𝑘
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Application - sparse regression

Sparse regression [Tropp, TIT’04] : select a few observation variables 
to best approximate the predictor variable by linear regression

observation variables predictor 
variable 𝑧

Item 𝑣𝑖: an observation variable

Objective 𝑓: squared multiple correlation 𝑅𝑧,𝑋
2 =

Var 𝑧 − MSE𝑧,𝑋
Var 𝑧

variance mean squared 
error

a subset 𝑋 of observation variables
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Application - influence maximization

Influence maximization [Kempe et al., KDD’03] : select a subset of users 
from a social network to maximize its influence spread

Influential users

Item 𝑣𝑖: a social network user

Objective 𝑓: influence spread, measured by the expected 
number of social network users activated by diffusion 
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Application - document summarization

Document summarization [Lin & Bilmes, ACL’11] : select a few 
sentences to best summarize the documents

Item 𝑣𝑖: a sentence

Objective 𝑓: summary quality
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Application - sensor placement

Sensor placement [Krause & Guestrin, IJCAI’09 Tutorial] : select a few places to 
install sensors such that the information gathered is maximized

Water contamination detection Fire detection

Item 𝑣𝑖: a place to install a sensor Objective 𝑓: entropy 
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Subset selection

Subset 
selection

Machine 
learning

Natural 
language 

processing
Networks

Document summarization Sensor placement

Data 
mining

Sparse regression Influence maximization

[Mathematical Programming 1978]

𝑓:monotone and submodular

The greedy algorithm：

(1 − 1/𝑒)-approximation

George Nemhauser

John Von Neumann

Theory Prize

Best Paper/Test of 
Time Award:

[Kempe et al., KDD’03]

[Das & Kempe, ICML’11]

[Iyer & Bilmes, NIPS’13]
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Subset representation

A subset 𝑋 ⊆ 𝑉 can be naturally represented by a Boolean 

vector 𝒙 ∈ {0,1}𝑛

• the 𝑖-th bit 𝑥𝑖 = 1 if the item 𝑣𝑖 ∈ 𝑋; 𝑥𝑖 = 0 otherwise

• 𝑋 = {𝑣𝑖 ∣ 𝑥𝑖 = 1}

𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} a subset 𝑋 ⊆ 𝑉 a Boolean vector 𝒙 ∈ {0,1}5

∅ 00000

{𝑣1} 10000

{𝑣2, 𝑣3, 𝑣5} 01101

{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} 11111
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POSS algorithm

POSS algorithm [Qian, Yu and Zhou, NIPS’15]

Transformation: 

Initialization: put the special solution {0}𝑛

into the population 𝑃

Parent selection & Reproduction: pick a
solution 𝒙 randomly from 𝑃, and flip each bit
of 𝒙 with prob. 1/𝑛 to generate a new solution

Evaluation & Survivor selection: if the
new solution is not dominated, put it into
𝑃 and weed out bad solutions

Output: select the best feasible solution

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝑘 original

𝑚𝑖𝑛𝑋⊆𝑉 (−𝑓 𝑋 , |𝑋|) bi-objective
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Sparse regression

Sparse regression: given all observation variables 𝑉 = {𝑣1, … , 𝑣𝑛}, a
predictor variable 𝑧 and a budget 𝑘, to find a subset 𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥𝑋⊆𝑉 𝑅𝑧,𝑋
2 =

Var 𝑧 − MSE𝑧,𝑋
Var 𝑧

𝑠. 𝑡. 𝑋 ≤ 𝑘

observation variables predictor 
variable 𝑧

Var 𝑧 : variance of 𝑧 MSE𝑧,𝑋: mean squared error of predicting 𝑧
by using observation variables in 𝑋

a subset 𝑋 of observation variables
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Experimental results

greedy algorithms relaxation methods

POSS is significantly better than all the compared 
state-of-the art algorithms on all data sets 

the size constraint: k= 𝟖 the number of iterations of POSS: 𝟐𝒆𝒌𝟐𝒏

exhaustive search

● denotes that POSS is significantly better by 
the 𝑡-test with confidence level 0.05
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Theorem 1. For subset selection with monotone objective functions, 
POSS using 𝐸 𝑇 ≤ 2𝑒𝑘2𝑛 finds a solution 𝑋 with 𝑋 ≤ 𝑘 and 

𝑓 𝑋 ≥ (1 − 𝑒−𝛾) ∙ OPT.

Theoretical analysis

POSS can achieve the optimal polynomial-time 
approximation guarantee

the optimal polynomial-time approximation guarantee 
for monotone 𝑓 [Harshaw et al., ICML’19]
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𝑓(𝑋 ∪ { 𝑣}) − 𝑓(𝑋) ≥
𝛾

𝑘
(OPT − 𝑓(𝑋))

Proof

the optimal function valuesubmodularity ratio [Das & Kempe, ICML’11]

Roughly speaking, the improvement by adding a specific item 
is proportional to the current distance to the optimum

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that
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Proof

Main idea:

• consider a solution 𝒙 with |𝒙| ≤ 𝑖 and 𝑓(𝒙) ≥ 1 − 1 −
𝛾

𝑘

𝑖
∙ OPT

𝑖 = 0 𝑖 = 𝑘

initial solution 00…0 1 − 1 −
𝛾

𝑘

𝑘

𝑓(𝑋 ∪ { 𝑣}) − 𝑓(𝑋) ≥
𝛾

𝑘
(OPT − 𝑓(𝑋))

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that

𝑓 00…0 = 0

|00…0| = 0
≥ 1 − 𝑒−𝛾

(1 − 1/𝑚)𝑚 ≤ 1/𝑒

= 1 − 1 −
1

𝑘/𝛾

𝑘/𝛾 ⋅𝛾

a subset

let 𝑚 = 𝑘/𝛾
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Proof

Main idea:

• consider a solution 𝒙 with |𝒙| ≤ 𝑖 and 𝑓(𝒙) ≥ 1 − 1 −
𝛾

𝑘

𝑖
∙ OPT

𝑖 = 0 𝑖 = 𝑘

initial solution 00…0 1 − 1 −
𝛾

𝑘

𝑘

≥ 1 − 𝑒−𝛾

the desired approximation guarantee

𝑓(𝑋 ∪ { 𝑣}) − 𝑓(𝑋) ≥
𝛾

𝑘
(OPT − 𝑓(𝑋))

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that

𝑓 00…0 = 0

|00…0| = 0

？

a subset
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Proof

Main idea:

• consider a solution 𝒙 with |𝒙| ≤ 𝑖 and 𝑓(𝒙) ≥ 1 − 1 −
𝛾

𝑘

𝑖
∙ OPT

• in each iteration of POSS:        

 select 𝒙 from the population 𝑃

 flip one specific 0-bit of 𝒙 to 1-bit

𝒙′ = 𝒙 + 1 ≤ 𝑖 + 1 and 𝑓(𝒙′) ≥ 1 − 1 −
𝛾

𝑘

𝑖+1
∙ OPT

𝑓(𝑋 ∪ { 𝑣}) − 𝑓(𝑋) ≥
𝛾

𝑘
(OPT − 𝑓(𝑋))

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that

(i.e., add the specific item  𝑣 in Lemma 1)

a subset
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Proof

𝑓(𝑋 ∪ { 𝑣}) − 𝑓(𝑋) ≥
𝛾

𝑘
(OPT − 𝑓(𝑋))

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that

𝑓 𝒙′ − 𝑓(𝒙) ≥
𝛾

𝑘
∙ OPT − 𝑓 𝒙

𝑓(𝒙) ≥ 1 − 1 −
𝛾

𝑘

𝑖

∙ OPT

𝑓 𝒙′ ≥ 1 −
𝛾

𝑘
𝑓 𝒙 +

𝛾

𝑘
∙ OPT

𝑓 𝒙′ ≥ 1 −
𝛾

𝑘
1 − 1 −

𝛾

𝑘

𝑖

∙ OPT +
𝛾

𝑘
∙ OPT = 1 − 1 −

𝛾

𝑘

𝑖+1

∙ OPT
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Proof

Main idea:

• consider a solution 𝒙 with |𝒙| ≤ 𝑖 and 𝑓(𝒙) ≥ 1 − 1 −
𝛾

𝑘

𝑖
∙ OPT

• in each iteration of POSS:        

 select 𝒙 from the population 𝑃, 

 flip one specific 0-bit of 𝒙 to 1-bit, 

𝒙′ = 𝒙 + 1 ≤ 𝑖 + 1 and 𝑓(𝒙′) ≥ 1 − 1 −
𝛾

𝑘

𝑖+1
∙ OPT

𝑓(𝑋 ∪ { 𝑣}) − 𝑓(𝑋) ≥
𝛾

𝑘
(OPT − 𝑓(𝑋))

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that

(i.e., add the specific item  𝑣 in Lemma 1)

𝑖 𝑖 + 1 the probability: 
1

𝑃
∙

1

𝑒𝑛

a subset

the probability: 
1

𝑃

the probability: 
1

𝑛
1 −

1

𝑛

𝑛−1
≥

1

𝑒𝑛
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Proof

𝑖 𝑖 + 1 the probability: 
1

𝑃
∙

1

𝑒𝑛

1

2𝑒𝑘𝑛

𝑃 ≤ 2𝑘

𝑓(𝑋 ∪ { 𝑣}) − 𝑓(𝑋) ≥
𝛾

𝑘
(OPT − 𝑓(𝑋))

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that

Main idea:

• consider a solution 𝒙 with |𝒙| ≤ 𝑖 and 𝑓(𝒙) ≥ 1 − 1 −
𝛾

𝑘

𝑖
∙ OPT

• in each iteration of POSS:        

 Exclude solutions with size at least 2𝑘

 The solutions in 𝑃 are always incomparable 

For each size in 
{0,1, … , 2𝑘 − 1}, 
there exists at most 
one solution in 𝑃

a subset
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Proof

𝑖 𝑖 + 1 the probability: 
1

𝑃
∙

1

𝑒𝑛

1

2𝑒𝑘𝑛

𝑃 ≤ 2𝑘

𝑖 𝑖 + 1 the expected number of iterations: 2𝑒𝑘𝑛

𝑖 = 0 𝑘 the expected number of iterations: 𝑘 ∙ 2𝑒𝑘𝑛

𝑓(𝑋 ∪ { 𝑣}) − 𝑓(𝑋) ≥
𝛾

𝑘
(OPT − 𝑓(𝑋))

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item  𝑣 ∈ 𝑉 ∖ 𝑋 such that

Main idea:

• consider a solution 𝒙 with |𝒙| ≤ 𝑖 and 𝑓(𝒙) ≥ 1 − 1 −
𝛾

𝑘

𝑖
∙ OPT

• in each iteration of POSS:        

a subset
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Theoretical analysis:
The advantage of bi-
objective reformulation 
for handling constraints

Algorithm design:

The POSS algorithm 
for subset selection

Document summarization Sensor placementInfluence maximizationSparse regression



http://www.lamda.nju.edu.cn/qianc/

POSS algorithm

POSS algorithm [Qian, Yu and Zhou, NIPS’15]

Transformation: 

Parent selection & Reproduction:
pick a solution 𝒙 randomly from
𝑃, and flip each bit of 𝒙 with prob.
1/𝑛 to generate a new solution

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝑘 original

𝑚𝑖𝑛𝑋⊆𝑉 (−𝑓 𝑋 , |𝑋|) bi-objective

Using bit-wise mutation only
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PORSS algorithm

PORSS algorithm [Qian, Bian and Feng, AAAI’20]

Transformation: 

Parent selection & Reproduction:

• pick two solutions randomly from 𝑃
• apply recombination operator
• apply bit-wise mutation operator

𝑚𝑎𝑥𝑋⊆𝑉 𝑓 𝑋 𝑠. 𝑡. 𝑋 ≤ 𝑘 original

𝑚𝑖𝑛𝑋⊆𝑉 (−𝑓 𝑋 , |𝑋|) bi-objective
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PORSS algorithm

• One-point crossover

1 0 1 1 1 0 0 0

0 0 1 0 1 0 1 0

1 0 1 1 1 0 1 0

0 0 1 0 1 0 0 0

Parent1

Parent2

Offspring1

Offspring2

• Uniform crossover

1 0 1 1 1 0 0 0

0 0 1 0 1 0 1 0

1 0 1 1 1 0 1 0

0 0 1 0 1 0 0 0

Parent1

Parent2

Offspring1

Offspring2
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PORSS using one-
point crossover

PORSS using 
uniform crossover

PORSS performs the best 

the size constraint: 𝒌 = 𝟖 State-of-the-art 
algorithms

PORSS algorithm
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Summary

• Constrained optimization

• Constraint handling strategies

– Penalty functions

– Repair functions

– Restricting search to the feasible region

– Decoder functions

– Bi-objective reformulation
Give an example of 
algorithm design guided 
by theoretical analysis
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