Last class

* Greedy best-first search

Informed (heuristic)
* A* search — search

Uses problem-specific

- Recursive best-first search |~ nowledse beyond the

problem definition

* Heuristic generation

* Heuristic goodness

http://www.lamda.nju.edu.cn/qgianc/

i =
NJUA\ ATEEESE

SCHOOL OF ARTIFICIAL INTELLIGENCE , NANJING UNIVERSITY

Heuristic Search and Evolutionary Algorithms

Lecture 4: Local Search and Evolutionary
Algorithms

Chao Qian (£%#8)

Associate Professor, Nanjing University, China

Email: gianc@nju.edu.cn
Homepage: http://www.lamda.nju.edu.cn/qianc/

Classical search

A search problem can be defined formally by five components:

* Initial state

» Actions

e Transition model
e Goal test

e Path cost

Solution: a path (i.e., an action sequence) from the initial
state to a goal state

Optimal solution: a path with the lowest cost

http://www.lamda.nju.edu.cn/qgianc/

Search example: Path is irrelevant

8-queens problem: to place eight queens on a chessboard such
that no queen attacks any other

Heuristic function h: number of
pairs of queens that are attacking
each other

What is a goal state, i.e.,
a state with h = 07?

The path to the goal state
is irrelevant

http://www.lamda.nju.edu.cn/qgianc/

Search and optimization

General Search: to find a goal state, i.e., a state with h = 0

L

Optimization: to find an optimal solution

arg minh(x) or argmaxf(x)
X X

Note that: classical search can be transformed into this form
by treating an action sequence as a solution and the cost as
the objective to be minimized

http://www.lamda.nju.edu.cn/qgianc/

Hill-climbing search

Hill-climbing search: maintain only the current state

function HILL-CLIMBING(problem) returns a state that is a local maximum
current <— problem.INITIAL
while true do
neighbor < a highest-valued successor state of current
if VALUE(neighbor) < VALUE(current) then return current
current <— neighbor

Select the best neighbor state

Stop until no neighbor has a higher objective value

Need to define a neighbor space

http://www.lamda.nju.edu.cn/qgianc/

Hill-climbing search — example

8-queens problem: to place eight queens on a chessboard
such that no queen attacks any other

Heuristic function h: number of pairs of queens that are
attacking each other

18 |12

16

14 |12

14

Wy
W/

18
14

14 13 (12| 14

15 (12| 14 12| 16

18 15 12| 14

W/ 3 16 13 16
17 (15| W/ |94 16

18 JSH W JSH) W/
WAL 8 15 [W

17 || 14 |8

18

The current h value: 17

Neighbor space: states generated by
moving a single queen to another
square in the same column

The number of neighbors: 56

Move to the best neighbor with h
value 12

http://www.lamda.nju.edu.cn/qgianc/

Hill-climbing search

An example of one-dimensional state-space landscape

objective function . . .
\ w When hill-climbing

‘ stops

local maximum

shoulder

=

“flat” local maximum

& State space

current
state

http://www.lamda.nju.edu.cn/qgianc/

Hill-climbing search

Hill-climbing search with sideways move: accept the best
neighbor if it has the same value as the current state

ObJEC'[l\-’(iTUIlCIlOl‘l ___— global maximum Limit the number of
consecutive sideways moves

infinite
loop

escape

! local maximu

‘flat” local maximum

& Slate space

current
State

http://www.lamda.nju.edu.cn/qgianc/

Hill-climbing search

8-queens problem: to place eight queens on a chessboard
such that no queen attacks any other

Heuristic function h: number of pairs of queens that are
attacking each other

Neighbor space: states generated by moving a single queen
to another square in the same column

Hill-climbing | Without sideways With sideways
move move
Success rate 14% 94%
Average steps 4 steps 21 steps
for a success

http://www.lamda.nju.edu.cn/qgianc/

Random-restart hill-climbing search

Random-restart hill-climbing search: conduct a series of hill-
climbing searches from randomly generated initial states

Given unlimited time, it will eventually find a goal state
The success probability of each hill-climbing search: p

geometric distribution
with parameter p

The expected number of restarts: 1/p

http://www.lamda.nju.edu.cn/qgianc/

Variants of hill-climbing search

hill-climbing: move to the best neighbor state

Stochastic hill-climbing: find all better neighbor states,
and select one as the next state with probability related to
its objective value

First-choice hill-climbing: repeatedly generate neighbor
states randomly, and select the first better neighbor as the

next state

Can be applied to continuous spaces

http://www.lamda.nju.edu.cn/qgianc/

Simulated annealing

Hill-climbing search: efficient, but may get trapped in -
local optima

Random search: find global optima, but inefficient -

Simulated annealing -

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

current <— problem . INITIAL .
for £ = 1 to oo do randomly generate a neighbor

T < schedule(t) / if the neighbor is

if 7" = 0 then return current 1 better, move to it
next <— a randomly selected successor of current
AE < Value(next) — Value(curren

if AE > 0 then current < next
else current <— next only with probability eAE/T

Otherwise, move to
" the worse state with
some probability

http://www.lamda.nju.edu.cn/qgianc/

Simulated annealing

Simulated annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

current <— problem . INITIAL .
for £ = 1 to oo do randomly generate a neighbor

1" < schedule(t) / if the neighbor is

if 7" = 0 then return current 1 better, move to it
next <— a randomly selected successor of curren

AE « Value(next) — Value(curren Otherwise, move to
if AF > 0 then current <— next " the worse state with

else current < next only with probability e2E/T some probability

Can be applied to both discrete and continuous spaces

http://www.lamda.nju.edu.cn/qgianc/

Simulated annealing

Simulated annealing
function SIMULATED-ANNEALING(problem, schedule) returns a solution state

current <— problem . INITIAL .
for # = 1 to co do randomly generate a neighbor
.T = schedule(t) / if the neighbor is
if 7' =0 then return current better, move to it

next <— a randomly selected successor of current
Otherwise, move to

AE < Value(next) — Value(curren
" the worse state with

if AF > 0 then current <— next
else current < next only with probability e2E/T some probability

The probability e2E/T of accepting the worse state

 Increase with AE

* Increase with the temperature parameter T

http://www.lamda.nju.edu.cn/qgianc/

Simulated annealing

Simulated annealing

AE/T

The probability e of accepting the worse state

 Increase with AE

 Increase with the temperature parameter T

T is initially set to a large value, and gradually decreased to 0

L

The probability of accepting worse states gradually decreases

Inspired from the annealing process in metallurgy

http://www.lamda.nju.edu.cn/qgianc/

Local beam search

Local beam search: maintain k states

* The initial k states are generated randomly

 In each iteration, generate all neighbors of the current k
states, and select the best k ones

Different from hill-climbing search with k random-restarts

Can be applied to discrete spaces

http://www.lamda.nju.edu.cn/qgianc/

Local search for continuous spaces

Gradient descent: for minimization
x=x—a- - Vf(x)

Gradient ascent: for maximization
x=x+a-Vf(x)

Converge to Vf(x) = 0: local optimum or saddle point

There are many variants of gradient descent/ascent, as well as
methods using the Hessian matrix, e.g., Newton-Raphson

x=x+H'(x) Vf(x)

http://www.lamda.nju.edu.cn/qgianc/

The theory of evolution

Central idea of Darwinism: reproduction with variation and
natural selection based on the fitness

Core components of Darwinian evolutionary system:
* One or more populations of individuals competing for limited
resources

* The notion of dynamically changing populations due to the
birth and death of individuals

* A concept of fitness which reflects the ability of an individual
to survive and reproduce

* A concept of variational inheritance: offspring closely resemble
their parents, but are not identical

http://www.lamda.nju.edu.cn/qgianc/

Evolutionary algorithms

General structure of evolutionary algorithms

Solution1
Solution2
Solution3

S—

Solution
representation

Initial
population |

for arg max f(x)
X

Parent
selection

Parent
solutions

Mutation &
recombination

Offspring
solutions

Stop
criterion

End

New
population

Fitness
evaluation

Survivor
selection

Can be applied to both discrete and continuous spaces

http://www.lamda.nju.edu.cn/qgianc/

An illustration of running

X =[0,1]

0 0.25 0.5 0.75 1

http://www.lamda.nju.edu.cn/qgianc/

An illustration of running

X = [0,1] initialization
evaluation

/ S\

'
0 W= 0.25 0.5 0.75 1

http://www.lamda.nju.edu.cn/qgianc/

An illustration of running

X =10,1] initialization
evaluation
reproduction
evaluation

http://www.lamda.nju.edu.cn/qgianc/

An illustration of running

X =10,1] initialization
evaluation
reproduction
evaluation
selection

f reproduction
evaluation

o —9—@ 90— 9 o

http://www.lamda.nju.edu.cn/qgianc/

An illustration of running

X =10,1] initialization
evaluation
reproduction
evaluation
selection

f reproduction
evaluation
selection
reproduction
evaluation

0 M”‘ 0.75 ™

http://www.lamda.nju.edu.cn/qgianc/

An illustration of running

X =10,1] initialization
evaluation
reproduction
evaluation
selection

f reproduction
evaluation
selection
reproduction

evaluation
1
0 90 00 075 ' selection

X reproduction
evaluation

http://www.lamda.nju.edu.cn/qgianc/

Evolutionary algorithms

General structure of evolutionary algorithms

Solution1
Solution2
Solution3

S—

Solution
representation

Initial
population |

Parent
selection

Parent
solutions

Mutation &
recombination

Offspring
solutions

Stop
criterion

End

New
population

Fitness
evaluation

Survivor
selection

Need to design each component of evolutionary algorithms

http://www.lamda.nju.edu.cn/qgianc/

Evolutionary algorithms

General structure of evolutionary algorithms

Solution1
Solution2
Solution3

S—

Solution
representation

Initial
population |

Parent
selection

Parent
solutions

Mutation &
recombination

Offspring
solutions

Stop
criterion

End

New
population

Fitness
evaluation

Survivor
selection

Need to design each component of evolutionary algorithms

http://www.lamda.nju.edu.cn/qgianc/

Evolutionary algorithms

General structure of evolutionary algorithms

Solution1
Solution2
Solution3

S—

Solution
representation

Initial
population |

Parent
selection

Parent
solutions

Mutation &
recombination

Offspring
solutions

Stop
criterion

End

New
population

Fitness
evaluation

Survivor
selection

Need to design each component of evolutionary algorithms

http://www.lamda.nju.edu.cn/qgianc/

Evolutionary algorithms

General structure of evolutionary algorithms

Solution1
Solution2
Solution3

S—

Solution
representation

Initial
population |

Parent
selection

Parent
solutions

Mutation &
recombination

Offspring
solutions

Stop
criterion

End

New
population

Fitness
evaluation

Survivor
selection

Need to design each component of evolutionary algorithms

http://www.lamda.nju.edu.cn/qgianc/

Evolutionary algorithms

General structure of evolutionary algorithms

Solution1
Solution2
Solution3

S—

Solution
representation

Initial
population |

Parent
selection

Parent
solutions

Mutation &
recombination

Offspring
solutions

Stop
criterion

End

New
population

Fitness
evaluation

Survivor
selection

Need to design each component of evolutionary algorithms

http://www.lamda.nju.edu.cn/qgianc/

Evolutionary algorithms

General structure of evolutionary algorithms

Solution1
Solution2
Solution3

S—

Solution
representation

Initial
population |

Parent
selection

Parent
solutions

Mutation &
recombination

Offspring
solutions

Stop
criterion

End

New
population

Fitness
evaluation

Survivor
selection

Need to design each component of evolutionary algorithms

http://www.lamda.nju.edu.cn/qgianc/

An application to 8-queens problem

8-queens problem: to place eight queens on a chessboard
such that no queen attacks any other

Objective function f: number of nonattacking pairs of queens

Solution representation
H B B : p
. . ! . Integer vector
E

1 6 2 5 7 4 8 3

position of the queen on each column

Binary vector

El . B 000101001100110011111

http://www.lamda.nju.edu.cn/qgianc/

An application to 8-queens problem

Initialization: four randomly generated solutions

32749152
24752411 —| 24752411

Y

24748552 | 24 31% 327;52411 i 32748552

><

32752411 | 23 29% 247548552

/

24415124 |20 26% ~| 32752411 1 32752124 — | 3052124

/

32543213 | 11 14% | 24415124 24415411 ~| 2441541[]]
(a) (b) (c) (d) (e)
[nitial Population)\Fitness Function Selection Crossover Mutation
Parent selection: fitness proportional selection
Probability of fi ———, Fitness (objective)
selecting the i-th «~—Pi = S~ value of the i-th
solution j=1 f] solution

http://www.lamda.nju.edu.cn/qgianc/

An application to 8-queens problem

Initialization: four randomly generated solutions

32749152
24752411 —| 24752411

Y

24748552 | 24 31% 327;52411 i 32748552

><

32752411 | 23 29% 247548552

/

24415124 |20 26% ~| 32752411 1 32752124 — | 3052124

/

32543213 | 11 14% | 24415124 24415411 ~ 2441541[]]
(a) (b) (c) (d) (e)
[nitial Population) Fitness Function Selection Crossover Mutation

Recombination: one-point crossover

Select one crossover point randomly, and exchange the
parts of the two solutions after the point

http://www.lamda.nju.edu.cn/qgianc/

An application to 8-queens problem

32752411 >_< 32748552
24748552 24752411

http://www.lamda.nju.edu.cn/qgianc/

An application to 8-queens problem

Initialization: four randomly generated solutions

32749152
24752411 —| 24752411

Y

24748552 | 24 31% 327;52411 i 32748552

><

32752411 | 23 29% 247548552

/

24415124 |20 26% ~| 32752411 32752124 — | 3052124
: 24415411 24415417

/

Y

32543213 | 11 14% 244155124

(b) (c) (d)
Crossover

(a)
[nitial Population

Fitness Function Selection

Mutation:

For each element of a solution, change it to a randomly
chosen different value with probability 1/8

http://www.lamda.nju.edu.cn/qgianc/

An application to 8-queens problem

fithess fithess

—

24748552 || 24 31% 327@52411 : 32748552 | 3274¢1]52 || 24

24752411 ——¢| 24752411 || 22

32752411 || 23 29% 247548552

24415124 || 20 26% 32752@411 : 32752124 — 34252124 || 18

32543213 || 11 14% | 24415124 24415411 ——4 24415417 | 22

(4 (b)
[nitial Pdpulation Fitness Function

(e)

(c)
et Crossover Mutation

24748552 | 24 Survivor selection:

32748152 | 24

Select the best four solutions from the

32752411 |23 current population and offspring solutions

24752411 | 22 to generate the next population

http://www.lamda.nju.edu.cn/qgianc/

An application to 8-queens problem

Run 1:

Initial population

47877222

11863553

66744562

24131661

Final population

51863724

51863728

51863728

01863728

Curve change of the best fitness

fitness 28

18

271

20

Best fitness
[§%]
N

18

[§]
W

3]
o
o .

22

fitness
28
27 \
27
27

[\
o)}

[\
I~

T ¥)
/
a—ﬂ—e—r‘ 1
4]
/
<

5 10
Number of generations

el B B
H BiN
H E R B

15

| generations

http://www.lamda.nju.edu.cn/qgianc/

An application to 8-queens problem

Run 2:

Initial population

38814327

61461352

67137456

(71886245

Final population

42861357

46861357

46861357

46861357

. 28
fithess

20 27 ¢

24
17
20

fitness
28
27 \
27
27

o

———————

20 40 60 80
Number of generations

Byl B
H B B By
H HE BB

Curve change of the best fitness

' generations

91

http://www.lamda.nju.edu.cn/qgianc/

An application to 8-queens problem

Run 3: Curve change of the best fitness
Initial population fitness i A @\\
46572512 20 §26——'- 452
275764336 29 tézsvl | generations
m24]
58743547 20 23‘
46214467 15 20 10 200 300 _ 400 500
Number of generations
Final population fitness Bl B B
46827135 28 i
41827635 27
vl N
41827635 27-.
41827635 27 H BiE

http://www.lamda.nju.edu.cn/qgianc/

An application to 8-queens problem

Run 1 Run 2 Run 3

The generated optimal solution

S S S

S e e
| .-. l .lg l- l -l.

The required number of generations

15 91 452

Evolutionary algorithms are randomized algorithms

http://www.lamda.nju.edu.cn/qgianc/

Local search vs. Evolutionary algorithms

Solution1
Solution2
Solution3 L

Initial
population|

Solution
representation

Parent
selection

Stop
criterion

End

Parent | Mutation & Offspring
solutions recombination solutions
New Survivor Fitnes_s

population selection evaluation

Characteristics of evolutionary algorithms

* Population-based search

e Recombination

« Mutation, which can be a global search operator

http://www.lamda.nju.edu.cn/qgianc/

Local search vs. Evolutionary algorithms

Advantages and disadvantages of evolutionary algorithms

 Easy to be parallelized
* Good ability of escaping from local optima

* Applicable to a wide range of problems, requiring only
that the goodness of solutions can be evaluated

» non-differentiable problems
» problems without explicit objective function formulation
» problems with multiple objective functions
* Not very efficient, but can be accelerated by
> utilizing modern computer facilities
» combining with local search
» using the machine learning techniques

http://www.lamda.nju.edu.cn/qgianc/

Summary

* Hill-climbing search —

* Simulated annealing Local

search

—

* Local beam search

* Local search for continuous spaces —

 Evolutionary algorithms

http://www.lamda.nju.edu.cn/qgianc/

References

* S. J. Russell and P. Norvig. Artificial Intelligence:
A Modern Approach. Chapter 4.1-4.2, Third edition.

K. A. De Jong. Evolutionary Computation — A Unified
Approach. Chapter 1.

http://www.lamda.nju.edu.cn/qgianc/

