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Last class

• Hill-climbing search

• Simulated annealing

• Local beam search

• Local search for continuous spaces

• Evolutionary algorithms

Local 
search
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Biological evolution

Charles Darwin
1809-1882

C. Darwin, after collecting abundant evidence, 
developed a theory about how species evolve

reproduction with variation + nature selection

reproduction reproduction reproduction reproduction

selection selection selection



http://www.lamda.nju.edu.cn/qianc/

Optimization

With the development of computing technology

Curious researchers started to implement Darwin’s theory of 
evolution in computer, and found connections to optimization

how to put as much stuff as possible into a fixed size container?

Optimization:

Formally: every 𝑥 is an arrangement of objects
𝑓 counts the number of objects in the container
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Evolutionary optimization

“We have thus divided our problem into two parts. The child programme and the

education process. These two remain very closely connected. We cannot expect to find a

good child machine at the first attempt. One must experiment with teaching one such

machine and see how well it learns. One can then try another and see if it is better or worse.

There is an obvious connection between this process and evolution, by the identifications

Structure of the child machine = Hereditary material

Changes of the child machine = Mutations

Judgment of the experimenter = Natural selection”

In 1950, Turing described how evolution 
might be used for his optimization:

Alan Turing
1912-1954

(The last equation swapped)

building intelligent machine

[A. M. Turing. Computing machinery and intelligence. Mind 49: 433-460, 1950.]
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The origins

[J. H. Holland. Outline for a logical theory of adaptive systems. JACM, 1962]

Genetic Algorithms (GA)

for optimization in discrete domains

J. H. Holland
1929-2015

University of Michigan

[I. Rechenberg. Cybernetic solution path of an experimental problem. 1965]

Evolutionary Strategies (ES)

for optimization in continuous domains

I. Rechenberg
1934- Technical University of Berlin

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated Evolution. 1966]

Evolutionary Programming (EP)

for optimizing finite state machines (agents)

L. J. Fogel
1928-2007 University of California, Los Angeles 
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The origins

The research of GA, ES and EP was done independently 
from 1960s to 1980s, and unified to one field 

“Evolutionary Computation” in 1990s
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Main conferences and journals

Four main conferences
• IEEE Congress on Evolutionary Computation (CEC)

• ACM Conference on Genetic and Evolutionary Computation (GECCO)

• International Conference on Parallel Problem Solving from Nature (PPSN)

• ACM Conference on Foundations of Genetic Algorithms (FOGA)

Three main journals
• Evolutionary Computation Journal (ECJ, MIT Press, 1993)

• IEEE Trans. on Evolutionary Computation (TEvC)

• ACM Trans. on Evolutionary Learning and Optimization (TELO)



http://www.lamda.nju.edu.cn/qianc/

Evolutionary algorithms

Genetic Algorithms (GA)

Evolutionary Strategies (ES)

Evolutionary Programming (EP)
for optimizing finite state machines

for optimization in continuous domains

for optimization in discrete domains

Evolutionary algorithms (EAs)

Genetic Programming
Differential Evolution
...

Ant Colony Optimization
Particle Swarm Optimization
...

Other variants: Other heuristics inspired from nature:

[J. H. Holland. Outline for a logical theory of 
adaptive systems. JACM, 1962]

[I. Rechenberg. Cybernetic solution path of an 
experimental problem. 1965]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial 
Intelligence through Simulated Evolution. 1966]
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Evolutionary algorithms

EAs share a common routine

Initial 

population

Parent 

solutions
Offspring 

solutions

Solution 

representation 

Mutation & 

recombination 

Parent 

selection 

Solution1

Solution2

Solution3

Fitness 

evaluation
Survivor

selection
New

population

Stop 

criterion 

End

Yes

No

for arg max
𝑥

𝑓(𝑥)
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Components - representation

Representation: provides code for candidate solutions 
that can be manipulated by a computer

phenotype:
object in original problem context 

genotype: 
code to denote that object

encoding & decoding

1 6 2 5 7 4 8 3

1 6 2 5 7 4 8 3

different

Permutation

Binary vector

000101001100110011111010

Integer vector
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Components – fitness

Fitness: represents the task to solve, or the requirements 
(can be seen as “the environment”) to adapt to

Fitness evaluation assigns a single real-value to each 
phenotype which forms the basis for selection

Fitness: 𝑥2arg max
𝑥

𝑥2

Example:
Fitness: 
number of 
nonattacking
pairs of 
queens
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Components - population

Population: holds the candidate solutions of the problem, 
which is a multiset of genotypes

Size of population: the number of contained genotypes

Diversity of population: the number of different fitnesses / 
phenotypes / genotypes present
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Components - initialization

Initialization: generates the genotypes in the initial population

• generates the genotypes randomly

• includes existing solutions, or uses problem-specific 
heuristics, to seed the population

T: time needed to reach level F after random initialization  

T Time (number of generations)

B
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t 
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e
s
s
 i
n
 p

o
p
u

la
ti
o
n

F: fitness after smart initialization

F
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Components – parent selection

Parent selection: selects genotypes to undergo variation

Usually probabilistic
• high quality genotypes more likely to be selected than 

low quality
• even worst in current population usually has non-zero 

probability of being selected

Example: fitness proportional selection

fitness(A) = 3

fitness(B) = 1

fitness(C) = 2

A
50%

B
17%

C
33%
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Components – variation

Variation: generates new (offspring) genotypes

• Mutation: causes small, random variance of one parent

• Recombination/crossover: merges information from 
parents into offspring 

1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0OffspringParent

1 0 1 1 1 0 0 0

0 0 1 0 1 0 1 0

1 0 1 1 1 0 1 0

0 0 1 0 1 0 0 0

Parent1

Parent2

Offspring1

Offspring2
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Components – survivor selection

Survivor selection: selects genotypes from parents and 
offspring to form the next population

Often deterministic 
• Fitness based : e.g., rank parents and offspring, 

and select the top segment 
• Age based: make as many offspring as parents 

and delete all parents 

Example:
fitness(A) = 3

fitness(B) = 1

fitness(C) = 2

Parents Offspring
fitness(D) = 4

fitness(E) = 1.5

fitness(F) = 1

Fitness based: A, C, D

Age based: D, E, F
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Components – stop criterion

Anytime behavior 
of EAs

Stop criteria:

• Reaching some (known/hoped for) fitness

• Reaching some maximum allowed number of generations

• Reaching some specified number of generations without

fitness improvement

• Reaching some minimum level of population diversity
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Evolutionary algorithms

EAs share a common routine

Initial 

population

Parent 

solutions
Offspring 

solutions

Solution 

representation 

Mutation & 

recombination 

Parent 

selection 

Solution1

Solution2

Solution3

Fitness 

evaluation
Survivor

selection
New

population

Stop 

criterion 

End

Yes

No

for arg max
𝑥

𝑓(𝑥)

Need to design each component of EAs
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Evolutionary algorithms

Genetic Algorithms (GA)

Evolutionary Strategies (ES)

Evolutionary Programming (EP)
for optimizing finite state machines

for optimization in continuous domains

for optimization in discrete domains
[J. H. Holland. Outline for a logical theory of 
adaptive systems. JACM, 1962]

[I. Rechenberg. Cybernetic solution path of an 
experimental problem. 1965]

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial 
Intelligence through Simulated Evolution. 1966]

Binary representation

Real-valued representation

Tree representation

Genetic Programming (GP)
for optimizing computer programs

[J. R. Koza. Genetic Programming.1992]
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Example illustration - max 𝑥2

The problem:  arg𝑚𝑎𝑥𝑥∈ 0,1,…,31 𝑥2 Fitness function 𝑓: 𝑥2

Solution representation: binary vector of length 5

For example, 𝑥 = 15 can be represented by 01111

Genotype 
no.

Initial 
population

𝑥 value Fitness 
𝑓 𝑥 = 𝑥2

Selection 
prob. 𝑝𝑖

Expected
count

Actual 
count

1
2
3
4

0 1 1 0 1
1 1 0 0 0
0 1 0 0 0
1 0 0 1 1

13
24
8
19

169
576
64
361

0.14
0.49
0.06
0.31

0.58
1.97
0.22
1.23

1
2
0
1

Population size = 4, 

randomly generated

Parent selection: 

𝑝𝑖 = 𝑓(𝑖)/∑𝑗∈𝑃𝑓(𝑗)
Parent solutions
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Example illustration - max 𝑥2

Genotype 
no.

Parent 
solutions

Crossover
point

Offspring 
after xover

Flipped
bits

Offspring 
after mutation

1
2
2
4

0 1 1 0|1
1 1 0 0|0
1 1|0 0 0
1 0|0 1 1

4
4
2
2

0 1 1 0 0
1 1 0 0 1
1 1 0 1 1
1 0 0 0 0

1
none
none

3

1 1 1 0 0
1 1 0 0 1
1 1 0 1 1
1 0 1 0 0

One-point crossover:

Select one point randomly, and 
exchange the parts after the point

Bit-wise mutation:

Flip each bit of a solution 
with prob. 1/𝑛 where 𝑛 = 5
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Example illustration - max 𝑥2

Initial 
population

𝑥
value

Fitness 
𝑓 𝑥 = 𝑥2

Offspring 
after mutation

𝑥
value

Fitness 
𝑓 𝑥 = 𝑥2

Next
population

0 1 1 0 1
1 1 0 0 0
0 1 0 0 0
1 0 0 1 1

13
24
8
19

169
576
64
361

1 1 1 0 0
1 1 0 0 1
1 1 0 1 1
1 0 1 0 0

26
25
27
18

676
625
729
324

1 1 1 0 0
1 1 0 0 1
1 1 0 1 1
1 0 1 0 0

Fitness evaluation

Age based survival selection:

Use the offspring directly to 
form the next population

Curve change of the best fitness
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Example illustration - max 𝑥2

Initial 
population

𝑥
value

Fitness 
𝑓 𝑥 = 𝑥2

Offspring 
after mutation

𝑥
value

Fitness 
𝑓 𝑥 = 𝑥2

Next
population

0 1 1 0 1
1 1 0 0 0
0 1 0 0 0
1 0 0 1 1

13
24
8
19

169
576
64
361

1 1 1 0 0
1 1 0 0 1
1 1 0 1 1
1 0 1 0 0

26
25
27
18

676
625
729
324

1 1 1 0 0
1 1 0 0 1
1 1 0 1 1
1 1 0 0 0

Fitness based survival selection:

Select the best four genotypes 
from the current population 
and offspring

Curve change of the best fitness
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Example illustration - knapsack

Knapsack problem: given 𝑛 items, each 
with a weight 𝑤𝑖 and a value 𝑣𝑖, to select 
a subset of items maximizing the sum of 
values while keeping the summed 
weights within some capacity 𝑊𝑚𝑎𝑥

1 1 0 1 1 0 1 1

Decoding: scan from 
left to right, and keep 
the value 1 if the 
summed weight does 
not exceed 𝑊𝑚𝑎𝑥1 1 0 1 1 0 1 1

Solution representation

Genotype: binary vector of length 𝑛

Phenotype: binary vector of length 𝑛

arg𝑚𝑎𝑥𝒙∈{0,1}𝑛 ∑𝑖=1
𝑛 𝑣𝑖𝑥𝑖 𝑠. 𝑡. ∑𝑖=1

𝑛 𝑤𝑖𝑥𝑖 ≤ 𝑊𝑚𝑎𝑥

𝑥𝑖 = 1: the 𝑖-th item is included
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Example illustration - knapsack

Fitness function 𝑓: the sum of values, i.e., ∑𝑖=1
𝑛 𝑣𝑖𝑥𝑖

1 1 0 1 1 0 1 1

Solution representation

Decoding: scan from 
left to right, and keep 
the value 1 if the 
summed weight does 
not exceed 𝑊𝑚𝑎𝑥

Genotype: binary vector of length 𝑛

1 1 0 1 1 0 1 1

Phenotype: binary vector of length 𝑛

arg𝑚𝑎𝑥𝒙∈{0,1}𝑛 ∑𝑖=1
𝑛 𝑣𝑖𝑥𝑖 𝑠. 𝑡. ∑𝑖=1

𝑛 𝑤𝑖𝑥𝑖 ≤ 𝑊𝑚𝑎𝑥

𝑥𝑖 = 1: the 𝑖-th item is included

Knapsack: 

Example: 𝑣𝑖: 4,2,6,10,4,3,7,2; 𝑤𝑖: 2,3,3,8,6,5,7,1; 𝑊𝑚𝑎𝑥 = 25

Genotype: 11011011 Phenotype: 11011001
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Example illustration - knapsack

Population size 500

Initialization Random

Parent selection Tournament selection with size 2

Recombination One-point crossover

Recombination prob. 70%

Mutation Bit-wise mutation

Mutation prob. 1/𝑛

Number of offspring 500

Survival selection Age based

Termination condition No improvement in last 25 generations

Select two solutions from the population uniformly at random, and 
choose the better one as a parent solution 
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Example illustration - knapsack

Population size 500

Initialization Random

Parent selection Tournament selection with size 2

Recombination One-point crossover

Recombination prob. 70%

Mutation Bit-wise mutation

Mutation prob. 1/𝑛

Number of offspring 500

Survival selection Age based

Termination condition No improvement in last 25 generations

Select one point randomly, and exchange the parts of the parents 
after that point
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Example illustration - knapsack

Population size 500

Initialization Random

Parent selection Tournament selection with size 2

Recombination One-point crossover

Recombination prob. 70%

Mutation Bit-wise mutation

Mutation prob. 1/𝑛

Number of offspring 500

Survival selection Age based

Termination condition No improvement in last 25 generations

Flip each bit of a solution with probability 1/𝑛
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Example illustration - knapsack

Population size 500

Initialization Random

Parent selection Tournament selection with size 2

Recombination One-point crossover

Recombination prob. 70%

Mutation Bit-wise mutation

Mutation prob. 1/𝑛

Number of offspring 500

Survival selection Age based

Termination condition No improvement in last 25 generations

The 500 offspring form the next population directly
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Example illustration - knapsack

Population size 500

Initialization Random

Parent selection Tournament selection with size 2

Recombination One-point crossover

Recombination prob. 70%

Mutation Bit-wise mutation

Mutation prob. 1/𝑛

Number of offspring 500

Survival selection Age based

Termination condition No improvement in last 25 generations
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Example illustration - knapsack

Run 1:

Example:

𝑣 4 18 1 16 5 9 3 19 7 13 10 6 5 1 2 17 12 12 2 15
𝑤 6 11 6 12 16 14 4 16 11 18 2 3 7 7 19 16 12 12 9 18

𝑛 = 20,𝑊𝑚𝑎𝑥 = 100

Run 2:Randomized
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Example illustration - 8-queens

8-queens problem: to place eight queens on a chessboard 
such that no queen attacks any other

Fitness function 𝑓: number of nonattacking pairs of queens

1 6 2 5 7 4 8 3

Solution representation

position of the queen on each column

Integer vector
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Example illustration - 8-queens

Representation Integer vector

Population size 4

Initialization Random

Parent selection Fitness proportional

Recombination One-point crossover

Mutation Bit-wise mutation

Mutation prob. 1/𝑛

Number of offspring 4

Survival selection fitness based

Termination condition Reach the best fitness

How about 
another setup?



http://www.lamda.nju.edu.cn/qianc/

Example illustration - 8-queens

8-queens problem: to place eight queens on a chessboard 
such that no queen attacks any other

Fitness function 𝑓: number of nonattacking pairs of queens

1 6 2 5 7 4 8 3

Solution representation

position of the queen on each column

Permutation

Genotype space is smaller than that 
of integer representation, but still 
contains the optimum
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Example illustration - 8-queens

Representation Permutation

Population size 100

Initialization Random

Parent selection Best 2 out of random 5

Recombination Cut-and-crossfill crossover

Mutation Swap

Mutation prob. 80%

Number of offspring 2

Survival selection Fitness based

Termination condition Reach the best fitness or 10,000 fitness evaluations

Select five solutions from the population uniformly at random, and 
choose the best two as the parent solutions 
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Example illustration - 8-queens

Representation Permutation

Population size 100

Initialization Random

Parent selection Best 2 out of random 5

Recombination Cut-and-crossfill crossover

Mutation Swap

Mutation prob. 80%

Number of offspring 2

Survival selection Fitness based

Termination condition Reach the best fitness or 10,000 fitness evaluations
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Example illustration - 8-queens

Cut-and-crossfill crossover: 

1. Select a crossover point randomly;

2. Cut both parents into two segments at this point;

3. Copy the first segment of parent 1 into offspring 1 and the first 
segment of parent 2 into offspring 2;

4. Scan parent 2 after the crossover point and fill the second 
segment of offspring 1 with values from parent 2, skipping 
those that it already contains

5. Do the same for parent 1 and offspring 2

8 7 6 42 531

1 3 5 24 678

8 7 6 45 123

1 3 5 62 874
Parent2

Parent1 Offspring1

Offspring2
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Example illustration - 8-queens

Representation Permutation

Population size 100

Initialization Random

Parent selection Best 2 out of random 5

Recombination Cut-and-crossfill crossover

Mutation Swap

Mutation prob. 80%

Number of offspring 2

Survival selection Fitness based

Termination condition Reach the best fitness or 10,000 fitness evaluations

1 23 45 6 7 8 1 23 4 567 8

Swap values of two randomly chosen positions



http://www.lamda.nju.edu.cn/qianc/

Example illustration - 8-queens

Representation Permutation

Population size 100

Initialization Random

Parent selection Best 2 out of random 5

Recombination Cut-and-crossfill crossover

Mutation Swap

Mutation prob. 80%

Number of offspring 2

Survival selection Fitness based

Termination condition Reach the best fitness or 10,000 fitness evaluations

Remove the worst two from the population and two offspring
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Example illustration - 8-queens

Representation Permutation

Population size 100

Initialization Random

Parent selection Best 2 out of random 5

Recombination Cut-and-crossfill crossover

Mutation Swap

Mutation prob. 80%

Number of offspring 2

Survival selection Fitness based

Termination condition Reach the best fitness or 10,000 fitness evaluations
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Example illustration - 8-queens

Setup 1: Setup 2:

Average of 100 independent runs

The number of fitness evaluations

Curve change of the best fitness

7094 13

The setup of components has a large influence on the performance
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Application: High-speed train head design

parameterize

represented as a vector of parameters

Problem: optimize the efficiency of the train head

Representation:

extremely hard to apply traditional optimization methods

xi

test by simulation

f(xi)

Fitness:
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Application: High-speed train head design

initialization

population

evaluation &
selection

offspring

reproduction
Series 700

Series N700

this nose ... has been newly developed ... using the 

latest analytical technique (i.e. genetic algorithms)

N700 cars save 19% energy ... 30% increase in the output... 

This is a result of adopting the ... nose shape



http://www.lamda.nju.edu.cn/qianc/

Application: Antenna design

Problem: optimize the efficiency of the antenna
extremely hard to apply traditional optimization 
methods

Representation:

a sequence of operators
forward, rotate-x
rotate-y, rotate-z

Fitness by simulation test

easy to test a given solution

use EAs!

initialization

population

evaluation &
selection

offspring

reproduction
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Application: Antenna design

evolved antennas

93% efficiency

QHAs (human designed) 

38% efficiency

human designed
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Application: Biological evolution
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Application: Biological evolution

Each taxon on each section has 
two biological events: FAD, LAD

Problem: to find a sequence of 
biological events of taxa, which 
fits the observed biological 
events best

Each section contains many taxa
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Application: Biological evolution

Two taxa: 6 possible sequences of biological events 

Sequences 
1 and 6 are 
infeasible

Symbiotic 
constraints
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Application: Biological evolution

Objective function: total range 
extensions to make the selected 
sequence and the observed 
biological events consistent

The smaller, the better
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Application: Biological evolution

The minimization problem:

• Solution: sequence of biological events of taxa

• Objective function: total range extensions to make the selected   
sequence and the observed biological events consistent

• Constraints: symbiotic constraints; FAD-LAD constraints 

Taxa 1 2 3 4 5 6 7

Sequences 1 6 90 2,520 113,400 7,484,400 681,080,400

A very difficult 

optimization problem!



http://www.lamda.nju.edu.cn/qianc/

Application: Biological evolution

“利用古生物大数据、
超算和遗传算法等”

Thanks J. Fan and X. Hou for providing the figures
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And more

optimizing operating systems: machine learning:

interactive art design:

As long as solutions can be evaluated, EAs can be applied
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Summary

• Evolutionary algorithms: Origins

• Evolutionary algorithms: Components

• Evolutionary algorithms: Applications
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