Last class

* Hill-climbing search —

* Simulated annealing Local

search

—

* Local beam search

* Local search for continuous spaces —

 Evolutionary algorithms
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Biological evolution

C. Darwin, after collecting abundant evidence,
developed a theory about how species evolve

reproduction with variation + nature selection

Charles Darwin
1809-1882

selection selection selection
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Optimization

With the development of computing technology

Curious researchers started to implement Darwin’s theory of
evolution in computer, and found connections to optimization

Optimization: e

how to put as much stuff as possible into a fixed size container?

LI REERERY

Formaﬂy; arg max f(x) everyx is an arrangement of objects
rcX f counts the number of objects in the container

http://www.lamda.nju.edu.cn/qgianc/



Evolutionary optimization

In 1950, Turing described how evolution
might be used for his optimization:

building intelligent machine
Alan Turing
1912-1954

“We have thus divided our problem into two parts. The child programme and the
education process. These two remain very closely connected. We cannot expect to find a
good child machine at the first attempt. One must experiment with teaching one such
machine and see how well it learns. One can then try another and see if it is better or worse.
There i1s an obvious connection between this process and evolution, by the identifications

Structure of the child machine = Hereditary material
Changes of the child machine = Mutations

Judgment of the experimenter = Natural selection”  (The last equation swapped)
[A. M. Turing. Computing machinery and intelligence. Mind 49: 433-460, 1950.]
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The origins

Genetic Algorithms (GA)

for optimization in discrete domains

[J. H. Holland. Qutline for a logical theory of adaptive systems. JACM, 1962]

]1 9219 I;I(;)lll5and University of Michigan

‘- Evolutionary Strategies (ES)

for optimization in continuous domains
[I. Rechenberg. Cybernetic solution path of an experimental problem. 1965]

I. Rechenberg . . _ .
1934- Technical University of Berlin

.‘ Evolutionary Programming (EP)

for optimizing finite state machines (agents)

1 [L.J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated Evolution. 1966]
L.]J. Foge

1928-2007 University of California, Los Angeles
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The origins

The research of GA, ES and EP was done independently
from 1960s to 1980s, and unified to one field

“Bvolutionary Computation” in 1990s

FOGA
PPSN

! CEC
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Main conferences and journals

Four main conferences

« IEEE Congress on Evolutionary Computation (CEC)

* ACM Conference on Genetic and Evolutionary Computation (GECCO)

* International Conference on Parallel Problem Solving from Nature (PPSN)
« ACM Conference on Foundations of Genetic Algorithms (FOGA)

Three main journals

* Evolutionary Computation Journal (ECJ, MIT Press, 1993)
* IEEE Trans. on Evolutionary Computation (TEvC)
* ACM Trans. on Evolutionary Learning and Optimization (TELO)

http://www.lamda.nju.edu.cn/qgianc/



Evolutionary algorithms

Genetic Algorlthms (GA) [J. H. Holland. Outline for a logical theory of
adaptive systems. JACM, 1962]

. . [I. Rechenberg. Cybernetic solution path of an
Evolutionary Strategies (ES) experimental problem. 1965] /

for optimization in continuous domains

$.. M Evolutionary Programming (EP) (.. Fogel, A. 3. Owens, M. J. Walsh. Arificial
E, for optimizing finite state machines Intelligence through Simulated Evolution. 1966]

Other variants: Other heuristics inspired from nature:
Genetic Programming Ant Colony Optimization
Differential Evolution Particle Swarm Optimization

Evolutionary algorithms (EAs)

http://www.lamda.nju.edu.cn/qgianc/



Evolutionary algorithms

EAs share a common routine

Solution1

Solution2

Parent
selection

_ Initial
Solution3 [ | population |

Solution
representation

Stop
criterion

End

for arg max f (x)
X

Part_ent Mutation & Offspring
solutions recombination solutions
New Survivor Fitnes_s

population selection evaluation
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Components - representation

Representation: provides code for candidate solutions
that can be manipulated by a computer

encoding & decoding
phenotype: <:> genotype:
object in original problem context code to denote that object
Integer vector
N _Euyl
E B E N 1 62|57 ]4]s]3
...g..-- Binary vector

H B B B 000101001100110011111 different
H B B Bu .
-w. . . Permutation

- H B B | 116l 2]51714a]s8]3
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Components — fitness

Fitness: represents the task to solve, or the requirements
(can be seen as “the environment”) to adapt to

Fitness evaluation assigns a single real-value to each
phenotype which forms the basis for selection

Example:
Fitness:
arg maxx? Fitness: x? number of
X nonattacking
pairs of
queens
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Components - population

Population: holds the candidate solutions of the problem,
which is a multiset of genotypes

Size of population: the number of contained genotypes

Diversity of population: the number of different fitnesses /
phenotypes / genotypes present

http://www.lamda.nju.edu.cn/qgianc/



Components - initialization

Initialization: generates the genotypes in the initial population

* generates the genotypes randomly

* includes existing solutions, or uses problem-specific
heuristics, to seed the population

F: fitness after smart initialization

: T: time needed to reach level F after random initialization
| >
T Time (number of generations)

Best fitness in population
T
]

http://www.lamda.nju.edu.cn/qgianc/



Components — parent selection

Parent selection: selects genotypes to undergo variation

Usually probabilistic

high quality genotypes more likely to be selected than
low quality

* even worst in current population usually has non-zero
probability of being selected

Example: fitness proportional selection

fitness(A) =3 A 17%

fitness(B) =1 50% C
: 33%
fitness(C) =2
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Components — variation

Variation: generates new (offspring) genotypes

e Mutation: causes small, random variance of one parent

parent [1 [0 [1 [1 [l o [oJo] offspring [1 [0 [1 [1 J8 0 Jo [o

* Recombination/crossover: merges information from
parents into offspring

Parentl1 | 1|/ 0(1(1[1]0|0]|O0 Offspringl | 1| 0| 1| 1 1-
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Components — survivor selection

Survivor selection: selects genotypes from parents and
offspring to form the next population

Often deterministic

* Fitness based : e.g., rank parents and offspring,
and select the top segment

* Age based: make as many offspring as parents
and delete all parents

Example: Parents Offspring
fitness(A) =3 fitness(D)=4  Fitness based: A, C, D

fitness(B) =1 fitness(E)=1.5 Age based: D, E, F
fitness(C) =2 fitness(F) =1
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Components — stop criterion

Anytime behavior
of EAs

best value in population

. . Timé
Stop criteria:
* Reaching some (known/hoped for) fitness
* Reaching some maximum allowed number of generations
* Reaching some specified number of generations without
fitness improvement

* Reaching some minimum level of population diversity

http://www.lamda.nju.edu.cn/qgianc/



Evolutionary algorithms

EAs share a common routine

Solutionl

Solution2

Parent
selection

_ Initial
Solution3 - | population|

Solution
representation

Stop
criterion

End

for arg max f (x)
X

Parent Mutation & Offspring
solutions recombination solutions
New Survivor Fitnes_s

population selection evaluation

Need to design each component of EAs
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Evolutionary algorithms

? Genetic AlgOrltth (GA) [J. H. Holland. Outline for a logical theory of

¥ for optimization in discrete domains @¢@Pive systems. JACM, 1962]

-\

Binary representation

. . [I. Rechenberg. Cybernetic solution path of an
Evolutionary Strategies (ES) experimental problem, 1965]

for optimization in continuous domains

’ Evolutlonary Programmmg (EP) [L.J. Fogel, A. J. Owens, M. J. Walsh. Artificial
M ior opt1m1zmg finite state machines Intelligence through Simulated Evolution. 1966]

Real-valued representation

Genetic Programming (GP)

... [J. R. Koza. Genetic Programming.1992]
o for optlmlzmg computer programs

Tree representation

http://www.lamda.nju.edu.cn/qgianc/



Example illustration - max x2

The problem: argmaxye(o,..,31) x*  Fitness function fr x?

Solution representation: binary vector of length 5

For example, x = 15 can be represented by 01111

Genotype Initial x value | Fitness | Selection | Expected | Actual
no. population f(x) =x*| prob.p; count count
1 01101 13 169 0.14 0.58 1
2 11000 24 576 0.49 1.97 2
3 01000 8 64 0.06 0.22 0
4 10011 19 361 0.31 1.23 1
Population size =4, Parent selection:

, . Parent solutions
randomly generated  Pi = f(1)/2jepf ()
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Example illustration - max x2

Genotype Parent Crossover | Offspring | Flipped Offspring

no. solutions point after xover bits after mutation

1 0110]|1 4 01100 1 11100

2 1100]|0 4 11001 none 11001

2 11|]000 2 11011 none 11011

4 10/011 2 10000 3 10100
/ \

One-point crossover: Bit-wise mutation:

Select one point randomly, and Flip each bit of a solution
exchange the parts after the point with prob. 1/n where n = 5

http://www.lamda.nju.edu.cn/qgianc/



Example illustration - max x2

Initial X Fitness Offspring X Fitness Next
population | value | f(x) = x? | after mutation | value | f(x) = x* | population
01101 13 169 11100 26 676 11100
11000 | 24 576 11001 25 625 11001
01000 8 64 11011 27 729 11011
10011 19 361 10100 18 324 10100

Curve change of the best fitness

1000

800 V4 |

600 |

400 -

Best fitness

200

0

50

100

Number of generations

—

Fithess evaluation

Age based survival selection:

Use the offspring directly to
form the next population
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Example illustration - max x2

Initial X Fitness Offspring X Fitness Next
population | value | f(x) = x? | after mutation | value | f(x) = x* | population
01101 13 169 11100 26 676 11100
11000 | 24 576 11001 25 625 11001
01000 8 64 11011 27 729 11011
10011 19 361 10100 18 324 11000

Curve change of the best fitness

1000

900 |

850 | |

Best fitness

800 |

750
0

50

100

Number of generations

~

Fitnhess based survival selection:

Select the best four genotypes
from the current population

and offspring
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Example illustration - knapsack

Knapsack problem: given n items, each
with a weight w; and a value v;, to select
a subset of items maximizing the sum of
values while keeping the summed
weights within some capacity Wy, qy

n n
argmaxyego 1) Ni=1 ViXi S-t. DjmaWiXi < Winax

Solution representation x; = 1: the i-th item is included

Genotype: binary vector of length n Decoding: scan from

1 1 10| 1 1 10| 1 1 left to right, and keep
the value 1 if the

Phenotype: binary vector of length n summed weight does
1t l1]o|1]|1]o0o]1]1 not exceed Wy, qx
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Example illustration - knapsack

. n n
Knapsack: argmaxyepo,1yn Xi=q ViXi S-t. XimqaWiXi < Winax

Solution representation

Genotype: binary vector of length n

1

1

0

1

1

0

1

1

Phenotype: binary vector of length n

1

1

0

1

1

0

1

1

x; = 1: the i-th item is included

Decoding: scan from
left to right, and keep
the value 1 if the
summed weight does
not exceed W,y

Example: v;:4,2,6,10,4,3,7,2; w;: 2,3,3,8,6,5,7,1; Wiay = 25

Genotype: 11011011

—

Phenotype: 11011001

Fitness function f: the sum of values, i.e., Yi- {1 V;x;
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Example illustration - knapsack

Population size 500

Initialization Random

Parent selection Tournament selection with size 2
Recombination One-point crossover

Recombination prob. | 70%

Mutation Bit-wise mutation

Mutation prob. 1/n

Number of offspring | 500

Survival selection Age based

Termination condition | No improvement in last 25 generations

Select two solutions from the population uniformly at random, and
choose the better one as a parent solution
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Example illustration - knapsack

Population size 500

Initialization Random

Parent selection Tournament selection with size 2
Recombination One-point crossover

Recombination prob. | 70%

Mutation Bit-wise mutation

Mutation prob. 1/n

Number of offspring | 500

Survival selection Age based

Termination condition | No improvement in last 25 generations

Select one point randomly, and exchange the parts of the parents
after that point

http://www.lamda.nju.edu.cn/qgianc/



Example illustration - knapsack

Population size 500

Initialization Random

Parent selection Tournament selection with size 2
Recombination One-point crossover

Recombination prob. | 70%

Mutation Bit-wise mutation

Mutation prob. 1/n

Number of offspring | 500

Survival selection Age based

Termination condition | No improvement in last 25 generations

Flip each bit of a solution with probability 1/n
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Example illustration - knapsack

Population size 500

Initialization Random

Parent selection Tournament selection with size 2
Recombination One-point crossover

Recombination prob. | 70%

Mutation Bit-wise mutation

Mutation prob. 1/n

Number of offspring | 500

Survival selection Age based

Termination condition | No improvement in last 25 generations

The 500 offspring form the next population directly
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Example illustration - knapsack

Population size 500

Initialization Random

Parent selection Tournament selection with size 2
Recombination One-point crossover

Recombination prob. | 70%

Mutation Bit-wise mutation

Mutation prob. 1/n

Number of offspring | 500

Survival selection Age based

Termination condition | No improvement in last 25 generations

http://www.lamda.nju.edu.cn/qgianc/



Example illustration - knapsack

Example: n=20,W,,, =100
v 4|18/ 116|519 |3 (19| 7 |13(10 1711212 15
w|6|11|6|12(16(14|4 |16(11|18|2 |3 |7 |7 |19|16(12|12]|9 |18

@)
Q1
—
N9
N

Run 1: Randomized Run 2:
l 20 \, e e Sl s R 120 » """"""""""""""""""""""
118 fl‘.‘ u <‘::f;;; ::‘: L 1 118
2 | 4l] & £
() 1 L - |
21161 2116
7114 Z114
m N
112 1127
| . 110 ‘ '
110 0 0 40 60 0 20 40 60

Number of generations Number of generations
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Example illustration - 8-queens

8-queens problem: to place eight queens on a chessboard

such that no queen attacks any other

Fitness function f: number of nonattacking pairs of queens

Solution representation
Integer vector

1

6

2

5 7 4 8 3

position of the queen on each column
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Example illustration - 8-queens

24 31% .| 32752411 [ 32748552 |—=| 32748[52 |

32752411 23 20% | 24748552 | 24752411 }—| 24752411 |
20 26% 132752411 [32752124] ~[ 39F52124 |
1 14% @% 24415411 —+{ 24415417

(a) (b) () (] (e)
Initial Population  Fitness Function Selection Crossover Mutation

Representation Integer vector
Population size 4
Initialization Random
How about Parent St.elec’fion Fitness Proportional
Recombination One-point crossover
another s etup? Mutation Bit-wise mutation
Mutation prob. 1/n
Number of offspring |4
Survival selection fitness based
Termination condition | Reach the best fitness
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Example illustration - 8-queens

8-queens problem: to place eight queens on a chessboard
such that no queen attacks any other

Fitness function f: number of nonattacking pairs of queens

lly

e,

I.I.I i
HE B N

_
B B
_ T

l

Solution representation
Permutation

1 6 2 5 7 4 8 3

position of the queen on each column

Genotype space is smaller than that
of integer representation, but still
contains the optimum
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Example illustration - 8-queens

Representation Permutation

Population size 100

Initialization Random

Parent selection Best 2 out of random 5

Recombination Cut-and-crossfill crossover

Mutation Swap

Mutation prob. 80%

Number of offspring 2

Survival selection Fitness based

Termination condition Reach the best fitness or 10,000 fitness evaluations

Select five solutions from the population uniformly at random, and
choose the best two as the parent solutions
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Example illustration - 8-queens

Representation Permutation

Population size 100

Initialization Random

Parent selection Best 2 out of random 5

Recombination Cut-and-crossfill crossover

Mutation Swap

Mutation prob. 80%

Number of offspring 2

Survival selection Fitness based

Termination condition Reach the best fitness or 10,000 fitness evaluations
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Example illustration - 8-queens

Cut-and-crossfill crossover:
1. Select a crossover point randomly;
2. Cut both parents into two segments at this point;

3. Copy the first segment of parent 1 into offspring 1 and the first
segment of parent 2 into offspring 2;

4. Scan parent 2 after the crossover point and fill the second
segment of offspring 1 with values from parent 2, skipping
those that it already contains

5. Do the same for parent 1 and offspring 2

42 8 716 Offspringl

Offspring?2

Parentl

parent2 | 8| 716|354 |3|2]|1

q

8|7|6
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Example illustration - 8-queens

Representation Permutation

Population size 100

Initialization Random

Parent selection Best 2 out of random 5

Recombination Cut-and-crossfill crossover

Mutation Swap

Mutation prob. 80%

Number of offspring 2

Survival selection Fitness based

Termination condition Reach the best fitness or 10,000 fitness evaluations

Swap values of two randomly chosen positions

1[3[5]2]6]417]8] — [1[3[Z]2]6]4[5I8]
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Example illustration - 8-queens

Representation Permutation

Population size 100

Initialization Random

Parent selection Best 2 out of random 5

Recombination Cut-and-crossfill crossover

Mutation Swap

Mutation prob. 80%

Number of offspring 2

Survival selection Fitness based

Termination condition Reach the best fitness or 10,000 fitness evaluations

Remove the worst two from the population and two offspring
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Example illustration - 8-queens

Representation Permutation

Population size 100

Initialization Random

Parent selection Best 2 out of random 5

Recombination Cut-and-crossfill crossover

Mutation Swap

Mutation prob. 80%

Number of offspring 2

Survival selection Fitness based

Termination condition Reach the best fitness or 10,000 fitness evaluations
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Example illustration - 8-queens

Average of 100 independent runs

Setup 1: Setup 2:
The number of fithess evaluations
7094 13

Curve change of the best fitness

28 ¢
2798

14

27.96

Best fitness
Best fitness

9]
~
O
=

2792

! ' ' ‘ 279
0 2000 4000 6000 8000 10000 0
Number of fitness evaluations

5000 10000
Number of fitness evaluations

23

The setup of components has a large influence on the performance
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Application: High-speed train head design

Problem: optimize the efficiency of the train head

extremely hard to apply traditional optimization methods

Representation:

> f(x)

test by simulation
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Application: High-speed train head design

i evaluatlon &
selectlon

Technological overview of the next generation Shinkansen high-speed train Series N700
M. Ueno', S. Usui', H. Tanaka', A. Watanabe®
Central Japan Railway Company, Tokyo, Japan, *West Japan Railway Company, Osaka, Japan

Abstract
In March 2005, Central Japan Railway Company (JR Central) has completed prototype

traineat ~f tho Qariae N70N the navt nanaratinn Qhinkancoan hinh.enaad rmilina ctacl: doualnanad

s g i — B U

waves and other issues related to environmental compatibility such as extemal noise. To
Series N7OO combat this, an aero double-wing-type has been adopted for nose shape (Fig. 3). This nose
shape, which boasts the most appropriate aerodynamic performance, has been newly developed

: rolling stock using the latest analytical technique (i.e. genetic algorithms) used to

main wings of airplanes. The shape resembles a bird in flight, suggesting a feeling

nd senead

-
this nose ... has been newly developed ... using the

R e R T |

ido Shinkansen line, Series N700 cars save 19% energy than Series 700 cars,
% increase in the output of their traction equipment for higher-speed operation (Fig.

latest analytical technique (i.e. genetic algorithms)

N700 cars save 19% energy ... 30% increase in the output...

Jhis is a result of adopting the ... nose shape

It of adopting the aerodynamically excellent nose shape, reduced running
fhanks to the drastically smoothened car body and under-floor equipment, effective
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Application: Antenna design

Problem: optimize the efficiency of the antenna

extremely hard to apply traditional optimization

methods

Representation:

a sequence of operators |

‘ } | EETSEN: M | __ | forward, rotate-x

| rotate-y, rotate-z

Fitness by simulation test (miﬁahzaﬁon {evaluation &
easy to test a given solution & ............. ﬂ
use EAS! ﬁ t\

.

. *
------------------------
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Application: Antenna design

T I N — Computer-Automated Evolution of an X-Band
Antenna for NASA’s Space Technology 5

I scorch teat

Ames Research Center

— TextSize @ B
b About Ames o B Lone 14,2008 Gregory. S. Hornby Gregory.S.Hornby@nasa.gov
> News & Events o e A e T Mail Stop 269-3, University Affiliated Research Center, UC Santa Cruz, Moffett Field,
: :::I::::d“ Phone: 650/604-5026 or 604-9000 CA’ 94035' USA

Research Emal L@l At gor Jason D. Lohn Jason.Lohn@west.cmu.edu
» Education RELEASE: 04-55AR Carnegie Mellon University, Mail Stop 23-11, Moffett Field, CA 94035, USA

Hisf

= Derek S. Linden dlinden@jemengineering.com

Doing Business With Us NASA 'EVOLUTIONARY" SOFTWARE AUTOMATICALLY DESIGNS ANTENNA

NASA artificial intelligence (Al) sofware - working on a network of persanal computers - has designed a satellite antenna

JEM Engineering, 8683 Cherry Lane, Laurel, MD 20707, USA Moffett Field, CA 94035,

scheduled to orbit Earth in 2005. USA

The antenna, able 1o fitinta a one-inch space (2.5 by 2.5 centimeters), can receive commangs and send data to Earth from
the Space Technology 5 (ST5) satellites. The three sateilites - aach no bigger han an average TV set - will help scientsts

Since there are two antennas on each spacecraft, and not just one, it is important
to measure the overall gain pattern with two antennas mounted on the spacecraft. For
this, different combinations of the two evolved antennas and the QHA were tried on
the the ST5 mock-up and measured in an anechoic chamber. With two QHAs 38% effi-
ciency was achieved, using a QHA with an evolved antenna resulted in 80% efficiency,
and using two evolved antennas resulted in 93% efficiency. Here “efficiency” means
how much power is being radiated versus how much power is being eaten up in resis-
tance, with greater efficiency resulting in a stronger signal and greater range. Figure 11

Comucal Cuts
100 % 80

Comenl Cuns
100 % 8o 10 0
: 120 = 60

1o

130 L0

220 320

QHAs (human. de ‘S"iéned) é('\ft)l(vg,cil;\_a;,ltenh'éls
38% efficiency 939% efficiency
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Application: Biological evolution

DERZ | AWM

NANJING UNIVERSITY NJUNEWS RRAFHiEPOED

BR S5HE TEHME EeEM HESHE BEES HMER FAIE REEX REEE FAMR BEXRA

IR EHT
{Science) HIEERAFEIKNFESTEFRATHEER: KERIBE wnien 5 o comrens.
BT EEYSEEE

BRSSP O ERESSETT...

Ab5EdE1 8178, ERtUEET (Science) LIATTR IR ELERF R T AZ, RERF i
R ETHIE. N ERTERREI “A high-resolution summary of Cambrian to Early Triassic
marine invertebrate biodiversity ” . ZHFNBLEIAEIE. BENBEEEZESHNAENFER, ET
RIEREM T Eaatme, BE 7 Sand S s S s EIIIARL. BT "BFH SR ASRNE.

PR S TIRSRET BN ..
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Application: Biological evolution

Each section contains many taxa Seymour Is. Section A

iplomoceras cylindraceum

L

“ad

Each taxon on each section has

two biological events: FAD, LAD s ""‘”""”['

Om 400m a00m 1200m

time

Om 400m a00m 1200m
Problem: to find a sequence of g! Diplomoceras cylindraceum
biological events of taxa, which < o——a
fits the observed biological ; -j
events beSt Kitchinites darwini

Seymour Is. Section F
| |
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Application: Biological evolution

Two taxa: 6 possible sequences of biological events

X

===

Symbiotic
constraints

.. greent .. red+.

. green-.. red-.. |

.. greent . red+ ..

P Diplomoceras cylindraceum
red- . green- .. ‘ ;;I j
+

.. redt .. greent ..

. redt . greent ..

green-. . red-. . G

red-. . green- .. Sequences
1 and 6 are
infeasible
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Application: Biological evolution

Objective function: total range . .
. Seymour Is. Section A
extensions to make the selected

Sequence and the Observed p Diplomoceras cylindraceum
biological events consistent
Kitchinites darwini ‘

[ 2 Om |400m I800m 1200m
a4 |F| —" e £

time Om 400m S00m 1200m
.. red+_ . green+ . green-._ red- .
Diplomoceras cylindraceum
ik PR %iE Jig it
RANGE EXTENSIONS ) ‘
Kitchinites darwini

Seymour Is. Section F
| |

The smaller, the better
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Application: Biological evolution

The

minimization problem:
Solution: sequence of biological events of taxa

Objective function: total range extensions to make the selected
sequence and the observed biological events consistent

Constraints: symbiotic constraints; FAD-LAD constraints

Taxa ---_-__

Sequences 1 9 2,520 113,400 7,484,400 681,080,400

wf without any coexistence constraints

A very difficult
optimization problem!

if all taxa must coexist

10 20 30 40 50 60 70 80 90 100
Number of Taxa in Correlation Problem
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Application: Biological evolution
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Thanks J. Fan and X. Hou for providing the figures Gedogic tme (Ma)
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And more

optimizing operating systems: machine learning:

Linux: Tuning The Kernel With A Genetic Algorithm

Zhi-Hua Zhou - Yang Yu - Chao Qian

Posted by Jeremy on Friday, January 7, 2005 - 06:59 E | hd
Jake Moilanen provided a series of four patches against the 2.6.9 Linux kernel % VO u tI 0 n a ry
patches update the anticipatory 10 scheduler [story] and the zaphod CPU
scheduler [story] to both use the new in-kernel library, theoretically allowing o
workload. Jake says, "using these patches, there are small gains (1-3%) in Unixbench & Advances
SpecJBB. | am hoping a scheduler guru will able to rework them to give higher gains." in Theories

[story] that introduce a simple genetic algorithm used for automatic tuning. The L °
them to automatically tune themselves for the best possible performance for any given g
interactive art design:
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As long as solutions can be evaluated, EAs can be applied
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Summary

 Evolutionary algorithms: Origins
 Evolutionary algorithms: Components

 Evolutionary algorithms: Applications
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