

Parent selection

Survival selection

• Population diversity

Heuristic Search and Evolutionary Algorithms

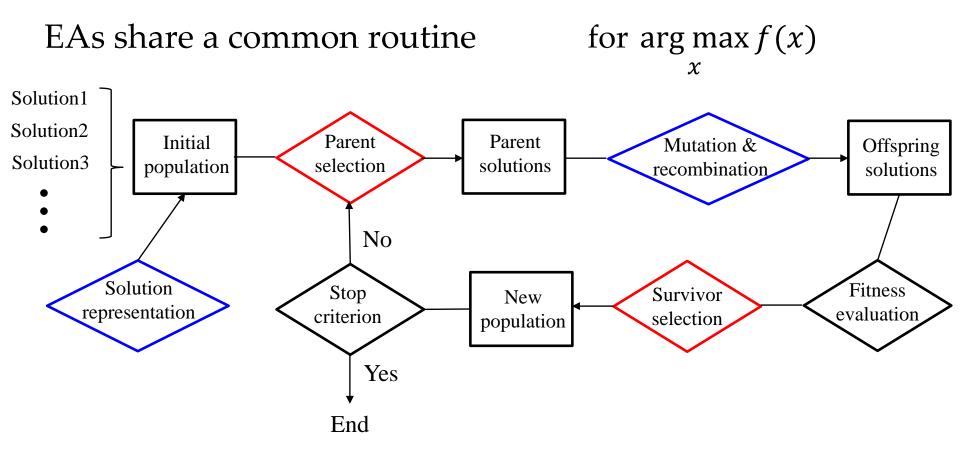
Lecture 8: Popular Variants of Evolutionary Algorithms

Chao Qian (钱超)

Associate Professor, Nanjing University, China

Email: qianc@nju.edu.cn Homepage: http://www.lamda.nju.edu.cn/qianc/

Evolutionary algorithms



There have been many popular variants of EAs

Genetic algorithms

Genetic Algorithms (GA)

Typically applied to optimization in discrete domains

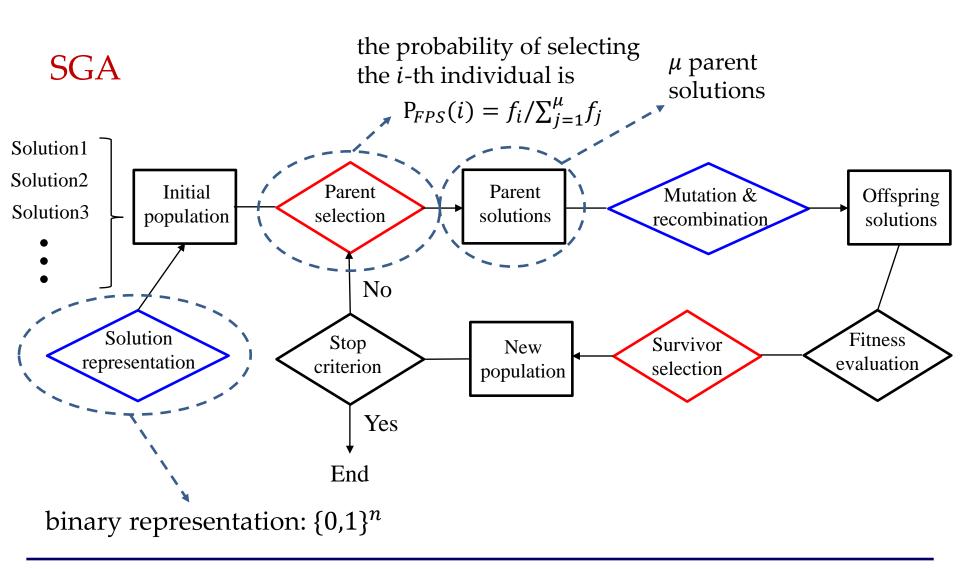
[J. H. Holland. Outline for a logical theory of adaptive systems. JACM, 1962]

J. H. Holland 1929-2015 University of Michigan

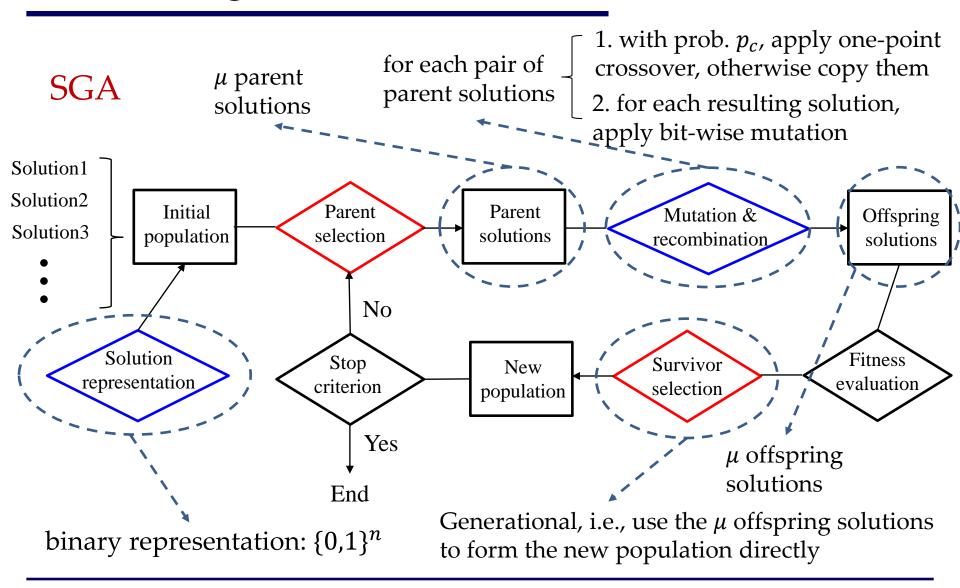
Simple GA (SGA)

Representation	Binary representation
Recombination	One-point crossover
Mutation	Bit-wise mutation
Parent selection	Fitness proportional selection – implemented by Roulette Wheel
Survivor selection	Generational, i.e, age-based replacement with $\lambda = \mu$

Genetic algorithms

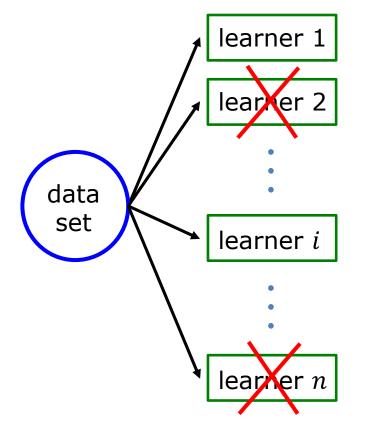


Genetic algorithms



Ensemble learning [Zhou, 2012]

• better performance than a single learner



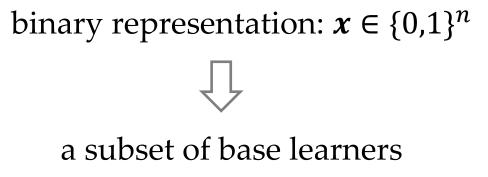
Selective ensemble (ensemble pruning) [Zhou, 2012]

- better performance than the complete ensemble
- reduce storage and improve efficiency

Two goals

- maximize the generalization performance
- minimize the number of selected learners

PEP [Qian, Yu and Zhou, AAAI'15]: apply GA with uniform parent selection, bit-wise mutation and fitness-based survivor selection to solve the selective ensemble problem



- $x_i = 1$: the *i*-th base learner is selected
- $x_i = 0$: the *i*-th base learner is not selected

Pruning bagging base learners with size 100

baseline methods ordering-based methods									
	Test Error								
Data set	PEP	Bagging	BI	RE	Kappa	CP	MD	DREP	
australian	.144±.020	$.143 \pm .017$.152±.023•	.144±.020	$.143 \pm .021$	$.145 \pm .022$.148±.022	$.144 \pm .019$	
breast-cancer	$.275 \pm .041$.279±.037	.298±.044•	.277±.031	$.287 \pm .037$	$.282 \pm .043$.295±.044•	$.275 \pm .036$	
disorders	$.304 \pm .039$.327±.047•	.365±.047•	.320±.044•	.326±.042•	.306±.039	.337±.035•	$.316 \pm .045$	
heart-statlog	.197±.037								
house-votes	.045±.019	PEP ac.	hieves tr	ie smalle	est error (on 60% (12/20) of	the	
ionosphere	.088±.021	data co	to while	othorm	athodom	outours l	ha hast	an at	
kr-vs-kp	$.010 \pm .003$	uata se	ts, while	other m	lemous p	eriorini	the best o	Jn at	
letter-ah	$.013 \pm .005$	most 3	5% (7/20)	data					
letter-br	$.046 \pm .008$	most	5/0 (7720)	uata					
letter-oq	$.043 \pm .009$.049±.012•	.078±.017•	.046±.011	$.042 \pm .011$	$.042 \pm .010$	$.046 \pm .011$	$.041 \pm .010$	
optdigits	$.035 \pm .006$.038±.007•	.095±.008•	$.036 \pm .006$	$.035 \pm .005$	$.036 \pm .005$.037±.006•	$.035 \pm .006$	
satimage-12v57	$.028 \pm .004$								
satimage-2v5	$.021 \pm .007$	PEP is	better th	an any o	ther met	hod on 1	nore tha	n 60%	
sick	$.015 \pm .003$			-					
sonar	$.248 \pm .056$	(12.5/20)) data se	ets					
spambase	$.065 \pm .006$.000±.00/•	.093 <u>T.000</u> 0	.000±.000	.000±.000	.000.±000.	.000±.00/•	.000 T.000	
tic-tac-toe	.131±.027	.164±.028•	.212±.028•	.135±.026	.132±.023	$.132 \pm .026$.145±.022•	$.129 \pm .026$	
vehicle-bo-vs	$.224 \pm .023$.228±.026	.257±.025•	.226±.022	.233±.024•	.234±.024•	.244±.024•	.234±.026•	
vehicle-b-v	$.018 \pm .011$.027±.014●	.024±.013•	.020±.011	.019±.012	$.020 \pm .011$.021±.011•	.019±.013	
vote	$.044 \pm .018$.047±.018	.046±.016	.044±.017	$.041 \pm .016$.043±.016	$.045 \pm .014$.043±.019	
count of the best	12	2	0	2	7	1	0	5	
PEP: count of o	direct win	17	20	15.5	12.5	17	20	12.5	

PEP is never significantly worse

	0	rdering-b	ased meth	ods		
			Ensembl	e Size		
Data set	PEP	RE	Kappa	CP	MD	DREP
australian	10.6 ± 4.2	12.5 ± 6.0	14.7 ± 12.6	11.0±9.7	8.5 ± 14.8	11.7 ± 4.7
breast-cancer	8.4±3.5	8.7±3.6	26.1±21.7●	8.8±12.3	7.8 ± 15.2	9.2 ± 3.7
disorders	14.7 ± 4.2	120142	0171160	15 2 1 10 7	17.7 100.0	120150
heart-statlog	9.3 ± 2.3	PEP ac	chieves th	ie smalle	st size or	1 60%
house-votes	2.9 ± 1.7	(10/00)				
ionosphere	5.2 ± 2.2	(12/20)	of the da	ata sets, v	vnile oth	er
kr-vs-kp	4.2 ± 1.8	metho	ds achiev	e the sm	allest siz	e on at
letter-ah	5.0 ± 1.9					c on at
letter-br	10.9 ± 2.6	most 1	.5% (3/20)	data		
letter-oq	12.0 ± 3.7		<u> </u>			
optdigits	22.7 ± 3.1	25.0 ± 9.3	25.2 ± 8.1	21.4 ± 7.5	46.8±23.9●	25.0 ± 8.0
satimage-12v57	17.1 ± 5.0		1			1
satimage-2v5	5.7 ± 1.7	PEP 1S	better th	an any o	ther meth	nod on
sick	6.9 ± 2.8	at lose	t 80% (16	(20) data	ente	
sonar	11.4 ± 4.2			(20) uala		
spambase	17.5 ± 4.5	18.5 ± 5.0	20.0 ± 8.1	19.0 ± 9.9	28.8±17.0●	16.7 ± 4.6
tic-tac-toe	14.5 ± 3.8	16.1 ± 5.4	17.4 ± 6.5	15.4 ± 6.3	28.0±22.6●	13.6 ± 3.4
vehicle-bo-vs	16.5 ± 4.5	15.7 ± 5.7	16.5 ± 8.2	$11.2 \pm 5.7 \circ$	21.6 ± 20.4	13.2 ± 5.0
vehicle-b-v	2.8 ± 1.1	3.4 ± 2.1	4.5±1.6●	5.3 ± 7.4	2.8 ± 3.8	4.0 ± 3.9
vote	2.7 ± 1.1	3.2 ± 2.7	5.1±2.6●	5.4±5.2●	6.0 ± 9.8	3.9±2.5∙
count of the best	12	2	0	2	3	3
PEP: count of a	direct win	17	19.5	18	17.5	16

PEP is never significantly worse, except two losses on vehicle-bo-vs

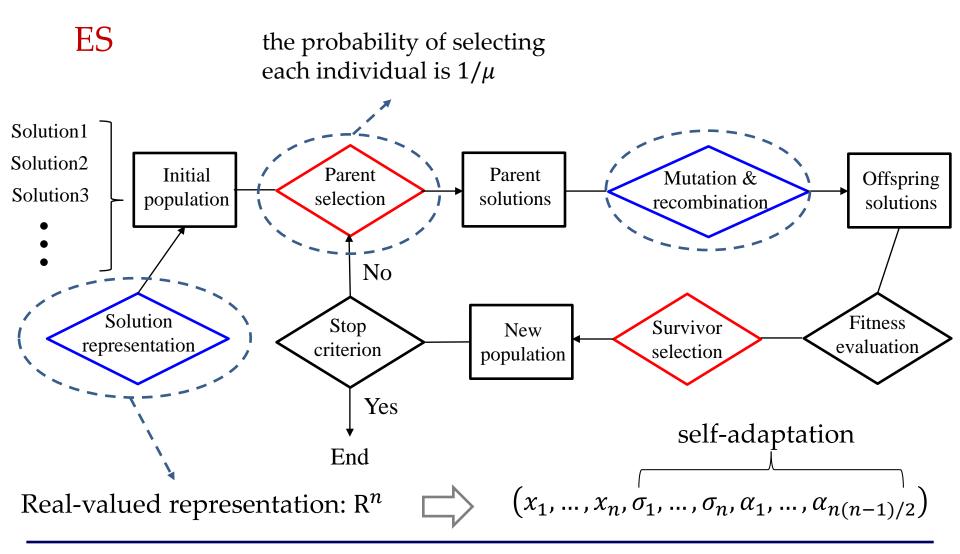
Evolutionary Strategies (ES)

Typically applied to optimization in continuous domains

[I. Rechenberg. Cybernetic solution path of an experimental problem. 1965]

I. Rechenberg 1934- Technical University of Berlin

Representation	Real-valued representation
Recombination	Discrete or arithmetic
Mutation	Gaussian perturbation
Parent selection	Uniform random
Survivor selection	Fitness-based replacement by (μ, λ) or $(\mu + \lambda)$
Speciality	Self-adaptation of mutation step sizes



Local recombination:

Select two parents uniformly at random

$$\begin{pmatrix} x_1, \dots, x_n, \sigma_1, \dots, \sigma_n, \alpha_1, \dots, \alpha_{n(n-1)/2} \end{pmatrix} \begin{pmatrix} y_1, \dots, y_n, \sigma'_1, \dots, \sigma'_n, \alpha'_1, \dots, \alpha'_{n(n-1)/2} \end{pmatrix} \begin{pmatrix} z_1, \dots, z_n, \sigma''_1, \dots, \sigma''_n, \alpha''_1, \dots, \alpha''_{n(n-1)/2} \end{pmatrix}$$

Discrete: z_i is chosen from x_i and y_i uniformly at random

Arithmetic: $\sigma_i^{\prime\prime} = \sigma_i/2 + \sigma_i^{\prime}/2$ $\alpha_i^{\prime\prime} = \alpha_i/2 + \alpha_i^{\prime}/2$

Global recombination: the two parents are selected uniformly at random for each position

Local recombination:

Select two parents uniformly at random

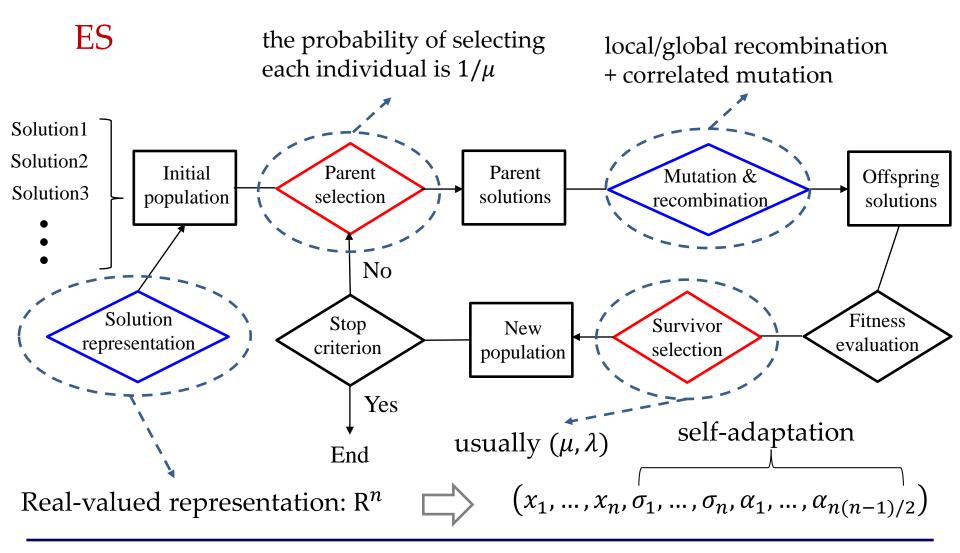
 $(x_1, ..., x_n, \sigma_1, ..., \sigma_n, \alpha_1, ..., \alpha_{n(n-1)/2})$ $(y_1, ..., y_n, \sigma'_1, ..., \sigma'_n, \alpha'_1, ..., \alpha'_{n(n-1)/2})$

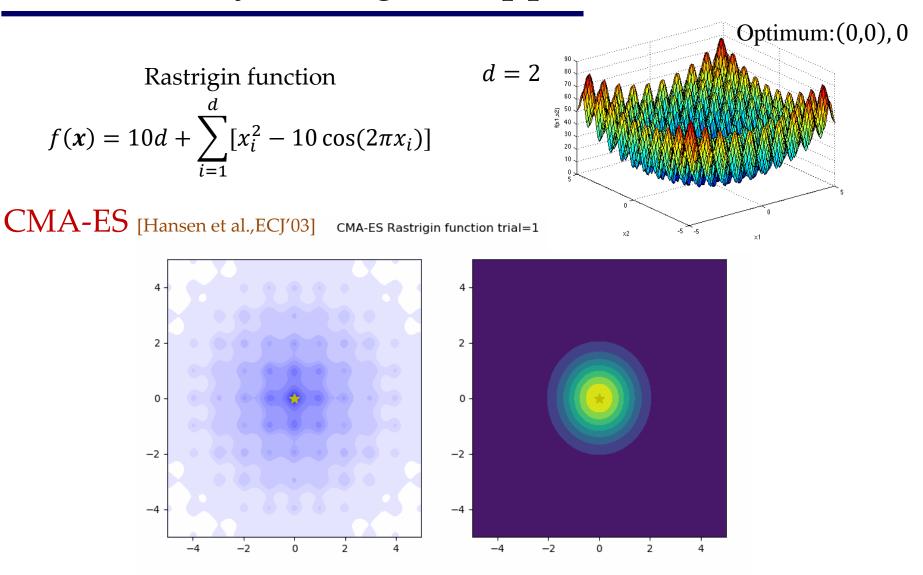
$$(z_1, ..., z_n, \sigma_1'', ..., \sigma_n'', \alpha_1'', ..., \alpha_{n(n-1)/2}'')$$

Correlated mutation:

$$(w_1, \ldots, w_n, \delta_1, \ldots, \delta_n, \beta_1, \ldots, \beta_{n(n-1)/2})$$

Self-adaptation
$$\delta_i = \sigma_i^{\prime\prime} \cdot e^{\tau' \cdot N(0,1) + \tau \cdot N_i(0,1)}$$
 $\beta_j = \alpha_j^{\prime\prime} + \beta \cdot N_j(0,1)$
 $w = z + N(0, C')$



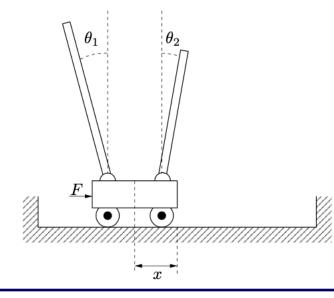


Reinforcement learning

• learn how to take actions in an environment in order to maximize the cumulative reward

Example: double pole with velocities problem

Goal: Learn an optimal policy to keep the angles of the poles in the range $[-36^{\circ}, 36^{\circ}]$ for 10^{5} time steps, where each step corresponds to 0.02s



velocity

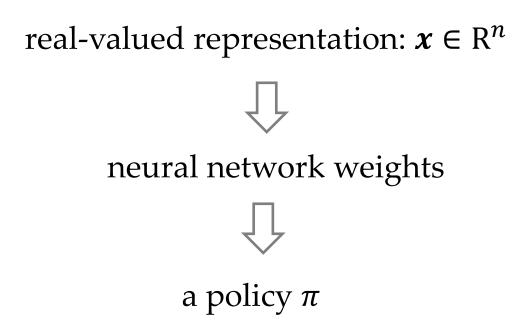
State: vector
$$(x, \dot{x}, \theta_1, \theta_1, \theta_2, \theta_2)$$

Action: exert forces either left or right on the cart

Reward: -1 when balancing fails (any of the poles out of range $[-36^{\circ}, 36^{\circ}]$)

Finite length track

[Igel, CEC'03] uses **CMA-ES** with average arithmetic recombination, Gaussian perturbation with self-adaptation, and $(\mu + \lambda)$ survivor selection to solve the double pole with velocities problem



CMA-ES	n_{hidden}	bias	$n_{ m weights}$	evaluations	failures
$\overline{(3/3, 13)}$	4	no	28	884 / 3142	0/1
(3/3, 13)	4	yes	33	2929/25853	0/12
(3/3, 13)	6	no	42	895	0
(3/3, 13)	6	yes	49	2672/13464	0/5
(4/4, 16)	8	no	56	1119	0
(4/4, 16)	8	yes	65	2493	0
(4/4, 16)	10	no	70	1003	0
(4/4, 16)	10	yes	81	2494	0
(4/4, 16)	12	no	84	1143	0
(4/4, 16)	12	yes	97	2216	0
(4/4, 16)	14	no	98	1021	0
(4/4, 16)	14	yes	113	2391	0
(4/4, 16)	16	no	112	967	0
(4/4, 16)	16	yes	129	2146	0
method				evaluations	population size
NE (Wielan	id, 1991)			≈ 307200	2048
EP (Saravar	nan and Fo	gel, 199	95)	pprox 80000	100
SANE (Moriarty and Miikulainen, 1996)			12600	200	
ESP (Gome	z and Miil	kulainer	n <u>, 1999)</u>	3800	200
NEAT (Star	nley and M	liikkula	inen, 2002)	3600	150

CMA-ES can find an optimal policy even with a small population size

> CMA-ES is almost four times faster than the best previous algorithm

Evolutionary programming

Evolutionary Programming (EP)

Originally for optimizing finite state machines (agents)

L. J. Fogel 1928-2007

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated Evolution. 1966]University of California, Los Angeles

Now typically applied to optimization in continuous domains, and almost merged with ES

Representation	Real-valued representation		rence
Recombination	None		
Mutation	Gaussian perturbation		
Parent selection	Deterministic (each parent generates one offspring)		-
Survivor selection	Round-robin tournament]
Speciality	Self-adaptation of mutation step sizes		

Genetic Programming (GP)

Typically for optimizing computer programs

J. R. Koza 1944[J. R. Koza. Genetic Programming.1992]

Stanford University

Arithmetic formula:

2 .π⊥	$\left(\left(x \pm 3 \right) \right) =$	<i>y</i>	2
$2 \cdot n +$	(x + 3) -	$\overline{5+1}$	

Representation	Tree representation
Recombination	Exchange of subtrees
Mutation	Random change in trees
Parent selection	Fitness proportional
Survivor selection	Generational replacement

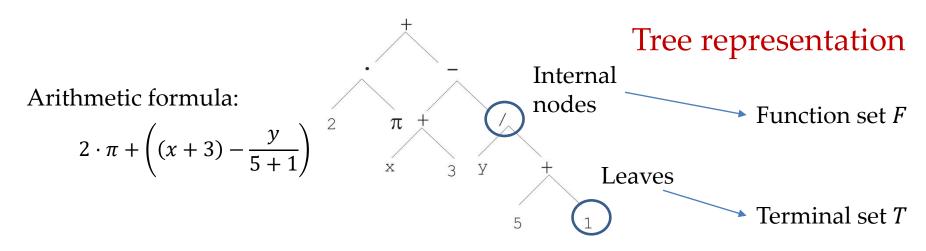
π

Х

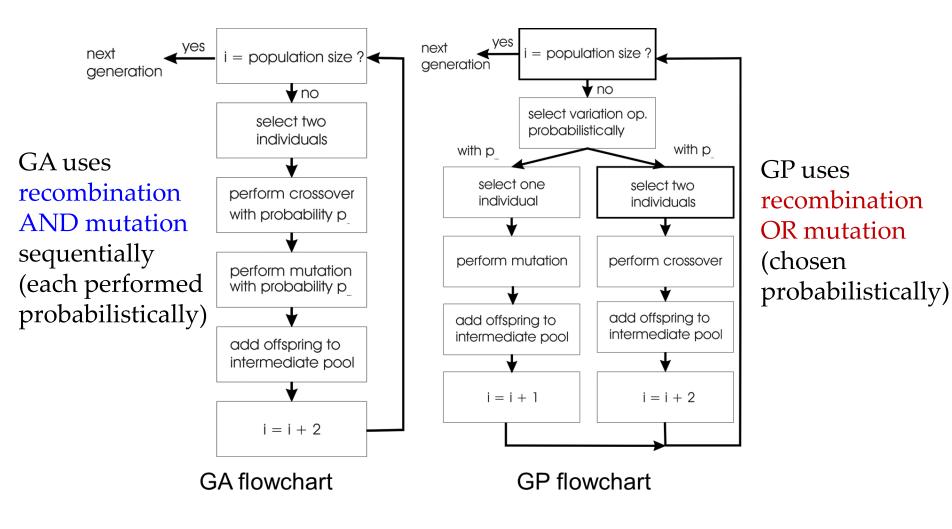
3

У

5



- Initial tree construction (maximum initial depth d_{max})
 - Full method (each branch has depth = d_{max}):
 - nodes at depth $< d_{max}$ are randomly chosen from *F*
 - nodes at depth d_{max} are randomly chosen from T
 - → Grow method (each branch has depth $\leq d_{max}$):
 - nodes at depth < d_{max} are randomly chosen from $F \cup T$
 - nodes at depth d_{max} are randomly chosen from T



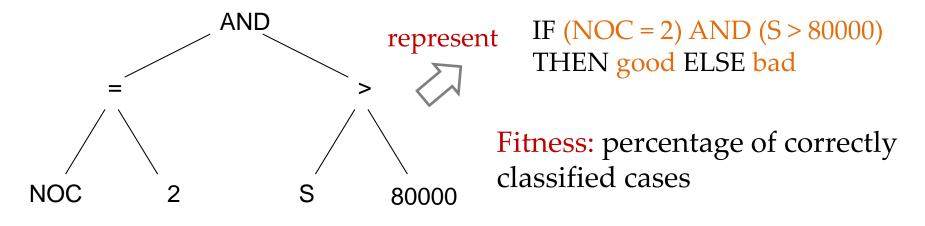
- Bloat: average tree sizes tend to grow over time
 - Prohibiting variation operators that would generate "too big" offspring
 - Parsimony pressure: penalty for being oversized
- Parent selection

Selection pressure increases with the population size

- > Typically fitness proportional selection
- Over-selection for very large population sizes
 - rank population by fitness and divide it into two groups: group 1: best x% of population, group 2: other (100 x)%
 - 80% of selection chooses from group 1, 20% from group 2
 - for pop. size = 1000, 2000, 4000, 8000, x = 32%, 16%, 8%, 4%

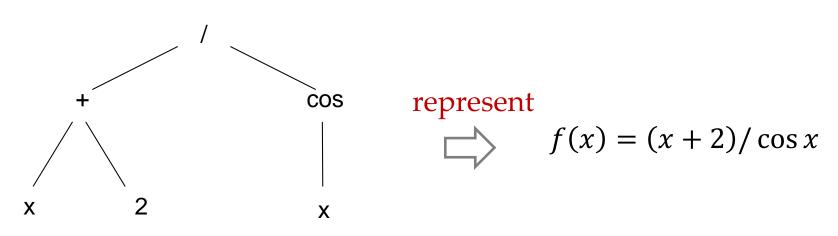
Task: learn a rule to distinguish good from bad loan applicants

ID	No of children	Salary	Marital status	Good?
ID-1	2	45000	Married	0
ID-2	0	30000	Single	1
ID-3	1	40000	Divorced	1



Task: find a function f(x) to fit the observed data

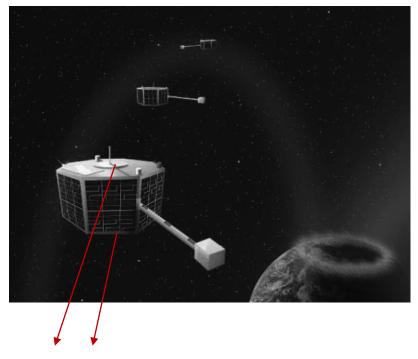
 $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

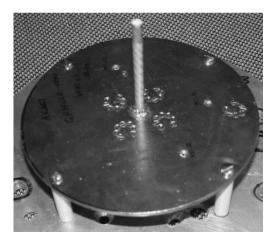


Fitness: the error

$$\sum_{i=1}^n (f(x_i) - y_i)^2$$

Task: antenna design in NASA's Space Technology 5 (ST5) mission





Quadrifilar helical antenna designed by human experts

Two antennas centered on the top and bottom of each spacecraft

Computer-Automated Evolution of an X-Band Antenna for NASA's Space Technology 5 Mission

Gregory. S. Hornby Gregory.S.Hornby@nasa.gov Mail Stop 269-3, University Affiliated Research Center, UC Santa Cruz, Moffett Field, CA, 94035, USA

Jason D. Lohn Jason.Lohn@west.cmu.edu Carnegie Mellon University, Mail Stop 23-11, Moffett Field, CA 94035, USA

Derek S. Linden dlinden@jemengineering.com JEM Engineering, 8683 Cherry Lane, Laurel, MD 20707, USA Moffett Field, CA 94035, USA

tree representation

use GP to design antenna automatically

Fitness: efficiency and gain evaluated by simulation

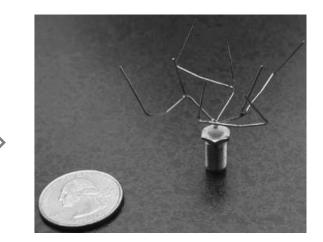
- forward(length, radius)
- rotate-x(angle)
- rotate-y(angle)
- rotate-z(angle)

by preorder traversal

Execute the

operators

```
rotate-z(1.984442) 1 [ rotate-x(2.251165) 1 [
rotate-x(0.062240) 1 [ rotate-x(0.083665) 1 [
rotate-y(-2.449035) 1 [ rotate-z(-0.894357) 1 [
rotate-y(-2.057702) 1 [ rotate-y(0.661755) 1 [
rotate-x(0.740703) 1 [ rotate-y(2.057436) 1 [
forward(0.013292,0.000283) 2 [ rotate-z(-1.796822) 1 [
rotate-x(-1.651348) 1 [ rotate-y(-2.940880) 1 [
rotate-x(0.095209) 1 [ rotate-z(1.248723) 1 [
forward(0.003815,0.000363) 1 [
forward(0.008289,0.000355) 1 [
forward(0.008413,0.000369) 1 [ rotate-x(-0.006494) 1 [
rotate-x(-0.592854) 1 [ rotate-z(-2.085023) 1 [
rotate-z(1.735374) 1 [ rotate-z(-2.045125) 1 [
rotate-z(0.203076) 1 [ rotate-z(1.750799) 1 [
rotate-z(-2.038688) 1 [ rotate-z(1.725007) 1 [
rotate-y(1.478109) 1 [ rotate-x(2.477117) 1 [
rotate-x(-2.441858) 1 [ forward(0.015082,0.000223) ] ]
] ] ] ] ] ] ] ] ] ] ] ] ] ] rotate-y(2.335438)
1 [ rotate-y(-1.042201) 1 [ rotate-y(-1.761594) 1 [
rotate-x(2.518405) 1 [ rotate-z(-0.739608) 1 [
rotate-x(0.426553) 1 [ rotate-z(-0.291483) 1 [
rotate-x(2.152738) 1 [ forward(0.013190,0.000414) ] ] ]
```



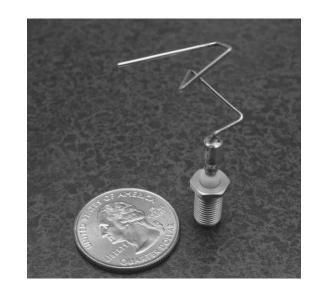
Evolved antenna ST5-3-10

operator1 2 [subtree-1 subtree-2]

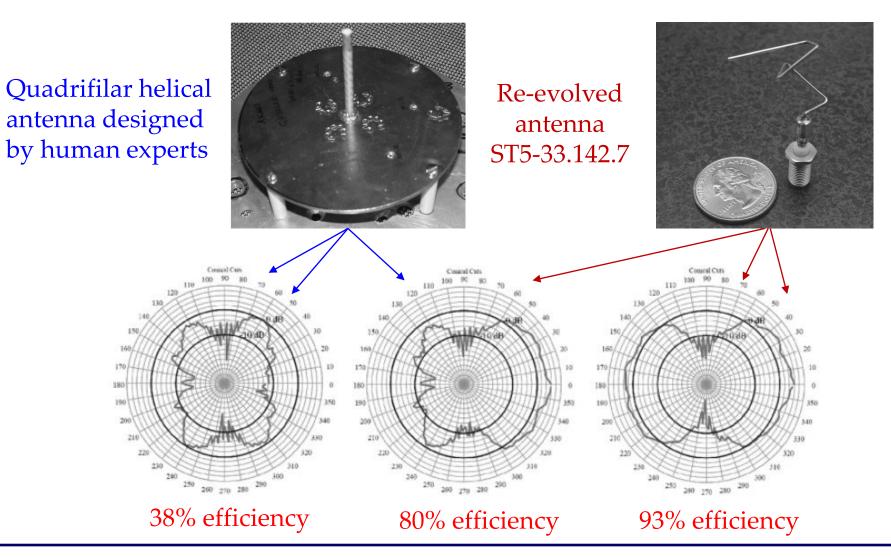
http://www.lamda.nju.edu.cn/qianc/

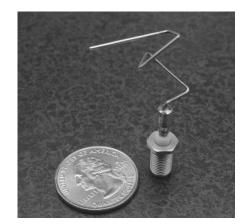
The change of the launch vehicle for the ST5 spacecraft leads to new requirements for the antenna

```
rotate-z(0.723536) 1 [ rotate-x(2.628787) 1 [
rotate-z(1.145415) 1 [ rotate-x(1.930810) 1 [
rotate-z(2.069497) 1 [ rotate-x(1.822537) 1 [
forward(0.007343,0.000406) 1 [ rotate-z(1.901507) 1 [
forward(0.013581,0.000406) 1 [ rotate-x(1.909851) 1 [
rotate-y(2.345316) 1 [ rotate-y(0.308043) 1 [
rotate-y(2.890265) 1 [ rotate-x(0.409742) 1 [
rotate-y(2.397507) 1 [ forward(0.011671,0.000406) 1 [
rotate-x(2.187298) 1 [ rotate-y(2.497974) 1 [
rotate-y(0.235619) 1 [ rotate-x(0.611508) 1 [
rotate-y(2.713447) 1 [ rotate-y(2.631141) 1 [
forward(0.011597,0.000406) 1 [ rotate-y(1.573367) 1 [
forward(0.007000,0.000406) 1 [ rotate-x(-0.974118) 1 [
rotate-y(2.890265) 1 [ rotate-z(1.482916) 1 [
forward(0.019955,0.000406) ] ] ] ] ] ] ] ] ] ] ] ] ] ]
] ] ] ] ] ] ] ] ] ] ] ]
```



Re-evolved antenna ST5-33.142.7





Re-evolved antenna ST5-33.142.7

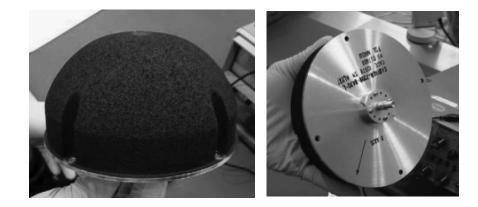
February 25, 2005

Delivered to Goddard Space Flight Center to undergo tests

April 8, 2005 Complete the tests

March 22, 2006

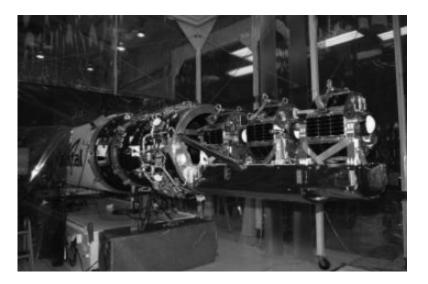
Launched from Vandenberg Air Force Base, California on a Pegasus XL rocket



Three ST5 spacecraft with the black radomes on top containing an evolved antenna, ST5-33.142.7

Three ST5 spacecraft mounted for launch on a Pegasus XL rocket

The first computer-evolved hardware in space



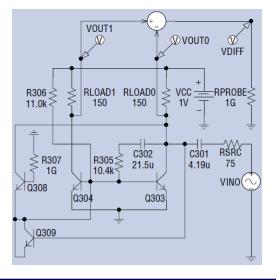
[J. R. Koza, et al. What's AI Done for Me Lately? Genetic Programming's Human-Competitive Results. IEEE Intelligent Systems, 18(3): 25-31, 2003.]

Table 1. Human-competitive results produced by genetic programming	Table 1.	Human-comp	etitive resul	ts produced	by ge	enetic p	rogramming
--	----------	------------	---------------	-------------	-------	----------	------------

Cla		Basis for claim criteria number
1.	Creating a better-than-classical quantum algorithm for the Deutsch-Jozsa "early promise" problem ²	2, 5
2.	Creating a better-than-classical quantum algorithm for Grover's database search problem ³	2, 5
3.	Creating a quantum algorithm for the depth-two AND/OR query problem that is better than any previously published result ^{4,5}	4
4.	Creating a quantum algorithm for the depth-one OR query problem that is better than any previously published result ⁵	4
5.	Creating a protocol for communicating information through a quantum gate that was previously thought not to permit such communicat	ion ⁶ 4
6.	Creating a novel variant of quantum dense coding ⁶	4
7.	Creating soccer-playing program that ranked in the middle of the field of 34 human-written programs in the Robo Cup 1998 competit	ion ⁷ 8
8.	Creating four different algorithms for the transmembrane segment identification problem for proteins ^{8,9}	2, 5
9.	Creating a sorting network for seven items using only 16 steps ⁹	1, 4
10	Rediscovering the Campbell ladder topology for lowpass and highpass filters ⁹	1,6
11.	Rediscovering the Zobel "M-derived half section" and "constant K" filter sections9	1,6
12	Rediscovering the Cauer (elliptic) topology for filters ⁹	1, 6
13	Automatic decomposition of the problem of synthesizing a crossover filter ⁹	1, 6
14	Rediscovering a recognizable voltage gain stage and a Darlington emitter-follower section of an amplifier and other circuits ⁹	1, 6
15	Synthesizing 60 and 96 decibel amplifiers ⁹	1, 6
16	Synthesizing analog computational circuits for squaring, cubing, square root, cube root, logarithm, and Gaussian functions ⁹	1, 4, 7
17.	Synthesizing a real-time analog circuit for time-optimal control of a robot9	7
18	Synthesizing an electronic thermometer ⁹	1, 7
19	Synthesizing a voltage reference circuit ⁹	1, 7
20	Creating a cellular automata rule for the majority classification problem that is better than the Gacs-Kurdyumov-Levin (GKL) rule and all other known rules written by humans ⁹	4, 5
21	Creating motifs that detect the D–E–A–D box family of proteins and the manganese superoxide dismutase family ⁹	3
22	Synthesizing topology for a PID-D2 (proportional, integrative, derivative, and second derivative) controller ¹⁰	1, 6
23	Synthesizing topology for a PID (proportional, integrative, and derivative) controller ¹⁰	1, 6
24	Synthesizing analog circuit equivalent to Philbrick circuit ¹⁰	1, 6
25	Synthesizing NAND circuit ¹⁰	1, 6
26	Simultaneously synthesizing topology, sizing, placement, and routing of analog electrical circuits ¹⁰	7
27.	Rediscovering Yagi-Uda antenna ¹⁰	2, 6, 7
28	Creating PID tuning rules that outperform a PID controller using the Ziegler-Nichols and Astrom-Hagglund tuning rules ¹⁰	1, 2, 4, 5, 6, 7
29	Creating three non-PID controllers that outperform PID controllers using the Ziegler-Nichols and Astrom-Hagglund tuning rules ¹⁰	1, 2, 4, 5, 6, 7
30	Rediscovering negative feedback ¹⁰	1, 6
31	Synthesizing a low-voltage balun circuit ¹⁰	1
32	Synthesizing a mixed analog-digital variable capacitor circuit ¹⁰	1
33	Synthesizing a high-current load circuit ¹⁰	1
34	Synthesizing a voltage-current conversion circuit ¹⁰	1
35	Synthesizing a cubic signal generator ¹⁰	1
36	Synthesizing a tunable integrated active filter ¹⁰	1

e.g.: design low-voltage balun circuit

"The best-of-run evolved circuit (see Figure 1) is roughly a <u>fourfold improvement</u> over the <u>patented circuit in terms of our fitness measure.</u> The evolved circuit is superior both in terms of its frequency response and harmonic distortion."



Differential evolution

Differential Evolution (DE)

Typically applied to nonlinear and nondifferentiable continuous optimization

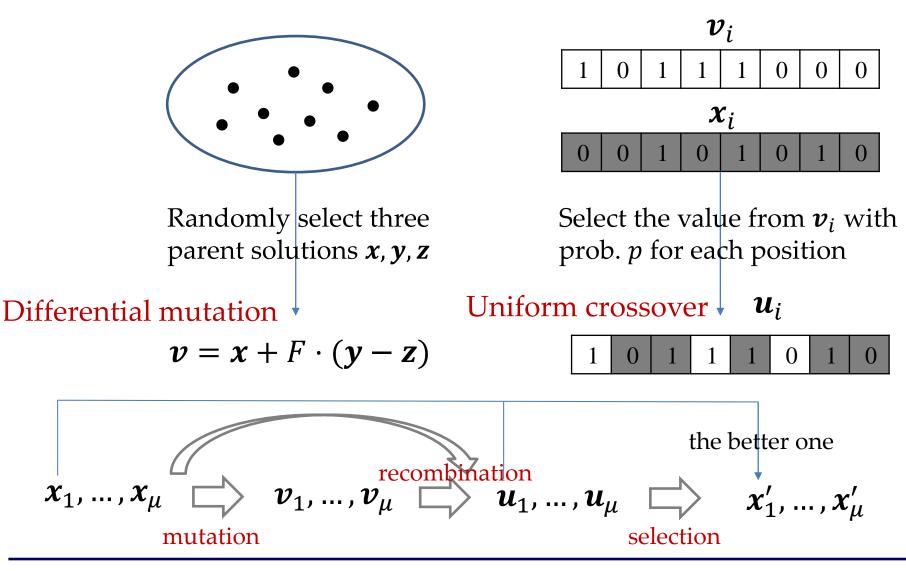
R. Storn

[R. Storn, K. Price. *Differential Evolution – A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces*. 1995]

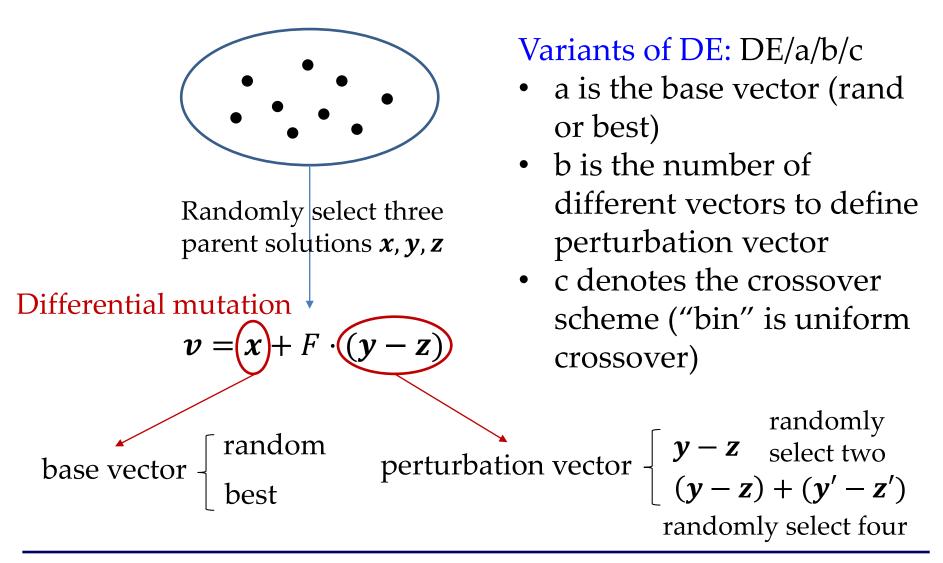
International Computer Science Institute in Berkeley, USA

Representation	Real-valued representation
Recombination	Uniform crossover
Mutation	Differential mutation
Parent selection	Uniform random selection
Survivor selection	Deterministic elitist replacement (parent vs. offspring)

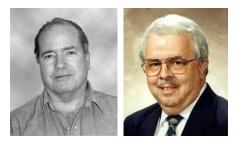
Differential evolution



Differential evolution



Particle swarm optimization



J. Kennedy R. Eberhart

fish school

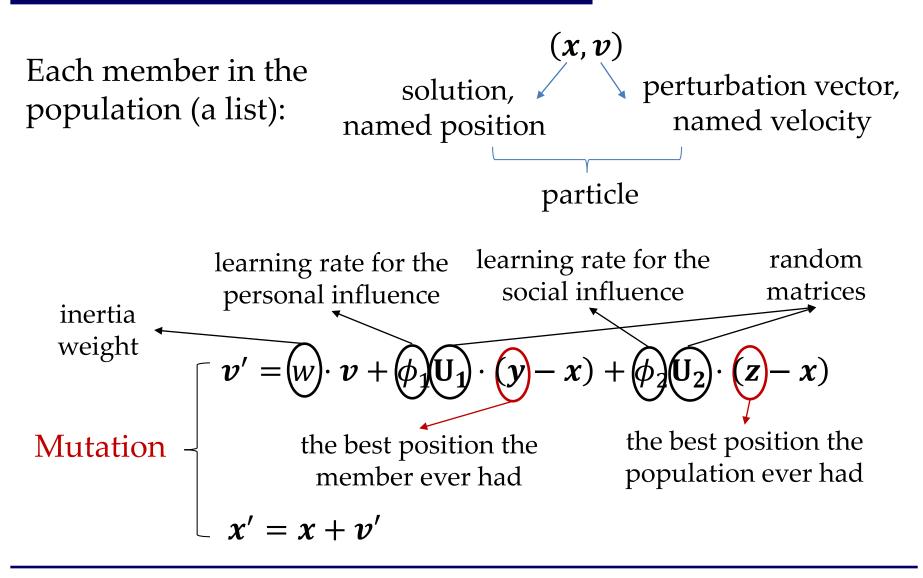
bird flock

Representation	Real-valued representation
Recombination	None
Mutation	Adding velocity vector
Parent selection	Deterministic (each parent creates one offspring via mutation)
Survivor selection	Generational (offspring replaces parents)

Typically applied to nonlinear optimization [J. Kennedy, R. Eberhart. *Particle Swarm Optimization*. 1995]

Particle Swarm Optimization (PSO)

Particle swarm optimization



Particle swarm optimization

The *i*-th member in the population (a list):

 (x_i, v_i, y_i) solution, perturbation vector, named position named velocity the population particle Mutation $\begin{cases} \boldsymbol{v}'_i = \boldsymbol{w} \cdot \boldsymbol{v}_i + \phi_1 \mathbf{U}_1 \cdot (\boldsymbol{y}_i - \boldsymbol{x}_i) + \phi_2 \mathbf{U}_2 \cdot (\boldsymbol{z} - \boldsymbol{x}_i) \\ \boldsymbol{x}'_i = \boldsymbol{x}_i + \boldsymbol{v}'_i \end{cases}$ $\mathbf{y}'_i = \begin{cases} \mathbf{x}'_i & \text{if } f(\mathbf{x}'_i) < f(\mathbf{y}_i) \\ \mathbf{y}_i & \text{Otherwise} \end{cases}$ The global best \mathbf{z} is updated if $\min\{f(x'_1), ..., f(x'_{\mu})\} < f(z)$

Ant colony optimization

Ant Colony Optimization (ACO)

Typically applied to find good paths through graphs

[M. Dorigo. Optimization, Learning and Natural Algorithms. 1992]

M. Dorigo

Ants find the shortest path between their nest and a good source using **pheromone trails**

Solution representation | path on a graph

Solution construction

An ant moves on the graph according to the pheromone and length of each edge

Pheromone update

The pheromone of each edge is updated according to the number of ants traversing it and the lengths of constructed paths

Ant colony optimization

Solution construction

An ant moves on the graph according to the pheromone and length of each edge

For an ant *k*, if the current vertex is *i*, the probability of selecting *j* as the next vertex is

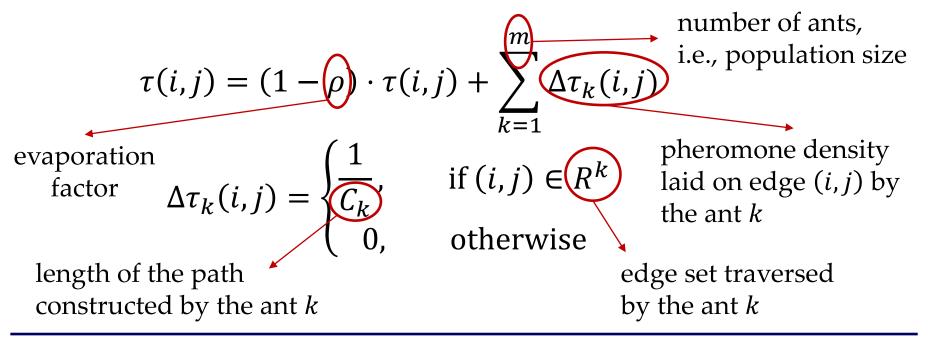
$$p_{k}(i,j) = \begin{cases} (\tau(i,j)^{\alpha} (\eta(i,j))^{\beta} \\ \overline{\sum_{u \in J_{k}(i)} (\tau(i,u))^{\alpha} (\eta(i,u))^{\beta}}, & \text{if } j \in J_{k}(i) \\ 0, & \text{otherwise} \\ 0, & \text{otherwise} \\ \text{usually } 1/d(i,j), \text{ where } d(i,j) \\ \text{is the distance between } i \text{ and } j \end{cases}$$

Ant colony optimization

Pheromone update

The pheromone of each edge is updated according to the number of ants traversing it and the lengths of constructed paths

After the ants construct the paths, the pheromone is updated by



Estimation of distribution algorithms

Estimation of Distribution Algorithms (EDA) Applied to diverse optimization

[S. Baluja. Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning. 1994]

S. Baluja

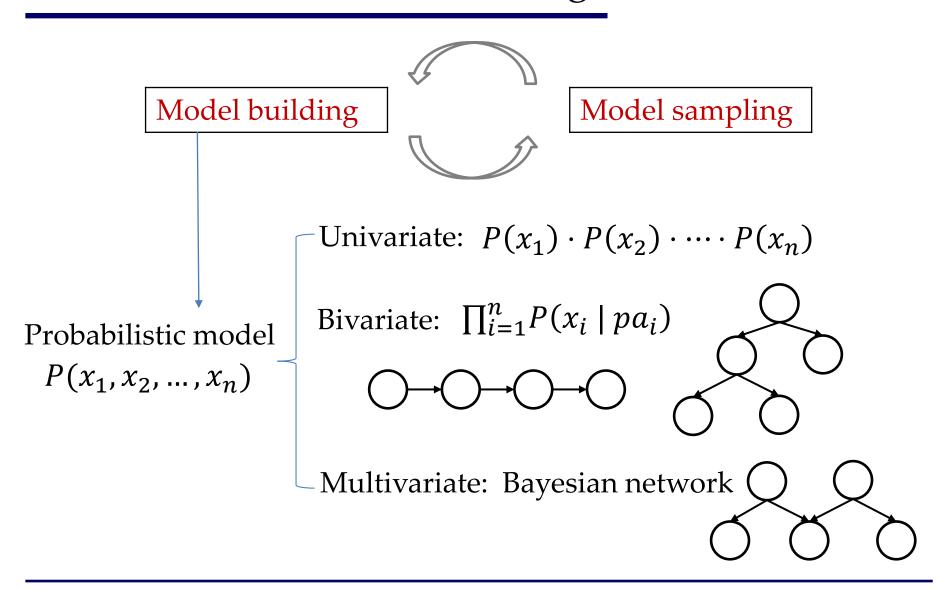
Carnegie Mellon University

EDA guide the search for the optimum by building and sampling explicit probabilistic models of promising candidate solutions

Select the fittest subset of sampled solutions



Estimation of distribution algorithms



Summary

- Genetic algorithms
- Evolutionary strategies
- Evolutionary programming
- Genetic programming
- Differential evolution
- Particle swarm optimization
- Ant colony optimization
- Estimation of distribution algorithms

_ Historical EA variants

_ Recent EA variants

References

- A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Chapter 6.
- J. R. Koza, M. A. Keane and M. J. Streeter. What's AI done for me lately? Genetic programming's human-competitive results. *IEEE Intelligent Systems*, 2003, 18(3): 25-31.
- C. Igel. Neuroevolution for reinforcement learning using evolution strategies. In: *Proceedings of the 2003 Congress on Evolutionary Computation (CEC'03),* 2003, pages 2588-2595, Canberra, Australia.
- M. Dorigo and T. Stützle. Ant Colony Optimization. 2004, MIT Press.
- G. S. Hornby, J. D. Lohn and D. S. Linden. Computer-automated evolution of an X-band antenna for NASA's space technology 5 mission. *Evolutionary Computation*, 2011, 19(1): 1-23.
- C. Qian, Y. Yu and Z.-H. Zhou. Pareto ensemble pruning. In: *Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI'15)*, 2015, pages 2935-2941, Austin, TX.