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Last class

• Genetic algorithms

• Evolutionary strategies

• Evolutionary programming

• Genetic programming

• Differential evolution

• Particle swarm optimization

• Ant colony optimization

• Estimation of distribution algorithms

Historical EA 
variants

Recent EA 
variants
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Theoretical analysis

Develop solid, rigorous, and reliable knowledge

- empirical studies are limited to the experimented cases
- overcome experiment difficulties
- derive provable conclusions

Particularly for evolutionary algorithms (EAs)

- when to use them？
- what are their merits and drawbacks?
- how different configurations affect their performance?
- design better EAs
...
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Theoretical analysis of EAs

• EAs have been widely used in real applications

GA, ES, EP, GP, PSO, 
ACO, DE, EDA, …… population new solutions

parent selection & reproduction

evaluation & survivor selectioninitialization

• EAs are complex and randomized

 The components of EAs, e.g., mutation, recombination, selection and 
population, can be complex

 With the same input, the output by independent runs can be different 

Theoretical analysis is very difficult
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Schema theorem

Schema theorem [Holland, 1975]

• Proposed to explain how the population of EAs 
changes in steps

Consider a binary solution space {0,1}5=

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111

A schema 𝐻 is a template with “#”= “any”, which defines 
a subspace

01#1#

#1#1# 

###1#

e.g.The order 𝑜(𝐻): the number of positions 
that do not have #

The defining length 𝑑(𝐻): the distance 
between the outermost defined positions 

𝑜 𝐻
3
2
1

𝑑 𝐻
3
2
0
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Schema theorem

Schema theorem [Holland, 1975]

• Proposed to explain how the population of EAs 
changes in steps

Study the change of 𝑚(𝐻, 𝑡)
the number of individuals belonging 
to 𝐻 in the population at time 𝑡

Consider simple GA (SGA)

Representation Binary representation

Recombination One-point crossover

Mutation Bit-wise mutation

Parent selection Fitness proportional selection

Survivor selection Generational

1. with prob. 𝑝𝑐, apply one-
point crossover, otherwise 
copy them

2. for each resulting solution, 
apply bit-wise mutation
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Schema theorem

Schema theorem [Holland, 1975]

• Proposed to explain how the population of EAs 
changes in steps

Study the change of 𝑚(𝐻, 𝑡) of SGA

𝐸 𝑚 𝐻, 𝑡 + 1 ≥ 𝑚 𝐻, 𝑡 ⋅
𝑓𝐻
 𝑓
⋅ 1 − 𝑝𝑐 ⋅

𝑑 𝐻

𝑛−1
⋅ (1 − 𝑝𝑚)

𝑜(𝐻)

the average fitness of 
individuals in the 
population

the average fitness of 
individuals belonging 
to 𝐻 in the population

the probability of not 
disrupting 𝐻 by one-point 
crossover

the probability of not 
disrupting 𝐻 by bit-wise 
mutation 
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Schema theorem

Schema theorem [Holland, 1975]

• Proposed to explain how the population of EAs 
changes in steps

Study the change of 𝑚(𝐻, 𝑡) of SGA

𝐸 𝑚 𝐻, 𝑡 + 1 ≥ 𝑚 𝐻, 𝑡 ⋅
𝑓𝐻
 𝑓
⋅ 1 − 𝑝𝑐 ⋅

𝑑 𝐻

𝑛−1
⋅ (1 − 𝑝𝑚)

𝑜(𝐻)

Low-order and short schemata of above-average fitness 
will increase their instances from generation to generation  

• Critiqued from several directions, and even wrong 

• Cannot explain the global performance of EAs
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As an optimization algorithm, we concern: 

• does an EA converge?

• how fast an EA converges?

• ...

Optimization-oriented theories
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Markov chain modeling

population new solutions

parent selection & reproduction

initialization evaluation & survivor selection

EA:

population
0 

population
1

population
2

population
3 

…

expand along time:

state 𝜉0 …state 𝜉1 state 𝜉2 state 𝜉3

Markov chain:

𝑃 𝜉𝑡 𝜉𝑡−1, … , 𝜉1, 𝜉0 = 𝑃(𝜉𝑡|𝜉𝑡−1)
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Markov chain modeling

state 𝜉0 …state 𝜉1 state 𝜉2 state 𝜉3

Markov chain: 𝑃 𝜉𝑡 𝜉𝑡−1, … , 𝜉1, 𝜉0 = 𝑃(𝜉𝑡|𝜉𝑡−1)

optimal 
solutions

optimal 
populations

involves at least one 
optimal solution
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Size of population space

optimal 
solutions

optimal 
populations

involves at least one 
optimal solution

What is the size of population space?

𝒮 +𝑚 − 1

𝑚
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Convergence

Does an EA converge to the optimal solutions?

An EA that

1. uses global operators

2. preserves the best solution

But life is limited! How fast does it converge?

∀𝑥: 𝑃 𝜉𝑡+1 ∈ 𝒳
∗ 𝜉𝑡 = 𝑥) > 0

𝑃 ∃𝑡: 𝜉𝑡 ∈ 𝒳
∗ = 1 − 

𝑡=0

+∞

𝑃 𝜉𝑡 ∉ 𝒳
∗ = 1  

𝑡=0

+∞

𝑃 𝜉𝑡 ∉ 𝒳
∗ = 0

converges to the optimal solutions
[Rudolph, 1998]
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Running time complexity

Convergence analysis

𝑙𝑖𝑚𝑡→+∞ 𝑃 𝜉𝑡 ∈ 𝒳
∗ = 1 ?

Running time analysis

𝜏 = min 𝑡 ≥ 0 𝜉𝑡 ∈ 𝒳
∗}

The number of iterations until 
finding an optimal or approximate 
solution for the first time

The leading theoretical aspect
[Auger & Doerr, 2011; Neumann & Witt, 2012]

Running time complexity

• The number of iterations × the number of fitness 
evaluations in each iteration

• Usually grows with the problem size and expressed 
in asymptotic notations

e.g., (1+1)-EA solving LeadingOnes: 𝑂(𝑛2)

z
y

Problem size

R
u

n
tim

e
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Running time complexity

The number of iterations until 
finding an optimal or approximate 
solution for the first time

The leading theoretical aspect
[Auger & Doerr, 2011; Neumann & Witt, 2012]

A quick guide to asymptotic notations: 

Let 𝑔 and 𝑓 be two functions defined on the real numbers.

• 𝑔 ∈ Ο 𝑓 : ∃𝑀 > 0 such that 𝑔 𝑥 ≤ 𝑀 ∙ 𝑓(𝑥) for all sufficiently large 𝑥

• 𝑔 ∈ Ω 𝑓 : 𝑓 ∈ Ο 𝑔

• 𝑔 ∈ Θ 𝑓 : 𝑔 ∈ Ο 𝑓 and 𝑔 ∈ Ω 𝑓

𝑔 ∈ Ο(𝑓) → 𝑔 ≤ 𝑓

𝑔 ∈ Ω 𝑓 → 𝑔 ≥ 𝑓

𝑔 ∈ Θ 𝑓 → 𝑔 = 𝑓

Convergence analysis

𝑙𝑖𝑚𝑡→+∞ 𝑃 𝜉𝑡 ∈ 𝒳
∗ = 1 ?

Running time analysis

𝜏 = min 𝑡 ≥ 0 𝜉𝑡 ∈ 𝒳
∗}
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Running time complexity

The number of iterations until 
finding an optimal or approximate 
solution for the first time

The leading theoretical aspect
[Auger & Doerr, 2011; Neumann & Witt, 2012]

𝜏 is a random variable.
We are interested in:

• Ε 𝜏

• 𝑃(𝜏 ≤ 𝑇)

EAs are randomized algorithms

• They do not perform the same 
operations even if the input is the same 

• They do not output the same result if 
run twice!

Convergence analysis

𝑙𝑖𝑚𝑡→+∞ 𝑃 𝜉𝑡 ∈ 𝒳
∗ = 1 ?

Running time analysis

𝜏 = min 𝑡 ≥ 0 𝜉𝑡 ∈ 𝒳
∗}
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Expectation

[Expectation] The expectation of a discrete random variable 
𝑋 is 

𝐸 𝑋 = ∑𝑖 𝑖 ⋅ 𝑃(𝑋 = 𝑖)

where the sum is over all values in the range of 𝑋.

[Binomial Random Variable] A binomial random variable
𝑋 ∼ 𝐵(𝑛, 𝑝) with parameters 𝑛 and 𝑝 represents the number
of successes in 𝑛 independent experiments each of which
succeeds with probability 𝑝.

𝑃 𝑋 = 𝑖 =
𝑛

𝑖
𝑝𝑖 1 − 𝑝 𝑛−𝑖 𝐸[𝑋] = 𝑛𝑝
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Expectation

[Expectation] The expectation of a discrete random variable 
𝑋 is 

𝐸 𝑋 = ∑𝑖 𝑖 ⋅ 𝑃(𝑋 = 𝑖)

where the sum is over all values in the range of 𝑋.

[Geometric Random Variable] A geometric random
variable 𝑋 with parameter 𝑝 represents the number of trials
until the first success, where each trial succeeds with
probability 𝑝.

𝑃 𝑋 = 𝑖 = (1 − 𝑝)𝑖−1𝑝 𝐸[𝑋] = 1/𝑝
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Properties of expectation

[Law of Total Probability] For disjoint 𝐵1, 𝐵2, … , 𝐵𝑛 that 
∪𝑖=1
𝑛 𝐵𝑖 = Ω, 

𝑃(𝐴) = ∑𝑖 𝑃 𝐴 ∧ 𝐵𝑖 = ∑𝑖 𝑃 𝐴 | 𝐵𝑖 𝑃( 𝐵𝑖)

[Law of Total Expectation] For disjoint 𝐵1, 𝐵2, … , 𝐵𝑛 that 
∪𝑖=1
𝑛 𝐵𝑖 = Ω, 

𝐸 𝑋 = ∑𝑖 𝐸[𝑋 | 𝐵𝑖]𝑃(𝐵𝑖)

[Linearity of Expectation] For any collection of discrete 
random variables 𝑋1, 𝑋2, … , 𝑋𝑛 with finite expectations,

𝐸 ∑𝑖=1
𝑛 𝑋𝑖 = ∑𝑖=1

𝑛 𝐸[𝑋𝑖]
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Tail inequalities

[Markov’s inequality] Let 𝑋 be a random variable taking only 
non-negative values, and 𝐸[𝑋] its expectation. For any 𝑡 > 0, 

𝑃 𝑋 ≥ 𝑡 ≤ 𝐸[𝑋]/𝑡

[Chernoff bounds] Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent Poisson 
trials, and 𝑋 = ∑𝑖=1

𝑛 𝑋𝑖. For any 𝛿 > 0, 

𝑃 𝑋 ≥ 1 + 𝛿 𝐸[𝑋] ≤
𝑒𝛿

(1 + 𝛿)1+𝛿

𝐸[𝑋]

𝑃 𝑋 ≤ 1 − 𝛿 𝐸[𝑋] ≤
𝑒−𝛿

(1 − 𝛿)1−𝛿

𝐸[𝑋]

For a uniformly randomly sampled Boolean vector 𝒙 ∈ {0,1}𝑛, 
what is the probability of having no more than 2𝑛/3 1-bits?



http://www.lamda.nju.edu.cn/qianc/

Union bound

[Union bound] For any finite or countably finite sequence of 
events 𝐸1, 𝐸2, …, it holds that  

𝑃  

𝑖≥1

𝐸𝑖 ≤ 

𝑖≥1

𝑃(𝐸𝑖)

For a Boolean vector 𝒙 ∈ {0,1}𝑛 with 𝑖 0-bits, after flipping 
each bit with prob. 1/𝑛 independently, what is the upper 
bound on the probability of decreasing the number of 0-bits 
by 𝑗?

Bit-wise mutation

≤ 𝑃  

𝑖≥1

𝐸𝑖
𝐸𝑖: 𝑗 specific 0-bits 
of 𝒙 are flipped 

𝑃(𝐸𝑖)≤
𝑖

𝑗

1

𝑛

𝑗
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Example of running time analysis

An extremely simplified EA

missing some features of real EAs

one-bit mutation
randomly choose one bit 

and change its value

for maximization, 

allow neutral 

changes

no population

no crossover

find an optimal solution

bit-wise mutation
flip each bit with prob. 

1/𝑛 independently
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Example of running time analysis

Probing problem OneMax:

count the number of 1 bits

EAs do not have the knowledge of the problems 

only able to call  𝑓(𝒙)

no difference with any other function

fitness: 𝑓 𝒙 = 
𝑖=1

𝑛

𝑥𝑖

arg max
𝒙∈{0,1}𝑛

 

𝑖=1

𝑛

𝑥𝑖
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Upper bound analysis

OneMax:

the solutions with the same number of 1-bits share the same f value

solutions 

with 0 1-bits

solutions 

with 1 1-bits

solutions 

with 2 1-bits

solutions 

with n 1-bits

......

probability:1 probability: 0

𝒮𝑛

(1+1)-EA with 

one-bit mutation
𝑓 𝒙 = 

𝑖=1

𝑛

𝑥𝑖
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the solutions with the same number of 1-bits share the same f value

solutions 

with 0 1-bits

solutions 

with 1 1-bits

solutions 

with 2 1-bits

solutions 

with n 1-bits

...... 𝒮𝑛

OneMax:(1+1)-EA with 

one-bit mutation

Upper bound analysis

𝑓 𝒙 = 

𝑖=1

𝑛

𝑥𝑖
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the solutions with the same number of 1-bits share the same f value

solutions 

with 0 1-bits

solutions 

with 1 1-bits

solutions 

with 2 1-bits

solutions 

with n 1-bits

...... 𝒮𝑛

OneMax:(1+1)-EA with 

one-bit mutation

Upper bound analysis

𝑓 𝒙 = 

𝑖=1

𝑛

𝑥𝑖
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solutions 

with 0 1-bits

solutions 

with 1 1-bits

solutions 

with 2 1-bits

solutions 

with n 1-bits

......

probability of transition

𝒮𝑛

Upper bound analysis

expected #iterations until the transition happens
𝑛

𝑛 − 𝑖
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expected #iterations until 

the transition happens

summed up

...

OneMax:(1+1)-EA with 

one-bit mutation

Upper bound analysis

expected running time upper bound 𝑂(𝑛 log 𝑛)

𝑓 𝒙 = 

𝑖=1

𝑛

𝑥𝑖
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Lower bound analysis

OneMax:(1+1)-EA with 

bit-wise mutation

𝐸 𝜏 = ∑𝑖=0
𝑛 𝐸 𝜏 𝒙 0= 𝑖] ⋅ 𝑃 𝒙 0 = 𝑖

Let 𝜏 denote the running time, and |𝒙|0 denote the number of 

0-bits of the initial solution 

≥ 𝐸 𝜏 𝒙 0= 𝑛/3] ⋅ 1/4

≥ ∑𝑖=𝑛/3
𝑛 𝐸 𝜏 𝒙 0= 𝑖] ⋅ 𝑃 𝒙 0 = 𝑖

≥ 𝐸 𝜏 𝒙 0= 𝑛/3] ⋅ 𝑃 𝒙 0 ≥ 𝑛/3

Law of total expectation

𝑃 𝒙 1 ≤ 2𝑛/3 ≥ 1/4 by Markov’s inequality

𝑓 𝒙 = 

𝑖=1

𝑛

𝑥𝑖
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Lower bound analysis

OneMax:(1+1)-EA with 

bit-wise mutation

𝐸 𝜏 ≥ 𝐸 𝜏 𝒙 0= 𝑛/3] ⋅ 1/4

In 𝑛 − 1 l𝑛 𝑛 iterations, at least one of these 𝑛/3 0-bits is 

never flipped

𝜏 > 𝑛 − 1 l𝑛 𝑛

The optimum is not found
the probability is 

lower bounded by 

𝑓 𝒙 = 

𝑖=1

𝑛

𝑥𝑖
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Lower bound analysis

𝐸 𝜏 ≥ 𝐸 𝜏 𝒙 0= 𝑛/3] ⋅ 1/4

In 𝑛 − 1 l𝑛 𝑛 iterations, at least one of these 𝑛/3 0-bits is never flipped

• 1 − 1/𝑛: a specific 0-bit is not flipped

≥ 𝑛 − 1 l𝑛 𝑛 ⋅ 𝑃(𝜏 > 𝑛 − 1 l𝑛 𝑛) ⋅ 1/4

lower bound

• (1 − 1/𝑛)𝑡: a specific 0-bit is never flipped in 𝑡 iterations

• 1 − (1 − 1/𝑛)𝑡: a specific 0-bit is flipped at least once in 𝑡 iterations

• 1 − (1 − 1/𝑛)𝑡 𝑛/3: any of these 𝑛/3 0-bits is flipped at least once in 𝑡
iterations

• 1 − 1 − (1 − 1/𝑛)𝑡 𝑛/3 𝑡 = 𝑛 − 1 l𝑛 𝑛
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Lower bound analysis

OneMax:(1+1)-EA with 

bit-wise mutation

𝐸 𝜏 ≥ 𝐸 𝜏 𝒙 0= 𝑛/3] ⋅ 1/4

≥ 𝑛 − 1 l𝑛 𝑛 ⋅ 𝑃(𝜏 > 𝑛 − 1 l𝑛 𝑛) ⋅ 1/4

≥ 𝑛 − 1 l𝑛 𝑛 ⋅ 1 − 1 − (1 − 1/𝑛) 𝑛−1 l𝑛 𝑛
𝑛/3
⋅ 1/4

≥ 𝑛 − 1 l𝑛 𝑛 ⋅ 1 − 1 − 𝑒− l𝑛 𝑛
𝑛/3
⋅ 1/4

= 𝑛 − 1 l𝑛 𝑛 ⋅ 1 − 1 − 1/𝑛 𝑛/3 ⋅ 1/4

≥ 𝑛 − 1 l𝑛 𝑛 ⋅ 1 − 𝑒−1/3 ⋅ 1/4 ∈ Ω 𝑛 log 𝑛

(1 − 1/𝑛)𝑛−1

≥ 1/𝑒

(1 − 1/𝑛)𝑛

≤ 1/𝑒

𝑓 𝒙 = 

𝑖=1

𝑛

𝑥𝑖
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For (1+1)-EA solving OneMax

Example of running time analysis

expected running time upper bound

If using one-bit mutation,

𝑂(𝑛 log 𝑛)

expected running time lower bound

If using bit-wise mutation,

Ω(𝑛 log 𝑛)

Not asymptotically faster

𝑓 𝒙 = 

𝑖=1

𝑛

𝑥𝑖
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Running time analysis tools

When facing new situations, analyses starting from 
scratch are quite difficult

We need general running time analysis tools to guide 
the analysis

• Fitness level 

• Drift analysis

• Switch analysis
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Summary

• Schema theorem

• Markov chain modeling

• Convergence

• Running time complexity

• Expectation and tail inequalities

• Example of running time analysis
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