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* Genetic algorithms

 Evolutionary strategies _ Historical EA
» Evolutionary programming variants
 Genetic programming —

 Differential evolution
. P [ 1 . ° .
article swarm optimization _ Recent EA

* Ant colony optimization variants

 Estimation of distribution algorithms
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Theoretical analysis

Develop solid, rigorous, and reliable knowledge

- empirical studies are limited to the experimented cases
- overcome experiment difficulties
- derive provable conclusions

Particularly for evolutionary algorithms (EAs)

- when to use them?

- what are their merits and drawbacks?

- how different configurations affect their performance?
- design better EAs
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Theoretical analysis of EAs

* EAs have been widely used in real applications

parent selection & reproduction

Y

GA, ES, EP, GP, PSO,
ACO, DE, EDA, ......
SR

initialization  evaluation & survivor selection

* EAs are complex and randomized

» The components of EAs, e.g., mutation, recombination, selection and
population, can be complex

» With the same input, the output by independent runs can be different

Theoretical analysis is very difficult
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Schema theorem

Schema theorem [Holland, 1975]

* Proposed to explain how the population of EAs
changes in steps

00000 01000 10000 11000
00001 01001 10001 11001
00010 01010 10010 11010

Consider a binary solution space {0,1}°>= %01t o0wo1 o011  iou

00101 01101 10101 11101
00110 01110 10110 11110
00111 011117 10111 11111

A schema H is a template with “#”= “any”, which defines

a subspace o(H) d(H)
E}?i (()irder f }EH ): t;e number of positions e.g. 01#1# 3 3
at do not have H1#1# 2 2

The defining length d(H): the distance w14 1 0
between the outermost defined positions
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Schema theorem

Schema theorem [Holland, 1975]

* Proposed to explain how the population of EAs
changes in steps

Study the change of m(H, t)|

the number of individuals belonging
to H in the population at time ¢

Consider simple GA (SGA)

1. with prob. p,, apply one-

Representation Binary representation . .
point crossover, otherwise

Recombination One-point crossover copy them

Mutation Bit-wise mutation 2. for each resulting solution,

Parent selection Fitness proportional selection | apply bit-wise mutation

Survivor selection | Generational
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Schema theorem

Schema theorem [Holland, 1975]

* Proposed to explain how the population of EAs
=/ A changes in steps

i\
the probability of not
disrupting H by bit-wise

mutation \

E[lm(H,t + 1)] = m(H, t)~ ;’[(1 _ (Pc d(H))] [(1 . )o(H)]

n-—1

S

the average fitness of  the average fitness of the probability of not
individuals belonging individuals in the disrupting H by one-point
to H in the population  population Crossover

Study the change of m(H, t) of SGA
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Schema theorem

° Schema theorem [Holland, 1975]
rd * Proposed to explain how the population of EAs
=\ %72 changes in steps

Study the change of m(H, t) of SGA
Efm(H,t + D] 2 m(H,6) -2 (1= (pe - 22)) - (1 = py)°®

3 -

Low-order and short schemata of above-average fitness
will increase their instances from generation to generation

* Critiqued from several directions, and even wrong

* Cannot explain the global performance of EAs
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Optimization-oriented theories

As an optimization algorithm, we concern:

* does an EA converge?
* how fast an EA converges?
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Markov chain modeling

parent selection & reproduction

EA: y

population

A=

initialiZatCr=gyaluation ¢.survivor seiection
population population population
0 3
Markov Chai'fr

state &, @ @ @

P(Etlft—li '"'611 'SO) = P(ftlft—l)
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Markov chain modeling

Markov chain:  P(&|&—1, ..., &1, &0) = P(&|&e-1)

: N optimal
optimal Q pgpulations

solutions

S*
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Size of population space

: optimal
optimal populations

solutions

8*

What is the size of population space?

.
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Convergence

Does an EA converge to the optimal solutions?

lim P e &™) =1
t—+o0
converges to the optimal solutions

[Rudolph, 1998]
> VP& €EX* & =%)>0

+ 00 + oo @
P@ALE € X7) =1 — ﬂP(Et ¢ X%) =1 (= HP(Et ¢ X*) =0
t=0 t=0

An EA that
1. uses g lobal operators
2. pregerves the best solution

But life is limited! How fast does it converge?
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Running time complexity

Convergence analysis

The leading theoretical aspect
[Auger & Doerr, 2011; Neumann & Witt, 2012]

Running time analysis
T=min {t >0]| & € X*}

The number of iterations until
finding an optimal or approximate
solution for the first time

Running time complexity 1
* The number of iterations X the number of fitness
evaluations in each iteration g
«  Usually grows with the problem size and expressed 2
in asymptotic notations
e.g., (1+1)-EA solving LeadingOnes: 0 (n?) >

Problem size
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Running time complexity

Convergence analysis

The leading theoretical aspect
[Auger & Doerr, 2011; Neumann & Witt, 2012]

A quick guide to asymptotic notations:

Running time analysis
T=min {t >0]| & € X*}

The number of iterations until
finding an optimal or approximate
solution for the first time

Let g and f be two functions defined on the real numbers.

* g € 0(f):AM > 0 such that g(x) < M - f(x) for all sufficiently large x

* g €Q(f):f €0(g)

* g€0(f):ge0(f)and g € Q(f)

ge0f)~»g=f
geEUf)»g=f
geo(f)-g=f

http://www.lamda.nju.edu.cn/qgianc/



Running time complexity

Running time analysis
T=min {t >0]| & € X*}

Convergence analysis

The number of iterations until
finding an optimal or approximate
solution for the first time

The leading theoretical aspect
[Auger & Doerr, 2011; Neumann & Witt, 2012]

EAs are randomized algorithms :> ~is a random variable
* They do not perform the same We are interested in: .

operations even if the input is the same | Ef]

* They dp not output the same result if . P(1<T)
run twice!
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Expectation

[Expectation] The expectation of a discrete random variable
X 1s

EIX]=Y,i-P(X =1)
where the sum is over all values in the range of X.

[Binomial Random Variable] A binomial random variable
X ~ B(n,p) with parameters n and p represents the number
of successes in n independent experiments each of which
succeeds with probability p.

Pox =0 = ()it —p E[X] = np
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Expectation

[Expectation] The expectation of a discrete random variable
X 1s

E[X]=Y;i-P(X =)
where the sum is over all values in the range of X.

[Geometric Random Variable] A geometric random
variable X with parameter p represents the number of trials
until the first success, where each trial succeeds with
probability p.

PX=0D=(1-p)"p E[X]=1/p
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Properties of expectation

[Law of Total Probability] For disjoint B4, B,, ..., B, that
U?=1 Bi — 'Q/

P(A) =3, P(ANB;) =3, P(A| B;)P(B;)

[Law of Total Expectation] For disjoint By, By, ..., B, that
U?=1 Bl — Q,

E[X] =Y, E[X | B;]P(B;)

[Linearity of Expectation] For any collection of discrete
random variables X, X, ..., X;; with finite expectations,

E[¥i—1Xi] = Y=, E[X)]
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Tail inequalities

[Markov’s inequality] Let X be a random variable taking only
non-negative values, and E[X] its expectation. For any t > 0,

P(X >t) < E[X]/t

[Chernoff bounds] Let X4, X,, ..., X;, be independent Poisson
trials, and X = Y-, X;. For any § > 0,

o5 E[X]

P(X = (1+8)E[X]) < ((1 n 5)1+5>
RN

PX<(1-8EX]D < ((1 _ 5)1_5>

For a uniformly randomly sampled Boolean vector x € {0,1}",
what is the probability of having no more than 2n/3 1-bits?
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Union bound

[Union bound] For any finite or countably finite sequence of
events Eq, E,, ..., it holds that

P (U El-) < z P(E,)

t21 t21 Bit-wise mutation

N
For a Boolean vector x € {0,1}" with i 0-bits, after flipping
each bit with prob. 1/n independently, what is the upper
bound on the probability of decreasing the number of 0-bits

by ;2 vy
N
~\ — P(E)

E;: j specific 0-bits <p U g < (l)
of x are flipped N j
http://www.lamda.nju.edu.cn/qianc/
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Example of running time analysis

randomly choose one bit

An extremely simplified EA and change its value

missing some features of real EAs

flip each bit with prob.

1/n independently
(1+1)-EA
1: s < a randomly drawn solution from X
2: for t=1,2,... do

3: s’ < mutate(s)

4 if f(s’) > f(s) then

5: s« &

6: end if

7 terminate if meets a stopping criterion
8: end for
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Example of running time analysis

n

Probing problem OneMax: arg max z Xj

e{0,111 4
x€{0,1} =

fitness: f(x) = ) x;
2

EAs do not have the knowledge of the problems

only able to call f(x)
no difference with any other function f : {0,1}" — R
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Upper bound analysis

n

(1+1 )TEA With OneMax: f(x) = z X;
one-bit mutation =

the solutions with the same number of 1-bits share the same f value

solutions solutions solutions solutions
with 0 1-bits with 1 1-bits with 2 1-bits with n 1-bits

& () o

probability:1  probability: 0
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Upper bound analysis

n

(1+1 )TEA With OneMax: f(x) = z X;
one-bit mutation =

the solutions with the same number of 1-bits share the same f value

solutions solutions solutions solutions
with 0 1-bits with 1 1-bits with 2 1-bits with n 1-bits

...... (5)-s
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Upper bound analysis

n

(1+1 )TEA With OneMax: f(x) = z X;
one-bit mutation =

the solutions with the same number of 1-bits share the same f value

solutions solutions solutions solutions
with 0 1-bits with 1 1-bits with 2 1-bits with n 1-bits
@ @ ...... @ — S*
R 33 A
p=0 n—ip=0

ot
P—np: -
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Upper bound analysis

solutions solutions solutions
with 0 1-bits with 1 1-bits with 2 1-bits

@ ......
‘\/ @\/@ \/

probability of transition

n—1 n—1
p=1 p= p=
n )
expected #iterations until the transition happens
1 & -
n—1 n—i

solutions

with n 1-bits

3
]

n
1

S|
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Upper bound analysis

n
(1+1 )TEA Wlth OneMax: f(x) = z X
one-bit mutation o

expected #iterations until | n e n n

the transition happens n—1 ? 1

\ /
Y
ton
summed up Z T ni, ~nlnon
1=1

expected running time upper bound O(nlogn)
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Lower bound analysis

n

(1.+ 1 ).'EA With. OneMax: f(x) = z Xi
bit-wise mutation =

Let T denote the running time, and | x|, denote the number of

0-bits of the 1nitial solution Law of total expectation

o
Elz] = ?:()E[T| |x|o=1] - P(Ix]o = i)

= Z?:n/gE[T | lxlo=1] - P(lx]o = 1)
= E[t] |x[o=n/3]- P(|lxlo 2 n/3)
> El[t| |x|o=n/3] - 1/4

'\
P(|x|;{ < 2n/3) = 1/4 by Markov’s inequality
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Lower bound analysis

n

(1.+ 1 ).'EA With. OneMax: f(x) = z Xi
bit-wise mutation =

E[7] z@xh =@ 1/4

In (n — 1) In n iterations, at least one of these n/3 0-bits is
never flipped @

The optimum is not found

Y

T>(n—-—1)Inn

the probabjlity is
nded by
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Lower bound analysis

E[7] Z@xb:@ 1/4
>n—-—1)Inn @(n - 1@- 1/4

lowerbound
In (n — 1) In n iterations, at least one of these n/3 0-bits is never flipped

1 —1/n: a specific 0-bit is not flipped
« (1 —1/n)t: aspecific 0-bit is never flipped in t iterations
e 1—(1-1/n)t: aspecific 0-bit is flipped at least once in t iterations

« (1-(1-1/n)H"3: any of these n/3 0-bits is flipped at least o
iterations

¢« 1-(1-(1-1/n)H)n3 t=Mm—-1lnn
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Lower bound analysis

n

(1.+ 1 ).'EA With. OneMax: f(x) = z X
bit-wise mutation =

E[7] 2@:40:@ 1/4
>n—1DInn®(r>Mn- 1@- 1/4

>n—1lnn- (1 — (1 — (1 - 1/n)("—1)1nn)"/3) . 1/4
1 —1/n)n1
=1/e 2 @m-Dn (1-(1-e" 7)) 1/4

— (n— (1 -(1-1/m)V3).
(o1 =@ Dinn (1-QQ-1/m)"3)-1/4
sl/e = >2Mm-Dlnn-(1—e"13)-1/4 € Q(nlogn)
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Example of running time analysis

n

For (1+1)-EA solving OneMax f(x) = z X;

=1
[f using one-bit mutation,

expected running time upper bound O (nlogn)

If using bit-wise mutation,

expected running time lower bound Q(nlogn)

Not asymptotically faster
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Running time analysis tools

When facing new situations, analyses starting from
scratch are quite difficult

We need general running time analysis tools to guide
the analysis

« Fitness level
- Drift analysis

- Switch analysis
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Summary

Schema theorem

Markov chain modeling
Convergence

Running time complexity
Expectation and tail inequalities

Example of running time analysis
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