
Heuristic Search and Evolutionary Algorithms

Chao Qian （钱超）

Associate Professor, Nanjing University, China

Email: qianc@nju.edu.cn

Homepage: http://www.lamda.nju.edu.cn/qianc/

启发式搜索与演化算法

http://www.lamda.nju.edu.cn/qianc/

课程相关信息

课程主页：

http://www.lamda.nju.edu.cn/HSEA21/

课程时间地点：周五下午16:00-18:00

课程讨论QQ群：972364375

助教：薛轲、刘丹璇

每个ppt的最后附有相关参考文献

答疑时间：周五下午14:00-16:00、逸A-502

http://www.lamda.nju.edu.cn/qianc/

Outline of this course

Part 1: Traditional heuristic search algorithms

(Assignment 1: 15%)

Part 2: Evolutionary algorithms (Assignment 2: 15%)

Part 3: Theoretical analysis of evolutionary

algorithms (Assignment 3: 15%)

Part 4: Design of evolutionary algorithms

(Assignment 4: 15%)

Final exam: 40%

Heuristic Search and Evolutionary Algorithms

Chao Qian （钱超）

Associate Professor, Nanjing University, China

Email: qianc@nju.edu.cn

Homepage: http://www.lamda.nju.edu.cn/qianc/

Lecture 1: Search

http://www.lamda.nju.edu.cn/qianc/

Search example – route finding

http://www.lamda.nju.edu.cn/qianc/

Search problem

A search problem can be defined formally by five components:

• Initial state

• Actions

• Transition model

• Goal test

• Path cost

e.g., In(Arad)

e.g., Go(Sibiu), Go(Timisoara), Go(Zerind)

e.g., Result(In(Arad), Go(Zerind))=In(Zerind)

e.g., Is(In(Bucharest))

e.g., the sum of action costs

http://www.lamda.nju.edu.cn/qianc/

Search problem

A search problem can be defined formally by five components:

• Initial state

• Actions

• Transition model

• Goal test

• Path cost

e.g., In(Arad)

e.g., Go(Sibiu), Go(Timisoara), Go(Zerind)

e.g., Result(In(Arad), Go(Zerind))=In(Zerind)

e.g., Is(In(Bucharest))

e.g., the sum of action costs

Solution: a path (i.e., an action
sequence) from the initial state
to the goal state

Optimal solution: a path with
the lowest cost

http://www.lamda.nju.edu.cn/qianc/

More examples – vacuum world

Actions: Left (L), Right (R), Suck (S)

State: the agent and
dirt locationInitial state

Goal test

Transition model: e.g., Result(Initial state, L) = Initial state

Path cost: the number of actions on the path

#States: 2 ⋅ 22

#States: 𝑛 ⋅ 2𝑛

Path cost 3

http://www.lamda.nju.edu.cn/qianc/

More examples – 8-puzzle

Actions: movements of blank space, i.e., Left, Right, Up and down

Path cost: the number of actions on the path

7 2 4

5 6

8 3 1

Left
Result(Start
state, Left)

http://www.lamda.nju.edu.cn/qianc/

More examples – integer construction

Problem: starting with the number 4, apply a sequence of
factorial, square root, and floor operations to reach any
desired positive integer

• Initial state: 4

• Actions: factorial, square root, and floor operations

• Transition model: e.g., Result(4, factorial)=24

• Goal test: Is(the desired positive integer)

• Path cost: the number of actions on the path

4! ! = 5 Path cost 8
Infinite state space:
positive numbers

http://www.lamda.nju.edu.cn/qianc/

More examples – route finding

• Initial state

• Actions

• Transition model

• Goal test

• Path cost

e.g., In(Arad)

e.g., Go(Sibiu), Go(Timisoara), Go(Zerind)

e.g., Result(In(Arad), Go(Zerind))=In(Zerind)

e.g., Is(In(Bucharest))

e.g., the sum of action costs

Problem: find the shortest path between two cities

State: e.g., In(Oradea)

http://www.lamda.nju.edu.cn/qianc/

More examples – touring

Problem: find the shortest route to visit each city at least once,
starting and ending in the same city

• Initial state

• Actions

• Transition model

• Goal test

• Path cost

e.g., In(Arad), Visited({Arad})

e.g., Go(Sibiu), Go(Timisoara), Go(Zerind)

e.g., Result(In(Arad), Visited ({Arad}), Go(Zerind))

=In(Zerind), Visited({Arad, Zerind})

e.g., Is(In(Arad), Visited({all the cities}))

e.g., the sum of action costs

State: e.g., In(Oradea),
Visited({Arad, Zerind, Oradea})

http://www.lamda.nju.edu.cn/qianc/

More examples – traveling salesman

Problem: find the shortest route to visit each city exactly once,
starting and ending in the same city

• Initial state

• Actions: can go to non-visited cities, and return to the origin city at last

• Transition model

• Goal test

• Path cost

e.g., In(Arad), Visited({Arad})

e.g., Result(In(Arad), Visited ({Arad}), Go(Zerind))

=In(Zerind), Visited({Arad, Zerind})

e.g., Is(In(Arad), Visited({all the cities}))

e.g., the sum of action costs

State: e.g., In(Oradea),
Visited({Arad, Zerind, Oradea})

http://www.lamda.nju.edu.cn/qianc/

Search problem

A search problem can be defined formally by five components:

• Initial state

• Actions

• Transition model

• Goal test

• Path cost

Solution: a path (i.e., an action sequence) from the initial
state to the goal state

Optimal solution: a path with the lowest cost

Are search problems difficult?

http://www.lamda.nju.edu.cn/qianc/

Complexity classes

• Classify problems according to their complexities

• Class: a set of problems

• P, NP, NP-complete, NP-hard

A decision problem is a mapping from all possible
inputs into the set {yes, no}

𝑓: 𝐼 → {1,0}

http://www.lamda.nju.edu.cn/qianc/

Example of decision problems

• Travelling salesman problem

Given a weighted graph, a specific vertex (i.e., city),
and a positive number 𝑘, is there a tour with cost at
most 𝑘?

starting and ending at the specific vertex after
having visited each other vertex exactly once

• Graph coloring

Given a undirected graph 𝐺 and a positive integer 𝑘,
is there a coloring of 𝐺 using at most 𝑘 colors?

assigning colors to each vertex of 𝐺 such that
no adjacent vertices get the same color

http://www.lamda.nju.edu.cn/qianc/

Decision and optimization problems

There are standard techniques for transforming
optimization problems into decision problems

Travelling salesman problem

Optimization version: find the shortest route to visit each city
exactly once, starting and ending in the same city

Decision version: given a positive number 𝑘, is there such
a route with cost at most 𝑘?

Try different 𝑘

http://www.lamda.nju.edu.cn/qianc/

The class P

The class P contains decision problems that can be
solved in polynomial time by a deterministic algorithm

• For any input, the algorithm runs for polynomial time

• For any positive input, the algorithm output “yes”

• For any negative input, the algorithm output “no”

http://www.lamda.nju.edu.cn/qianc/

The class NP

Nondeterministic algorithm

void nondetA(String input)

String s=genCertif();

Boolean CheckOK=verifyA(input,s);

if (checkOK)

Output “yes”;

return;

Step 1: guess a solution

Step 2: verify the solution

If yes, output “yes”

Otherwise, no output

Given the same input, the algorithm may behave differently
in different executions

http://www.lamda.nju.edu.cn/qianc/

Nondeterministic traveling salesman

• Travelling salesman problem

Given a weighted graph, a specific vertex (i.e., city),
and a positive number 𝑘, is there a tour with cost at
most 𝑘?

1

2

2

3

2 63

Graph Guess: 1

2

3

Verify: not a tour

No output𝑘 = 14

http://www.lamda.nju.edu.cn/qianc/

Nondeterministic traveling salesman

• Travelling salesman problem

Given a weighted graph, a specific vertex (i.e., city),
and a positive number 𝑘, is there a tour with cost at
most 𝑘?

1

2

2

3

2 63

Graph

𝑘 = 14

Guess:

Verify: a tour with cost 15

No output

2

2 2 63

http://www.lamda.nju.edu.cn/qianc/

Nondeterministic traveling salesman

• Travelling salesman problem

Given a weighted graph, a specific vertex (i.e., city),
and a positive number 𝑘, is there a tour with cost at
most 𝑘?

1

2

2

3

2 63

Graph

𝑘 = 14

Guess:

Verify: a tour with cost 14

Output: “yes”

1

2

2

3

6

http://www.lamda.nju.edu.cn/qianc/

The class NP

The class NP contains decision problems for which
there is a polynomial bounded nondeterministic
algorithm

• For any positive input, there is some execution of the non-
deterministic algorithm which outputs “yes” in polynomial time

void nondetA(String input)

String s=genCertif();

Boolean CheckOK=verifyA(input,s);

if (checkOK)

Output “yes”;

return;

P ⊆ NP
the deterministic

polynomial-time

algorithm

http://www.lamda.nju.edu.cn/qianc/

The class NP-hard

• Let 𝑇 be a function mapping from the input set of a
decision problem 𝑃 into the input set of 𝑄

• A decision problem 𝑃 is polynomially reducible to 𝑄 if
there exists a function 𝑇 satisfying:

 𝑇 can be computed in polynomial time

 𝑥 is a “yes” input for P iff 𝑇(𝑥) is a “yes” input for 𝑄

𝑇
𝑇(𝑥)

an input
for 𝑄

Algorithm for 𝑄 “yes”
or “no”

x
an input
for 𝑃

Algorithm for 𝑃

http://www.lamda.nju.edu.cn/qianc/

The class NP-hard

• A decision problem 𝑃 is polynomially reducible to 𝑄 if
there exists a function 𝑇 satisfying:

 𝑇 can be computed in polynomial time

 𝑥 is a “yes” input for P iff 𝑇(𝑥) is a “yes” input for 𝑄

𝑄 is at least as hard as 𝑃

• A problem 𝑄 is in NP-hard if every problem 𝑃 in NP is
polynomially reducible to 𝑄

𝑄 is at least as hard as any problem in NP

• A problem is in NP-complete if it is in both NP and NP-hard

the hardest problems in NP

http://www.lamda.nju.edu.cn/qianc/

P, NP, NP-complete and NP-hard

NP

P

NP-complete

NP-hard

P ≠ NP P = NP

P = NP
= NP-complete

NP-hard

http://www.lamda.nju.edu.cn/qianc/

Hard search problem

• 𝑛-puzzle: NP-complete

Many search problems are NP-hard, e.g.,

• Travelling salesman problem: NP-hard

1

2

2

3

2 63

http://www.lamda.nju.edu.cn/qianc/

Search algorithms

Route finding: the shortest path from Arad to Bucharest

Search tree: the possible
action sequences starting
from the initial state

Branch: action Node: state

http://www.lamda.nju.edu.cn/qianc/

Tree-search algorithms

function Tree-search(problem) returns a solution or failure
initialize the frontier using the initial state of problem
loop do

if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state, return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

The chosen node: Arad The chosen node: Sibiu

Frontier: Sibiu, Timisoara, Zerind Frontier: Arad, Fagaras, Oradea,
Rimnicu Vilcea, Timisoara, Zerind

http://www.lamda.nju.edu.cn/qianc/

Graph-search algorithms

function Graph-search(problem) returns a solution or failure
initialize the frontier using the initial state of problem
loop do

if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state, return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

The chosen node: Arad The chosen node: Sibiu

Explored set: Arad

Frontier: Sibiu, Timisoara, Zerind

Explored set: Arad, Sibiu

Frontier: Fagaras, Oradea,
Rimnicu Vilcea, Timisoara, Zerind

http://www.lamda.nju.edu.cn/qianc/

Search algorithms

• Different search algorithms: how to choose a node from
the frontier for expansion

 Breadth-first search: expand the shallowest node

 Depth-first search: expand the deepest node

• Each search algorithm has two implementations

 Tree-search

 Graph-search

http://www.lamda.nju.edu.cn/qianc/

Some notes on implementation

• Data structure of a node of the search tree

Node

Parent

Action=Right

Path cost=6

State

• The frontier and explored set can be implemented with a
queue and a hash table, respectively

http://www.lamda.nju.edu.cn/qianc/

Performance evaluation criteria

A search algorithm’s performance can be evaluated in four ways:

• Completeness

Is the algorithm guaranteed to find a solution when there is one?

• Optimality

Is the solution found by the algorithm optimal?

• Time complexity

How long does the algorithm find a solution?

measured by the number of nodes generated during the search

• Space complexity

How much memory is needed until finding a solution?

measured by the maximum number of nodes stored in memory

http://www.lamda.nju.edu.cn/qianc/

Performance evaluation criteria

• Time and space complexity are usually characterized by
three quantities:

 The branching factor 𝑏, i.e., the maximum number of
successors of any node

 The depth 𝑑 of the shallowest goal node

 The maximum length 𝑚 of any path

goal

𝑑 = 2

𝑏 = 4

http://www.lamda.nju.edu.cn/qianc/

Asymptotic notations

• Let 𝑓 and 𝑔 be two positive functions defined on integers,
i.e., 𝑓, 𝑔: N → R+

• 𝑓 ∈ 𝑂(𝑔) if there exist positive constants 𝑐 and 𝑛0 such that

∀𝑛 ≥ 𝑛0: 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
< ∞

• 𝑓 ∈ 𝑜(𝑔) if for any positive constant 𝑐, there exists positive
constant 𝑛0 such that

∀𝑛 ≥ 𝑛0: 𝑓 𝑛 < 𝑐 ⋅ 𝑔 𝑛
lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= 0

http://www.lamda.nju.edu.cn/qianc/

Asymptotic notations

• Let 𝑓 and 𝑔 be two positive functions defined on integers,
i.e., 𝑓, 𝑔: N → R+

• 𝑓 ∈ 𝛺(𝑔) if 𝑔 ∈ 𝑂(𝑓) lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
> 0

• 𝑓 ∈ 𝜔(𝑔) if 𝑔 ∈ 𝑜(𝑓) lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= ∞

• 𝑓 ∈ 𝛩(𝑔) if 𝑓 ∈ 𝑂(𝑔) and 𝑓 ∈ 𝛺(𝑔) 0 < lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
< ∞

http://www.lamda.nju.edu.cn/qianc/

Asymptotic notations

• Let 𝑓 and 𝑔 be two positive functions defined on integers,
i.e., 𝑓, 𝑔: N → R+

𝑓 ∈ 𝛺(𝑔)

𝑓 ∈ 𝑂(𝑔)

𝑓 ∈ 𝜔(𝑔)

𝑓 ∈ 𝑜(𝑔)

𝑓 ∈ 𝛩(𝑔)

𝑓 ≤ 𝑔

𝑓 < 𝑔

𝑓 ≥ 𝑔

𝑓 > 𝑔

𝑓 = 𝑔

http://www.lamda.nju.edu.cn/qianc/

Asymptotic notations - example

∀𝛼 > 0: log 𝑛 ∈ 𝑜(𝑛𝛼)

For any positive integer 𝑘, ∀𝑐 > 1: 𝑛𝑘 ∈ 𝑜(𝑐𝑛)

lim
𝑛→∞

log 𝑛

𝑛𝛼
=

1

ln 2
lim
𝑛→∞

ln 𝑛

𝑛𝛼
=

1

ln 2
lim
𝑛→∞

1

𝑛 ⋅ 𝛼𝑛𝛼−1
= 0

lim
𝑛→∞

𝑛𝑘

𝑐𝑛
=

𝑘

ln 𝑐
lim
𝑛→∞

𝑛𝑘−1

𝑐𝑛
=

𝑘!

(ln 𝑐)𝑘
lim
𝑛→∞

1

𝑐𝑛
= 0

L'Hospital's rule

http://www.lamda.nju.edu.cn/qianc/

Asymptotic notations - example

2𝑛 ∈ 𝑜(𝑛!)

lim
𝑛→∞

𝑛!

2𝑛
= lim

𝑛→∞

𝑛!

2𝜋𝑛
𝑛
𝑒

𝑛 ⋅
2𝜋𝑛

𝑛
𝑒

𝑛

2𝑛

= lim
𝑛→∞

2𝜋𝑛
𝑛
𝑒

𝑛

2𝑛
= lim

𝑛→∞
2𝜋𝑛

𝑛

2𝑒

𝑛

= ∞

Stirling's approximation
𝑛! ∈ 𝜔(2𝑛)

http://www.lamda.nju.edu.cn/qianc/

Asymptotic notations - properties

• Transitivity

𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 ∧ 𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 𝑓 𝑛 ∈ 𝑂 ℎ 𝑛

• Reflexivity

𝑓 𝑛 ∈ 𝑂 𝑓 𝑛 𝑓 𝑛 ∈ Ω 𝑓 𝑛 𝑓 𝑛 ∈ Θ 𝑓 𝑛

• Order of sum functions

𝑂 𝑓 𝑛 + 𝑔 𝑛 = 𝑂 max{𝑓 𝑛 , 𝑔(𝑛)}

http://www.lamda.nju.edu.cn/qianc/

Summary

• What is search

• Problem complexity: P, NP, NP-hard, NP-complete

• Tree-search and graph-search

• Performance evaluation criteria

• Asymptotic notations

http://www.lamda.nju.edu.cn/qianc/

References

• S. J. Russell and P. Norvig. Artificial Intelligence:
A Modern Approach. Chapter 3.1-3.3, Third edition.

• T. H. Cormen, et al. Introduction to Algorithms. Chapter 3.1
and 34, Second edition.

