

- Multi-objective optimization
- NSGA-II
 SMS-EMOA
 MOEA/D

 Popular variants

 of MOEA

Heuristic Search and Evolutionary Algorithms

Lecture 12: Evolutionary Algorithms for Constrained Optimization

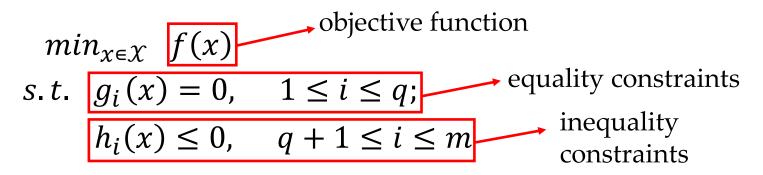
Chao Qian (钱超)

Associate Professor, Nanjing University, China

Email: qianc@nju.edu.cn Homepage: http://www.lamda.nju.edu.cn/qianc/

Constrained optimization

General formulation:



A solution is **(in)feasible** if it does (not) satisfy the constraints

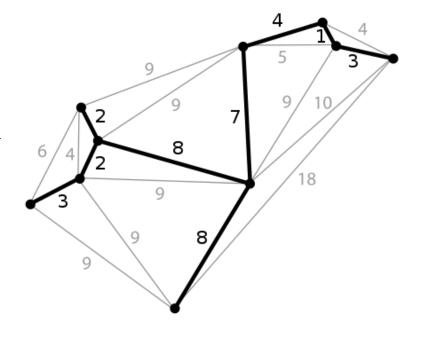
The goal: find a feasible solution minimizing the objective *f*

Knapsack problem: given *n* items, each with a weight w_i and a value v_i , to select a subset of items maximizing the sum of values while keeping the summed weights within some capacity W_{max}

$$\arg \max_{x \in \{0,1\}^n} \sum_{i=1}^n v_i x_i \quad s. t. \sum_{i=1}^n w_i x_i \le W_{max}$$
$$x_i = 1: \text{ the } i\text{-th item is included}$$
objective function constraint

Example – minimum spanning tree

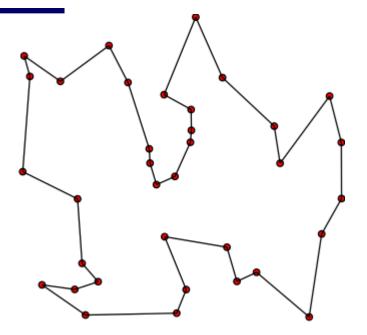
Minimum spanning tree problem: given an undirected connected graph G = (V, E) on n vertices and m edges with positive weights $w: E \rightarrow R^+$, to find a connected subgraph $E' \subseteq E$ with the minimum weight

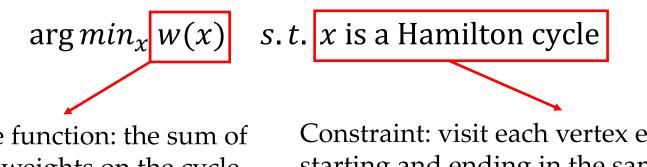


arg
$$min_{x \in \{0,1\}^m} \sum_{i=1}^m w_i x_i$$
 s.t. $c(x) = 1$
objective function $x_i = 1$: the *i*-th edge is selected constraint $c(x)$: the number of connected components

Example – traveling salesman

Traveling salesman problem: given an undirected connected graph G = (V, E) on *n* vertices and *m* edges with positive weights $w: E \rightarrow \mathbb{R}^+$, to find a Hamilton cycle with the minimum weight





Objective function: the sum of the edge weights on the cycle

Constraint: visit each vertex exactly once, starting and ending in the same vertex

How to deal with constraints when EAs are used for constrained optimization?

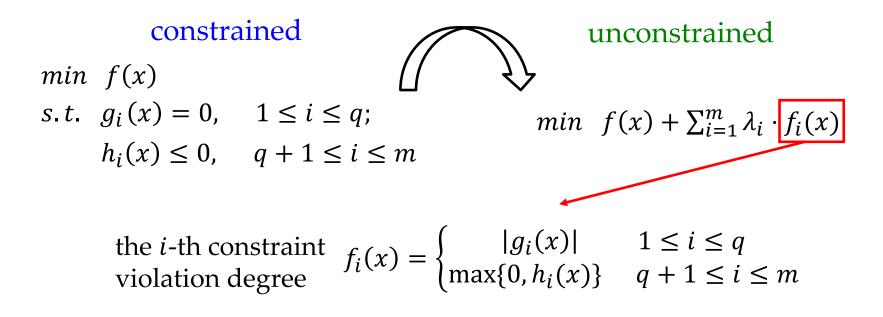
The optimization problems in real-world applications often come with constraints

The final output solution must satisfy the constraints

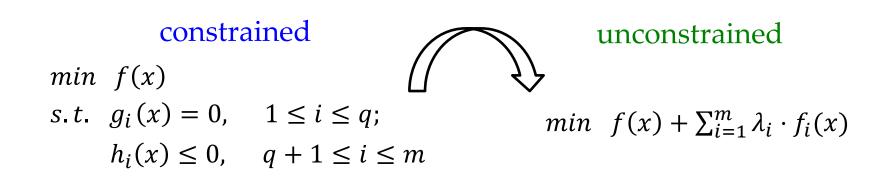
Common constraint handling strategies

- Penalty functions
- Stochastic ranking
- Repair functions
- Restricting search to the feasible region
- Decoder functions

Penalty functions: add penalties on the fitness of infeasible solutions



Penalty functions: add penalties on the fitness of infeasible solutions



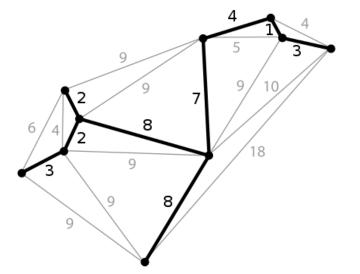
Requirement: the optimal solutions of the original and transformed problems should be consistent

e.g., all λ_i are equal, and large enough: compare the constraint violation degrees first; if they are the same, compare the objective values *f*

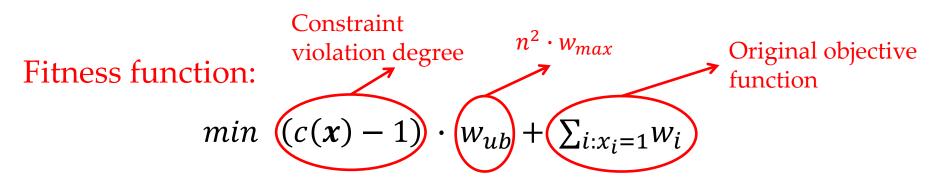
Penalty functions

Minimum spanning tree problem:

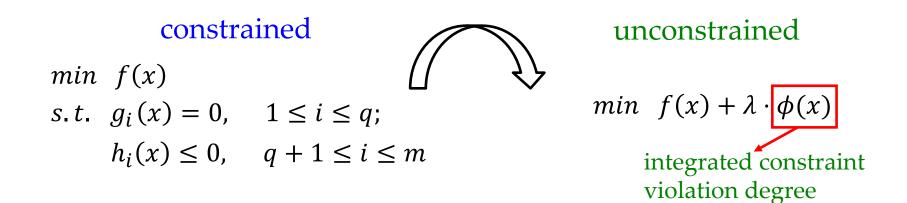
given an undirected connected graph G = (V, E) on n vertices and m edges with positive weights $w: E \rightarrow \mathbb{R}^+$, to find a connected subgraph $E' \subseteq E$ with the minimum weight



$$\arg \min_{x \in \{0,1\}^m} \sum_{i=1}^m w_i x_i$$
 s.t. $c(x) = 1$



Penalty functions: add penalties on the fitness of infeasible solutions



How to set an appropriate value for λ ?

Stochastic ranking

Consider two solutions x_1 and x_2 satisfying

$$f(x_1) < f(x_2)$$
 and $\phi(x_1) > \phi(x_2)$

• λ is small: the comparison is based on the objective function

$$\lambda < \frac{f(x_2) - f(x_1)}{\phi(x_1) - \phi(x_2)} \Rightarrow f(x_1) + \lambda \phi(x_1) < f(x_2) + \lambda \phi(x_2)$$

• λ is large: the comparison is based on the penalty function

$$\lambda > \frac{f(x_2) - f(x_1)}{\phi(x_1) - \phi(x_2)} \Rightarrow f(x_1) + \lambda \phi(x_1) > f(x_2) + \lambda \phi(x_2)$$

The value of λ determines whether the comparison is based on the objective function or the penalty function

Stochastic ranking

Procedure for ranking λ solutions:

1:	$I_j = j, \forall j \in \{1, 2, \dots, \lambda\}$	┝→		
2: for $i = 1$ to N do				
3:	for $j = 1$ to $\lambda - 1$ do			
4:	sample $u \in U(0, 1)$			
5:	if $\phi(I_j) = \phi(I_{j+1}) = 0$ or $u < P_f$ then			
6:	$ if \ f(I_j) > f(I_{j+1}) \ then $	-		
7:	$swap(I_j, I_{j+1})$	k		
8:	end if			
9:	else	*		
10:	if $\phi(I_j) > \phi(I_{j+1})$ then			
11:	$swap(I_j, I_{j+1})$	ſ		
12:	end if			
13:	end if			
14:	end for			
15:	if no <i>swap</i> done then]		
16:	break			
17:	end if			
18: end for				

the initial ranking is generated at random

if both individuals are feasible, the comparison is based on the objective function with prob. 1; otherwise, the prob. is P_f

exchange the solutions in the *j*-th and (j + 1)-th positions

the procedure is terminated when no change in the rank ordering occurs within a complete loop **Repair functions:** repair infeasible solutions to feasible

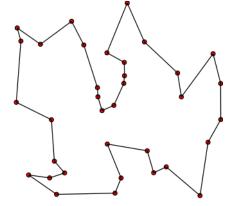
Example - Knapsack: given *n* items, each with a weight w_i and a value v_i , to select a subset of items maximizing the sum of values while keeping the summed weights within some capacity W_{max}

 $\arg \max_{x \in \{0,1\}^n} \sum_{i=1}^n v_i x_i \quad \text{s.t.} \sum_{i=1}^n w_i x_i \le W_{max}$

 v_i : 4,2,6,10,4,3,7,2; w_i : 2,3,3,8,6,5,7,1; $W_{max} = 25$ infeasible 1 1 0 1 1 0 1 1 feasible 1 1 0 1 1 0 0 1

Repairing: scan from left to right, and keep the value 1 if the summed weight does not exceed *W*_{max} **Restricting search to the feasible region:** preserving feasibility by special initialization and reproduction

Example - traveling salesman: given an undirected connected graph G = (V, E) on n vertices and m edges with positive weights $w: E \rightarrow R^+$, to find a Hamilton cycle with the minimum weight



 $\arg \min_x w(x)$ s.t. x is a Hamilton cycle

Integer vector representation: the order of visiting vertexes

Permutation is feasible

Initialize with permutation; Apply mutation and recombination operators for permutation representation **Decoder functions:** map each genotype to a feasible phenotype

Example - Knapsack: given *n* items, each with a weight w_i and a value v_i , to select a subset of items maximizing the sum of values while keeping the summed weights within some capacity W_{max}

 $\arg \max_{x \in \{0,1\}^n} \sum_{i=1}^n v_i x_i \quad \text{s.t. } \sum_{i=1}^n w_i x_i \le W_{max}$

 v_i : 4,2,6,10,4,3,7,2; w_i : 2,3,3,8,6,5,7,1; $W_{max} = 25$ genotype 1 1 0 1 0 1 1 phenotype 0 1 0 1 1 0

Decoding: scan from left to right, and keep the value 1 if the summed weight does not exceed *W*_{max} The final output solution must satisfy the constraints

Common constraint handling strategies

- Penalty functions
- Stochastic ranking
- Repair functions
- Restricting search to the feasible region
- Decoder functions

Other effective constraint handling strategies?

(1+1)-EA for MST

Minimum spanning tree (MST):

- Given: an undirected connected graph G = (V, E) on n vertices and m edges with positive integer weights $w: E \to \mathbb{N}^+$
- The Goal: find a connected subgraph $E' \subseteq E$ with the minimum weight

Formulation: $\arg \min_{x \in \{0,1\}^m} \sum_{i=1}^m w_i x_i$ s.t. c(x) = 1

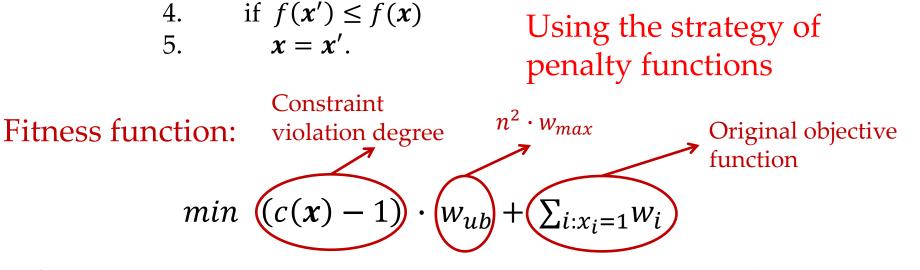
 $x \in \{0,1\}^m \leftrightarrow \text{a subgraph}$

 $x_i = 1$ means that edge e_i is selected

(1+1)-EA: Given a pseudo-Boolean function *f*:

1. $x \coloneqq$ randomly selected from $\{0,1\}^n$.

- 2. Repeat until some termination criterion is met
- 3. $x' \coloneqq$ flip each bit of x with probability 1/n.



Theorem. [Neumann & Wegener, TCS'07; Doerr et al., Algorithmica'12] The expected running time of the (1+1)-EA solving the MST problem is $O(m^2(\log n + \log w_{max}))$.

$$\arg\min_{\boldsymbol{x}\in\{0,1\}^m}\sum_{i=1}^m w_i x_i \quad s.t. \ c(\boldsymbol{x}) = 1$$

Bi-objective reformulation min $(c(\mathbf{x}), \sum_{i:x_i=1} w_i)$

Theorem. [Neumann & Wegener, Nature Computing'05] The expected running time of the GSEMO solving the MST problem is $O(mn (n + \log w_{max}))$.

Penalty functions: $O(m^2(\log n + \log w_{max}))$

Bi-objective reformulation: $O(mn(n + \log w_{max}))$

Bi-objective reformulation is better for dense graphs, e.g., $m \in O(n^2)$

7

$$\arg\min_{\boldsymbol{x}\in\{0,1\}^m}\sum_{i=1}^m w_i x_i \quad s.t. \ c(\boldsymbol{x}) = 1$$

Bi-objective reformulation min $(c(\mathbf{x}), \sum_{i:x_i=1} w_i)$

GSEMO: Given a pseudo-Boolean function vector **f**:

- Keep the non-dominated $x \coloneqq$ randomly selected from $\{0,1\}^n$. 1. solutions generated so-far
- 2. $P \coloneqq \{x\}.$
- Repeat until some termination criterion is met 3.
- Choose **x** from *P* uniformly at random. 4.
- $x' \coloneqq$ flip each bit of x with probability 1/n. 5.

6. if
$$\nexists z \in P$$
 such that $z \prec x'$

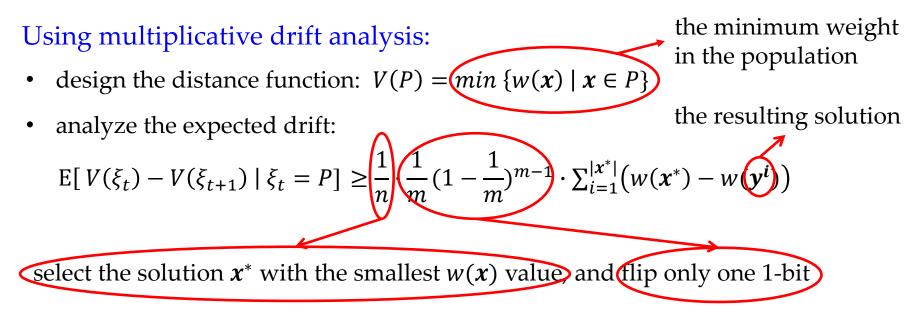
$$P:=(P-\{z\in P\mid x'\leqslant z\})\cup\{x'\}.$$

Main idea:

(1) obtain the empty subgraph 0^n

(2) obtain a minimum spanning tree

The analysis of phase (1): $\min(c(\mathbf{x}), w(\mathbf{x}) = \sum_{i:x_i=1} w_i)$



Proof

Main idea:

- (1) obtain the empty subgraph 0^n
- (2) obtain a minimum spanning tree

The analysis of phase (1): $\min(c(\mathbf{x}), w(\mathbf{x}) = \sum_{i:x_i=1} w_i)$

Using multiplicative drift analysis:

- design the distance function: $V(P) = min \{w(x) \mid x \in P\}$
- analyze the expected drift:

$$\begin{split} \mathsf{E}[V(\xi_t) - V(\xi_{t+1}) \mid \xi_t = P] &\geq \frac{1}{n} \cdot \frac{1}{m} (1 - \frac{1}{m})^{m-1} \cdot \underbrace{\sum_{i=1}^{|x^*|} (w(x^*) - w(y^i))}_{i=1} \\ &= \frac{1}{n} \cdot \frac{1}{m} (1 - \frac{1}{m})^{m-1} \cdot \underbrace{w(x^*)}_{i=1} \\ &= \frac{1}{n} \cdot \frac{1}{m} (1 - \frac{1}{m})^{m-1} \cdot \underbrace{V(\xi_t)}_{i=1} \end{split}$$

Main idea:

(1) obtain the empty subgraph 0^n

(2) obtain a minimum spanning tree

The analysis of phase (1): $\min (c(\mathbf{x}), w(\mathbf{x}) = \sum_{i:x_i=1} w_i)$

Using multiplicative drift analysis:

- design the distance function: $V(P) = min \{w(x) \mid x \in P\}$
- analyze the expected drift: $E[V(\xi_t) V(\xi_{t+1}) | \xi_t = P] \ge \frac{1}{emn} V(\xi_t)$
- Upper bound on the expected running time:

$$\sum_{P} \pi_{0}(P) \cdot \frac{1 + \ln \left(V(P) / V_{min} \right)}{\delta} \leq emn(1 + \ln \left(mw_{max} \right))$$
$$V(P) \leq mw_{max} \qquad V_{min} \geq 1$$

Main idea:

(1) obtain the empty subgraph 0^n

(2) obtain a minimum spanning tree

The analysis of phase (1): $\min (c(\mathbf{x}), w(\mathbf{x}) = \sum_{i:x_i=1} w_i)$

Using multiplicative drift analysis:

- design the distance function: $V(P) = min \{w(x) \mid x \in P\}$
- analyze the expected drift: $E[V(\xi_t) V(\xi_{t+1}) | \xi_t = P] \ge \frac{1}{emn} V(\xi_t)$
- Upper bound on the expected running time:

$$\begin{split} \sum_{P} \pi_0(P) \cdot \frac{1 + \ln \left(V(P) / V_{min} \right)}{\delta} &\leq emn(1 + \ln \left(m w_{max} \right)) \\ &\in O(mn \left(\log n + \log w_{max} \right)) \end{split}$$

Proof

The analysis of phase (2): $\min (c(\mathbf{x}), w(\mathbf{x}) = \sum_{i:x_i=1} w_i)$

 x^i : the Pareto optimal solution with *i* connected components

- the found Pareto optimal solutions will always be kept
- follow the path: $x^n \to x^{n-1} \to \dots \to x^2 \to x^1 \to a$ minimum spanning tree

The probability is at least $\frac{1}{n}\left(\frac{1}{m}\left(1-\frac{1}{m}\right)^{m-1}\right) \ge \frac{1}{emn}$

The expected running time is at most: $(n-1) \cdot emn \in O(mn^2)$

The expected running time of phase (1): $O(mn(\log n + \log w_{max}))$

The total expected running time: $O(mn(n + \log w_{max}))$

$$\arg\min_{\boldsymbol{x}\in\{0,1\}^m}\sum_{i=1}^m w_i x_i \quad s.t. \ c(\boldsymbol{x}) = 1$$

Bi-objective reformulation min $(c(\mathbf{x}), \sum_{i:x_i=1} w_i)$

Theorem. [Neumann & Wegener, Nature Computing'05] The expected running time of the GSEMO solving the MST problem is $O(mn (n + \log w_{max}))$.

Penalty functions: $O(m^2(\log n + \log w_{max}))$

Bi-objective reformulation: $O(mn(n + \log w_{max}))$

Bi-objective reformulation is better for dense graphs, e.g., $m \in O(n^2)$

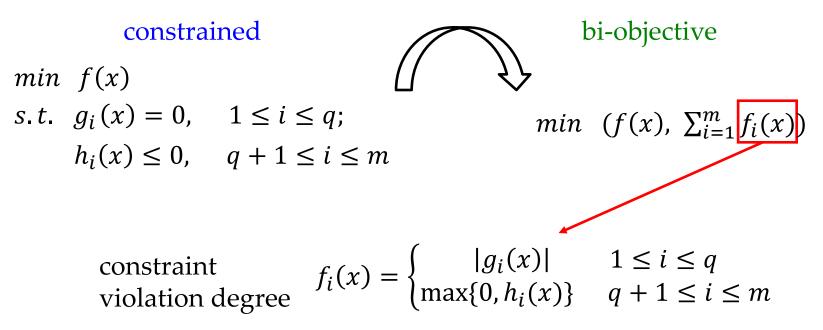
More examples

Problem	Penalty functions	Bi-objective reformulation
Set cover	exponential	$O(mn(\log c_{max} + \log n))$ [Friedrich et al., ECJ'10]
Minimum cut	exponential	$O(Fm(\log c_{max} + \log n))$ [Neumann et al., Algorithmica'11]
Minimum label spanning tree	$\Omega(ku^k)$	<i>O</i> (<i>k</i> ² log <i>k</i>) [Lai et al., TEC'14]
Minimum cost coverage	exponential	$O(Nn(\log n + \log w_{max} + N))$ [Qian et al., IJCAI'15]
		Better

Bi-objective reformulation

Main idea:

1. transform the original constrained optimization problem into a bi-objective optimization problem



Bi-objective reformulation

Main idea:

1. transform the original constrained optimization problem into a bi-objective optimization problem

constrained

bi-objective

min f(x)

s.t. $g_i(x) = 0$, $1 \le i \le q$; $h_i(x) \le 0$, $q + 1 \le i \le m$

min $(f(x), \sum_{i=1}^{m} f_i(x))$

- 2. employ a multi-objective EA to solve the transformed problem *constraint violation degree = 0*
- 3. output the feasible solution from the generated nondominated solution set

Constraint handling strategies

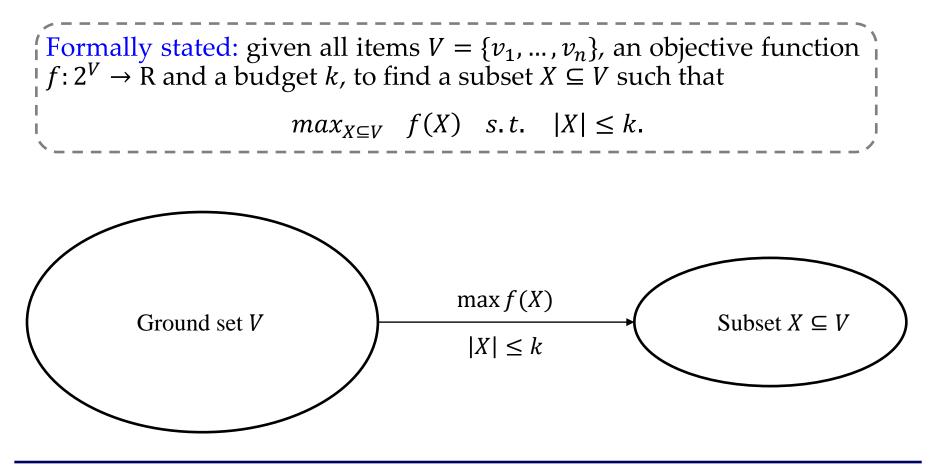
The final output solution must satisfy the constraints

Common constraint handling strategies

- Penalty functions
- Stochastic ranking
- Repair functions
- Restricting search to the feasible region
- Decoder functions
- Bi-objective reformulation

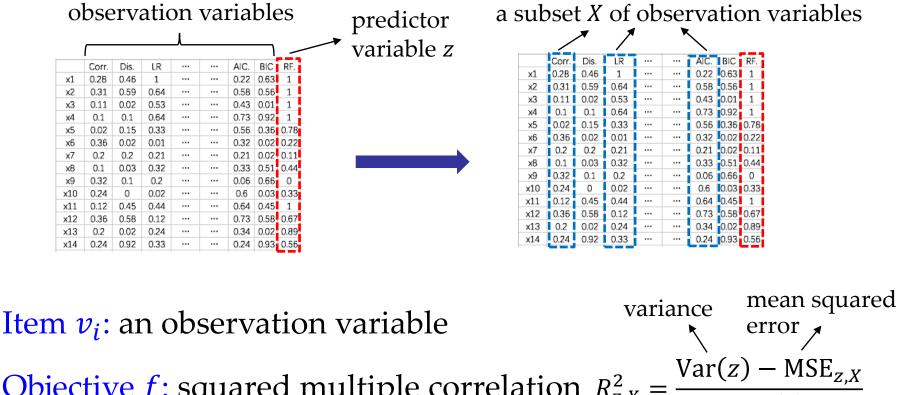
Better algorithms?

Subset selection is to select a subset of size *k* from a total set of *n* items for optimizing some objective function



Application - sparse regression

Sparse regression [Tropp, TIT'04]: select a few observation variables to best approximate the predictor variable by linear regression



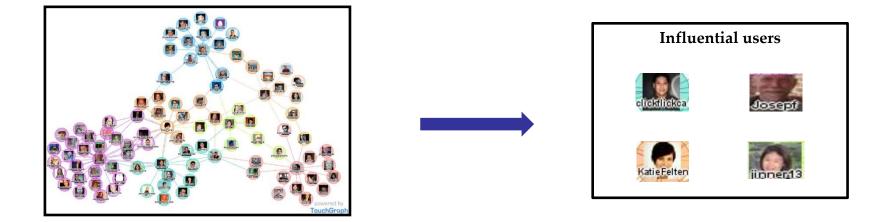
Objective *f*: squared multiple correlation $R_{z,x}^2 =$

http://www.lamda.nju.edu.cn/gianc/

Var(z

Application - influence maximization

Influence maximization [Kempe et al., KDD'03]: select a subset of users from a social network to maximize its influence spread

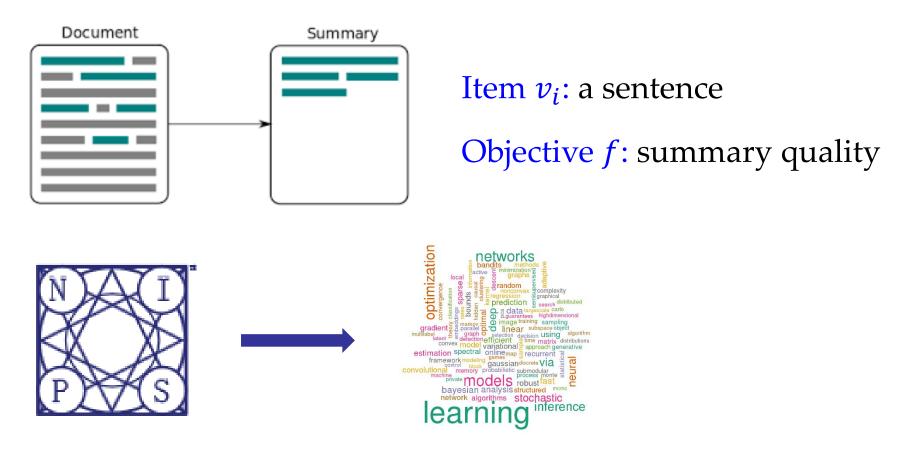


Item v_i : a social network user

Objective *f*: influence spread, measured by the expected number of social network users activated by diffusion

Application - document summarization

Document summarization [Lin & Bilmes, ACL'11]: select a few sentences to best summarize the documents



Application - sensor placement

Sensor placement [Krause & Guestrin, IJCAI'09 Tutorial] : select a few places to install sensors such that the information gathered is maximized

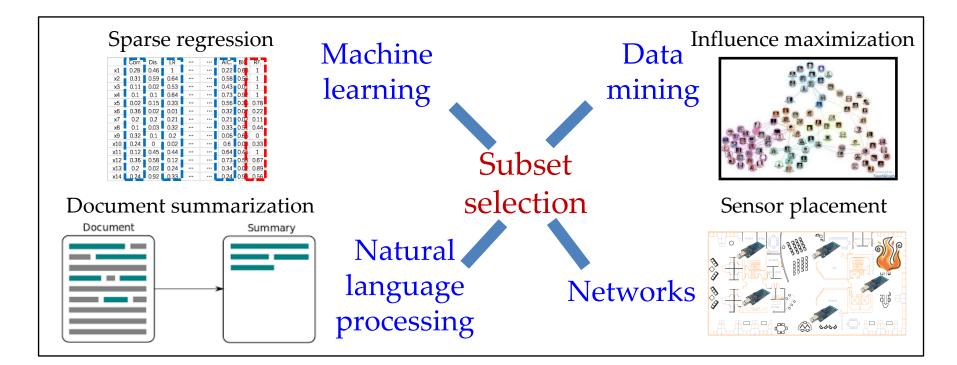
Water contamination detection

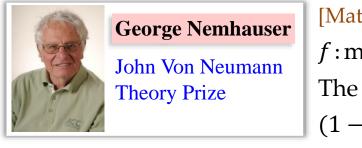
Fire detection

Item v_i : a place to install a sensor

Objective *f* : entropy

Subset selection





[Mathematical Programming 1978]

f:monotone and submodular The greedy algorithm: (1 - 1/e)-approximation Best Paper/Test of Time Award: [Kempe et al., KDD'03] [Das & Kempe, ICML'11] [Iyer & Bilmes, NIPS'13]

A subset $X \subseteq V$ can be naturally represented by a Boolean vector $x \in \{0,1\}^n$

• the *i*-th bit $x_i = 1$ if the item $v_i \in X$; $x_i = 0$ otherwise

•
$$X = \{v_i \mid x_i = 1\}$$

 $V = \{v_1, v_2, v_3, v_4, v_5\}$ a subset $X \subseteq V$ a Boolean vector $x \in \{0,1\}^5$
 \emptyset 00000

 $\{v_1\}$ \longleftrightarrow 10000

 $\{v_2, v_3, v_5\}$ 01101

 $\{v_1, v_2, v_3, v_4, v_5\}$ 11111

POSS algorithm

POSS algorithm [Qian, Yu and Zhou, NIPS'15]

$max_{X\subseteq V} f(X)$ s.t. $|X| \le k$ originalTransformation: \car{V} \car{V} \car{V} \car{V} $min_{X\subseteq V}$ (-f(X), |X|) \car{V} \car{V}

Algorithm 1 POSS

Input: all variables $V = \{X_1, \ldots, X_n\}$, a given objective fand an integer parameter $k \in [1, n]$ **Parameter**: the number of iterations T **Output**: a subset of V with at most k variables Process: 1: Let $s = \{0\}^n$ and $P = \{s\}$. 2: Let t = 0. 3: while t < T do Select *s* from *P* uniformly at random. 4: 5: Generate s' by flipping each bit of s with prob. $\frac{1}{n}$. Evaluate $f_1(s')$ and $f_2(s')$. 6: 7: if $\exists z \in P$ such that $z \prec s'$ then $Q = \{ z \in P \mid s' \preceq z \}.$ 8: $P = (P \setminus Q) \cup \{\overline{s'}\}.$ 9: 10:end if t = t + 1. 11: 12: end while 13: return $\arg\min_{s \in P, |s| \le k} f_1(s)$

Initialization: put the special solution {0}^{*n*} into the population *P*

Parent selection & Reproduction: pick a solution x randomly from P, and flip each bit of x with prob. 1/n to generate a new solution

Evaluation & Survivor selection: if the new solution is not dominated, put it into *P* and weed out bad solutions

Output: select the best feasible solution

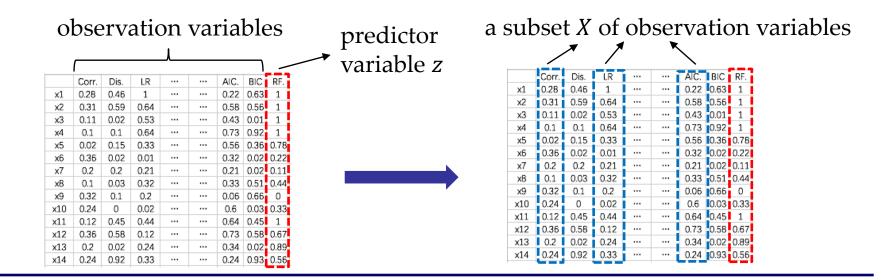
Sparse regression

Sparse regression: given all observation variables $V = \{v_1, ..., v_n\}$, a predictor variable *z* and a budget *k*, to find a subset $X \subseteq V$ such that

$$max_{X\subseteq V} \quad \frac{R_{z,X}^2}{R_{z,X}^2} = \frac{\operatorname{Var}(z) - \operatorname{MSE}_{z,X}}{\operatorname{Var}(z)} \quad s.t. \quad |X| \le k$$

Var(z): variance of z

 $MSE_{z,X}$: mean squared error of predicting z by using observation variables in X



Experimental results

the size	constraint:	k = 8
----------	-------------	--------------

w5a

gisette

farm-ads

POSS: win/tie/loss

the number of iterations of POSS: $2ek^2n$

.3341±.0258•

.6747±.0145•

.4170±.0113•

12/0/0

exhaustiv	re search		greedy algorithms			relaxation metho			
Data set	OPT	POSS	FR	FoBa	OMP	RFE	Ν		
housing	.7437±.0297	.7437±.0297	.7429±.0300•	.7423±.0301•	.7415±.0300•	.7388±.0304•	.7354		
eunite2001	.8484±.0132	$.8482 \pm .0132$.8348±.0143•	.8442±.0144•	.8349±.0150•	.8424±.0153•	.8320		
svmguide3	.2705±.0255	.2701±.0257	.2615±.0260•	.2601±.0279•	.2557±.0270•	.2136±.0325•	.2397		
ionosphere	.5995±.0326	$.5990 \pm .0329$.5920±.0352•	.5929±.0346•	.5921±.0353•	.5832±.0415●	.5740		
sonar	-	$.5365 \pm .0410$.5171±.0440•	.5138±.0432•	.5112±.0425•	.4321±.0636•	.4496		
triazines	-	.4301±.0603	.4150±.0592•	.4107±.0600•	.4073±.0591•	.3615±.0712•	.3793		
coil2000	-	$.0627 \pm .0076$.0624±.0076•	.0619±.0075•	.0619±.0075•	.0363±.0141•	.0570		
mushrooms	-	.9912±.0020	.9909±.0021•	.9909±.0022•	.9909±.0022•	.6813±.1294•	.8652		
clean1	-	$.4368 \pm .0300$.4169±.0299•	.4145±.0309•	.4132±.0315•	.1596±.0562•	.3563		

.3319±.0247•

.7001±.0116•

.4196±.0101•

12/0/0

• denotes that POSS is significantly better by the *t*-test with confidence level 0.05

 $.3376 \pm .0267$

 $.7265 \pm .0098$

 $4217 \pm .0100$

_

.3313±.0246•

.6731±.0134•

.4170±.0113•

12/0/0

POSS is significantly better than all the compared state-of-the art algorithms on all data sets

.3342±.0276•

.5360±.0318•

11/0/0

MCP

.7354±.0297

.8320±.0150•

.2397±.0237•

.5740±.0348

.4496±.0482•

.3793±.0584•

.0570±.0075•

.8652±.0474•

.3563±.0364•

.2694±.0385•

.5709±.0123•

.3771±.0110•

12/0/0

POSS can achieve the optimal polynomial-time approximation guarantee

Theorem 1. For subset selection with monotone objective functions, POSS using $E[T] \le 2ek^2n$ finds a solution *X* with $|X| \le k$ and

$$f(X) \ge (1 - e^{-\gamma}) \cdot \text{OPT.}$$

the optimal polynomial-time approximation guarantee for monotone *f* [Harshaw et al., ICML'19]

Lemma 1. For any $X \subseteq V$, there exists one item $\hat{v} \in V \setminus X$ such that

$$f(X \cup \{\hat{v}\}) - f(X) \ge \frac{\gamma}{k} (\mathsf{OPT} - f(X))$$

submodularity ratio [Das & Kempe, ICML'11]

the optimal function value

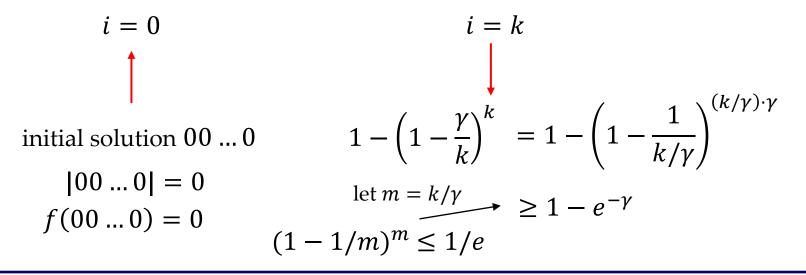
Roughly speaking, the improvement by adding a specific item is proportional to the current distance to the optimum

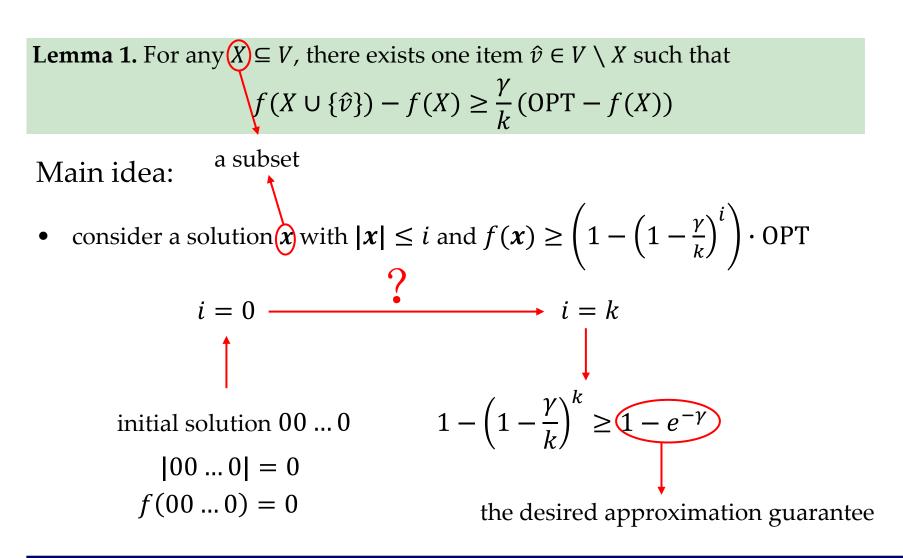
Lemma 1. For any
$$X \subseteq V$$
, there exists one item $\hat{v} \in V \setminus X$ such that $f(X \cup {\hat{v}}) - f(X) \ge \frac{\gamma}{k} (\text{OPT} - f(X))$

a subset

Main idea:

• consider a solution x with $|x| \le i$ and $f(x) \ge \left(1 - \left(1 - \frac{\gamma}{k}\right)^i\right) \cdot \text{OPT}$





Lemma 1. For any $X \subseteq V$, there exists one item $\hat{v} \in V \setminus X$ such that $f(X \cup {\hat{v}}) - f(X) \ge \frac{\gamma}{k}(\text{OPT} - f(X))$

Main idea:

- consider a solution \mathbf{x} with $|\mathbf{x}| \leq i$ and $f(\mathbf{x}) \geq \left(1 \left(1 \frac{\gamma}{k}\right)^i\right) \cdot \text{OPT}$
- in each iteration of POSS:
 - > select x from the population P

a subset

flip one specific 0-bit of *x* to 1-bit
 (i.e., add the specific item *v̂* in Lemma 1)

$$\Rightarrow |\mathbf{x}'| = |\mathbf{x}| + 1 \leq i + 1 \text{ and } f(\mathbf{x}') \geq \left(1 - \left(1 - \frac{\gamma}{k}\right)^{i+1}\right) \cdot \text{OPT}$$

Lemma 1. For any
$$X \subseteq V$$
, there exists one item $\hat{v} \in V \setminus X$ such that

$$f(X \cup \{\hat{v}\}) - f(X) \ge \frac{\gamma}{k} (\text{OPT} - f(X))$$

$$f(x') - f(x) \ge \frac{\gamma}{k} \cdot (\text{OPT} - f(x))$$

$$f(x') \ge \left(1 - \frac{\gamma}{k}\right) f(x) + \frac{\gamma}{k} \cdot \text{OPT}$$

$$f(x) \ge \left(1 - \left(1 - \frac{\gamma}{k}\right)^{i}\right) \cdot \text{OPT}$$

$$f(x') \ge \left(1 - \left(1 - \frac{\gamma}{k}\right)^{i}\right) \cdot \text{OPT} = \left(1 - \left(1 - \frac{\gamma}{k}\right)^{i+1}\right) \cdot \text{OPT}$$

Lemma 1. For any $(X) \subseteq V$, there exists one item $\hat{v} \in V \setminus X$ such that $f(X \cup \{\hat{v}\}) - f(X) \ge \frac{\gamma}{k}(\text{OPT} - f(X))$

Main idea:

• consider a solution
$$x$$
 with $|x| \le i$ and $f(x) \ge \left(1 - \left(1 - \frac{\gamma}{k}\right)^i\right) \cdot \text{OPT}$

in each iteration of POSS:

a subset

 > select *x* from the population *P*, the probability: ¹/_{|P|}
 > flip one specific 0-bit of *x* to 1-bit, the probability: ¹/_n (1 − ¹/_n)^{n−1} ≥ ¹/_{en} (i.e., add the specific item \hat{v} in Lemma 1)

$$\Rightarrow |\mathbf{x}'| = |\mathbf{x}| + 1 \le i + 1 \text{ and } f(\mathbf{x}') \ge \left(1 - \left(1 - \frac{\gamma}{k}\right)^{i+1}\right) \cdot \text{OPT}$$

$$i \longrightarrow i + 1 \quad \text{the probability: } \frac{1}{|P|} \cdot \frac{1}{en}$$

http://www.lamda.nju.edu.cn/gianc/

en

Lemma 1. For any
$$\widehat{X} \subseteq V$$
, there exists one item $\widehat{v} \in V \setminus X$ such that
 $f(X \cup \{\widehat{v}\}) - f(X) \ge \frac{\gamma}{k} (OPT - f(X))$
Main idea:
a subset
o consider a solution \widehat{x} with $|\mathbf{x}| \le i$ and $f(\mathbf{x}) \ge \left(1 - \left(1 - \frac{\gamma}{k}\right)^i\right) \cdot OPT$
in each iteration of POSS:
 $i \longrightarrow i + 1$ the probability: $\frac{1}{|P|} \cdot \frac{1}{en}$ $|P| \le 2k$ $\frac{1}{2ekn}$
For each size in
 $\{0,1,...,2k-1\}$,
 $\{0,1,...,2k-1\}$,
The solutions in P are always incomparable

Lemma 1. For any $\widehat{X} \subseteq V$, there exists one item $\widehat{v} \in V \setminus X$ such that $f(X \cup {\widehat{v}}) - f(X) \ge \frac{\gamma}{k}(\text{OPT} - f(X))$

Main idea:

• consider a solution
$$x$$
 with $|x| \le i$ and $f(x) \ge \left(1 - \left(1 - \frac{\gamma}{k}\right)^i\right) \cdot \text{OPT}$

• in each iteration of POSS:

a subset

$$i \longrightarrow i+1$$
 the probability: $\frac{1}{|P|} \cdot \frac{1}{en} \quad |P| \le 2k \qquad \frac{1}{2ekn}$

 $i \longrightarrow i + 1$ the expected number of iterations: 2ekn

 $i = 0 \longrightarrow k$ the expected number of iterations: $k \cdot 2ekn$

Theoretical analysis: The advantage of biobjective reformulation for handling constraints

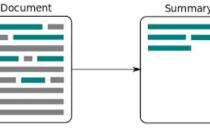
Algorithm design: The POSS algorithm for subset selection

	Corr.	Dis.	LR	 	AIC.	BIC	RF.
x1	0.28	0.46	1	 	0.22	0.63	1
x2	0.31	0.59	0.64	 	0.58	0.56	1
x3	0.11	0.02	0.53	 	0.43	0.01	1
x4	0.1	0.1	0.64	 	0.73	0.92	1
x5	0.02	0.15	0.33	 	0.56	0.36	0.78
х6	0.36	0.02	0.01	 	0.32	0.02	0.22
х7	0.2	0.2	0.21	 	0.21	0.02	0.11
x8	0.1	0.03	0.32	 	0.33	0.51	0.44
x9	0.32	0.1	0.2	 	0.06	0.66	0
x10	0.24	0	0.02	 	0.6	0.03	0.33
x11	0.12	0.45	0.44	 	0.64	0.45	1
x12	0.36	0.58	0.12	 	0.73	0.58	0.67
x13	0.2	0.02	0.24	 	0.34	0.02	0.89
x14	0.24	0.92	0.33	 	0.24	0.93	0.56

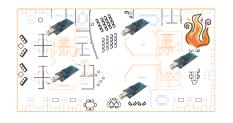
Sparco rogrossion

Influence maximization

Document summarization



Sensor placement



POSS algorithm

POSS algorithm [Qian, Yu and Zhou, NIPS'15]

$max_{X\subseteq V} f(X)$ s.t. $|X| \le k$ originalTransformation: \car{V} \car{V} \car{V} \car{V} $min_{X\subseteq V}$ (-f(X), |X|) \car{V} \car{V}

Algorithm 1 POSS

Input: all variables $V = \{X_1, \dots, X_n\}$, a given objective f and an integer parameter $k \in [1, n]$ **Parameter**: the number of iterations T **Output**: a subset of V with at most k variables Process: 1: Let $s = \{0\}^n$ and $P = \{s\}$. 2: Let t = 0. 3: while t < T do Select s from P uniformly at random. 4: 5: Generate s' by flipping each bit of s with prob. $\frac{1}{n}$. Evaluate $f_1(s')$ and $f_2(s')$. 6: if $\exists z \in P$ such that $z \prec s'$ then 7: $Q = \{ z \in P \mid s' \preceq z \}.$ 8: $P = (P \setminus Q) \cup \{\overline{s'}\}.$ 9: end if 10:t = t + 1. 11: 12: end while 13: return $\arg\min_{s \in P, |s| \le k} f_1(s)$

Parent selection & Reproduction:
pick a solution *x* randomly from *P*, and flip each bit of *x* with prob.
1/*n* to generate a new solution

Using bit-wise mutation only

PORSS algorithm

PORSS algorithm [Qian, Bian and Feng, AAAI'20]

$$max_{X\subseteq V} f(X)$$
 s.t. $|X| \le k$ originalTransformation: $\carcel{eq:transformation}$ $\carcel{eq:transformation}$ $min_{X\subseteq V} (-f(X), |X|)$ bi-objective

Algorithm 2 PORSS Algorithm

Input: $V = \{v_1, \ldots, v_n\}$; objective $f : 2^V \to \mathbb{R}$; budget k **Parameter**: the number T of iterations **Output**: a subset of V with at most k items **Process**:

1: Let
$$x = 0^n$$
, $P = \{x\}$ and $t = 0$;

2: while
$$t < T$$
 do

- 3: Select $\boldsymbol{x}, \boldsymbol{y}$ from P randomly with replacement;
- 4: Apply recombination on x, y to generate x', y';
 5: Apply bit-wise mutation on x', y' to generate x'', y'':

```
6: for each q \in \{x'', y''\}
```

```
7: if \nexists z \in P such that z \prec q then
```

- 8: $P = (P \setminus \{ \boldsymbol{z} \in P \mid \boldsymbol{q} \leq \boldsymbol{z} \}) \cup \{ \boldsymbol{q} \}$
- 9: **end if**
- 10: **end for**
- 11: t = t + 1
- 12: end while

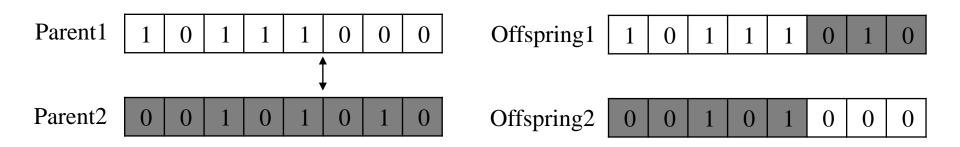
```
13: return \arg \max_{\boldsymbol{x} \in P, |\boldsymbol{x}| \leq k} f(\boldsymbol{x})
```

Parent selection & Reproduction:

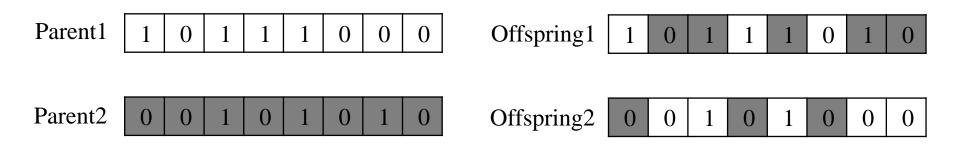
- pick two solutions randomly from *P*
- apply recombination operator
- apply bit-wise mutation operator

PORSS algorithm

• One-point crossover



Uniform crossover



Experimental results

the size constrai	nt $R \equiv X$	te-of-the- orithms	art	PORSS using one point crossover	e- PORSS us uniform c	0
Data set	(#inst, #feat)	OPT	Greedy	POSS	PORSS _o	$PORSS_u$
svmguide3	(1243, 22)	0.221	0.214	0.220 ± 0.001	0.220 ± 0.001	0.221±0.001
triazines	(186, 60)	0.328	0.316	$0.327 {\pm} 0.000$	$0.328 {\pm} 0.000$	$0.328 {\pm} 0.000$
clean1	(476, 166)	-	0.371	$0.386 {\pm} 0.004$	$0.387 {\pm} 0.006$	$0.393 {\pm} 0.005$
usps	(7291, 256)	-	0.562	$0.570 {\pm} 0.003$	$0.572{\pm}0.003$	$0.572{\pm}0.003$
scene	(1211, 294)	-	0.254	$0.268 {\pm} 0.003$	$0.272 {\pm} 0.002$	0.271 ± 0.002
protein	(17766, 356)	-	0.132	0.132 ± 0.000	$0.133 {\pm} 0.000$	$0.133 {\pm} 0.000$
colon-cancer	(62, 2000)	_	0.890	0.906 ± 0.011	0.909 ± 0.018	$0.911 {\pm} 0.014$
cifar10	(50000, 3072)	_	0.069	$0.070 {\pm} 0.001$	$0.070 {\pm} 0.001$	$0.071 {\pm} 0.001$
leukemia	(72, 7129)	_	0.947	0.966 ± 0.009	0.968 ± 0.006	$0.969 {\pm} 0.007$
smallNORB	(24300, 18432)	-	0.461	$0.535 {\pm} 0.007$	$0.547 {\pm} 0.003$	$0.550{\pm}0.002$
POSS: 0	POSS: Count of direct win			_	1	0
A	werage rank		3.95	2.95	1.85	1.25

PORSS performs the best

Summary

- Constrained optimization
- Constraint handling strategies
 - Penalty functions
 - Stochastic ranking
 - Repair functions
 - Restricting search to the feasible region
 - Decoder functions
 - − Bi-objective reformulation →

Give an example of

→ algorithm design guided by theoretical analysis

References

- A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Chapter 13.
- T. Friedrich, J. He, N. Hebbinghaus, F. Neumann and C. Witt. Approximating covering problems by randomized search heuristics using multi-objective models. *Evolutionary Computation*, 2010, 18(4): 617-633
- B. Doerr, D. Johannsen and C. Winzen. Multiplicative drift analysis. *Algorithmica*, 2012, 64: 673-697
- X. Lai, Y. Zhou, J. He and J. Zhang. Performance analysis of evolutionary algorithms for the minimum label spanning tree problem. *IEEE Transactions on Evolutionary Computation*, 2014, 18(6): 860-872
- F. Neumann and I. Wegener. Minimum spanning trees made easier via multiobjective optimization. *Natural Computing*, 2006, 5(3): 305-319
- T. P. Runarsson and X. Yao. Stochastic ranking for constrained evolutionary optimization. *IEEE Transactions on Evolutionary Computation*, 2000, 4(3): 284-294

References

- F. Neumann and I. Wegener. Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. *Theoretical Computer Science*, 2007, 378(1): 32-40
- F. Neumann, J. Reichel and M. Skutella. Computing minimum cuts by randomized search heuristics. *Algorithmica*, 2011, 59(3): 323-342
- C. Qian, Y. Yu and Z.-H. Zhou. On constrained Boolean Pareto optimization. In: *Proceedings of the 24th International Joint Conference on Artificial Intelligence* (*IJCAI'15*), 2015, pages 389-395, Buenos Aires, Argentina
- C. Qian, Y. Yu and Z.-H. Zhou. Subset selection by Pareto optimization. In: *Advances in Neural Information Processing Systems 28 (NIPS'15)*, 2015, pages 1765-1773, Montreal, Canada
- C. Qian, C. Bian and C. Feng. Subset selection by Pareto optimization with recombination. In: *Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI'20)*, New York, NY, 2020, pp.2408-2415.

Task:

- Apply POSS to solve the sparse regression problem
- Apply NSGA-II to solve the sparse regression problem
- Apply MOEA-D to solve the sparse regression problem
- Improve the above algorithms to achieve better objective values under the same time budget

Deadline: Jan. 26