



# Heuristic Search and Evolutionary Algorithms Lecture 13: Evolutionary Algorithms Made Faster by Surrogate Models

### Chao Qian (钱超)

Associate Professor, Nanjing University, China

Email: qianc@nju.edu.cn Homepage: http://www.lamda.nju.edu.cn/qianc/

## Expensive fitness evaluation

### General structure of evolutionary algorithms





Optimize the efficiency of the train head



## Examples







Computing the influence spread objective is #P-hard

Estimated by the average of 10,000 random diffusions Very expensive

## Surrogate models

Collect some data points to build a surrogate model



Use the surrogate to approximate the true fitness function

However,









• Evaluated by the true fitness function

### **Too expensive**







### **Random strategy**

- Select some offspring solutions randomly to be evaluated using the true fitness function
- Evaluate the remaining ones using the surrogate model

## Surrogate models during evolution





### **Best strategy**

- > Evaluate all *N* offspring solutions using the surrogate model
- Re-evaluate the best N' < N offspring solutions using the true fitness function</p>



**Clustering based strategy** 

- Group the offspring solutions into a number of clusters
- Select some representative solutions from each cluster to be evaluated using the true fitness function
- Evaluate the remaining ones using the surrogate model



**Uncertainty based strategy** 

- Select some "uncertain" offspring solutions to be evaluated using the true fitness function
- Evaluate the remaining ones using the surrogate model

### How to use surrogates



### **Preselection strategy**



http://www.lamda.nju.edu.cn/qianc/

## An example of preselection-based EA



### What surrogate models can we use?



### How to use surrogates - Preselection



## Binary classification based preselection



Surrogate model:

Predict whether a solution is good or bad

How to get the training data?



## Binary classification based preselection

### An example

from Aiming Zhou's talk

| Algorithm 1: Framework of CPS-EA                                                                |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| // Initialization                                                                               |  |  |  |  |  |  |  |
| 1 Initialize the population $P = \{x^1, x^2, \cdots, x^N\};$                                    |  |  |  |  |  |  |  |
| // Main loop                                                                                    |  |  |  |  |  |  |  |
| 2 while termination condition is not satisfied do                                               |  |  |  |  |  |  |  |
| // Sample definition                                                                            |  |  |  |  |  |  |  |
| Assign each $x \in P$ a label $l \in \{+1, -1\};$                                               |  |  |  |  |  |  |  |
| // Model building                                                                               |  |  |  |  |  |  |  |
| Train a classifier $l = Bclass(x)$ based on the data set $\{\langle x, l \rangle   x \in P\}$ : |  |  |  |  |  |  |  |
| for each $x \in P$ do                                                                           |  |  |  |  |  |  |  |
| // Offspring generation                                                                         |  |  |  |  |  |  |  |
| 6 Generate M candidate offspring individuals $Y = \{y^1, \dots, y^M\};$                         |  |  |  |  |  |  |  |
| <pre>// Offspring solutions labeling and selection</pre>                                        |  |  |  |  |  |  |  |
| 7 Predict their labels by the classifier;                                                       |  |  |  |  |  |  |  |
| 8 Set $V = \{y \in Y   Bclass(y) = = +1\};$                                                     |  |  |  |  |  |  |  |
| 9 Reset $V = Y$ if $V = \emptyset$ ;                                                            |  |  |  |  |  |  |  |
| 10 Randomly choose $y \in V$ as the offspring individual of $x$ ;                               |  |  |  |  |  |  |  |
| // Environmental selection                                                                      |  |  |  |  |  |  |  |
| 11 if $f(y) < f(x)$ then                                                                        |  |  |  |  |  |  |  |
| 12 Set $x = y$ ;                                                                                |  |  |  |  |  |  |  |
| 13 end                                                                                          |  |  |  |  |  |  |  |
| a end                                                                                           |  |  |  |  |  |  |  |
| 15 end                                                                                          |  |  |  |  |  |  |  |

## Fuzzy classification based preselection



Surrogate model:

Predict the probability of a solution being good

### How to get the training data?



### Fuzzy classification based preselection



[Zhou et al., AAAI'19]

## Binary relation classification based preselection



How to get the training data?



Surrogate model:

Predict whether a solution is better than another one

## Binary relation classification based preselection



## Advantage of surrogate models

| St       | ٦r | rogate-a         | ssisted EA                         | A va                                     | riant of EA                  | Δ                  |
|----------|----|------------------|------------------------------------|------------------------------------------|------------------------------|--------------------|
| Instance | n  | Btree-CoDE       |                                    | CoDE                                     |                              |                    |
|          |    | Median           | mean <sub>std</sub>                | Median                                   | mean <sub>std</sub>          |                    |
| LZG01    | 5  | 2.83e-160(+)     | 3.54e-159 <sub>9.83e-159</sub> (+) | 5.32e-75                                 | 1.72e-74 <sub>2.40e-74</sub> |                    |
|          | 10 | 2.65e-61(+)      | 3.94e-60 <sub>8.90e-60</sub> (+)   | 3.74e-33                                 | 6.50e-33 <sub>7.53e-33</sub> |                    |
|          | 20 | 3.17e-29(+)      | 4.84e-29 <sub>8.90e-60</sub> (+)   | 8.01e-17                                 | 7.61e-17 <sub>7.53e-33</sub> |                    |
|          | 30 | 5.95e-20(+)      | 9.46e-20 <sub>1.42e-19</sub> (+)   | 9.20e-12                                 | 8.57e-12 <sub>5.18e-12</sub> |                    |
| LZG02    | 5  | $0.00e+00(\sim)$ | $0.00e+00_{0.00e+00}$ (~)          | 0.00e+00                                 | $0.00e+00_{0.00e+00}$        |                    |
|          | 10 | 0.00e+00(+)      | 7.68e-29 <sub>2.36e-28</sub> (+)   | 9.17e-15                                 | 6.61e-14 <sub>1.71e-13</sub> | Using aumogata m   |
|          | 20 | 4.63e-03(+)      | $6.38e-03_{7.19e-03}$ (+)          | 5.16e+00                                 | $5.07e+00_{6.24e-01}$        | Using surrogate in |
|          | 30 | 1.32e+01(+)      | $1.32e+01_{1.21e+00}(+)$           | 2.00e+01                                 | $1.99e+01_{5.31e-01}$        | can improve th     |
| LZG03    | 5  | 8.88e−16(~)      | $8.88e-16_{0.00e+00}$ (~)          | 8.88e-16                                 | 8.88e-16 <sub>0.00e+00</sub> | can improve u      |
|          | 10 | 4.44e−15(~)      | $4.09e-15_{1.12e-15}$ (~)          | 4.44e-15                                 | 4.44e-15 <sub>0.00e+00</sub> | performance of l   |
|          | 20 | 6.13e-14(+)      | 7.37e-14 <sub>5.71e-14</sub> (+)   | 2.73e-08                                 | 2.87e-089.38e-09             | Periormanee or i   |
|          | 30 | 4.90e-10(+)      | 5.73e-10 <sub>2.82e-10</sub> (+)   | 3.74e-06                                 | $4.27e-06_{1.54e-06}$        |                    |
| LZG04    | 5  | $0.00e+00(\sim)$ | $0.00e+00_{0.00e+00} (\sim)$       | 0.00e+00                                 | $0.00e+00_{0.00e+00}$        |                    |
|          | 10 | 0.00e+00(+)      | $0.00e+00_{0.00e+00}$ (+)          | 5.12e-10                                 | 3.83e-07 <sub>1.20e-06</sub> |                    |
|          | 20 | 0.00e+00(+)      | $1.23e-03_{3.89e-03}$ (~)          | 4.24e-13                                 | $1.64e - 10_{2.51e - 10}$    |                    |
| $\frown$ | 30 | 0.00e+00(+)      | 9.86e–04 <sub>3.12e–03</sub> (~)   | 8.07e-10                                 | 2.00e-09 <sub>2.56e-09</sub> |                    |
| +/-/~    | 5  | 1/0/3            | 1/0/3                              |                                          |                              |                    |
|          | 10 | 3/0/1            | 3/0/1                              | Better/Worse/Similar, compared with CoDE |                              |                    |
|          | 20 | 4/0/0            | 3/0/1                              |                                          |                              | •                  |
|          | 30 | 4/0/0            | 3/0/1                              | [Hao                                     | et al., ICIC'                | 18]                |

g surrogate models an improve the formance of EAs

Algorithm 1 BO Framework Input: iteration budget T Process:

- 1: let  $D_0 = \emptyset$ ;
- 2: for t = 1 : T do
- 3:  $\boldsymbol{x}_t = \arg \max_{\boldsymbol{x} \in \mathcal{X}} acq(\boldsymbol{x});$
- 4: evaluate f at  $x_t$  to obtain  $y_t$ ;
- 5: augment the data  $D_t = D_{t-1} \cup \{(\boldsymbol{x}_t, y_t)\}$  and update the GP model

6: **end for** 

regards the *f* value at each data point as a random variable, and assumes satisfying a joint Gaussian distribution

Surrogate model: Gaussian process



Solid line: surrogate Dotted line: true fitness

Typical acquisition functions

**PI**: prob. of a new *x* better than the best  $x^+$  genereated-so-far

$$PI(x) = P(f(x) \ge f(x^{+}))$$

$$= P\left(\frac{f(x) - u(x)}{\sigma(x)} \ge \frac{f(x^{+}) - u(x)}{\sigma(x)}\right)$$

$$= 1 - \Phi\left(\frac{f(x^{+}) - u(x)}{\sigma(x)}\right)$$

$$= \Phi\left(\frac{u(x) - f(x^{+})}{\sigma(x)}\right)$$

$$\Phi: \text{ cumulative distribution function of standard Gaussian distribution}$$

Typical acquisition functions

EI: expectation of improvement, i.e.,  $\max\{0, f(x) - f(x^+)\}$ 

- ?

$$EI(x) = \begin{cases} \left(\mu(x) - f(x^+)\right) \Phi(Z) + \sigma(x)\varphi(Z) & \text{if } \sigma(x) > 0\\ \max\{0, \ \mu(x) - f(x^+)\} & \text{if } \sigma(x) = 0 \end{cases}$$

$$Z = \frac{\mu(x) - f(x^+)}{\sigma(x)}$$

Φ: cumulative distribution function of standard Gaussian distribution
 φ: probability density function of standard Gaussian distribution

Since  $f(x) \sim N(\mu(x), \sigma(x)^2)$ , for  $\sigma(x) > 0$ , **Derivation of EI:**  $EI(x) = E[\max\{0, f(x) - f(x^+)\}]$  $= \int_{f(x^{+})}^{+\infty} (f(x) - f(x^{+})) \frac{1}{\sqrt{2\pi}\sigma(x)} \exp\left(-\frac{(f(x) - \mu(x))^{2}}{2\sigma(x)^{2}}\right) df(x)$  $= \int_{\frac{f(x^{+}) - \mu(x)}{\sigma(x)}}^{\infty} \left(\sigma(x)Y + \mu(x) - f(x^{+})\right) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{Y^{2}}{2}\right) dY \quad (Let \ Y = \frac{f(x) - \mu(x)}{\sigma(x)})$  $= \left(\mu(x) - f(x^{+})\right) \Phi(Z) - \int_{\underline{f(x^{+})} - \mu(x)}^{+\infty} \sigma(x) \frac{1}{\sqrt{2\pi}} d \exp\left(-\frac{Y^{2}}{2}\right) \quad (Let \ Z = \frac{\mu(x) - f(x^{+})}{\sigma(x)})$  $= \left(\mu(x) - f(x^+)\right) \Phi(Z) \cdot \left(\sigma(x) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{Y^2}{2}\right)\right) \Big|_{\underline{f(x^+)} - \mu(x)}^{+\infty}$  $= (\mu(x) - f(x^{+}))\Phi(Z) + \sigma(x)\varphi(Z)$ 

 $Z = \frac{\mu(x) - f(x^+)}{\sigma(x)}$ 

Derivation of EI: Since 
$$f(x) \sim N(\mu(x), \sigma(x)^2)$$
, for  $\sigma(x) = 0$ ,  
 $f(x) = \mu(x)$ , almost surely,  
 $\bigvee$   
 $EI(x) = \max\{0, \ \mu(x) - f(x^+)\}$ 

$$EI(x) = \begin{cases} (\mu(x) - f(x^{+})) \Phi(Z) + \sigma(x) \varphi(Z) & \text{if } \sigma(x) > 0 \\ \max\{0, \ \mu(x) - f(x^{+})\} & \text{if } \sigma(x) = 0 \end{cases}$$

Φ: cumulative distribution function of standard Gaussian distribution
 φ: probability density function of standard Gaussian distribution

Typical acquisition functions

UCB: weighted sum of posterior mean and variance

Exploitation /

Exploration

 $UCB(x) = \mu(x) + \kappa \cdot \sigma(x)$ 



- How to use surrogate models
  - Random strategy
  - Best strategy
  - Clustering based strategy
  - Uncertainty based strategy
  - Preselection
- Bayesian optimization

### References

- Y. C. Jin, H. D. Wang and C. L. Sun. Data-driven Evolutionary Optimization. Chapter 5.
- E. Brochu, V. M. Cora and N. De Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.
- H. Hao, J. Y. Zhang and A. M. Zhou. A comparison study of surrogate model based preselection in evolutionary optimization. In: International Conference on Intelligent Computing. Springer, Cham, 2018, p. 717-728.
- H. Hao, J. Y. Zhang, X. F. Lu and A. M. Zhou, Binary relation learning and classifying for preselection in evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 2020, 24(6), 1125-1139.

### References

- Y. C. Jin. A comprehensive survey of fitness approximation in evolutionary computation. Soft computing, 2005, 9(1), 3-12.
- Y. C. Jin. Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm and Evolutionary Computation, 2011, 1(2), 61-70.
- B. Shahriari, K. Swersky, Z. Y. Wang, R. P. Adams and N. De Freitas, Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 2015, 104(1), 148-175.
- J. Y. Zhang, A. M. Zhou, K. Tang, and G. X. Zhang, Preselection via classification: A case study on evolutionary multiobjective optimization. Information Sciences, 2018, 465, 388-403.