
http://www.lamda.nju.edu.cn/qianc/

Last class

• Evolutionary algorithms: Origins

• Evolutionary algorithms: Components

• Evolutionary algorithms: Applications

Heuristic Search and Evolutionary Algorithms

Chao Qian （钱超）

Associate Professor, Nanjing University, China

Email: qianc@nju.edu.cn

Homepage: http://www.lamda.nju.edu.cn/qianc/

Lecture 6: Evolutionary Algorithms –
Representation, Mutation and Recombination

http://www.lamda.nju.edu.cn/qianc/

Representation and variation operators

• The first stage of applying evolutionary algorithms is
to decide a right representation for the problem

 Binary representation

 Integer representation

 Real-valued representation

 Permutation representation

 Tree representation

• Variation operators depend on the chosen representation

 Mutation

 Recombination

http://www.lamda.nju.edu.cn/qianc/

Binary representation

• Genotype space: {0,1}𝑛

Knapsack problem with 𝑛 items

𝑥 ∈ {0,1}𝑛, where 𝑥𝑖 = 1 denotes
that the 𝑖-th item is included

arg𝑚𝑎𝑥𝑥∈ 0,1,…,15 𝑥2
𝑥 ∈ {0,1}4, and the
corresponding integer
is ∑𝑖=1

4 𝑥𝑖2
4−𝑖

http://www.lamda.nju.edu.cn/qianc/

Binary representation

• Genotype space: {0,1}𝑛

arg𝑚𝑎𝑥𝑥∈ 0,1,…,15 𝑥2
𝑥 ∈ {0,1}4, and the
corresponding integer
is ∑𝑖=1

4 𝑥𝑖2
4−𝑖

7 is represented by 0111
8 is represented by 1000
9 is represented by 1001

The Hamming distance between
consecutive integers can be very
large

0 0000 4 0110 8 1100 12 1010

1 0001 5 0111 9 1101 13 1011

2 0011 6 0101 10 1111 14 1001

3 0010 7 0100 11 1110 15 1000

Gray coding

Standard binary coding

The Hamming distance between
consecutive integers is always 1

http://www.lamda.nju.edu.cn/qianc/

Binary representation: Mutation

1 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0

Offspring

Parent

• Bit-wise mutation: flip each bit independently with prob. 𝑝𝑚

1 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0

Offspring

Parent

1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0

Offspring

Parent

Occurring prob.

𝑝𝑚
2 (1 − 𝑝𝑚)𝑛−2

𝑝𝑚(1 − 𝑝𝑚)𝑛−1

(1 − 𝑝𝑚)𝑛

• One-bit mutation: flip a randomly chosen bit

For the above mutation behaviors, the occurring prob. are 0, 1/𝑛 and 0

The common setting of 𝑝𝑚 is 1/𝑛, where 𝑛 is the length of the binary string

http://www.lamda.nju.edu.cn/qianc/

Binary representation: Mutation

• Bit-wise mutation: flip each bit independently with prob. 𝑝𝑚

• One-bit mutation: flip a randomly chosen bit

The number of flipped bits is 1

The number of flipped bits is a random variable, denoted by 𝑋

P 𝑋 = 𝑘 =
𝑛

𝑘
𝑝𝑚
𝑘 (1 − 𝑝𝑚)𝑛−𝑘

𝑋 satisfies the binomial distribution 𝐵(𝑛, 𝑝𝑚)

The expected number of flipped bits is E 𝑋 = 𝑛𝑝𝑚, which
is 1 for 𝑝𝑚 = 1/𝑛

http://www.lamda.nju.edu.cn/qianc/

Binary representation: Recombination

• One-point crossover

 Choose a random number 𝑟 ∈ {1,2,… , 𝑛 − 1}

 Split both parents at this point

 Create two offspring by exchanging the tails

1 0 1 1 1 0 0 0

0 0 1 0 1 0 1 0

1 0 1 1 1 0 1 0

0 0 1 0 1 0 0 0

Parent1

Parent2

Offspring1

Offspring2

The occurring probability is 1/(𝑛 − 1)

http://www.lamda.nju.edu.cn/qianc/

Binary representation: Recombination

• 𝑚-point crossover

 Choose 𝑚 crossover points from {1,2, … , 𝑛 − 1}

 Split both parents along these points

 Create two offspring by taking alternative segments

1 0 1 1 1 0 0 0

0 0 1 0 1 0 1 0

1 0 1 0 1 0 0 0

0 0 1 1 1 0 1 0

Parent1

Parent2

Offspring1

Offspring2

The occurring probability is 2/(𝑛 − 1 𝑛 − 2)

2-point crossover

http://www.lamda.nju.edu.cn/qianc/

Binary representation: Recombination

• Uniform crossover

 For the first offspring, each gene is inherited from
the first parent with probability 𝑝 independently;
otherwise from the second parent

 The second offspring is created using the inverse
mapping

1 0 1 1 1 0 0 0

0 0 1 0 1 0 1 0

1 0 1 1 1 0 1 0

0 0 1 0 1 0 0 0

Parent1

Parent2

Offspring1

Offspring2

The occurring probability is 𝑝3(1 − 𝑝)𝑛−3

The common setting of 𝑝 is 1/2

http://www.lamda.nju.edu.cn/qianc/

Binary representation: Mutation and recombination

• Only mutation can introduce new information

• Only recombination can combine information from
two parents

 One-point and 𝑚-point crossover: more likely to keep
together genes that are near each other

 Uniform crossover: no positional bias

1 0 1 1 1 0 0 0

0 0 1 0 1 0 1 0

Parent1

Parent2

Always be 0 if using
recombination

http://www.lamda.nju.edu.cn/qianc/

Integer representation

• Genotype space: N𝑛, where N denotes the integer

• Mutation: mutate each gene independently with
probability 𝑝𝑚

 Random resetting: choose a new value at random

 Creep mutation: add a small value, which is sampled
from a distribution

• Recombination: same as for binary representation

Cardinal

attributes

Ordinal

attributes

http://www.lamda.nju.edu.cn/qianc/

Real-valued representation: Mutation

• Genotype space: R𝑛, where R denotes the real-number

• Mutation

 Uniform mutation: for each 𝑥𝑖, with prob. 𝑝𝑚, change it to
a value drawn uniformly randomly from [𝑙𝑏𝑖 , 𝑢𝑏𝑖]

 Nonuniform mutation: for each 𝑥𝑖, add a value drawn
randomly from a Gaussian distribution 𝑁(0, 𝜎2)

𝒙 = 𝑥1, … , 𝑥𝑛 → 𝒙′ = (𝑥1
′ , … , 𝑥𝑛

′), where 𝑥𝑖 , 𝑥𝑖
′ ∈ [𝑙𝑏𝑖 , 𝑢𝑏𝑖]

𝑥𝑖
′ = 𝑥𝑖 + 𝛿, where 𝛿 ∼ 𝑁(0, 𝜎2)

𝑥𝑖
′ =

𝑥𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏. 1 − 𝑝𝑚
𝑈 𝑙𝑏𝑖 , 𝑢𝑏𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝜎: mutation

step size

http://www.lamda.nju.edu.cn/qianc/

Real-valued representation: Nonuniform mutation

𝑥𝑖
′ = 𝑥𝑖 + 𝜎 ⋅ 𝑁𝑖(0,1)

• Uncorrelated mutation with one step size 𝜎:

• Uncorrelated mutation with 𝑛 step sizes:

𝑥𝑖
′ = 𝑥𝑖 + 𝜎𝑖 ⋅ 𝑁𝑖(0,1) ？

http://www.lamda.nju.edu.cn/qianc/

Real-valued representation: Nonuniform mutation

• Correlated mutation:
scaling

𝐒𝜹 =
𝑎 0
0 𝑏

𝜹 𝐑𝐒𝜹 =
)cos(𝛼)−sin(𝛼
)sin(𝛼)cos(𝛼

𝐒𝜹

Cov 𝜹′ = 𝐑𝐒 Cov 𝜹 (𝐑𝐒)T=
)𝑎2cos2(𝛼) + 𝑏2sin2(𝛼 𝑎2 − 𝑏2)sin(2𝛼) 2

 𝑎2 − 𝑏2)sin(2𝛼) 2)𝑎2sin2(𝛼) + 𝑏2cos2(𝛼

tan(2𝛼) = 2 𝑐12 (𝑐11 − 𝑐22)

𝜹′

𝑐11 𝑐12
𝑐21 𝑐22

𝜹 ∼ 𝑁(𝟎, 𝐈)

bivariate standard
normal distribution

rotation

Generalization: 𝑐𝑖𝑖 = 𝜎𝑖
2, 𝑐𝑖𝑗,𝑖≠𝑗 = 𝜎𝑖

2 − 𝜎𝑗
2 tan(2𝛼𝑖𝑗) /2

rotation angle for the 𝑖-th and 𝑗-th dimension

http://www.lamda.nju.edu.cn/qianc/

Real-valued representation: Nonuniform mutation

Uncorrelated mutation
with one step size 𝜎

Uncorrelated mutation
with 𝑛 step sizes Correlated mutation

𝑐𝑖𝑖 = 𝜎𝑖
2, 𝑐𝑖𝑗,𝑖≠𝑗 = 𝜎𝑖

2 − 𝜎𝑗
2 tan(2𝛼𝑖𝑗) /2

𝒙′ = 𝒙 + 𝑁(𝟎, 𝐂)

http://www.lamda.nju.edu.cn/qianc/

Real-valued representation: Self-adaptive mutation

• Self-adaptive mutation: Mutation step size 𝜎 is not set by
user but coevolves with solution

• For example, the genotype is now 𝑥1, … , 𝑥𝑛, 𝜎

𝑥𝑖
′ = 𝑥𝑖 + 𝜎′ ⋅ 𝑁𝑖(0,1)

𝜎 → 𝜎′

• The fitness of 𝒙′ can be used to measure the goodness of
both the offspring 𝒙′ and the mutation step size 𝜎′

• Why? Under different circumstances, different step sizes
will behave differently

Self-adaptation

http://www.lamda.nju.edu.cn/qianc/

Real-valued representation: Self-adaptive mutation

𝑥𝑖
′ = 𝑥𝑖 + 𝜎′ ⋅ 𝑁𝑖(0,1)

𝜎′ = 𝜎 ⋅ 𝑒𝜏⋅𝑁(0,1)

• Uncorrelated mutation with one step size 𝜎:

𝑥1, … , 𝑥𝑛, 𝜎 → (𝑥1
′ , … , 𝑥𝑛

′ , 𝜎′)

Satisfy these requirements:

 Smaller modifications occur more often than larger ones

 Greater than 0

 The median is 1

 Neural on average: equal prob. of drawing a value and its
reciprocal

Typically 𝜏 ∝ 1/ 𝑛

𝜎′ < 𝜖0 𝜎′= 𝜖0
Self-adaptation

http://www.lamda.nju.edu.cn/qianc/

Real-valued representation: Self-adaptive mutation

𝑥𝑖
′ = 𝑥𝑖 + 𝜎𝑖

′ ⋅ 𝑁𝑖(0,1)

𝜎𝑖
′ = 𝜎𝑖 ⋅ 𝑒

𝜏′⋅𝑁 0,1 +𝜏⋅𝑁𝑖(0,1)

• Uncorrelated mutation with 𝑛 step sizes:

𝑥1, … , 𝑥𝑛, 𝜎1, … , 𝜎𝑛 → (𝑥1
′ , … , 𝑥𝑛

′ , 𝜎1
′, … , 𝜎𝑛

′)

𝜏′ ∝
1

2𝑛
, 𝜏 ∝

1

2 𝑛

𝜎𝑖
′ < 𝜖0 𝜎𝑖

′ = 𝜖0

 𝑒𝜏
′⋅𝑁 0,1 : overall change; 𝑒𝜏⋅𝑁𝑖(0,1): coordinate-wise change

 The distribution is still lognormal, satisfying those
requirements

Self-adaptation

http://www.lamda.nju.edu.cn/qianc/

Real-valued representation: Self-adaptive mutation

• Correlated mutation:

𝑥1, … , 𝑥𝑛, 𝜎1, … , 𝜎𝑛, 𝛼1, … , 𝛼𝑛(𝑛−1)/2

→ 𝑥1
′ , … , 𝑥𝑛

′ , 𝜎1
′, … , 𝜎𝑛

′ , 𝛼1
′ , … , 𝛼𝑛(𝑛−1)/2

′

𝛼𝑗
′ = 𝛼𝑗 + 𝛽 ⋅ 𝑁𝑗(0,1)

𝜎𝑖
′ = 𝜎𝑖 ⋅ 𝑒

𝜏′⋅𝑁 0,1 +𝜏⋅𝑁𝑖(0,1)

𝒙′ = 𝒙 + 𝑁(𝟎, 𝐂′)

Self-adaptation 𝛽 ≈ 5𝑜

𝜎𝑖
′ < 𝜖0 𝜎𝑖

′ = 𝜖0

𝜏′ ∝
1

2𝑛
, 𝜏 ∝

1

2 𝑛

𝛼𝑗
′ > 𝜋 𝛼𝑗

′=

𝛼𝑗
′ − 2𝜋 ⋅ 𝑠𝑖𝑔𝑛(𝛼𝑗

′)

http://www.lamda.nju.edu.cn/qianc/

Real-valued representation: Recombination

• Discrete recombination: Same as for binary representation,
e.g., 𝑚-point crossover and uniform crossover

• Arithmetic recombination: Create offspring “between”
parents

𝑧𝑖 = (1 − 𝛼)𝑥𝑖 + 𝛼𝑦𝑖, where 𝛼 ∈ [0,1]

• Blend recombination: Create offspring in a larger region

𝑧𝑖 = (1 − 𝛾)𝑥𝑖 + 𝛾𝑦𝑖, where 𝛾 = 1 + 2𝛼 𝑢 − 𝛼, 𝑢 ∈ [0,1]

http://www.lamda.nju.edu.cn/qianc/

Real-valued representation: Arithmetic recombination

• Single arithmetic recombination:

0.1 0.2 0.3 0.4 0.5 0.6 0.7Parent1

Parent2

Offspring1

Offspring2

𝑥1, … , 𝑥𝑛 𝑦1, … , 𝑦𝑛

𝑥1, … , 𝑥𝑘−1, 𝛼𝑦𝑘 + 1 − 𝛼 𝑥𝑘 , 𝑥𝑘+1, … , 𝑥𝑛

𝑦1, … , 𝑦𝑘−1, 𝛼𝑥𝑘 + 1 − 𝛼 𝑦𝑘 , 𝑦𝑘+1, … , 𝑦𝑛

Select a random 𝑘

0.3 0.2 0.3 0.2 0.3 0.2 0.3

Example with 𝛼 = 0.5

0.1 0.2 0.3 0.4 0.4 0.6 0.7

0.3 0.2 0.3 0.2 0.4 0.2 0.3

http://www.lamda.nju.edu.cn/qianc/

Real-valued representation: Arithmetic recombination

• Simple arithmetic recombination:

0.1 0.2 0.3 0.4 0.5 0.6 0.7Parent1

Parent2

Offspring1

Offspring2

𝑥1, … , 𝑥𝑛 𝑦1, … , 𝑦𝑛

𝑥1, … , 𝑥𝑘−1, 𝛼𝑦𝑘 + 1 − 𝛼 𝑥𝑘 , … , 𝛼𝑦𝑛 + 1 − 𝛼 𝑥𝑛

𝑦1, … , 𝑦𝑘−1, 𝛼𝑥𝑘 + 1 − 𝛼 𝑦𝑘 , … , 𝛼𝑥𝑛 + 1 − 𝛼 𝑦𝑛

Select a random 𝑘

0.3 0.2 0.3 0.2 0.3 0.2 0.3

Example with 𝛼 = 0.5

0.1 0.2 0.3 0.4 0.4 0.4 0.5

0.3 0.2 0.3 0.2 0.4 0.4 0.5

http://www.lamda.nju.edu.cn/qianc/

Real-valued representation: Arithmetic recombination

• Whole arithmetic recombination:

0.1 0.2 0.3 0.4 0.5 0.6 0.7Parent1

Parent2

Offspring1

Offspring2

𝑥1, … , 𝑥𝑛 𝑦1, … , 𝑦𝑛

𝛼𝑦1 + 1 − 𝛼 𝑥1, … , 𝛼𝑦𝑛 + 1 − 𝛼 𝑥𝑛

𝛼𝑥1 + 1 − 𝛼 𝑦1, … , 𝛼𝑥𝑛 + 1 − 𝛼 𝑦𝑛

0.3 0.2 0.3 0.2 0.3 0.2 0.3

Example with 𝛼 = 0.5

0.2 0.2 0.3 0.3 0.4 0.4 0.5

0.2 0.2 0.3 0.3 0.4 0.4 0.5

http://www.lamda.nju.edu.cn/qianc/

Real-valued representation: Blend recombination

• Blend recombination: Create offspring in a larger region

𝑧𝑖 = (1 − 𝛾)𝑥𝑖 + 𝛾𝑦𝑖, where 𝛾 = 1 + 2𝛼 𝑢 − 𝛼, 𝑢 ∈ [0,1]

𝑧𝑖 = 𝑥𝑖 + (𝑦𝑖−𝑥𝑖) 1 + 2𝛼 𝑢 − 𝛼(𝑦𝑖 − 𝑥𝑖)

𝑑𝑖 > 0

𝑢 ∼ 𝑈 0,1 𝑧𝑖 ∼ 𝑈(𝑥𝑖 − 𝛼𝑑𝑖 , 𝑦𝑖 + 𝛼𝑑𝑖)

How about 𝑧𝑖 = (1 − 𝛾)𝑦𝑖 + 𝛾𝑥𝑖 ?

http://www.lamda.nju.edu.cn/qianc/

Multi-parent recombination

• For example, diagonal crossover for 𝑚 parents:

 Choose 𝑚 − 1 crossover points randomly

 Compose 𝑚 offspring from the segments of the
parents in along a “diagonal”, wrapping around

http://www.lamda.nju.edu.cn/qianc/

Permutation representation

• Genotype space: a permutation of a fixed set of values

8-queens problem

1 6 2 5 7 4 8 3

Traveling salesman problem

1 6 2 5 7 4 8 3

position of the queen on each column

the order of visiting cities

6 2 5 7 4 8 3 1

http://www.lamda.nju.edu.cn/qianc/

Permutation representation

• Genotype space: a permutation of a fixed set of values

1 6 2 5 7 4 8 3

1 6 2 5 7 4 8 3

1. the event happened at the 𝑖-th position

1 3 8 6 4 2 5 7

Two ways of decoding:
2. the position where the 𝑖-th event happens

decoding1

decoding2

the same order
in which a
sequence of
events occur

𝑥𝑖

http://www.lamda.nju.edu.cn/qianc/

Permutation representation: Mutation

• Mutation operators for binary, integer and real-valued
representation will lead to inadmissible solutions

1 6 2 5 7 4 8 3

1 4 2 5 7 4 7 3

• Common mutation for permutation representation

 Swap mutation

 Insert mutation

 Scramble mutation

 Inversion mutation

The mutation probability now
reflects the probability of applying
mutation, rather than altering a
single gene

http://www.lamda.nju.edu.cn/qianc/

Permutation representation: Swap mutation

• Swap mutation:

 Select two positions randomly

 Swap their values

1 6 2 5 7 4 8 3

1 7 2 5 6 4 8 3

http://www.lamda.nju.edu.cn/qianc/

Permutation representation: Insert mutation

• Insert mutation:

 Select two positions randomly

 Move the second next to the first

 Shift the rest along to accommodate

1 6 2 5 7 4 8 3

1 6 7 2 5 4 8 3

Preserve most of the order and the adjacency information

http://www.lamda.nju.edu.cn/qianc/

Permutation representation: Scramble mutation

• Scramble mutation:

 Select a subset of positions randomly

 Rearrange their values randomly

1 6 2 5 7 4 8 3

1 8 2 5 6 7 4 3

http://www.lamda.nju.edu.cn/qianc/

Permutation representation: Inversion mutation

• Inversion mutation:

 Select two positions randomly

 Invert the values between them

1 6 2 5 7 4 8 3

1 7 5 2 6 4 8 3

Preserve most adjacency information (only breaks two links)，
but disruptive of order information

http://www.lamda.nju.edu.cn/qianc/

Permutation representation: Recombination

• Recombination operators for binary, integer and real-valued
representation will lead to inadmissible solutions

• Common recombination for permutation representation

 Partially mapped crossover

 Edge crossover

 Order crossover

 Cycle crossover

1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

1 2 3 4 5 3 2 1

8 7 6 5 4 6 7 8

Parent1

Parent2

Offspring1

Offspring2

combine order or
adjacency information
from the two parents

http://www.lamda.nju.edu.cn/qianc/

Permutation representation: Partially mapped crossover

• Partially mapped crossover:

1. Choose two crossover points randomly, and copy the segment
between them from parent P1 into the first offspring

2. Starting from the first crossover point, look for elements in that
segment of P2 that have not been copied

3. For each of these 𝑖, look in the offspring to see what element 𝑗 has
been copied in its place from P1

4. Place 𝑖 into the position occupied by 𝑗 in P2, since we know that we
will not be putting 𝑗 there (as is already in offspring)

5. If the place occupied by 𝑗 in P2 has already been filled in the
offspring by 𝑘, put 𝑖 in the position occupied by 𝑘 in P2

6. Having dealt with the elements from the crossover segment, the rest
of the first offspring can be filled from P2

7. Create the second offspring analogously with parental roles reversed

http://www.lamda.nju.edu.cn/qianc/

Permutation representation: Partially mapped crossover

http://www.lamda.nju.edu.cn/qianc/

Permutation representation: Edge crossover

• First step, construct a table listing which edges are present
in the two parents; if an edge is common, mark with a +

• For example,
1 2 3 4 5 6 7 8 9

9 3 7 8 2 6 5 1 4

Parent1

Parent2

http://www.lamda.nju.edu.cn/qianc/

Permutation representation: Edge crossover

• Edge crossover: After constructing the edge table,

1. Pick an initial element, entry, at random and put it in the
offspring

2. Set the variable current element = entry

3. Remove all references to current element from the table

4. Examine the list for current element:

 If there is a common edge, pick that to be next element
 Otherwise, pick the entry in the list which itself has the

shortest list
 Ties are split at random

5. In the case of reaching an empty list: a new element is chosen
at random

http://www.lamda.nju.edu.cn/qianc/

Permutation representation: Edge crossover

http://www.lamda.nju.edu.cn/qianc/

Permutation representation: Order crossover

• Order crossover:

1. Choose two crossover points randomly

2. Copy the segment between them from the first
parent to the first offspring

3. Copy the numbers that are not in the segment, to the
first offspring:

 starting right from the second crossover point
 using the order of the second parent
 and wrapping around at the end

4. Create the second offspring in an analogous manner,
with the parent roles inversed

http://www.lamda.nju.edu.cn/qianc/

Permutation representation: Order crossover

1. Copy a randomly selected segment from the first parent

2. Copy the remaining numbers into the offspring in the

order that they appear in the second parent

http://www.lamda.nju.edu.cn/qianc/

Permutation representation: Cycle crossover

• Cycle crossover:

1. Divide the alleles into cycles

 Start with the first unused position and allele of P1

 Look at the allele in the same position in P2

 Go to the position with the same allele in P1

 Add this allele to the cycle

 Repeat steps 2-4 until arriving at the first allele of P1

2. Create the offspring by selecting alternate cycles from
each parent

http://www.lamda.nju.edu.cn/qianc/

Permutation representation: Cycle crossover

1. Identify cycles

2. Copy alternate cycles into offspring

2 3 5 7

http://www.lamda.nju.edu.cn/qianc/

Permutation representation: Recombination

• Partially mapped crossover

• Edge crossover

combine adjacency
information from the
two parents

combine order
information from the
two parents

• Order crossover

• Cycle crossover

http://www.lamda.nju.edu.cn/qianc/

Tree representation

• Genotype space: a tree

Program:

𝑖 = 1;
while (𝑖 < 20)
{

𝑖 = 𝑖 + 1;
}

http://www.lamda.nju.edu.cn/qianc/

Tree representation

• Genotype space: a tree

Arithmetic formula:

2 ⋅ 𝜋 + 𝑥 + 3 −
𝑦

5 + 1

http://www.lamda.nju.edu.cn/qianc/

Tree representation

• Genotype space: a tree

Logical formula:

(𝑥 ∧ 𝑡𝑟𝑢𝑒) → (𝑥 ∨ 𝑦 ∨ (𝑧 (𝑥 ∧ 𝑦)))

Variable structure

Function set

Terminal set

Internal nodes

Leaves

http://www.lamda.nju.edu.cn/qianc/

Tree representation: Mutation

• Mutation: replace randomly chosen subtree by randomly
generated tree

http://www.lamda.nju.edu.cn/qianc/

Tree representation: Recombination

• Recombination: exchange two randomly chosen subtrees
among the parents

Child 2

Parent 1 Parent 2

Child 1

Assume uniform
selection within each
parent for exchanging

The probability:

1

13
⋅
1

9

http://www.lamda.nju.edu.cn/qianc/

Mutation or recombination

• Decade long debate: which one is better

 Evolutionary programming: originally without recombination

 Genetic programming: originally without mutation

• Now, it is good to have both in general

• Recombination is explorative, which can make a big jump

to an area somewhere “in between” two (parent) areas

• Mutation is exploitative, which creates random small

diversions, thereby staying near (in the area of) the parent

http://www.lamda.nju.edu.cn/qianc/

Summary

• Binary representation

• Integer representation

• Real-valued representation

• Permutation representation

• Tree representation

Representation

Mutation

Recombination

http://www.lamda.nju.edu.cn/qianc/

References

• A. E. Eiben and J. E. Smith. Introduction to Evolutionary
Computing. Chapter 4.

