
http://www.lamda.nju.edu.cn/qianc/

Last class

• Greedy best-first search

• A* search

• Recursive best-first search

• Heuristic generation

• Heuristic goodness

Informed (heuristic)
search

Uses problem-specific

knowledge beyond the

problem definition

Heuristic Search and Evolutionary Algorithms

Chao Qian （钱超）

Associate Professor, Nanjing University, China

Email: qianc@nju.edu.cn

Homepage: http://www.lamda.nju.edu.cn/qianc/

Lecture 4: Local Search and Evolutionary
Algorithms

http://www.lamda.nju.edu.cn/qianc/

Classical search

A search problem can be defined formally by five components:

• Initial state

• Actions

• Transition model

• Goal test

• Path cost

Solution: a path (i.e., an action sequence) from the initial
state to a goal state

Optimal solution: a path with the lowest cost

http://www.lamda.nju.edu.cn/qianc/

Search example: Path is irrelevant

8-queens problem: to place eight queens on a chessboard such
that no queen attacks any other

Heuristic function ℎ: number of
pairs of queens that are attacking
each other

What is a goal state, i.e.,
a state with ℎ = 0?

The path to the goal state
is irrelevant

http://www.lamda.nju.edu.cn/qianc/

Search and optimization

General Search: to find a goal state, i.e., a state with ℎ = 0

Note that: classical search can be transformed into this form
by treating an action sequence as a solution and the cost as
the objective to be minimized

or

Optimization: to find an optimal solution

arg min
𝑥

ℎ(𝑥) arg max
𝑥

𝑓(𝑥)

http://www.lamda.nju.edu.cn/qianc/

Hill-climbing search

Hill-climbing search: maintain only the current state

Select the best neighbor state

Stop until no neighbor has a higher objective value

Need to define a neighbor space

http://www.lamda.nju.edu.cn/qianc/

Hill-climbing search – example

8-queens problem: to place eight queens on a chessboard
such that no queen attacks any other

Heuristic function ℎ: number of pairs of queens that are
attacking each other

Neighbor space: states generated by
moving a single queen to another
square in the same column

The current ℎ value: 17

The number of neighbors: 56

Move to the best neighbor with ℎ
value 12

http://www.lamda.nju.edu.cn/qianc/

Hill-climbing search

An example of one-dimensional state-space landscape

When hill-climbing
stops

http://www.lamda.nju.edu.cn/qianc/

Hill-climbing search

Hill-climbing search with sideways move: accept the best
neighbor if it has the same value as the current state

escape

infinite
loop

Limit the number of
consecutive sideways moves

http://www.lamda.nju.edu.cn/qianc/

Hill-climbing search

8-queens problem: to place eight queens on a chessboard
such that no queen attacks any other

Heuristic function ℎ: number of pairs of queens that are
attacking each other

Neighbor space: states generated by moving a single queen
to another square in the same column

Hill-climbing Without sideways
move

With sideways
move

Success rate 14% 94%

Average steps
for a success

4 steps 21 steps

http://www.lamda.nju.edu.cn/qianc/

Random-restart hill-climbing search

Random-restart hill-climbing search: conduct a series of hill-
climbing searches from randomly generated initial states

Given unlimited time, it will eventually find a goal state

The success probability of each hill-climbing search: 𝑝

The expected number of restarts: 1/𝑝

geometric distribution
with parameter 𝑝

http://www.lamda.nju.edu.cn/qianc/

Variants of hill-climbing search

hill-climbing: move to the best neighbor state

Stochastic hill-climbing: find all better neighbor states,
and select one as the next state with probability related to
its objective value

First-choice hill-climbing: repeatedly generate neighbor
states randomly, and select the first better neighbor as the
next state

Can be applied to continuous spaces

http://www.lamda.nju.edu.cn/qianc/

Simulated annealing

Hill-climbing search: efficient, but may get trapped in
local optima

Random search: find global optima, but inefficient

𝑒Δ𝐸/𝑇

𝛥𝐸 ← 𝑉𝑎𝑙𝑢𝑒 𝑛𝑒𝑥𝑡 − 𝑉𝑎𝑙𝑢𝑒(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

Simulated annealing

randomly generate a neighbor

if the neighbor is
better, move to it

Otherwise, move to
the worse state with
some probability

http://www.lamda.nju.edu.cn/qianc/

Simulated annealing

𝑒Δ𝐸/𝑇

𝛥𝐸 ← 𝑉𝑎𝑙𝑢𝑒 𝑛𝑒𝑥𝑡 − 𝑉𝑎𝑙𝑢𝑒(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

Simulated annealing

randomly generate a neighbor

if the neighbor is
better, move to it

Otherwise, move to
the worse state with
some probability

Can be applied to both discrete and continuous spaces

http://www.lamda.nju.edu.cn/qianc/

Simulated annealing

𝑒Δ𝐸/𝑇

𝛥𝐸 ← 𝑉𝑎𝑙𝑢𝑒 𝑛𝑒𝑥𝑡 − 𝑉𝑎𝑙𝑢𝑒(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

Simulated annealing

randomly generate a neighbor

if the neighbor is
better, move to it

Otherwise, move to
the worse state with
some probability

The probability 𝑒Δ𝐸/𝑇 of accepting the worse state

• Increase with Δ𝐸

• Increase with the temperature parameter 𝑇

http://www.lamda.nju.edu.cn/qianc/

Simulated annealing

Simulated annealing

The probability 𝑒Δ𝐸/𝑇 of accepting the worse state

• Increase with Δ𝐸

• Increase with the temperature parameter 𝑇

𝑇 is initially set to a large value, and gradually decreased to 0

The probability of accepting worse states gradually decreases

Inspired from the annealing process in metallurgy

http://www.lamda.nju.edu.cn/qianc/

Local beam search

Local beam search: maintain 𝑘 states

• The initial 𝑘 states are generated randomly

• In each iteration, generate all neighbors of the current 𝑘
states, and select the best 𝑘 ones

Different from hill-climbing search with 𝑘 random-restarts

Can be applied to discrete spaces

http://www.lamda.nju.edu.cn/qianc/

Local search for continuous spaces

Gradient descent:

𝒙 = 𝒙 − 𝛼 ⋅ 𝛻𝑓(𝒙)

for minimization

Gradient ascent:

𝒙 = 𝒙 + 𝛼 ⋅ 𝛻𝑓(𝒙)
for maximization

Converge to 𝛻𝑓 𝒙 = 0: local optimum or saddle point

There are many variants of gradient descent/ascent, as well as
methods using the Hessian matrix, e.g., Newton-Raphson

𝒙 = 𝒙 + 𝐇𝑓
−1(𝒙) ⋅ 𝛻𝑓(𝒙)

http://www.lamda.nju.edu.cn/qianc/

The theory of evolution

Central idea of Darwinism: reproduction with variation and
natural selection based on the fitness

Core components of Darwinian evolutionary system:

• One or more populations of individuals competing for limited
resources

• The notion of dynamically changing populations due to the
birth and death of individuals

• A concept of fitness which reflects the ability of an individual
to survive and reproduce

• A concept of variational inheritance: offspring closely resemble
their parents, but are not identical

http://www.lamda.nju.edu.cn/qianc/

Evolutionary algorithms

Initial

population

Parent

solutions
Offspring

solutions

Solution

representation

Mutation &

recombination

Parent

selection

Solution1

Solution2

Solution3

General structure of evolutionary algorithms

Fitness

evaluation
Survivor

selection
New

population

Stop

criterion

End

Yes

No

Can be applied to both discrete and continuous spaces

for arg max
𝑥

𝑓(𝑥)

http://www.lamda.nju.edu.cn/qianc/

An illustration of running

𝑓

𝑥

0 10.50.25 0.75

http://www.lamda.nju.edu.cn/qianc/

An illustration of running

𝑓

𝑥

0 10.50.25 0.75

initialization
evaluation

http://www.lamda.nju.edu.cn/qianc/

An illustration of running

𝑓

𝑥

0 10.50.25 0.75

initialization
evaluation
reproduction
evaluation

http://www.lamda.nju.edu.cn/qianc/

An illustration of running

𝑓

𝑥

0 10.50.25 0.75

initialization
evaluation
reproduction
evaluation
selection
reproduction
evaluation

http://www.lamda.nju.edu.cn/qianc/

An illustration of running

𝑓

𝑥

0 10.50.25 0.75

initialization
evaluation
reproduction
evaluation
selection
reproduction
evaluation
selection
reproduction
evaluation

http://www.lamda.nju.edu.cn/qianc/

An illustration of running

𝑓

𝑥

0

1

0.50.25 0.75

initialization
evaluation
reproduction
evaluation
selection
reproduction
evaluation
selection
reproduction
evaluation
selection
reproduction
evaluation
...

http://www.lamda.nju.edu.cn/qianc/

Evolutionary algorithms

Initial

population

Parent

solutions
Offspring

solutions

Solution

representation

Mutation &

recombination

Parent

selection

Solution1

Solution2

Solution3

General structure of evolutionary algorithms

Fitness

evaluation
Survivor

selection
New

population

Stop

criterion

End

Yes

No

Need to design each component of evolutionary algorithms

http://www.lamda.nju.edu.cn/qianc/

Evolutionary algorithms

Initial

population

Parent

solutions
Offspring

solutions

Solution

representation

Mutation &

recombination

Parent

selection

Solution1

Solution2

Solution3

General structure of evolutionary algorithms

Fitness

evaluation
Survivor

selection
New

population

Stop

criterion

End

Yes

No

Need to design each component of evolutionary algorithms

http://www.lamda.nju.edu.cn/qianc/

Evolutionary algorithms

Initial

population

Parent

solutions
Offspring

solutions

Solution

representation

Mutation &

recombination

Parent

selection

Solution1

Solution2

Solution3

General structure of evolutionary algorithms

Fitness

evaluation
Survivor

selection
New

population

Stop

criterion

End

Yes

No

Need to design each component of evolutionary algorithms

http://www.lamda.nju.edu.cn/qianc/

Evolutionary algorithms

Initial

population

Parent

solutions
Offspring

solutions

Solution

representation

Mutation &

recombination

Parent

selection

Solution1

Solution2

Solution3

General structure of evolutionary algorithms

Fitness

evaluation
Survivor

selection
New

population

Stop

criterion

End

Yes

No

Need to design each component of evolutionary algorithms

http://www.lamda.nju.edu.cn/qianc/

Evolutionary algorithms

Initial

population

Parent

solutions
Offspring

solutions

Solution

representation

Mutation &

recombination

Parent

selection

Solution1

Solution2

Solution3

General structure of evolutionary algorithms

Fitness

evaluation
Survivor

selection
New

population

Stop

criterion

End

Yes

No

Need to design each component of evolutionary algorithms

http://www.lamda.nju.edu.cn/qianc/

Evolutionary algorithms

Initial

population

Parent

solutions
Offspring

solutions

Solution

representation

Mutation &

recombination

Parent

selection

Solution1

Solution2

Solution3

General structure of evolutionary algorithms

Fitness

evaluation
Survivor

selection
New

population

Stop

criterion

End

Yes

No

Need to design each component of evolutionary algorithms

http://www.lamda.nju.edu.cn/qianc/

An application to 8-queens problem

8-queens problem: to place eight queens on a chessboard
such that no queen attacks any other

Objective function 𝑓: number of nonattacking pairs of queens

1 6 2 5 7 4 8 3

Solution representation

position of the queen on each column

Binary vector

000101001100110011111010

Integer vector

http://www.lamda.nju.edu.cn/qianc/

An application to 8-queens problem

Initialization: four randomly generated solutions

Parent selection: fitness proportional selection

𝑝𝑖 =
𝑓𝑖

σ
𝑗=1
𝜇

𝑓𝑗

Probability of
selecting the 𝑖-th
solution

Fitness (objective)
value of the 𝑖-th
solution

http://www.lamda.nju.edu.cn/qianc/

An application to 8-queens problem

Initialization: four randomly generated solutions

Recombination: one-point crossover

Select one crossover point randomly, and exchange the
parts of the two solutions after the point

http://www.lamda.nju.edu.cn/qianc/

An application to 8-queens problem

http://www.lamda.nju.edu.cn/qianc/

An application to 8-queens problem

Initialization: four randomly generated solutions

Mutation:

For each element of a solution, change it to a randomly
chosen different value with probability 1/8

http://www.lamda.nju.edu.cn/qianc/

An application to 8-queens problem

Survivor selection:

Select the best four solutions from the
current population and offspring solutions
to generate the next population

fitness fitness

24

22

18

22

2 4 7 4 8 5 5 2

3 2 7 4 8 1 5 2

3 2 7 5 2 4 1 1

2 4 7 5 2 4 1 1

24

24

23

22

http://www.lamda.nju.edu.cn/qianc/

An application to 8-queens problem

Run 1:

Initial population fitness

Curve change of the best fitness

4 7 8 7 7 2 2 2

1 1 8 6 3 5 5 3

6 6 7 4 4 5 6 2

2 4 1 3 1 6 6 1

18

20

18

22

Final population fitness

5 1 8 6 3 7 2 4

5 1 8 6 3 7 2 8

5 1 8 6 3 7 2 8

5 1 8 6 3 7 2 8

28

27

27

27

15

generations

http://www.lamda.nju.edu.cn/qianc/

An application to 8-queens problem

Run 2:
Initial population fitness

Curve change of the best fitness

3 8 8 1 4 3 2 7

6 1 4 6 1 3 5 2

6 7 1 3 7 4 5 6

7 7 8 8 6 2 4 5

20

24

17

20

Final population fitness

4 2 8 6 1 3 5 7

4 6 8 6 1 3 5 7

4 6 8 6 1 3 5 7

4 6 8 6 1 3 5 7

28

27

27

27

91

generations

http://www.lamda.nju.edu.cn/qianc/

An application to 8-queens problem

Run 3:
Initial population fitness

Curve change of the best fitness

4 6 5 7 2 5 1 2

2 5 7 6 4 3 3 6

5 8 7 4 3 5 4 7

4 6 2 1 4 4 6 7

20

22

20

15

Final population fitness

4 6 8 2 7 1 3 5

4 1 8 2 7 6 3 5

4 1 8 2 7 6 3 5

4 1 8 2 7 6 3 5

28

27

27

27

452

generations

http://www.lamda.nju.edu.cn/qianc/

An application to 8-queens problem

Run 1

The generated optimal solution

The required number of generations

15 91 452

Run 2 Run 3

Evolutionary algorithms are randomized algorithms

http://www.lamda.nju.edu.cn/qianc/

Local search vs. Evolutionary algorithms

Characteristics of evolutionary algorithms

• Population-based search

• Recombination

• Mutation, which can be a global search operator

Initial

population

Parent

solutions
Offspring

solutions

Solution

representation

Mutation &

recombination

Parent

selection

Solution1

Solution2

Solution3

Fitness

evaluation
Survivor

selection
New

population

Stop

criterion

End
Yes

No

http://www.lamda.nju.edu.cn/qianc/

Local search vs. Evolutionary algorithms

Advantages and disadvantages of evolutionary algorithms

• Easy to be parallelized

• Good ability of escaping from local optima

• Applicable to a wide range of problems, requiring only
that the goodness of solutions can be evaluated

 non-differentiable problems

 problems without explicit objective function formulation

 problems with multiple objective functions

• Not very efficient, but can be accelerated by

 utilizing modern computer facilities

 combining with local search

 using the machine learning techniques

Black-box

http://www.lamda.nju.edu.cn/qianc/

Summary

• Hill-climbing search

• Simulated annealing

• Local beam search

• Local search for continuous spaces

• Evolutionary algorithms

Local
search

http://www.lamda.nju.edu.cn/qianc/

References

• S. J. Russell and P. Norvig. Artificial Intelligence:
A Modern Approach. Chapter 4.1-4.2, Third edition.

• K. A. De Jong. Evolutionary Computation – A Unified
Approach. Chapter 1.

