#### Last class

- Greedy best-first search
- A\* search
- Recursive best-first search –
- Heuristic generation
- Heuristic goodness

Informed (heuristic) search

Uses problem-specific knowledge beyond the problem definition





## Heuristic Search and Evolutionary Algorithms

### Lecture 4: Local Search and Evolutionary Algorithms

Chao Qian (钱超)

Associate Professor, Nanjing University, China

Email: qianc@nju.edu.cn Homepage: http://www.lamda.nju.edu.cn/qianc/ A search problem can be defined formally by five components:

- Initial state
- Actions
- Transition model
- Goal test
- Path cost

Solution: a path (i.e., an action sequence) from the initial state to a goal state

Optimal solution: a path with the lowest cost

### Search example: Path is irrelevant

8-queens problem: to place eight queens on a chessboard such that no queen attacks any other



Heuristic function *h*: number of pairs of queens that are attacking each other



What is a goal state, i.e., a state with h = 0?

# The path to the goal state is irrelevant

### Search and optimization

General Search: to find a goal state, i.e., a state with h = 0

Optimization: to find an optimal solution

$$\underset{x}{\operatorname{arg\,min}} h(x)$$
 or  $\underset{x}{\operatorname{arg\,max}} f(x)$ 

Note that: classical search can be transformed into this form by treating an action sequence as a solution and the cost as the objective to be minimized Hill-climbing search: maintain only the current state

function HILL-CLIMBING(problem) returns a state that is a local maximum
current ← problem.INITIAL
while true do

#### while true do

 $neighbor \leftarrow$  a highest-valued successor state of current <**if** VALUE(neighbor)  $\leq$  VALUE(current) **then return** current  $current \leftarrow neighbor$ 

- Select the best neighbor state
- Stop until no neighbor has a higher objective value

Need to define a neighbor space

## Hill-climbing search – example

8-queens problem: to place eight queens on a chessboard such that no queen attacks any other

Heuristic function *h*: number of pairs of queens that are attacking each other



The current *h* value: 17

Neighbor space: states generated by moving a single queen to another square in the same column

The number of neighbors: 56

Move to the best neighbor with *h* value 12

## Hill-climbing search

#### An example of one-dimensional state-space landscape



## Hill-climbing search

Hill-climbing search with sideways move: accept the best neighbor if it has the same value as the current state



### Hill-climbing search

8-queens problem: to place eight queens on a chessboard such that no queen attacks any other

Heuristic function *h*: number of pairs of queens that are attacking each other

Neighbor space: states generated by moving a single queen to another square in the same column

| Hill-climbing               | Without sideways | With sideways |
|-----------------------------|------------------|---------------|
|                             | move             | move          |
| Success rate                | 14%              | 94%           |
| Average steps for a success | 4 steps          | 21 steps      |

## Random-restart hill-climbing search

Random-restart hill-climbing search: conduct a series of hillclimbing searches from randomly generated initial states

Given unlimited time, it will eventually find a goal state

The success probability of each hill-climbing search: *p* 



geometric distribution with parameter p

The expected number of restarts: 1/p

hill-climbing: move to the best neighbor state

Stochastic hill-climbing: find all better neighbor states, and select one as the next state with probability related to its objective value

First-choice hill-climbing: repeatedly generate neighbor states randomly, and select the first better neighbor as the next state

#### Can be applied to continuous spaces

Hill-climbing search: efficient, but may get trapped in local optima

Random search: find global optima, but inefficient

Simulated annealing

**function** SIMULATED-ANNEALING(*problem*, *schedule*) **returns** a solution state  $current \leftarrow problem$ .INITIAL

for t = 1 to  $\infty$  do

 $T \leftarrow schedule(t)$ 

if T = 0 then return *current* 

 $next \leftarrow a randomly selected successor of current$ 

 $\Delta E \leftarrow Value(next) - Value(current)$ 

if  $\Delta E > 0$  then  $current \leftarrow next \prec$ 

else  $current \leftarrow next$  only with probability  $e^{\Delta E/T}$ 

randomly generate a neighbor

if the neighbor is

better, move to it

Otherwise, move to the worse state with some probability

## Simulated annealing

#### Simulated annealing

**function** SIMULATED-ANNEALING(*problem*, *schedule*) **returns** a solution state  $current \leftarrow problem$ .INITIAL

for t = 1 to  $\infty$  dorandomly generate a neighbor $T \leftarrow schedule(t)$ if the neighbor is

if T = 0 then return *current* 

 $next \leftarrow a randomly selected successor of current$ 

 $\Delta E \leftarrow Value(next) - Value(current)$ 

if  $\Delta E > 0$  then  $current \leftarrow next$ 

else  $current \leftarrow next$  only with probability  $e^{\Delta E/T}$ 

better, move to it Otherwise, move to

the worse state with some probability

Can be applied to both discrete and continuous spaces

## Simulated annealing

#### Simulated annealing

**function** SIMULATED-ANNEALING(*problem*, *schedule*) **returns** a solution state  $current \leftarrow problem$ .INITIAL

for t = 1 to  $\infty$  dorandomly generate a neighbor $T \leftarrow schedule(t)$ if the neighbor is

if T = 0 then return *current* 

 $next \leftarrow a randomly selected successor of current$ 

 $\Delta E \leftarrow Value(next) - Value(current)$ 

if  $\Delta E > 0$  then  $current \leftarrow next$ else  $current \leftarrow next$  only with probability  $e^{\Delta E/T}$  better, move to it Otherwise, move to the worse state with some probability

The probability  $e^{\Delta E/T}$  of accepting the worse state

- Increase with  $\Delta E$
- Increase with the temperature parameter *T*

## Simulated annealing

Simulated annealing

The probability  $e^{\Delta E/T}$  of accepting the worse state

- Increase with  $\Delta E$
- Increase with the temperature parameter *T*

*T* is initially set to a large value, and gradually decreased to 0



The probability of accepting worse states gradually decreases

Inspired from the annealing process in metallurgy

Local beam search: maintain *k* states

- The initial *k* states are generated randomly
- In each iteration, generate all neighbors of the current *k* states, and select the best *k* ones

Different from hill-climbing search with *k* random-restarts

Can be applied to discrete spaces

Local search for continuous spaces

Gradient descent:

for minimization

$$\boldsymbol{x} = \boldsymbol{x} - \boldsymbol{\alpha} \cdot \nabla f(\boldsymbol{x})$$

Gradient ascent:

for maximization

Converge to  $\nabla f(\mathbf{x}) = 0$ : local optimum or saddle point

 $\boldsymbol{x} = \boldsymbol{x} + \boldsymbol{\alpha} \cdot \nabla f(\boldsymbol{x})$ 

There are many variants of gradient descent/ascent, as well as methods using the Hessian matrix, e.g., Newton-Raphson

$$\boldsymbol{x} = \boldsymbol{x} + \mathbf{H}_f^{-1}(\boldsymbol{x}) \cdot \nabla f(\boldsymbol{x})$$

Central idea of Darwinism: reproduction with variation and natural selection based on the fitness

Core components of Darwinian evolutionary system:

- One or more populations of individuals competing for limited resources
- The notion of dynamically changing populations due to the birth and death of individuals
- A concept of fitness which reflects the ability of an individual to survive and reproduce
- A concept of variational inheritance: offspring closely resemble their parents, but are not identical

General structure of evolutionary algorithms for  $\arg \max f(x)$ 



Can be applied to both discrete and continuous spaces





# initialization evaluation

 $\mathcal{X} = [0, 1]$ 



initialization evaluation reproduction evaluation

 $\mathcal{X} = [0,1]$ 



initialization evaluation reproduction evaluation selection reproduction evaluation

http://www.lamda.nju.edu.cn/qianc/



initialization evaluation reproduction evaluation selection reproduction evaluation selection reproduction evaluation



initialization evaluation reproduction evaluation selection reproduction evaluation selection reproduction evaluation selection reproduction evaluation

http://www.lamda.nju.edu.cn/qianc/

. . .

#### General structure of evolutionary algorithms



Need to design each component of evolutionary algorithms

#### General structure of evolutionary algorithms



Need to design each component of evolutionary algorithms

#### General structure of evolutionary algorithms



Need to design each component of evolutionary algorithms

#### General structure of evolutionary algorithms



Need to design each component of evolutionary algorithms

#### General structure of evolutionary algorithms



Need to design each component of evolutionary algorithms

#### General structure of evolutionary algorithms



Need to design each component of evolutionary algorithms

8-queens problem: to place eight queens on a chessboard such that no queen attacks any other

Objective function *f* : number of nonattacking pairs of queens



Solution representation Integer vector 1 6 2 5 7 4 8 3 position of the queen on each column Binary vector 0001010011001111010

**Initialization:** four randomly generated solutions



Initialization: four randomly generated solutions



**Recombination:** one-point crossover

Select one crossover point randomly, and exchange the parts of the two solutions after the point





Initialization: four randomly generated solutions



For each element of a solution, change it to a randomly chosen different value with probability 1/8



#### Survivor selection:

24

24

23

22

24748552

32748152

32752411

24752411

Select the best four solutions from the current population and offspring solutions to generate the next population







Run 1

#### Run 2

Run 3

#### The generated optimal solution







The required number of generations

1591452Evolutionary algorithms are randomized algorithms

#### Local search vs. Evolutionary algorithms



#### Characteristics of evolutionary algorithms

- Population-based search
- Recombination
- Mutation, which can be a global search operator

Advantages and disadvantages of evolutionary algorithms

- Easy to be parallelized
- Good ability of escaping from local optima
- Applicable to a wide range of problems, requiring only that the goodness of solutions can be evaluated
  - non-differentiable problems
  - *problems without explicit objective function formulation*
  - > problems with multiple objective functions
- Not very efficient, but can be accelerated by
  - *utilizing modern computer facilities*
  - combining with local search
  - *>* using the machine learning techniques

Black-box



- Hill-climbing search
- Simulated annealing
- Local beam search
- Local search for continuous spaces -
- Evolutionary algorithms





- S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Chapter 4.1-4.2, Third edition.
- K. A. De Jong. Evolutionary Computation A Unified Approach. Chapter 1.