Last class

- Evolutionary algorithms: Origins
- Evolutionary algorithms: Components
- Evolutionary algorithms: Applications Schaql af Artificial Intelligence，Nanding University

Heuristic Search and Evolutionary Algorithms

Lecture 6：Evolutionary Algorithms－ Representation，Mutation and Recombination

Chao Qian（钱超）

Associate Professor，Nanjing University，China

Email：qianc＠nju．edu．cn
Homepage：http：／／www．lamda．nju．edu．cn／qianc／

Representation and variation operators

- The first stage of applying evolutionary algorithms is to decide a right representation for the problem
> Binary representation
> Integer representation
> Real-valued representation
> Permutation representation
> Tree representation
- Variation operators depend on the chosen representation
> Mutation
> Recombination

Binary representation

- Genotype space: $\{0,1\}^{n}$

Knapsack problem with n items

$x \in\{0,1\}^{n}$, where $x_{i}=1$ denotes that the i-th item is included

$$
\arg \max _{x \in\{0,1, \ldots, 15\}} x^{2}
$$

$x \in\{0,1\}^{4}$, and the
corresponding integer
is $\sum_{i=1}^{4} x_{i} 2^{4-i}$

Binary representation

- Genotype space: $\{0,1\}^{n}$
$\arg \max _{x \in\{0,1, \ldots, 15\}} x^{2}$
 $x \in\{0,1\}^{4}$, and the corresponding integer is $\sum_{i=1}^{4} x_{i} 2^{4-i}$
Standard binary coding
The Hamming distance between consecutive integers can be very large

Gray coding

0	0000	4	0110	8	1100	12	1010
1	0001	5	0111	9	1101	13	1011
2	0011	6	0101	10	1111	14	1001
3	0010	7	0100	11	1110	15	1000

The Hamming distance between consecutive integers is always 1

Binary representation: Mutation

- Bit-wise mutation: flip each bit independently with prob. p_{m}

Offspring

Offspring

1	0	1	1	1	0	0	0

The common setting of p_{m} is $1 / n$, where n is the length of the binary string

- One-bit mutation: flip a randomly chosen bit

For the above mutation behaviors, the occurring prob. are $0,1 / n$ and 0

Binary representation: Mutation

- Bit-wise mutation: flip each bit independently with prob. p_{m} The number of flipped bits is a random variable, denoted by X

$$
\mathrm{P}(X=k)=\binom{n}{k} p_{m}^{k}\left(1-p_{m}\right)^{n-k}
$$

X satisfies the binomial distribution $B\left(n, p_{m}\right)$
The expected number of flipped bits is $\mathrm{E}[X]=n p_{m}$, which is 1 for $p_{m}=1 / n$

- One-bit mutation: flip a randomly chosen bit The number of flipped bits is 1

Binary representation: Recombination

- One-point crossover
> Choose a random number $r \in\{1,2, \ldots, n-1\}$
> Split both parents at this point
> Create two offspring by exchanging the tails

The occurring probability is $1 /(n-1)$

Binary representation: Recombination

- m-point crossover
$>$ Choose m crossover points from $\{1,2, \ldots, n-1\}$
$>$ Split both parents along these points
> Create two offspring by taking alternative segments
2-point crossover

The occurring probability is $2 /((n-1)(n-2))$

Binary representation: Recombination

- Uniform crossover
> For the first offspring, each gene is inherited from the first parent with probability p independently; otherwise from the second parent
> The second offspring is created using the inverse mapping

The common setting of p is $1 / 2$

Parent1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |

Offspring1 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |

Parent2

The occurring probability is $p^{3}(1-p)^{n-3}$

Binary representation: Mutation and recombination

- Only mutation can introduce new information

- Only recombination can combine information from two parents
> One-point and m-point crossover: more likely to keep together genes that are near each other
> Uniform crossover: no positional bias

Integer representation

- Genotype space: N^{n}, where N denotes the integer
- Mutation: mutate each gene independently with probability p_{m}

Cardinal
$>$ Random resetting: choose a new value at random attributes
> Creep mutation: add a small value, which is sampled from a distribution

- Recombination: same as for binary representation

Real-valued representation: Mutation

- Genotype space: R^{n}, where R denotes the real-number
- Mutation

$$
\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \rightarrow \boldsymbol{x}^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right), \text { where } x_{i}, x_{i}^{\prime} \in\left[l b_{i}, u b_{i}\right]
$$

> Uniform mutation: for each x_{i}, with prob. p_{m}, change it to a value drawn uniformly randomly from $\left[l b_{i}, u b_{i}\right]$

$$
x_{i}^{\prime}=\left\{\begin{array}{l}
x_{i} \quad \text { with prob. } 1-p_{m} \\
U\left(l b_{i}, u b_{i}\right) \text { otherwise }
\end{array}\right.
$$

$>$ Nonuniform mutation: for each x_{i}, add a value drawn randomly from a Gaussian distribution $N\left(0, \sigma^{2}\right)$

$$
x_{i}^{\prime}=x_{i}+\delta, \text { where } \delta \sim N\left(0, \sigma^{2}\right)
$$

σ : mutation step size

Real-valued representation: Nonuniform mutation

- Uncorrelated mutation with one step size σ :
$x_{i}^{\prime}=x_{i}+\sigma \cdot N_{i}(0,1)$
- Uncorrelafed mutation with n step sizes:

$$
C_{i}^{\prime}=x_{i}+\sigma_{i} \cdot N_{i}(0,1)
$$

?

Real-valued representation: Nonuniform mutation

- Correlated mutation:
 normal distribution

$$
\begin{gathered}
\operatorname{Cov}\left(\boldsymbol{\delta}^{\prime}\right)=\mathbf{R S} \operatorname{Cov}(\boldsymbol{\delta})(\mathbf{R S})^{\mathrm{T}}=\left[\begin{array}{cc}
a^{2} \cos ^{2}(\alpha)+b^{2} \sin ^{2}(\alpha) & \left(a^{2}-b^{2}\right) \sin (2 \alpha) / 2 \\
\left(a^{2}-b^{2}\right) \sin (2 \alpha) / 2 & a^{2} \sin ^{2}(\alpha)+b^{2} \cos ^{2}(\alpha)
\end{array}\right] \\
\tan (2 \alpha)=2 c_{12} /\left(c_{11}-c_{22}\right)
\end{gathered}
$$

Generalization: $c_{i i}=\sigma_{i}^{2}, c_{i j, i \neq j}=\left(\sigma_{i}^{2}-\sigma_{j}^{2}\right) \tan \left(2 \propto_{i j}\right) / 2$ rotation angle for the i-th and j-th dimension

Real-valued representation: Nonuniform mutation

Uncorrelated mutation Uncorrelated mutation with one step size σ

with n step sizes

Correlated mutation

$$
\boldsymbol{x}^{\prime}=\boldsymbol{x}+N(\mathbf{0}, \mathbf{C})
$$

$$
c_{i i}=\sigma_{i}^{2}, \quad c_{i j, i \neq j}=\left(\sigma_{i}^{2}-\sigma_{j}^{2}\right) \tan \left(2 \alpha_{i j}\right) / 2
$$

Real-valued representation: Self-adaptive mutation

- Self-adaptive mutation: Mutation step size σ is not set by user but coevolves with solution
- For example, the genotype is now $\left(x_{1}, \ldots, x_{n}, \sigma\right)$

Self-adaptation $\sigma \rightarrow \sigma^{\prime}$

$$
x_{i}^{\prime}=x_{i}+\sigma^{\prime} \cdot N_{i}(0,1)
$$

- The fitness of \boldsymbol{x}^{\prime} can be used to measure the goodness of both the offspring \boldsymbol{x}^{\prime} and the mutation step size σ^{\prime}
- Why? Under different circumstances, different step sizes will behave differently

Real-valued representation: Self-adaptive mutation

- Uncorrelated mutation with one step size σ :

$$
\begin{array}{r}
\left(x_{1}, \ldots, x_{n}, \sigma\right) \rightarrow\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}, \sigma^{\prime}\right) \\
\text { Self-adaptation } \left.\sigma^{\prime}=\sigma \cdot e^{\tau \cdot N(0,1)}\right) \\
x_{i}^{\prime}=x_{i}+\sigma^{\prime} \cdot N_{i}(0,1)
\end{array}\left\{\begin{array}{l}
\text { Typically } \tau \propto 1 / \sqrt{n} \\
\sigma^{\prime}<\epsilon_{0} \Rightarrow \sigma^{\prime}=\epsilon_{0}
\end{array}\right.
$$

Satisfy these requirements:
$>$ Smaller modifications occur more often than larger ones
$>$ Greater than 0
$>$ The median is 1
$>$ Neural on average: equal prob. of drawing a value and its reciprocal

Real-valued representation: Self-adaptive mutation

- Uncorrelated mutation with n step sizes:

$$
\left(x_{1}, \ldots, x_{n}, \sigma_{1}, \ldots, \sigma_{n}\right) \rightarrow\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}, \sigma_{1}^{\prime}, \ldots, \sigma_{n}^{\prime}\right)
$$

Self-adaptation $\sigma_{i}^{\prime}=\sigma_{i} \cdot e^{\tau^{\prime} \cdot N(0,1)+\tau \cdot N_{i}(0,1)}\left[\begin{array}{c}\tau^{\prime} \propto \frac{1}{\sqrt{2 n}}, \tau \propto \frac{1}{\sqrt{2 \sqrt{n}}} \\ x_{i}^{\prime}=x_{i}+\sigma_{i}^{\prime} \cdot N_{i}(0,1)\end{array}\right.$
$>e^{\tau^{\prime} \cdot N(0,1)}$: overall change; $e^{\tau \cdot N_{i}(0,1)}$: coordinate-wise change
$>$ The distribution is still lognormal, satisfying those requirements

Real-valued representation: Self-adaptive mutation

- Correlated mutation:

$$
\begin{aligned}
& \left(x_{1}, \ldots, x_{n}, \sigma_{1}, \ldots, \sigma_{n}, \alpha_{1}, \ldots, \alpha_{n(n-1) / 2}\right) \\
\rightarrow & \left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}, \sigma_{1}^{\prime}, \ldots, \sigma_{n}^{\prime}, \alpha_{1}^{\prime}, \ldots, \alpha_{n(n-1) / 2}^{\prime}\right)
\end{aligned}
$$

Self-adaptation

$$
\begin{gathered}
\tau^{\prime} \propto \frac{1}{\sqrt{2 n}}, \tau \propto \frac{1}{\sqrt{2 \sqrt{n}}} \\
\beta \approx 5^{o} \\
\sigma_{i}^{\prime}<\epsilon_{0} \Rightarrow \sigma_{i}^{\prime}=\epsilon_{0} \\
\left|\alpha_{j}^{\prime}\right|>\pi \Rightarrow \alpha_{j}^{\prime}= \\
\alpha_{j}^{\prime}-2 \pi \cdot \operatorname{sign}\left(\alpha_{j}^{\prime}\right)
\end{gathered}
$$

Real-valued representation: Recombination

- Discrete recombination: Same as for binary representation, e.g., m-point crossover and uniform crossover
- Arithmetic recombination: Create offspring "between" parents

$$
z_{i}=(1-\alpha) x_{i}+\alpha y_{i}, \text { where } \alpha \in[0,1]
$$

- Blend recombination: Create offspring in a larger region

$$
z_{i}=(1-\gamma) x_{i}+\gamma y_{i}, \text { where } \gamma=(1+2 \alpha) u-\alpha, u \in[0,1]
$$

Real-valued representation: Arithmetic recombination

- Single arithmetic recombination:

$$
\begin{gathered}
\left(x_{1}, \ldots, x_{n}\right) \quad\left(y_{1}, \ldots, y_{n}\right) \\
\text { Select a random } \\
\left(x_{1}, \ldots, x_{k-1}, \alpha y_{k}+(1-\alpha) x_{k}, x_{k+1}, \ldots, x_{n}\right) \\
\left(y_{1}, \ldots, y_{k-1}, \alpha x_{k}+(1-\alpha) y_{k}, y_{k+1}, \ldots, y_{n}\right)
\end{gathered}
$$

Example with $\alpha=0.5$

Parent1	0.1	0.2	0.3	0.4	0.5	0.6	0.7	Offspring 1	0.1	0.2	0.3	0.4	0.4	0.6	0.7
\downarrow															
Parent2	0.3	0.2	0.3	0.2	0.3	0.2	0.3	Offspring2	0.3	0.2	0.3	0.2	0.4	0.2	0.3

Real-valued representation: Arithmetic recombination

- Simple arithmetic recombination:

$$
\begin{gathered}
\left(x_{1}, \ldots, x_{n}\right) \quad\left(y_{1}, \ldots, y_{n}\right) \\
\text { Select a random } k
\end{gathered}
$$

$$
\begin{aligned}
& \left(x_{1}, \ldots, x_{k-1}, \alpha y_{k}+(1-\alpha) x_{k}, \ldots, \alpha y_{n}+(1-\alpha) x_{n}\right) \\
& \left(y_{1}, \ldots, y_{k-1}, \alpha x_{k}+(1-\alpha) y_{k}, \ldots, \alpha x_{n}+(1-\alpha) y_{n}\right)
\end{aligned}
$$

Example with $\alpha=0.5$

Parent1	0.1	0.2	0.3	0.4	0.5	0.6	0.7	Offspring 1	0.1	0.2	0.3	0.4	0.4	0.4	0.5
\uparrow															
Parent2	0.3	0.2	0.3	0.2	0.3	0.2	0.3	Offspring2	0.3	0.2	0.3	0.2	0.4	0.4	0.5

Real-valued representation: Arithmetic recombination

- Whole arithmetic recombination:

$$
\begin{gathered}
\left(x_{1}, \ldots, x_{n}\right)\left(y_{1}, \ldots, y_{n}\right) \\
\left(\alpha y_{1}+(1-\alpha) x_{1}, \ldots, \alpha y_{n}+(1-\alpha) x_{n}\right) \\
\left(\alpha x_{1}+(1-\alpha) y_{1}, \ldots, \alpha x_{n}+(1-\alpha) y_{n}\right)
\end{gathered}
$$

Example with $\alpha=0.5$

Parent1 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Offspring1 | 0.2 | 0.2 | 0.3 | 0.3 | 0.4 | 0.4 | 0.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Real-valued representation: Blend recombination

- Blend recombination: Create offspring in a larger region

$$
z_{i}=(1-\gamma) x_{i}+\gamma y_{i} \text {, where } \gamma=(1+2 \alpha) u-\alpha, u \in[0,1]
$$

$$
z_{i}=x_{i}+\left(y_{i}-x_{i}\right)(1+2 \alpha) u-\alpha\left(y_{i}-x_{i}\right)
$$

$$
u \sim U(0,1) \Rightarrow z_{i} \sim U\left(x_{i}-\alpha d_{i}, y_{i}+\alpha d_{i}\right)
$$

How about $z_{i}=(1-\gamma) y_{i}+\gamma x_{i}$?

Multi-parent recombination

- For example, diagonal crossover for m parents:
$>$ Choose $m-1$ crossover points randomly
$>$ Compose m offspring from the segments of the parents in along a "diagonal", wrapping around

Permutation representation

- Genotype space: a permutation of a fixed set of values 8 -queens problem

1	6	2	5	7	4	8	3

Traveling salesman problem

Permutation representation

- Genotype space: a permutation of a fixed set of values

1	6	2	5	7	4	8	3

Two ways of decoding:

1. the event happened at the i-th position
2. the position where the i-th event happens

1	6	2	5	7	4	8	3		
decoding1									dhe same order
:---									
in which a									

1	3	8	6	4	2	5	7
sequence of							
events occur							

Permutation representation: Mutation

- Mutation operators for binary, integer and real-valued representation will lead to inadmissible solutions

- Common mutation for permutation representation
$>$ Swap mutation
> Insert mutation
> Scramble mutation
> Inversion mutation

The mutation probability now reflects the probability of applying mutation, rather than altering a single gene

Permutation representation: Swap mutation

- Swap mutation:
> Select two positions randomly
> Swap their values

Permutation representation: Insert mutation

- Insert mutation:
$>$ Select two positions randomly
$>$ Move the second next to the first
$>$ Shift the rest along to accommodate

Preserve most of the order and the adjacency information

Permutation representation: Scramble mutation

- Scramble mutation:
> Select a subset of positions randomly
> Rearrange their values randomly

Permutation representation: Inversion mutation

- Inversion mutation:
$>$ Select two positions randomly
> Invert the values between them

Preserve most adjacency information (only breaks two links), but disruptive of order information

Permutation representation: Recombination

- Recombination operators for binary, integer and real-valued representation will lead to inadmissible solutions

- Common recombination for permutation representation
> Partially mapped crossover
> Edge crossover
combine order or adjacency information from the two parents

Permutation representation: Partially mapped crossover

- Partially mapped crossover:

1. Choose two crossover points randomly, and copy the segment between them from parent P1 into the first offspring
2. Starting from the first crossover point, look for elements in that segment of P2 that have not been copied
3. For each of these i, look in the offspring to see what element j has been copied in its place from P1
4. Place i into the position occupied by j in P2, since we know that we will not be putting j there (as is already in offspring)
5. If the place occupied by j in P2 has already been filled in the offspring by k, put i in the position occupied by k in P2
6. Having dealt with the elements from the crossover segment, the rest of the first offspring can be filled from P2
7. Create the second offspring analogously with parental roles reversed

Permutation representation: Partially mapped crossover

Step 1:					
	(9)3/78\|2	6	5	1/4	
Step 2:					

1	2	3	4	5	6	7	8

Step 3:

9	3	7	8	2	6	5	1

Permutation representation: Edge crossover

- First step, construct a table listing which edges are present in the two parents; if an edge is common, mark with a +
- For example,

Parent1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Parent2 | 9 | 3 | 7 | 8 | 2 | 6 | 5 | 1 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Element	Edges	Element	Edges
1	$2,5,4,9$	6	$2,5+, 7$
2	$1,3,6,8$	7	$3,6,8+$
3	$2,4,7,9$	8	$2,7+, 9$
4	$1,3,5,9$	9	$1,3,4,8$
5	$1,4,6+$		

Permutation representation: Edge crossover

- Edge crossover: After constructing the edge table,

1. Pick an initial element, entry, at random and put it in the offspring
2. Set the variable current element = entry
3. Remove all references to current element from the table
4. Examine the list for current element:
$>$ If there is a common edge, pick that to be next element
$>$ Otherwise, pick the entry in the list which itself has the shortest list
$>$ Ties are split at random
5. In the case of reaching an empty list: a new element is chosen at random

Permutation representation: Edge crossover

Element	Edges	Element	Edges
1	$2,5,4,9$	6	$2,5+, 7$
2	$1,3,6,8$	7	$3,6,8+$
3	$2,4,7,9$	8	$2,7+, 9$
4	$1,3,5,9$	9	$1,3,4,8$
5	$1,4,6+$		

$\left.\begin{array}{|l|c|l|l|l|}\hline \text { Choices } & \begin{array}{l}\text { Element } \\ \text { selected }\end{array} & \text { Reason } & \begin{array}{l}\text { Partial } \\ \text { result }\end{array} \\ \hline \text { All } & 1 & \text { Random } & {\left[\begin{array}{lll}1\end{array}\right]} \\ 2,5,4,9 & 5 & \text { Shortest list } & \left.\begin{array}{lll}1 & 5 & 5\end{array}\right] \\ 4,6 & 6 & \text { Common edge } & \\ 1 & 5 & 6\end{array}\right]$

Permutation representation: Order crossover

- Order crossover:

1. Choose two crossover points randomly
2. Copy the segment between them from the first parent to the first offspring
3. Copy the numbers that are not in the segment, to the first offspring:
$>$ starting right from the second crossover point
$>$ using the order of the second parent
$>$ and wrapping around at the end
4. Create the second offspring in an analogous manner, with the parent roles inversed

Permutation representation: Order crossover

1. Copy a randomly selected segment from the first parent
```
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{tabular}
```


$4 \mid 5617$

9	3	7	8	2	6	5	1

2. Copy the remaining numbers into the offspring in the order that they appear in the second parent

1	2	3	4	5	6	7	8

> | 3 | 8 | 2 | 4 | 5 | 6 | 7 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{9}$

9	3	7	8	2	6	5	1

Permutation representation: Cycle crossover

- Cycle crossover:

1. Divide the alleles into cycles
> Start with the first unused position and allele of P1
$>$ Look at the allele in the same position in P2
$>$ Go to the position with the same allele in P1
$>$ Add this allele to the cycle
$>$ Repeat steps 2-4 until arriving at the first allele of P1
2. Create the offspring by selecting alternate cycles from each parent

Permutation representation: Cycle crossover

1. Identify cycles

2. Copy alternate cycles into offspring

Permutation representation: Recombination

- Partially mapped crossover
- Edge crossover

Element	Edges	Element	Edges
1	$2,5,4,9$	6	$2,5+, 7$
2	$1,3,6,8$	7	$3,6,8+$
3	$2,4,7,9$	8	$2,7+, 9$
4	$1,3,5,9$	9	$1,3,4,8$
5	$1,4,6+$		

1	2	3	4	5	6	7	8	9

9	3	7	8	2	6	5	1	4

- Order crossover
- Cycle crossover
combine adjacency information from the two parents

Tree representation

- Genotype space: a tree

$$
\begin{aligned}
& \text { Program: } \\
& i=1 ; \\
& \text { while }(i<20) \\
& \{\quad i=i+1 ;
\end{aligned}
$$

Tree representation

- Genotype space: a tree

Arithmetic formula:
$2 \cdot \pi+\left((x+3)-\frac{y}{5+1}\right)$
2

Tree representation

- Genotype space: a tree

Variable structure
Logical formula:
$(x \wedge$ true $) \rightarrow((x \vee y) \vee(z \leftrightarrow(x \wedge y)))$

Tree representation: Mutation

- Mutation: replace randomly chosen subtree by randomly generated tree

Tree representation: Recombination

- Recombination: exchange two randomly chosen subtrees among the parents

Assume uniform selection within each parent for exchanging

The probability:

$$
\frac{1}{13} \cdot \frac{1}{9}
$$

Mutation or recombination

- Decade long debate: which one is better
> Evolutionary programming: originally without recombination
> Genetic programming: originally without mutation
- Recombination is explorative, which can make a big jump to an area somewhere "in between" two (parent) areas
- Mutation is exploitative, which creates random small diversions, thereby staying near (in the area of) the parent
- Now, it is good to have both in general

Summary

- Binary representation
- Integer representation
- Real-valued representation
- Permutation representation
- Tree representation

Representation
Mutation
Recombination

References

- A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Chapter 4.

