Last class

 Parent selection
 Survival selection

 Population diversity
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Evolutionary algorithms

EAs share a common routine

Solutionl ]
Solution2
Solution3

S—

Solution
representation

Initial

population|

for arg max f (x)
X

Parent
selection

Stop
criterion

End

Parent Mutation & Offspring
solutions recombination solutions
New Survivor Fitnesfs

population selection evaluation

There have been many popular variants of EAs
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Genetic algorithms

Genetic Algorithms (GA)
Typically applied to optimization in discrete domains

[J. H. Holland. Qutline for a logical theory of adaptive systems. JACM, 1962]

1929-2015 University of Michigan

Simple GA (SGA)
Representation Binary representation
Recombination One-point crossover
Mutation Bit-wise mutation

Parent selection

Fitness proportional selection —
implemented by Roulette Wheel

Survivor selection

Generational, i.e, age-based
replacement with A = u
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Genetic algorithms

the probability of selecting

; e . arent
SGA the i-th individual is K par
. u solutions
» Prps(D) = fi/Xieafi -7
- ’ z
ﬂf
Solution2 g f \ _ )
_ Initial Parent Parent \ Mutation & Offspring

Solution3 - | population selection solutions /1 recombination solutions

[ J

[ J N - -— - ’

[ J

/7 ~
/ ; S ] i
f SOIUtlon- \ Stop New Survivor Fitness
\\ repl’esentatlon /I criterion pOpUIation selection evaluation
~ 7’
~ ~ - _ - -
— v —
\
\
\
\ End

binary representation: {0,1}"
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Genetic algorithms

1. with prob. p,, apply one-point

SCA u parent for each pair of | crossover, otherwise copy them
solutions parent solutions | 5 ¢, aach resulting solution,
< —y . . .
D B ~ = - - _apply bit-wise mutation
Solut-lonl TS LT T~ RSN
Solution2 ... \ ] _
_ Initial Parent Parent Mutation & Offspring |
Solution3 - | population selection solutions recombination solutions
° S / \
/ ~ 7’ 7
[ i S - ~ - —_— = - - ”
[ ] _ [I
/ - _ .
\ representation ~ criterion oopulation selection N\gvaluation
NS e A -
N -~ < -_—-— ~ ~ o - - ff | 4 .
) 7 offsprin
N End .’ solutions
« Generational, i.e., use the u offspring solutions

binary representation: {0,1}" to form the new population directly
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Genetic algorithms: Application

Ensemble learning znou, 2012)
* better performance than a single learner

data
set

learner 1

\
learder 2

learner i

Ie% n
\}

Selective ensemble (ensemble
pruning ) [Zhou, 2012]

* better performance than the complete
ensemble
 reduce storage and improve efficiency

Two goals

* maximize the generalization
performance

* minimize the number of selected
learners
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Genetic algorithms: Application

PEP [Qian, Yu and zhou, aaaris): apply GA with uniform parent
selection, bit-wise mutation and fitness-based survivor
selection to solve the selective ensemble problem

binary representation: x € {0,1}"

&

a subset of base learners

x; = 1: the i-th base learner is selected

x; = 0: the i-th base learner is not selected
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Genetic algorithms: Application

Pruning bagging base learners with size 100

baseline methods ordering-based methods

=
Test ErT
Data set PEP | Baggm{? Bl | RE Kappa CP MD DREP |
australian 4440200 | L 143L£.017 524023 | (1444020 Jd43L£.021 A454+.022 A484.022 1444019
breast-cancer 2754041 | 2794037 298+ .044e | 277031 2874037 2824043 2954044 2754036
disorders S04039 | 327H047e | 365L.047e | 3201044 320042 306039 A3T.035e 316045
heart-statlog 974037 .
house-votes 045+019 | PEP achieves the smallest error on 60% (12/20) of the
ionosphere 0881.021 .
kl._\_.,_,_pkp o003 | data sets, while other methods perform the best on at
letter-ah 013,005 (o)
letter-br ooy | MoOst 35% (7/20) data
letter-oq O431009 | L049+.012e | LOT8L.017e | (461011 424011 042+.010 0461011 L41L.010
optdigits J35006 | 038007 | 095008« | 0361006 D35L.005 0361005 03740068 035006
sat?mage-]z'r'j? A28+.004 oo "": cemr e oo e e e mo e o e T e
satimage- 5| 021007 PEP is better than any other method on more than 60%
sick D500
sonar 2481056 | (12.5/20) data sets
Spﬂ[ﬂbﬂSE L65L.006 SO0 e | IO | U L AP UL AP LU Ao e SO T
tic-tac-toe A31+.027 | 164028« | 21240286 | (1351026 A32+.023 A324+.026 A45+.022e 1294026
vehicle-bo-vs 224023 | 2284026 257+.025e | 2264022 2331024 23440246 24440246 2344.026e
vehicle-b-v J18011 | 027014 | .024£.013e | 0201011 019+.012 020011 A21+.011e 0191013
vote O441+018 | 047018 Mex.016 444017 J414.016 0431016 454014 0434019
count of the best 12 2 0 2 7 1 0 3
PEP: count of direct win 17 20 15.5 12.5 17 20 12.5

PEP is never significantly worse
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Genetic algorithms: Application

ordering-based methods

< -
Ense ize
Data set PEP | RE Kappa CP_ MDD DEEP |
australian 10.6+4.2 12.546.0 14.7+12.6 11.0+£9.7 8.5+14.8 11.7+4.7
breast-cancer B.443.5 8.7x3.6 26,1217 581123 7.8+15.2 9.243.7
disorders 14.7+4.2 eeten ’:”’""‘ e ane ""'.'“““ e
heart-statlog 9.3:23 | PEP achieves the smallest size on 60%
house-votes 29417 c
jonosphere s2122 | (12/20) of the data sets, while other
e b 4 ° °
ke vs kp soirs | methods achieve the smallest size on at
letter-br 109+26 | most 15% (3/20) data
letter-oq 12037 | . __ I . I
optdigits 22.743.1 25.0+£93 252i8| ] Elii?S 4§8i2%90 25[&8[}

satimage-12v57 | 17.1£5.40 | _ .
satimage-2v5 57+1.7 PEP is better than any other method on

942,

ek Siiss | atleast 80% (16/20) data sets

spambase 17.5+4.5 18.5£3.0 2000451 19.0+£9.9 28.5E17.08 16.71+4.6

tic-tac-toe 145438 | 161454 174465 154463 28.04226e 13.61+3.4

vehicle-bo-vs 165445 | 157457 165482 21.6420.4

vehicle-b-v 28411 34421 45+1.6e 53174 2.843.8 1.0£3.9

vote 27411 32427 514268  54452e 60498 3.942.50

count of the best 12 2 0 2 3 3
PEP: count of direct win 17 19.5 15 17.5 16

PEP is never significantly worse, except two losses on vehicle-bo-vs
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Evolutionary strategies

Evolutionary Strategies (ES)

Typically applied to optimization in continuous domains
[I. Rechenberg. Cybernetic solution path of an experimental problem. 1965]

I. Rechenberg . _ . .
1934-2021 Technical University of Berlin

Representation Real-valued representation

Recombination Discrete or arithmetic

Mutation Gaussian perturbation

Parent selection Uniform random

Survivor selection Fitness-based replacement by
(w,A) or (u+A4)

Speciality Self-adaptation of mutation step
sizes
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Evolutionary strategies

ES the probability of selecting
each individual is 1/u
> 4
] - ’
Solutionl AR e m ==
~ - ~
Solution2 N S . .
_ Initial Parent Parent Mutation & Offspring
Solution3 L | population selection solutions recombination solutions
\ 7/

. ST

. e

7 - -7 T~ ~ N

’ - _ .

f SOIUtlon- \ Stop New Survivor Fltnes_S
\ representation /I criterion oopulation selection evaluation

N - _ 7’

-~ P v S -
\ .
\ self-adaptation
\ End \
\ (

|
Real-valued representation: R" |:> (x1,---,xn,01, ey Op, A4, ---;an(n—l)/Z)
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Evolutionary strategies

Local recombination:
(Xl, iy X0y 01y ov, Op, U1, -.n,) an(n_l)/z)
Select two parents

uniformly at random ' 1o /
(yl, LRIy yn’ 0-1, R O-n, al, eny an(n_l)/Z)

I I r 1
(Zl; 1 Zny 015 ey Oy Ay eeey “n(n—1)/2)

Discrete: z; is chosen from x; and y;
uniformly at random

Arithmetic: Ui” =o0;/2+ al-’/2 “l{’ =a;/2+ “1{/2

Global recombination: the two parents are selected
uniformly at random for each position

http://www.lamda.nju.edu.cn/qgianc/



Evolutionary strategies

Local recombination:
(Xl, iy X0y 01y ov, Op, U1, -.n,) an(n_l)/z)
Select two parents

uniformly at random ' 1o /
(yl, LRIy yn’ 0-1, R O-n, al, eny an(n_l)/Z)

I I r 1
(Zl; 1 Zny 015 ey Oy Ay eeey “n(n—1)/2)

Correlated mutation: @
(Wi, oo, Wi, 84, ooe, B, Brs ooy Brign—1y/2)

Self-adaptation  §; = g/’ - e¥ NOD+TN:i(01)  B; =o' + B - N;(0,1)
w=z+N(0,C)
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Evolutionary strategies

ES the probability of selecting local/global recombination
each individual is 1/u + correlated mutation
P b/
. — 7 /
Solutionl AR - —e <
~ - ~
. N\
Solut|.0n2 Initial Parent Parent Mutation & Offspring
Solution3 L population selection solutions recombination solutions
\ /7

. Sel Tt

. —

/”’ ‘\\\ /’—_-\\\

’ : ] i

f SOIUtlon- \ Stop New Survivor Fltnes_S
\\ representation /I criterion population selection evaluation

s ~ - - - - S ~ - _ P d ’

o Yes =TT
<+ = .
\ self-adaptation
\ £nd usually (u, 1) Ap
\ (

|
Real-valued representation: R" |:> (x1,---,xn,01, ey Op, A4, ---;an(n—l)/Z)
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Evolutionary strategies: Application

Optlmum (0,0),0

Rastrigin function d=2 :la. : ” |

Fl 2]
=
Z

VI
f(x) =10d + z:[xi2 — 10 cos(2mx;)] Y w-,”}“{‘
i=1

CMA-ES [Hansen et al.,ECJ’03]  cMA-ES Rastrigin function trial=1

4_
2_
’
0 o°.
&
_2_
_4_
T T T T T
—4 -2 0 2 4
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Evolutionary strategies: Application

Reinforcement learning

* Jearn how to take actions in an environment in order to maximize

the cumulative reward

Example: double pole with velocities problem

Goal: Learn an optimal policy to keep the angles of the poles in the range [—36",36]

for 10° time steps, where each step corresponds to 0.02s

State: vector (x)x,

61

0

Finite length track

velocity

) 02)

0,

)

Action: exert forces either left or right on the cart

Reward: —1 when balancing fails (any of the poles
out of range [-36,36])
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Evolutionary strategies: Application

[Igel, CEC’03] uses CMA-ES with average arithmetic
recombination, Gaussian perturbation with self-adaptation,
and (u + A) survivor selection to solve the double pole with
velocities problem

real-valued representation: x € R"

&

neural network weights

&

a policy ™
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Evolutionary strategies: Application

CMA-ES 7hidden bias  Nweights evaluations failures
(3/3,13) 4  no 28 884/ 3142 0/1
(3/3,13) 4  yes 33 2929/25853  Q/I2
(3/3,13) 6 no 42 895 0 |
(3/3,13) 6 yes 49 2672/13464 0/5
(4/4,16) 8 no gg 1112 0 CMA-ES can find an
4/4,16 8 es 249 0 . . .
E 4; £1 6% 0 31’10 0 1003 optimal pohcy even with a
(4/4,16) 10 yes 81 2494 small population size
(4/4,16) 12 no 84 1143 0
(4/4,16) 12 yes 97 216 0
(4/4,16) 14  no 98 1021 0
(4/4,16) 14  yes 113 2391 0
(4/4,16) 16  no 112 967 0
(4/4,16) 16  yes 129 2146 0
method evaluations opulation size .
NE (Wieland, 1991) ~ 307200 - 2048 CMA-ES is almost four
EP (Saravanan and Fogel, 1995) ~ 80000 100 times faster than the best
SANE (Moriarty and Miikulainen, 1996) 12600 . .
ESP (Gomez and Miikulainen. 1999) 3800 /igg/ previous algorithm
NEAT (Stanley and Miikkulainen, 2002) 3600 150
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Evolutionary programming

Evolutionary Programming (EDP)

Originally for optimizing finite state machines (agents)

& [L.J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated Evolution. 1966]

L. ]. Fogel o s
1928-2007 University of California, Los Angeles
Now typically applied to optimization in continuous domains,

and almost merged with ES <

Representation Real-valued representation difference
Recombination None
Mutation Gaussian perturbation

Parent selection | Deterministic (each parent generates one offspring)

Survivor selection | Round-robin tournament

Speciality Self-adaptation of mutation step sizes

http://www.lamda.nju.edu.cn/qgianc/



Genetic programming

Genetic Programming (GP)
Typically for optimizing computer programs

[J. R. Koza. Genetic Programming.1992] +
J. R. Koza . _ 2N
1944- Stanford University at .
Arithmetic formula: AN SN
y \ 2 m X I
5+ 1 £ T iy
Representation Tree representation 5 1
Recombination Exchange of subtrees
Mutation Random change in trees
Parent selection Fitness proportional
Survivor selection Generational replacement

http://www.lamda.nju.edu.cn/qgianc/



Genetic programming

ry .
N Iree representation
h ¢ [ . Internal
Arithmetic formula:
y 7 m o+ nodes T, Function set F
2-m+ ((x +3) — —> VNN
>+ : 5 & T Leaves

5 @ \‘ Terminal set T

 Initial tree construction (maximum initial depth d,,;4)

» Full method (each branch has depth = d;;,44):
- nodes at depth < d,;,4, are randomly chosen from F
- nodes at depth d,;,4, are randomly chosen from T
» Grow method (each branch has depth < d;44):
- nodes at depth < d,;,4, are randomly chosen from F U T

- nodes at depth d,;,4, are randomly chosen from T

http://www.lamda.nju.edu.cn/qgianc/



Genetic programming

next ﬁ i = population size ?
generation
¥ no
select two
individuals
GA uses v
recombination perform crossover
AND mutation with probability p
sequentially \
perform mutation
(each performed | with probabiity p.
probabilistically) v
add offspring to
infermediate pool
\/
i=i+2
GA flowchart

yes

next «— i = population size ?

generation

¥ No

select variation op.
probabilistically

winp e~ with p

add offspring to
infermediate pool

v

select one select two
individual individuals
perform mutation perform crossover
v 4

add offspring to
infermediate pool

\/

i=i+1

i=i+2

GP flowchart

GP uses
recombination
OR mutation
(chosen
probabilistically)
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Genetic programming

 Bloat: average tree sizes tend to grow over time

» Prohibiting variation operators that would generate “too
big” offspring
» Parsimony pressure: penalty for being oversized

. Selection pressure increases
Parent selection with the population size

» Typically fitness proportional selection

» Over-selection for very large population sizes

- rank population by fitness and divide it into two groups:
group 1: best x% of population, group 2: other (100 — x)%

- 80% of selection chooses from group 1, 20% from group 2
- for pop. size = 1000, 2000, 4000,8000, x = 32,16,8,4

http://www.lamda.nju.edu.cn/qgianc/



Genetic programming: Application

Task: learn a rule to distinguish good from bad loan applicants

ID No of children Salary Marital status Good?
ID-1 2 45000 Married 0
ID-2 0 30000 Single 1
ID-3 1 40000 Divorced 1

represent IF (NOC = 2) AND (S > 80000)
/ \ THEN good ELSE bad

/ \ / \ Fitness: percentage of correctly

classified cases
NOC 80000

http://www.lamda.nju.edu.cn/qgianc/



Genetic programming: Application

Task: find a function f(x) to fit the observed data
(1, ¥1), (2, ¥2), e (X, V)

/
+ / \
CoS represent
X 2

|:> f(x)=(x+2)/cosx

Fitness: the error

i=1 (f (x;) — )’i)z

http://www.lamda.nju.edu.cn/qgianc/



Genetic programming: Application

Task: antenna design in NASA’s Space Technology 5 (5T))
mission

Quadprifilar helical
antenna designed by
human experts

Two antennas centered on the top
and bottom of each spacecraft

http://www.lamda.nju.edu.cn/qgianc/



Genetic programming: Application

Computer-Automated Evolution of an X-Band
Antenna for NASA’s Space Technology 5

Mission
use GP to design antenna
Gregory. S. Hornby Gregory.S.Hornby@nasa.gov .
é/lﬁtlgil(())??;g‘)s-?{ University Affiliated Research Center, UC Santa Cruz, Moffett Field, :> aut Om atlcally
Jason D. Lohn Jason.Lohn@west.cmu.edu
Carnegie Mellon University, Mail Stop 23-11, Moffett Field, CA 94035, USA
Derek S. Linden dlinden@jemengineering.com
JEM Engineering, 8683 Cherry Lane, Laurel, MD 20707, USA Moffett Field, CA 94035,
i S ° ° . °
Fitness: efficiency and gain
tree representation evaluated by simulation
- .\ Ex h
* forward(length, radius) ecute the
operators
| * rotate-x(angle) N
* rotate-y(angle) |:> an antenna
* rotate-z(angle) by preorder

traversal
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Genetic programming: Application

rotate-z(1.984442) 1 [ rotate-x(2.251165) 1 [
rotate-x(0.062240) 1 [ rotate-x(0.083665) 1 [
rotate-y(-2.449035) 1 [ rotate-z(-0.894357) 1
rotate-y(-2.057702) 1 [ rotate-y(0.661755) 1 [
rotate-x(0.740703) 1 [ rotate-y(2.057436) 1 [
forward(0.013292,0.000283) 2 [ rotate-z(-1.796822) 1 [
rotate-x(-1.651348) 1 [ rotate-y(-2.940880) 1 [
rotate-x(0.095209) 1 [ rotate-z(1.248723) 1 [
forward(0.003815,0.000363) 1 [

forward(0.008289,0.000355) 1 [

forward(0.008413,0.000369) 1 [ rotate-x(-0.006494) 1 [
rotate-x(-0.592854) 1 [ rotate-z(-2.085023) 1 [

rotate-z (1.735374) 1 [ rotate-z(-2.045125) 1 [

rotate-z (0.203076) 1 [ rotate-z(1.750799) 1 [

rotate-z (-2.038688) 1 [ rotate-z(1.725007) 1 [
rotate-y(1.478109) 1 [ rotate-x(2.477117) 1 [
rotate-x(-2.441858) 1 [ forward(0.015082,0.000223) 1 1

1171111111111 711111 1 rotate-y(2.335438)

1 [ rotate-y(-1.042201) 1 [ rotate-y(-1.761594) 1 [ EVOIVQd antenna ST5-3-10
rotate-x(2.518405) 1 [ rotate-z(-0.739608) 1 [

rotate-x(0.426553) 1 [ rotate-z(-0.291483) 1 [

rotate-x(2.152738) 1 [ forward(0.013190,0.000414) 1 1 ]
11111111111 111 171°]

[

[ subtree-1 subtree-2]

<

operatorl 2
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Genetic programming: Application

The change of the launch vehicle for the ST5 spacecraft leads to
new requirements for the antenna

rotate-z (0.723536) 1 [ rotate-x(2.628787) 1 [
rotate-z(1.145415) 1 [ rotate-x(1.930810) 1 [
rotate-z (2.069497) 1 [ rotate-x(1.822537) 1 [
forward(0.007343,0.000406) 1 [ rotate-z(1.901507) 1 [
forward(0.013581,0.000406) 1 [ rotate-x(1.909851) 1 [
rotate-y(2.345316) 1 [ rotate-y(0.308043) 1 [

rotate-y(2.890265) 1 [ rotate-x(0.409742) 1 [
rotate-y(2.397507) 1 [ forward(0.011671,0.000406) 1 [
rotate-x(2.187298) 1 [ rotate-y(2.497974) 1 [
rotate-y (0.235619) 1 [ rotate-x(0.611508) 1 [
rotate-y(2.713447) 1 [ rotate-y(2.631141) 1 [

forward(0.011597,0.000406) 1 [ rotate-y(1.573367) 1 [
forward(0.007000,0.000406) 1 [ rotate-x(-0.974118) 1 [
rotate-y(2.890265) 1 [ rotate-z(1.482916) 1 [
forward(0.019955,0.000406) 1 1 111 1111111111111
11711111111

Re-evolved antenna ST5-33.142.7

http://www.lamda.nju.edu.cn/qgianc/



Genetic programming: Application

Quadrifilar helical & Re-evolved
antenna designed antenna
by human experts ST5-33.142.7

38% efficiency 80% efficiency 93% efficiency

http://www.lamda.nju.edu.cn/qgianc/



Genetic programming: Application

February 25, 2005

|:> Delivered to Goddard Space
Flight Center to undergo tests

4

Re-evolved antenna ST5-33.142.7 April 8, 2005
Complete the tests

March 22, 2006

Launched from Vandenberg
Air Force Base, California on
a Pegasus XL rocket

http://www.lamda.nju.edu.cn/qgianc/



Genetic programming: Application

Three ST5 spacecraft with the black
radomes on top containing an
evolved antenna, ST5-33.142.7

Three ST5 spacecraft mounted for
launch on a Pegasus XL rocket

The first computer-evolved
hardware in space

http://www.lamda.nju.edu.cn/qgianc/



Genetic programming: Application

[J. R. Koza, et al. What’s Al Done for Me Lately? Genetic Programming’s
Human-Competitive Results. IEEE Intelligent Systems, 18(3): 25-31, 2003.]

Table 1. Human-competitive results produced by genetic programming.

s e smnan  e.g.: design low-voltage balun circuit

1. Creating a better-than-classical quantum algorithm for the Deutsch-Jozsa “early pramise” problem? 2,5
2. Creating a better-than-classical quantum algorithm for Grover's database search problem?® 2,5 &«
3. Creating a quantum algorithm for the depth-two AND/OR query prablem that is better than any previously published result*® 4 The beSl‘_Of;’/un evolved Circul'l‘ (See Figure 1)
4. Creating a quantum algorithm for the depth-one OR query prablem that is better than any previously published result® 4
5. Creating a protocol for communicating information through a quantum gate that was previously thought not to permit such communication® 4 . 3
6. Creating a novel variant of quantum dense coding® 4 lS roughly a fOMVfOZd lmprovement 0V€r the
7. Creating soccer-playing program that ranked in the middle of the field of 34 human-written programs in the Robo Cup 1998 competition” 8 . < . V. -
8. Creating four different algorithms for the transmembrane segment identification problem for proteins®$ 2,5 Z‘ Z‘ d t t f ft‘
9. Creating a sorting network for seven items using only 16 steps® 1,4 pa en e Clrcul ln ermS 0 0 ur l neSS m easu’/‘e'
10. Rediscovering the Campbell ladder topology for lowpass and highpass filters® 1,6 . 3 . . .
11. Rediscovering the Zobel “M-derived half section” and “constant K filter sections? 1,6 The eVO lved ClVCUlt lS SuperlOr bOth ln termS Of
12. Rediscovering the Cauer (elliptic) topology for filters® 1,6 . . . . §)
13. Automatic decomposition of the problem of synthesizing a crossover filter® 1.6 Z’ f q y p d h d t t
14. Rediscovering a recognizable voltage gain stage and a Darlington emitter-follower section of an amplifier and other circuits® 1.6 l S re uen C reS Onse an arm On lC lS Or lon *
15. Synthesizing 60 and 96 decibel amplifiers® 1.6
16. Synthesizing analog computational circuits for sguaring, cubing, square root, cube root, logarithm, and Gaussian functions® 1.47 ‘D »
17. Synthesizing a real-time analog circuit for time-optimal control of a robot® 7 VOUTH \ﬂ—/
18. Synthesizing an electronic thermometer® 1,7 ML VOuTo
19. Synthesizing a voltage reference circuit® 1.7 VDIFF
20. Creating a cellular automata rule for the majority classification problem that is better than the Gacs-Kurdyumov-Levin (GKL) rule 4,5 * &
and all other known rules written by humans? | T
21. Creating motifs that detect the D-E-A-D box family of proteins and the manganese superoxide dismutase family® 3 i
22. Synthesizing topology for a PID-D2 (proportional, integrative, derivative, and second derivative) controller'® 1,6 R306 RLOAD1 RLOADO VCC ;RPROBE
23. Synthesizing topology for a PID (proportional, integrative, and derivative) controller!? 1,6 1.0k 150 150 v _ 1G
24. Synthesizing analog circuit equivalent to Philbrick circuit!® 1,6 | :
25. Synthesizing NAND circuit!? 1,6 -
26. Simultaneously synthesizing topology, sizing, placement, and routing of analog electrical circuits'® 7 _| }_/\M/_
27. Rediscovering Yagi-Uda antenna’® 2,67 C301 RSRC
28. Creating PID tuning rules that outperform a PID controller using the Ziegler-Nichols and Astrom-Hagglund tuning rules'® 1,2,4,567 4.19u 7
29. Creating three non-PID controllers that outperform PID controllers using the Ziegler-Nichols and Astrom-Hagglund tuning rules'® 1,2,4,567 VINO(
30. Rediscovering negative feedback!® 1.6 =
31. Synthesizing a low-voltage balun circuit'™® 1
32. Synthesizing a mixed analog-digital variable capacitor circuit'® 1
33. Synthesizing a high-current load circuit!d 1
34. Synthesizing a voltage-current conversion circuit!® 1
35. Synthesizing a cubic signal generator™® 1
36. Synthesizing a tunable integrated active filter'® 1 =
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Differential evolution

Differential Evolution (DE)

Typically applied to nonlinear and nondifferentiable

continuous optimization
m [R. Storn, K. Price. Differential Evolution — A Simple and Efficient Adaptive Scheme for Global

R. Storn Optimization over Continuous Spaces. 1995]

i)

L

(\Cv

International Computer Science Institute in Berkeley, USA

Representation Real-valued representation

Recombination Uniform crossover

Mutation Differential mutation

Parent selection Uniform random selection

Survivor selection Deterministic elitist replacement
(parent vs. offspring)
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Differential evolution

Randomly select three
parent solutions x,y, z

Differential mutation
v=x+F- -(y—2z)

Select the valuie from v; with
prob. p for each position

Uniform crossover +

:-1l [1] o]

/ N J the be*ter one
recompmation
% ST |:> V1, .,V |:]f> Uy, ..y Uy I:> % ST
mutation selection
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Differential evolution

Variants of DE: DE/a/b/c
* ais the base vector (rand

or best)
* b is the number of
Randomly|select three different vectors to define
parent solutions x, y, z perturbation vector
. ¢ denotes the crossover
Differential mutation scheme (“bin” is uniform
v= @ Crossover)
randomly
base Vector random perturbation vector { Y= 2 selecttwo
best -2+ —2z)

randomly select four
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Particle swarm optimization

Kennedy R. Eberhart

J.

Particle Swarm Optimization (PSO)
Typically applied to nonlinear optimization

[J. Kennedy, R. Eberhart. Particle Swarm Optimization. 1995]

fish school
W Representation Real-valued representation
) Recombination None
Mutation Adding velocity vector

Parent selection

Deterministic (each parent creates
one offspring via mutation)

Survivor selection

Generational (offspring replaces
parents)

bird flock
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Particle swarm optimization

(x,v)

Each member in the solution, /N perturbation vector,

population (a list):

named position named velocity
\ )
Y
particle
learning rate for the learning rate for the random
L personal influence social influence matrices
mertia
weight ,
Yy 9000 @0
Mutation - the best position the the best position the
member ever had population ever had
X' =x+v
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Particle swarm optimization

The i-th member in the population (a list):

(x;,0;,V:) ~ personal best of the
o Yi7 , i-th population member
solution, perturbation vector,
iti named velocit
named p051\t10n | y elobal best of
parYtiCle the population

/
: {v{ =w-v;+ .Uy - (y; —x;) + P,Uz - (2 — x;)
Mutation

I /
X; = X; +v;

) = x; iff(x}) < f) ihe_globall best z is ’updated
l Yi Otherwise 1 mln{f(xl), ---:f(xu)} < f(2)
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Ant colony optimization

M. Dorigo

Ants find the shortest path
between their nest and a good
source using pheromone trails

.

o > ", R &N
= A - e Y _Y
) -

Ant Colony Optimization (ACO)
Typically applied to find good paths through graphs

[M. Dorigo. Optimization, Learning and Natural Algorithms. 1992]

7Y

Solution representation | path on a graph

Solution construction

An ant moves on the graph according to
the pheromone and length of each edge

Pheromone update

The pheromone of each edge is updated
according to the number of ants traversing
it and the lengths of constructed paths
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Ant colony optimization

Solution construction

An ant moves on the graph according to
the pheromone and length of each edge

For an ant k, if the current vertex is i, the probability of selecting j
as the next vertex is

if | e

pk(l,]) — <
otherwise
/ I, o vertices which are
pheromone usually 1/d(i,j), where d(i, ) connected to i and

is the distance between i and j unvisited by the ant k
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Ant colony optimization

Pheromone update

The pheromone of each edge is updated according to the number
of ants traversing it and the lengths of constructed paths

After the ants construct the paths, the pheromone is updated by

—l

number of ants,

m
.. o i.e., population size
N = -f<w>+§

k=1
evaporation pheromone density
factor LY — if (i, /) E laid on edge (i, /) by
Ate(i, 1) = the ant k

0, otherwise
length of the path edge set traversed
constructed by the ant k by the ant k
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Estimation of distribution algorithms

S. Baluja

Carnegie Mellon University

Estimation of Distribution Algorithms (EDA)
Applied to diverse optimization

[S. Baluja. Population-Based Incremental Learning: A Method for Integrating Genetic
Search Based Function Optimization and Competitive Learning. 1994]

EDA guide the search for the optimum by building and sampling
explicit probabilistic models of promising candidate solutions

Select the fittest subset of sampled solutions

Model building

2N
\_/

Model sampling
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Estimation of distribution algorithms

Model building

v
Probabilistic model

P(xq,%x9, ..., X5)

—_—

2N
\_/

Model sampling

—Univariate: P(x;) - P(x,) -+ P(xy)

Bivariate: H?=1P (x; | pa;)

O-0O-0-0

— Multivariate: Bayesian networé%%%%>
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Summary

* Genetic algorithms

 Evolutionary strategies Historical EA

. Evolutionary programming variants

* Genetic programming _—
* Differential evolution
* Particle swarm optimization _ Recent EA

* Ant colony optimization variants

 Estimation of distribution algorithms
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