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Evolutionary algorithms

EAs share a common routine
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There have been many popular variants of EAs
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Genetic algorithms

[J. H. Holland. Outline for a logical theory of adaptive systems. JACM, 1962]

Genetic Algorithms (GA)

Typically applied to optimization in discrete domains

J. H. Holland
1929-2015

University of Michigan

Simple GA (SGA)

Representation Binary representation

Recombination One-point crossover

Mutation Bit-wise mutation

Parent selection Fitness proportional selection –
implemented by Roulette Wheel

Survivor selection Generational, i.e, age-based 
replacement with 𝜆 = 𝜇
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Genetic algorithms

SGA
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binary representation: {0,1}𝑛

the probability of selecting 
the 𝑖-th individual is

P𝐹𝑃𝑆(𝑖) = 𝑓𝑖/∑𝑗=1
𝜇

𝑓𝑗

𝜇 parent 
solutions
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Genetic algorithms
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binary representation: {0,1}𝑛

for each pair of 
parent solutions

1. with prob. 𝑝𝑐, apply one-point  
crossover, otherwise copy them

2. for each resulting solution, 
apply bit-wise mutation

𝜇 offspring 
solutions

Generational, i.e., use the 𝜇 offspring solutions 
to form the new population directly

SGA 𝜇 parent 
solutions
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Genetic algorithms: Application

• better performance than the complete 
ensemble

• reduce storage and improve efficiency

Selective ensemble (ensemble 
pruning) [Zhou, 2012]

learner 1

data 
set

learner 𝑖

learner 𝑛

learner 2

Two goals
• maximize the generalization 

performance
• minimize the number of selected 

learners

Ensemble learning [Zhou, 2012]

• better performance than a single learner
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Genetic algorithms: Application

PEP [Qian, Yu and Zhou, AAAI’15]: apply GA with uniform parent 
selection, bit-wise mutation and fitness-based survivor 
selection to solve the selective ensemble problem

binary representation: 𝒙 ∈ {0,1}𝑛

a subset of base learners

𝑥𝑖 = 1: the 𝑖-th base learner is selected

𝑥𝑖 = 0: the 𝑖-th base learner is not selected
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Genetic algorithms: Application

baseline methods ordering-based methods

PEP is never significantly worse

PEP achieves the smallest error on 60% (12/20) of the 
data sets, while other methods perform the best on at 
most 35% (7/20) data

PEP is better than any other method on more than 60% 
(12.5/20) data sets

Pruning bagging base learners with size 100
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Genetic algorithms: Application

ordering-based methods

PEP is never significantly worse, except two losses on vehicle-bo-vs

PEP achieves the smallest size on 60% 
(12/20) of the data sets, while other 
methods achieve the smallest size on at 
most 15% (3/20) data

PEP is better than any other method on
at least 80% (16/20) data sets
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Evolutionary strategies

[I. Rechenberg. Cybernetic solution path of an experimental problem. 1965]

Evolutionary Strategies (ES)

Typically applied to optimization in continuous domains

I. Rechenberg
1934-2021 Technical University of Berlin

Representation Real-valued representation

Recombination Discrete or arithmetic

Mutation Gaussian perturbation

Parent selection Uniform random

Survivor selection Fitness-based replacement by 
(𝜇, 𝜆) or (𝜇 + 𝜆)

Speciality Self-adaptation of mutation step 
sizes
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Evolutionary strategies

ES
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Real-valued representation: R𝑛

the probability of selecting 
each individual is 1/𝜇

𝑥1, … , 𝑥𝑛, 𝜎1, … , 𝜎𝑛, 𝛼1, … , 𝛼𝑛(𝑛−1)/2

self-adaptation
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Evolutionary strategies

Local recombination:

Select two parents 
uniformly at random

Discrete: 𝑧𝑖 is chosen from 𝑥𝑖 and 𝑦𝑖
uniformly at random 

𝑥1, … , 𝑥𝑛, 𝜎1, … , 𝜎𝑛, 𝛼1, … , 𝛼𝑛(𝑛−1)/2

𝑦1, … , 𝑦𝑛, 𝜎1
′, … , 𝜎𝑛

′ , 𝛼1
′ , … , 𝛼𝑛(𝑛−1)/2

′

𝑧1, … , 𝑧𝑛, 𝜎1
′′, … , 𝜎𝑛

′′, 𝛼1
′′, … , 𝛼𝑛(𝑛−1)/2

′′

Arithmetic: 𝜎𝑖
′′ = 𝜎𝑖/2 + 𝜎𝑖

′/2 𝛼𝑖
′′ = 𝛼𝑖/2 + 𝛼𝑖

′/2

Global recombination: the two parents are selected 
uniformly at random for each position
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Evolutionary strategies

Select two parents 
uniformly at random

𝑥1, … , 𝑥𝑛, 𝜎1, … , 𝜎𝑛, 𝛼1, … , 𝛼𝑛(𝑛−1)/2

𝑦1, … , 𝑦𝑛, 𝜎1
′, … , 𝜎𝑛

′ , 𝛼1
′ , … , 𝛼𝑛(𝑛−1)/2

′

𝑧1, … , 𝑧𝑛, 𝜎1
′′, … , 𝜎𝑛

′′, 𝛼1
′′, … , 𝛼𝑛(𝑛−1)/2

′′

Local recombination:

Correlated mutation:

𝑤1, … , 𝑤𝑛, 𝛿1, … , 𝛿𝑛, 𝛽1, … , 𝛽𝑛(𝑛−1)/2

𝛽𝑗 = 𝛼𝑗
′′ + 𝛽 ⋅ 𝑁𝑗(0,1)𝛿𝑖 = 𝜎𝑖

′′ ⋅ 𝑒𝜏
′⋅𝑁 0,1 +𝜏⋅𝑁𝑖(0,1)

𝒘 = 𝒛 + 𝑁(𝟎, 𝐂′)

Self-adaptation
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Evolutionary strategies

ES
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Real-valued representation: R𝑛

the probability of selecting 
each individual is 1/𝜇

𝑥1, … , 𝑥𝑛, 𝜎1, … , 𝜎𝑛, 𝛼1, … , 𝛼𝑛(𝑛−1)/2

self-adaptation

local/global recombination 
+ correlated mutation 

usually (𝜇, 𝜆)
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Evolutionary strategies: Application

Rastrigin function

𝑓 𝒙 = 10𝑑 +

𝑖=1

𝑑

[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑 = 2

Optimum: 0,0 , 0

CMA-ES [Hansen et al.,ECJ’03]
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Evolutionary strategies: Application

Reinforcement learning

• learn how to take actions in an environment in order to maximize 
the cumulative reward

State: vector (𝑥, ሶ𝑥, 𝜃1, ሶ𝜃1, 𝜃2, ሶ𝜃2)

Action: exert forces either left or right on the cart 

Reward: −1 when balancing fails (any of the poles 

out of range [−36°, 36°])

Example: double pole with velocities problem

Goal: Learn an optimal policy to keep the angles of the poles in the range [−36°, 36°]

for 105 time steps, where each step corresponds to 0.02s

velocity

Finite length track
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Evolutionary strategies: Application

[Igel, CEC’03] uses CMA-ES with average arithmetic 
recombination, Gaussian perturbation with self-adaptation, 
and (𝜇 + 𝜆) survivor selection to solve the double pole with 
velocities problem

real-valued representation: 𝒙 ∈ R𝑛

neural network weights

a policy 𝜋



http://www.lamda.nju.edu.cn/qianc/

Evolutionary strategies: Application

CMA-ES  is almost four 
times faster than the best 
previous algorithm

CMA-ES can find an 
optimal policy even with a  
small population size
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Evolutionary programming

[L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through Simulated Evolution. 1966]

Evolutionary Programming (EP)

Originally for optimizing finite state machines (agents)

L. J. Fogel
1928-2007 University of California, Los Angeles 

Representation Real-valued representation

Recombination None

Mutation Gaussian perturbation

Parent selection Deterministic (each parent generates one offspring)

Survivor selection Round-robin tournament

Speciality Self-adaptation of mutation step sizes

Now typically applied to optimization in continuous domains, 
and almost merged with ES

difference
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Arithmetic formula:

2 ⋅ 𝜋 + 𝑥 + 3 −
𝑦

5 + 1

Genetic programming

[J. R. Koza. Genetic Programming.1992]

Genetic Programming (GP)

Typically for optimizing computer programs

J. R. Koza
1944- Stanford University

Representation Tree representation

Recombination Exchange of subtrees

Mutation Random change in trees

Parent selection Fitness proportional

Survivor selection Generational replacement
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Genetic programming

• Initial tree construction (maximum initial depth 𝑑𝑚𝑎𝑥)

 Full method (each branch has depth = 𝑑𝑚𝑎𝑥):

- nodes at depth < 𝑑𝑚𝑎𝑥 are randomly chosen from 𝐹

- nodes at depth 𝑑𝑚𝑎𝑥 are randomly chosen from 𝑇

 Grow method (each branch has depth ≤ 𝑑𝑚𝑎𝑥):

- nodes at depth < 𝑑𝑚𝑎𝑥 are randomly chosen from 𝐹 ∪ 𝑇

- nodes at depth 𝑑𝑚𝑎𝑥 are randomly chosen from 𝑇

Arithmetic formula:

2 ⋅ 𝜋 + 𝑥 + 3 −
𝑦

5 + 1

Tree representation

Function set 𝐹

Terminal set 𝑇

Internal 
nodes

Leaves
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Genetic programming

GP uses 
recombination 
OR mutation 
(chosen 
probabilistically)

GA uses 
recombination 
AND mutation
sequentially 
(each performed 
probabilistically)
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Genetic programming

• Bloat: average tree sizes tend to grow over time

 Prohibiting variation operators that would generate “too 
big” offspring

 Parsimony pressure: penalty for being oversized

• Parent selection

 Typically fitness proportional selection

 Over-selection for very large population sizes

- rank population by fitness and divide it into two groups: 
group 1: best 𝑥% of population, group 2: other (100 − 𝑥)%

- 80% of selection chooses from group 1, 20% from group 2

- for pop. size = 1000, 2000, 4000, 8000, 𝑥 = 32, 16, 8, 4

Selection pressure increases 
with the population size
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Genetic programming: Application

Task: learn a rule to distinguish good from bad loan applicants 

ID No of children Salary Marital status Good?

ID-1 2 45000 Married 0

ID-2 0 30000 Single 1

ID-3 1 40000 Divorced 1

…

AND

S2NOC 80000

>=

IF (NOC = 2) AND (S > 80000) 
THEN good ELSE bad

Fitness: percentage of correctly 
classified cases

represent
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Genetic programming: Application

Task: find a function 𝑓(𝑥) to fit the observed data 

𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑛, 𝑦𝑛

/

x2x

cos+

Fitness: the error

∑𝑖=1
𝑛 (𝑓 𝑥𝑖 − 𝑦𝑖)

2

represent
𝑓 𝑥 = 𝑥 + 2 / cos 𝑥
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Genetic programming: Application

Task: antenna design in NASA’s Space Technology 5 (ST5) 
mission

Two antennas centered on the top 
and bottom of each spacecraft

Quadrifilar helical 
antenna designed by 
human experts
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Genetic programming: Application

use GP to design antenna 
automatically 

• forward(length, radius)
• rotate-x(angle)
• rotate-y(angle)
• rotate-z(angle)

tree representation

Execute the 
operators 

by preorder 
traversal

an antenna

Fitness: efficiency and gain
evaluated by simulation
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Genetic programming: Application

Evolved antenna ST5-3-10

operator1   2    [ subtree-1   subtree-2]
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Genetic programming: Application

Re-evolved antenna ST5-33.142.7

The change of the launch vehicle for the ST5 spacecraft leads to 
new requirements for the antenna
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Genetic programming: Application

Re-evolved 
antenna 

ST5-33.142.7

Quadrifilar helical 
antenna designed 
by human experts

38% efficiency 80% efficiency 93% efficiency
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Genetic programming: Application

Re-evolved antenna ST5-33.142.7

Delivered to Goddard Space 
Flight Center to undergo tests 

February 25, 2005

Complete the tests

April 8, 2005

March 22, 2006

Launched from Vandenberg 
Air Force Base, California on 

a Pegasus XL rocket
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Genetic programming: Application

Three ST5 spacecraft with the black
radomes on top containing an 
evolved antenna, ST5-33.142.7

Three ST5 spacecraft mounted for 
launch on a Pegasus XL rocket

The first computer-evolved 
hardware in space
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Genetic programming: Application

[J. R. Koza, et al. What’s AI Done for Me Lately? Genetic Programming’s 
Human-Competitive Results. IEEE Intelligent Systems, 18(3): 25-31, 2003.]

e.g.: design low-voltage balun circuit

“The best-of-run evolved circuit (see Figure 1) 

is roughly a fourfold improvement over the 

patented circuit in terms of our fitness measure. 

The evolved circuit is superior both in terms of 

its frequency response and harmonic distortion.”
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Differential evolution

[R. Storn, K. Price. Differential Evolution – A Simple and Efficient Adaptive Scheme for Global 
Optimization over Continuous Spaces. 1995]

Differential Evolution (DE)

R. Storn
International Computer Science Institute in Berkeley, USA

Representation Real-valued representation

Recombination Uniform crossover

Mutation Differential mutation

Parent selection Uniform random selection

Survivor selection Deterministic elitist replacement 
(parent vs. offspring)

Typically applied to nonlinear and nondifferentiable
continuous optimization
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Differential evolution

𝒗 = 𝒙 + 𝐹 ⋅ (𝒚 − 𝒛)

Randomly select three 
parent solutions 𝒙, 𝒚, 𝒛

Differential mutation

𝒗1, … , 𝒗𝜇𝒙1, … , 𝒙𝜇

1 0 1 1 1 0 0 0

0 0 1 0 1 0 1 0

1 0 1 1 1 0 1 0

𝒗𝑖

𝒙𝑖

Select the value from 𝒗𝑖 with 
prob. 𝑝 for each position

Uniform crossover 𝒖𝑖

𝒖1, … , 𝒖𝜇
recombination

selection

𝒙1
′ , … , 𝒙𝜇

′

the better one

mutation
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Differential evolution

𝒗 = 𝒙 + 𝐹 ⋅ (𝒚 − 𝒛)

Randomly select three 
parent solutions 𝒙, 𝒚, 𝒛

Differential mutation

random
base vector perturbation vector

best

𝒚 − 𝒛

𝒚 − 𝒛 + (𝒚′ − 𝒛′)

randomly 
select two

randomly select four

Variants of DE: DE/a/b/c 
• a is the base vector (rand 

or best)
• b is the number of 

different vectors to define 
perturbation vector

• c denotes the crossover 
scheme (“bin” is uniform 
crossover)  
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Particle swarm optimization

[J. Kennedy, R. Eberhart. Particle Swarm Optimization. 1995]

Particle Swarm Optimization (PSO)

J. Kennedy

Typically applied to nonlinear optimization

Representation Real-valued representation

Recombination None

Mutation Adding velocity vector

Parent selection Deterministic (each parent creates 
one offspring via mutation)

Survivor selection Generational (offspring replaces 
parents)

R. Eberhart

fish school

bird flock
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Particle swarm optimization

𝒙, 𝒗
Each member in the 
population (a list):

solution, 
named position

perturbation vector, 
named velocity 

the best position the 
member ever had

the best position the 
population ever had

Mutation

𝒗′ = 𝑤 ⋅ 𝒗 + 𝜙1𝐔𝟏 ⋅ 𝒚 − 𝒙 + 𝜙2𝐔𝟐 ⋅ 𝒛 − 𝒙

𝒙′ = 𝒙 + 𝒗′

particle 

inertia 
weight

learning rate for the 
personal influence

learning rate for the 
social influence

random 
matrices
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Particle swarm optimization

𝒙𝑖 , 𝒗𝑖 , 𝒚𝑖

The 𝑖-th member in the population (a list):

solution, 
named position

perturbation vector, 
named velocity 

particle 

personal best of the 
𝑖-th population member

𝒗𝑖
′ = 𝑤 ⋅ 𝒗𝑖 + 𝜙1𝐔𝟏 ⋅ 𝒚𝑖 − 𝒙𝑖 + 𝜙2𝐔𝟐 ⋅ 𝒛 − 𝒙𝑖

𝒙𝑖
′ = 𝒙𝑖 + 𝒗𝑖

′
Mutation

global best of 
the population

𝒚𝑖
′ = ൝

𝒙𝑖
′ if 𝑓 𝒙𝑖

′ < 𝑓(𝒚𝑖)

𝒚𝑖 Otherwise

The global best 𝒛 is updated 

if min 𝑓 𝒙1
′ , … , 𝑓 𝒙𝜇

′ < 𝑓(𝒛)
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Ant colony optimization

[M. Dorigo. Optimization, Learning and Natural Algorithms. 1992]

Ant Colony Optimization (ACO)

Typically applied to find good paths through graphs

M. Dorigo

Ants find the shortest path 
between their nest and a good 
source using pheromone trails

Solution representation path on a graph

Pheromone update

The pheromone of each edge is updated 
according to the number of ants traversing 
it and the lengths of constructed paths

Solution construction

An ant moves on the graph according to 
the pheromone and length of each edge
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Ant colony optimization

Solution construction

An ant moves on the graph according to 
the pheromone and length of each edge

For an ant 𝑘, if the current vertex is 𝑖, the probability of selecting 𝑗
as the next vertex is

𝑝𝑘 𝑖, 𝑗 = ൞

(𝜏(𝑖, 𝑗))𝛼(𝜂(𝑖, 𝑗))𝛽

∑𝑢∈𝐽𝑘(𝑖)
(𝜏(𝑖, 𝑢))𝛼(𝜂(𝑖, 𝑢))𝛽

, if 𝑗 ∈ 𝐽𝑘(𝑖)

0, otherwise

vertices which are 
connected to 𝑖 and 

unvisited by the ant 𝑘
pheromone

usually 1/𝑑(𝑖, 𝑗), where 𝑑(𝑖, 𝑗)
is the distance between 𝑖 and 𝑗
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Ant colony optimization

Pheromone update

The pheromone of each edge is updated according to the number 
of ants traversing it and the lengths of constructed paths

After the ants construct the paths, the pheromone is updated by

𝜏 𝑖, 𝑗 = 1 − 𝜌 ⋅ 𝜏 𝑖, 𝑗 +

𝑘=1

𝑚

Δ𝜏𝑘(𝑖, 𝑗)

Δ𝜏𝑘 𝑖, 𝑗 = ቐ

1

𝐶𝑘
, if 𝑖, 𝑗 ∈ 𝑅𝑘

0, otherwise

evaporation 
factor

number of ants, 
i.e., population size

edge set traversed 
by the ant 𝑘

length of the path 
constructed by the ant 𝑘

pheromone density 
laid on edge 𝑖, 𝑗 by 
the ant 𝑘
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Estimation of distribution algorithms

[S. Baluja. Population-Based Incremental Learning: A Method for Integrating Genetic 
Search Based Function Optimization and Competitive Learning. 1994]

Estimation of Distribution Algorithms (EDA)
Applied to diverse optimization

S. Baluja
Carnegie Mellon University

Model samplingModel building

EDA guide the search for the optimum by building and sampling 
explicit probabilistic models of promising candidate solutions

Select the fittest subset of sampled solutions
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Estimation of distribution algorithms

Model samplingModel building

Probabilistic model

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛)

Univariate: 𝑃 𝑥1 ⋅ 𝑃 𝑥2 ⋅ ⋯ ⋅ 𝑃 𝑥𝑛

Bivariate: ∏𝑖=1
𝑛 𝑃 𝑥𝑖 | 𝑝𝑎𝑖

Multivariate:  Bayesian network
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Summary

• Genetic algorithms

• Evolutionary strategies

• Evolutionary programming

• Genetic programming

• Differential evolution

• Particle swarm optimization

• Ant colony optimization

• Estimation of distribution algorithms

Historical EA 
variants

Recent EA 
variants
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