Last class

- Genetic algorithms
- Evolutionary strategies
- Evolutionary programming
- Genetic programming
- Differential evolution
- Particle swarm optimization
- Ant colony optimization
- Estimation of distribution algorithms

Heuristic Search and Evolutionary Algorithms

Lecture 9：Theoretical Analysis of Evolutionary Algorithms
 Chao Qian（钱超）

Associate Professor，Nanjing University，China

Email：qianc＠nju．edu．cn
Homepage：http：／／www．lamda．nju．edu．cn／qianc／

Theoretical analysis

Develop solid, rigorous, and reliable knowledge

- empirical studies are limited to the experimented cases
- overcome experiment difficulties
- derive provable conclusions

Particularly for evolutionary algorithms (EAs)

- when to use them?
- what are their merits and drawbacks?
- how different configurations affect their performance?
- design better EAs

Theoretical analysis of EAs

- EAs have been widely used in real applications

GA, ES, EP, GP, PSO, ACO, DE, EDA, parent selection \& reproduction

initialization evaluation \& survivor selection

- EAs are complex and randomized
> The components of EAs, e.g., mutation, recombination, selection and population, can be complex
> With the same input, the output by independent runs can be different
Theoretical analysis is very difficult

Schema theorem

Schema theorem [Holland, 1975]

- Proposed to explain how the population of EAs changes in steps

A schema H is a template with "\#"= "any", which defines a subspace
The order $o(H)$: the number of positions that do not have \#

The defining length $d(H)$: the distance between the outermost defined positions

	$o(H)$	$d(H)$
e.g. $01 \# 1 \#$	3	3
$\# 1 \# 1 \#$	2	2
$\# \# \# 1 \#$	1	0

Schema theorem

Schema theorem [Holland, 1975]

- Proposed to explain how the population of EAs changes in steps
Study the change of $m(H, t)$
the number of individuals belonging to H in the population at time t

Consider simple GA (SGA)

Representation	Binary representation
Recombination	One-point crossover
Mutation	Bit-wise mutation
Parent selection	Fitness proportional selection
Survivor selection	Generational

1. with prob. p_{c}, apply onepoint crossover, otherwise copy them
2. for each resulting solution, apply bit-wise mutation

Schema theorem

Schema theorem [Holland, 1975]

- Proposed to explain how the population of EAs changes in steps

Study the change of $m(H, t)$ of SGA
the probability of not disrupting H by bit-wise mutation

$$
E[m(H, t+1)] \geq m(H, t) \cdot \cdot \cdot\left(\overline{f_{H}} \cdot\left(1-\left(p_{c} \cdot \frac{d(H)}{n-1}\right)\right) \cdot\left(1-p_{m}\right)^{o(H)}\right.
$$

the average fitness of individuals in the population
the probability of not disrupting H by one-point crossover

Schema theorem

Schema theorem [Holland, 1975]

- Proposed to explain how the population of EAs changes in steps

Study the change of $m(H, t)$ of SGA

$$
E[m(H, t+1)] \geq m(H, t) \cdot \frac{\overline{f_{H}}}{\bar{f}} \cdot\left(1-\left(p_{c} \cdot \frac{d(H)}{n-1}\right)\right) \cdot\left(1-p_{m}\right)^{o(H)}
$$

Low-order and short schemata of above-average fitness will increase their instances from generation to generation

- Critiqued from several directions, and even wrong
- Cannot explain the global performance of EAs

Optimization-oriented theories

As an optimization algorithm, we concern:

- does an EA converge?
- how fast an EA converges?

Markov chain modeling

Markov chain modeling

Markov chain: $\quad P\left(\xi_{t} \mid \xi_{t-1}, \ldots, \xi_{1}, \xi_{0}\right)=P\left(\xi_{t} \mid \xi_{t-1}\right)$

Size of population space

involves at least one

What is the size of population space?

$$
\binom{|\mathcal{S}|+m-1}{m}
$$

Convergence

Does an EA converge to the optimal solutions?

An EA th 1

$$
\lim _{t \rightarrow+\infty} P\left(\xi_{t} \in \mathcal{X}^{*}\right)=1
$$

converges to the optimal solutions

1. uses lobal operators
2. preserves the best solution
$\forall x: P\left(\xi_{t+1} \in X^{*} \mid \xi_{t}=x\right)>0$
$P\left(\exists t: \xi_{t} \in X^{*}\right)=1-\prod_{t=0}^{+\infty} P\left(\xi_{t} \notin X^{*}\right)=1 \diamond \prod_{t=0}^{+\infty} P\left(\xi_{t} \notin \mathcal{X}^{*}\right)=0$
But life is limited! How fast does it converge?

Running time complexity

The leading theoretical aspect
[Auger \& Doerr, 2011; Neumann \& Witt, 2012]

Running time analysis
$\tau=\min \left\{t \geq 0 \mid \xi_{t} \in X^{*}\right\}$

The number of iterations until finding an optimal or approximate solution for the first time

Running time complexity

- The number of iterations \times the number of fitness evaluations in each iteration
- Usually grows with the problem size and expressed in asymptotic notations e.g., ($1+1$)-EA solving LeadingOnes: $O\left(n^{2}\right)$

Problem size

Running time complexity

The leading theoretical aspect
[Auger \& Doerr, 2011; Neumann \& Witt, 2012]

Running time analysis
$\tau=\min \left\{t \geq 0 \mid \xi_{t} \in X^{*}\right\}$

The number of iterations until finding an optimal or approximate solution for the first time

A quick guide to asymptotic notations:
Let g and f be two functions defined on the real numbers.

- $g \in O(f): \exists M>0$ such that $g(x) \leq M \cdot f(x)$ for all sufficiently large x
- $g \in \Omega(f): f \in O(g)$

$$
\begin{aligned}
& g \in O(f) \rightarrow g \leq f \\
& g \in \Omega(f) \rightarrow g \geq f \\
& g \in \Theta(f) \rightarrow g=f
\end{aligned}
$$

- $g \in \Theta(f): g \in O(f)$ and $g \in \Omega(f)$

Running time complexity

The leading theoretical aspect
[Auger \& Doerr, 2011; Neumann \& Witt, 2012]
The number of iterations until finding an optimal or approximate solution for the first time

EAs are randomized algorithms

- They do not perform the same operations even if the input is the same
- They do not output the same result if run twice!
τ is a random variable. We are interested in:
- $\mathrm{E}[\tau]$
- $P(\tau \leq T)$

Expectation

[Expectation] The expectation of a discrete random variable X is

$$
E[X]=\sum_{i} i \cdot P(X=i)
$$

where the sum is over all values in the range of X.
[Binomial Random Variable] A binomial random variable $X \sim B(n, p)$ with parameters n and p represents the number of successes in n independent experiments each of which succeeds with probability p.

$$
P(X=i)=\binom{n}{i} p^{i}(1-p)^{n-i} \quad E[X]=n p
$$

Expectation

[Expectation] The expectation of a discrete random variable X is

$$
E[X]=\sum_{i} i \cdot P(X=i)
$$

where the sum is over all values in the range of X.
[Geometric Random Variable] A geometric random variable X with parameter p represents the number of trials until the first success, where each trial succeeds with probability p.

$$
P(X=i)=(1-p)^{i-1} p \quad E[X]=1 / p
$$

Properties of expectation

[Law of Total Probability] For disjoint $B_{1}, B_{2}, \ldots, B_{n}$ that $\cup_{i=1}^{n} B_{i}=\Omega$,

$$
P(A)=\sum_{i} P\left(A \wedge B_{i}\right)=\sum_{i} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

[Law of Total Expectation] For disjoint $B_{1}, B_{2}, \ldots, B_{n}$ that $\cup_{i=1}^{n} B_{i}=\Omega$,

$$
E[X]=\sum_{i} E\left[X \mid B_{i}\right] P\left(B_{i}\right)
$$

[Linearity of Expectation] For any collection of discrete random variables $X_{1}, X_{2}, \ldots, X_{n}$ with finite expectations,

$$
E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]
$$

How to calculate the expectation

Two common ways of calculating $E[X]$:

- Let $X=X_{1}+X_{2}+\cdots+X_{n}$, then $E[X]=\sum_{i=1}^{n} E\left[X_{i}\right]$
- $E[X]=E[E[X \mid Y]]$

Example: [Binomial Random Variable] A binomial random variable $X \sim B(n, p)$ with parameters n and p represents the number of successes in n independent experiments each of which succeeds with probability p.

$$
P(X=i)=\binom{n}{i} p^{i}(1-p)^{n-i} \quad E[X]=n p
$$

Tail inequalities

[Markov's inequality] Let X be a random variable taking only non-negative values, and $E[X]$ its expectation. For any $t>0$,

$$
P(X \geq t) \leq E[X] / t
$$

[Chernoff bounds] Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent Poisson trials, and $X=\sum_{i=1}^{n} X_{i}$. For any $\delta>0$,

$$
\begin{aligned}
& P(X \geq(1+\delta) E[X]) \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{E[X]} \\
& P(X \leq(1-\delta) E[X]) \leq\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{E[X]}
\end{aligned}
$$

For a uniformly randomly sampled Boolean vector $\boldsymbol{x} \in\{0,1\}^{n}$, what is the probability of having no more than $2 n / 31$-bits?

Tail inequalities

[Markov's inequality] Let X be a random variable taking only non-negative values, and $E[X]$ its expectation. For any $t>0$,

$$
P(X \geq t) \leq E[X] / t
$$

[Chernoff bounds] Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent Poisson trials, and $X=\sum_{i=1}^{n} X_{i}$. For any $\delta>0$,

$$
\begin{aligned}
& P(X \geq(1+\delta) E[X]) \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{E[X]} \\
& P(X \leq(1-\delta) E[X]) \leq\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{E[X]}
\end{aligned}
$$

Union bound

[Union bound] For any finite or countably finite sequence of events E_{1}, E_{2}, \ldots, it holds that

$$
P\left(\bigcup_{i \geq 1} E_{i}\right) \leq \sum_{i \geq 1} P\left(E_{i}\right)
$$

Bit-wise mutation
For a Boolean vector $\boldsymbol{x} \in\{0,1\}^{n}$ with $i 0$-bits, after flipping each bit with prob. $1 / n$ independently, what is the upper bound on the probability of decreasing the number of 0 -bits by j ?
$E_{i}: j$ specific 0-bits of \boldsymbol{x} are flipped

$$
\leq P\left(\bigcup_{i \geq 1} E_{i}\right) \leq\binom{ i}{j}\left(\frac{1}{n}\right)^{j} \longrightarrow P\left(E_{i}\right)
$$

Example of running time analysis

one-bit mutation

An extremely simplified EA missing some features of real EAs
$(1+1)$-EA
1: $s \leftarrow$ a randomly drawn solution from \mathcal{X}
2: for $t=1,2, \ldots$ do
3: $\quad s^{\prime} \leftarrow$ mutate (s)
if $f\left(s^{\prime}\right) \geq f(s)$ then $s \leftarrow s^{\prime}$
end if
terminate if meets a stopping criterion end for
randomly choose one bit and change its value bit-wise mutation flip each bit with prob. $1 / n$ independently

no crossover

for maximization, allow neutral changes
find an optimal solution

Example of running time analysis

Probing problem OneMax:
count the number of 1 bits

$$
\text { fitness: } \quad f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}
$$

EAs do not have the knowledge of the problems only able to call $f(x)$
no difference with any other function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$

Upper bound analysis

$(1+1)$-EA with one-bit mutation

OneMax: $\quad f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}$

the solutions with the same number of 1-bits share the same f value

probability:1 probability: 0

Upper bound analysis

$(1+1)$-EA with one-bit mutation

OneMax: $\quad f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}$
the solutions with the same number of 1-bits share the same f value

solutions	solutions	solutions
with 0 1-bits	with 1 -bits	with 2 1-bits

solutions

with n 1-bits
$\mathcal{S}_{n}=\mathcal{S}^{*}$

Upper bound analysis

(1+1)-EA with one-bit mutation

OneMax: $f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}$
the solutions with the same number of 1-bits share the same f value

ions	solutions	solutions	solutions
	with 1 1-bits	with 21 -bits	s

Upper bound analysis

solutions	solutions	solutions
with 0 1-bits	with 1 1-bits	with 2 1-bits

1%

probability of transition

$$
p=1 \quad p=\frac{n-1}{n} \quad p=\frac{n-i}{n} \quad p=\frac{1}{n}
$$

expected \#iterations until the transition happens

$\frac{n}{n-i}$
$\frac{n}{1}$

Upper bound analysis

(1+1)-EA with one-bit mutation

OneMax: $f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}$
expected \#iterations until the transition happens
summed up

$$
\sum_{i=1}^{n} \frac{n}{i}=n H_{n} \sim n \ln n
$$

expected running time upper bound $O(n \log n)$

Lower bound analysis

(1+1)-EA with bit-wise mutation

OneMax: $f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}$
Let τ denote the running time, and $|x|_{0}$ denote the number of 0 -bits of the initial solution

Law of total expectation

$$
\begin{aligned}
E[\tau] & =\sum_{i=0}^{n} E\left[\left.\tau| | \boldsymbol{x}\right|_{0}=i\right] \cdot P\left(|\boldsymbol{x}|_{0}=i\right) \\
& \geq \sum_{i=n / 3}^{n} E\left[\left.\tau| | \boldsymbol{x}\right|_{0}=i\right] \cdot P\left(|\boldsymbol{x}|_{0}=i\right) \\
& \geq E\left[\left.\tau| | x\right|_{0}=n / 3\right] \cdot P\left(|x|_{0} \geq n / 3\right) \\
& \geq E\left[\left.\tau| | \boldsymbol{x}\right|_{0}=n / 3\right] \cdot 1 / 4 \\
& \quad P\left(|x|_{1} \leq 2 n / 3\right) \geq 1 / 4 \text { by Markov's inequality }
\end{aligned}
$$

Lower bound analysis

(1+1)-EA with bit-wise mutation

OneMax: $f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}$

$$
E[\tau] \geq E\left[\left.\tau| | x\right|_{0}=n / 3\right] 1 / 4
$$

In $(n-1) \ln n$ iterations, at least one of these $n / 30$-bits is never flipped

The optimum is not found lower bounded by

$$
\tau>(n-1) \ln n
$$

Lower bound analysis

$$
\begin{aligned}
E[\tau] & \geq E\left[\left.\tau| | x\right|_{0}=n / 3\right] 1 / 4 \\
& \geq(n-1) \ln n \cdot P(\tau>(n-1) \ln n) \cdot 1 / 4
\end{aligned}
$$

In $(n-1) \ln n$ iterations, at least one of these $n / 30$-bits is never flipped

- $1-1 / n$: a specific 0 -bit is not flipped
- $(1-1 / n)^{t}$: a specific 0 -bit is never flipped in t iterations
- $1-(1-1 / n)^{t}$: a specific 0 -bit is flipped at least once in t iterations
- $\left(1-(1-1 / n)^{t}\right)^{n / 3}$: any of these $n / 30$-bits is flipped at least once in t iterations
- $1-\left(1-(1-1 / n)^{t}\right)^{n / 3}$

$$
t=(n-1) \ln n
$$

Lower bound analysis

(1+1)-EA with bit-wise mutation

OneMax: $f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}$

$$
E[\tau] \geq \mathbb{E}\left[\left.\tau| | x\right|_{0}=n / 31\right.
$$

$$
\geq(n-1) \ln n P(\tau>(n-1) \ln n) \cdot 1 / 4
$$

$$
(1-1 / n)^{n-1} \geq(n-1) \ln n \cdot\left(1-\left(1-(1-1 / n)^{(n-1) \ln n}\right)^{n / 3}\right) \cdot 1 / 4
$$

$$
\geq 1 / e \quad \longrightarrow(n-1) \ln n \cdot\left(1-\left(1-e^{-\ln n}\right)^{n / 3}\right) \cdot 1 / 4
$$

$$
(1-1 / n)^{n}=(n-1) \ln n \cdot\left(1-(1-1 / n)^{n / 3}\right) \cdot 1 / 4
$$

$$
\leq 1 / e \longrightarrow \geq(n-1) \ln n \cdot\left(1-e^{-1 / 3}\right) \cdot 1 / 4 \in \Omega(n \log n)
$$

Example of running time analysis

For (1+1)-EA solving OneMax

$$
f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}
$$

If using one-bit mutation, expected running time upper bound $O(n \log n)$

If using bit-wise mutation, expected running time lower bound $\quad \Omega(n \log n)$

Not asymptotically faster

Running time analysis tools

When facing new situations, analyses starting from scratch are quite difficult

We need general running time analysis tools to guide the analysis

- Fitness level
- Drift analysis
- Switch analysis

Summary

- Schema theorem
- Markov chain modeling
- Convergence
- Running time complexity
- Expectation and tail inequalities
- Example of running time analysis

References

- A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Chapter 16.
- K. A. De Jong. Evolutionary Computation - A Unified Approach. Chapter 6.
- G. Rudolph. Finite Markov chain results in evolutionary computation: A tour d'horizon. Fundamenta Informaticae, 1998, 35(1-4): 67-89.

