II

Lecture 10: Learning 1

Previously...

Search

Path-based search
lterative improvement search

Knowledge
Propositional Logic
First Order Logic (FOL)

Uncertainty
Bayesian network

Learning

Learning is essential for unknown environments,
i.e., when designer lacks omniscience

Learning is useful as a system construction method,
I.e., expose the agent to reality rather than trying to write it down

Learning modifies the agent’s decision mechanisms to improve performance

Performance standard

—— D

Critic |- Sensors =
feedback

m
=
changes <.
Learning ™ Performance o
element (e element >
knowledge 3
learning o)
goals =
' ==

Problem experiments

generator

Y
Qgent Effectors

Attribute-based representations

color place of origin

<\

weight <« _

shape

/ assortment
/

_—> transport

—> preservation

~~ | |
taste ?/ / \ growing period

price ? weather

Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.)
E.g., situations where | will/won’t wait for a table:

Example Attributes Target

Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type | Est | WillWait
X, T| F | F T | Some| $%% F T | French| 0-10 T
X5 T | F | F T | Full $ F F | Thai | 30-60 F
X3 F| T | F| F |Some| $§ F F | Burger| 0-10 T
Xy T| F | T | T | Ful $ F F | Thai | 10-30 T
X T| F | T | F | Full | $%% F T | French| >60 F
X F| T | F T | Some| $% T T | Italian | 0-10 T
X7 F| T | F F | None| § T F | Burger| 0-10 F
X3 F| F | F T |Some| 3% T T | Thai | 0-10 T
Xy F| T | T | F | Ful $ T F | Burger| >60 F
X10 T | T | T | T | Full | 3%% F T | Italian | 10-30 F
X1 F | F F F | None| § F F | Thai | 0-10 F
X2 T | T | T | T | Ful $ F F | Burger| 30-60 T

Classification of examples is positive (T) or negative (F)

Learning task: Classification

Features: color, weight
Label: taste is sweet (positive/+) or not (negative/-)

1 @ (color, weight) = sweet ?
© o e ... © X —{-1,+1}
%)' |" c c “| .
[N+ o ; ground-truth function f
; g ‘s~~ 9 0 ','
(— Q Q examples/training data:
| > {(wlayl)w"a(mmyym)}
color Yi — f(wz)

learning: find an f that is close to f

Learning task: Regression

Features: color, weight
Label: price [0,1]

1 o (color, weight) — price
® @ X — |0, +1]
» O
S »
'% @ ground-truth function f
O .
e o examples/training data:
| > {(wlayl)a“'v(mm?y’m)}
color yi = f(x;)

learning: find an f that is close to f

Learning task: Regression

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

f(x)
A

i

Learning task: Regression

Construct/adjust / to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

f(x)
A

> X

Learning task: Regression

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

J(x)
\

> X

Learning task: Regression

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

J(x)
A

= X

how to learn? why it can learn?

Learning algorithms

Decision tree

Neural networks Why different classifiers?
Linear classifiers heuristics
Bayesian classifiers viewpoint

Lazy classifiers performance

Decision tree learning

what is a decision tree

One possible representation for hypotheses
E.g., here is the “true” tree for deciding whether to wait:

Patrons?
None ome Full
WaitEstimate?
>60 30-6 0-10

Alternate? Hungry'?

I\VWS
Reservation? Fri/Sat? Alternate?

.”.A- -A-S

Expressiveness

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row — path to leaf:

A B AxorB

/\
F F F

= B B
E F F
F
Trivially, there is a consistent decision tree for any training set

w/ one path to leaf for each example (unless f nondeterministic in)
but it probably won't generalize to new examples

Prefer to find more compact decision trees

Hypothesis spaces
(all possible trees)

How many distinct decision trees with n Boolean attributes??

— number of Boolean functions
— number of distinct truth tables with 2" rows = 22"

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry A ~Rain)?7?

Each attribute can be in (positive), in (negative), or out
— 3" distinct conjunctive hypotheses

More expressive hypothesis space
— increases chance that target function can be expressed (&)
— increases number of hypotheses consistent w/ training set
= may get worse predictions

Decision tree learning algorithm

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose “most significant” attribute as root of (sub)tree

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default
else if all examples have the same classification then return the classification

else if attributes is empty then return MODE(examples)

else
best «— CHOOSE- ATTRIBUTE(attributes, examples)
tree <— a new decision tree with root test best
for each value v; of best do
examples; < {elements of ezamples with best = v;}
subtree < DTL(examples;, attributes — best, MODE(examples))
add a branch to tree with label v; and subtree subtree

return tree

Choosing an attribute

ldea: a good attribute splits the examples into subsets that are (ideally) “all
positive” or “all negative”

000000 000000
00000 000000
Patrons? Type?
None Some Full French Italian Thai Burger
0000 00 O © 00 00
0 000 O @ 00 0

Patrons? is a better choice—gives information about the classification

Information

Information answers questions

The more clueless | am about the answer initially, the more information is
contained in the answer

Scale: 1 bit = answer to Boolean question with prior (0.5, 0.5)
Information in an answer when prior is (Py,..., P,) is
H(Py,..., P)) = Sl — Plog, P

(also called entropy of the prior)

Information

Suppose we have p positive and 1 negative examples at the root
= H((p/(p+n),n/(p+n))) bits needed to classify a new example
E.g., for 12 restaurant examples, p =71 =0 so we need 1 bit

An attribute splits the examples E into subsets F;, each of which (we hope)
needs less information to complete the classification

Let £, have p; positive and n; negative examples
= H((p;/(pi+mn;),n;/(pi+n;))) bits needed to classify a new example
= expected number of bits per example over all branches is
Z' Di T 1Ny
1 p _|_ n

For Patrons?, this is 0.459 bits, for T'ype this is (still) 1 bit

H({pi/(pi +ni),ni/(pi +15)))

= choose the attribute that minimizes the remaining information needed

Example

__id | color | taste |

1 red sweet
COIOr D ‘ —> taSte ? 2 red sweet
3 half-red sweet
half-red not-red 4 not-red sweet

5 not-red not-sweet
c 6 half-red sweet

c c c Q 7 red not-sweet

c Q Q Q Q 8 not-red not-sweet
9 not-red sweet

10 half-red not-sweet
11 red sweet

12 half-red not-sweet

information gain: 13 not-red not-sweet

entropy before split: H(X) = — Zratia(classi) Inratio(class;) = 0.6902

entropy after spilit: I(X;split) = Z ratio(split;)H (split;)

4 4 D
= —0.9623 + —0.6931 4+ —0.6730 = 0.6452

information gain: 13 13

13
Gain(X; split) = H(X) — I(X;split) = 0.045

Decision tree learning algorithm baias
Aim: find a small tree consistent with the training examples ®® °%%° Ceee

Idea: (recursively) choose “most significant” attribute as root of (sub)tree

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default
else if all examples have the same classification then return the classification

else if attributes is empty then return MODE(examples)

else
best «— CHOOSE- ATTRIBUTE(attributes, examples)
tree <— a new decision tree with root test best
for each value v; of best do
examples; < {elements of ezamples with best = v;}
subtree < DTL(examples;, attributes — best, MODE(examples))
add a branch to tree with label v; and subtree subtree

return tree

Example of learned tree

Decision tree learned from the 12 examples:

Patrons?
None NI
Hungry?
Yes No

Type?

French i Burger
Fri/Sat?

No Yes

Substantially simpler than “true” tree—a more complex hypothesis isn't jus-
tified by small amount of data

Continuous attribute

weight < > taste ?

1 110 sweet
2 105 sweet
3 100 sweet
4 93 sweet
5 80 not-sweet
6 98 sweet
7 95 not-sweet
8 102 not-sweet
9 98 sweet
10 90 not-sweet
11 108 sweet
12 101 not-sweet
13 89 not-sweet

— ee—oe8-do—ocoo—

80 110

Continuous attribute

—©

80 not-sweet . sweet 110

for every split point

information gain:
entropy before split: H(X) = — Zratio(classi) In ratio(class;) = 0.6902

1

entropy after split: I(X;split) = g ratio(split;)H (split;)
5 8
— 2.0.5004 + —0.5623 = 0.
130 5004 + 130 5623 = 0.29385

information gain:
Gain(X;split) = H(X) — I(X;split) = 0.1517

Non-generalizable feature

.

1
2
3
4
5
6
7
8
9

[T T G
w N R O

red 110 sweet

red 105 sweet
halfred 100 sweet the system may not know non-
feEe | 2Y | s generalizable features
not-red 80 not-sweet
1alf-red 98 sweet

red 95 not-sweet
not-red 102 not-sweet IG — H(X) — O
not-red 98 sweet
half-red 90 not-sweet

red 108 sweet
half-red 101 not-sweet
not-red 89 not-sweet

Gain ratio as a correction:
H(X) — I(X;split)
IV (split)

Gain ratio(X) =

IV (split) = H (split)

Alternative to information: Gini index

Gini index (CART)
Gini: Gini(X)=1— sz

#left
#all

IG = H() —0.5192 IG = H(X —06132
Gini = 0.3438 Gint = 0. 4427

#right

Gini after split: o

Gini(left) +

Gini(right)

S OSASR CRQP Lo

IG = H(X) — 0.5514
Gini = 0.3667

Training error v.s. Information gain

training error: 4

information gain: IG = H(X) — 0.5192

S OS50 SRF >

training error: 4

information gain: IG = H(X) — 0.5514

training error is less smooth

Decision tree learning algorithms

ID3: iInformation gain

C4.5: gain ratio, handling
missing values

Ross Quinlan

CART: gini index

/ ~

Jerome H. Friedman

Leo Breiman 1928-2005

Nearest Neighbor Classifier

Nearest neighbor
what looks similar are similar
X
O

A
A
AAA

Nearest neighbor

for classification:

1-nearest neighbor: k-nearest neighbor:
© 7 (f* o " o‘k)
O O
A A
A A
AA A A A A

Predict the label as that of the NN
or the (weighted) majority of the k-NN

Nearest neighbor

for regression:

1-nearest neighbor: k-nearest neighbor:
© 7 (f* o " o‘k)
O O
A A
A A
AA A A A A

Predict the label as that of the NN
or the (weighted) average of the k-NN

Search for the nearest neighbor

Linear search

* —
\EA o

ONONONORONORONONO

n times of distance calculations

O(dnIn k)
d is the dimension, nis the number of samples

Nearest neighbor classifier

» as classifier, asymptotically less than 2 times of the
optimal Bayes error

» naturally handle multi-class

» No training time

» nonlinear decision boundary

» slow testing speed for a large training data set

» have to store the training data
» sensitive to similarity function

nonparametric method

Naive Bayes Classifier

Bayes rule

classification using posterior probability

for binary classification
+1, Ply=41|x) > P(
flz) = 4§ -1, Py =+1]x) < P(

random, otherwise

In general

f(z) = argmax P(y | x)

y)P(y)/P(x)

Y
= arg max P(x
Y

= arg max P(x
Y

Y)

P

(y)

—1 | x)
—1|)

Y
Y

how the probabilities
be estimated

Naive Bayes

f(z) = ATg max Pz | y)P(y)

estimation the a priori by frequency:

P(y) & Ply) = - 3 Ty =)

Consider a very simple case

color <
__id | color
1 red
2 red
3 half-red
4 not-red
5 not-red
6 half-red
7 red
8 not-red
9 not-red
10 half-red
11 red
12 half-red
13 not-red

sweet

sweet
not-sweet
not-sweet
not-sweet
not-sweet

sweet
not-sweet
not-sweet
not-sweet

sweet
not-sweet
not-sweet

> taste ?

(
(half-red | sweet) = 0
(not-red | sweet) = 0
(sweet) = 4/13

P(red | not-sweet) = 0
(half-red | not-sweet) = 4/9
(not-red | not-sweet) = 5/9
(

Consider a very simple case

id color taste

. red sweet what the f would be?

2 red sweet

3 half-red not-sweet

4 not-red not-sweet _

5 not-red not-sweet f(CE) o arg maXP(w | y)P(y)
6 half-red not-sweet

7 red sweet

8 not-red not-sweet

9 not-red not-sweet P (red | Sweet)P (Sweet) =4 / 13

10 TR | e P(red | not-sweet) P(not-sweet) = 0
11 red sweet

12 half-red not-sweet

13 not-red not-sweet

P(half-red | sweet) P(sweet) = 0

9 4
X =
13 13

O | =~

P(half-red | not-sweet) P(not-sweet) =

perfect
but not realistic

Naive Bayes

f(z) = ATg max Pz | y)P(y)

estimation the a priori by frequency:

P(y) & Ply) = - 3 Ty =)

assume features are conditional independence given the
class (naive assumption):

P(z|y) = P(x1,72,...,7, | Y)

decision function:

f(z) = argmax P(y) | | P(z: | y)

Y i

Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}

T T
3 4 yes P(y = yes) = 2/5
2 3 yes P(y =no) =3/5
0 3 no P(color =3 |y =yes) =1/2
3 2 no .
1 4 no

f(y | color = 3, weight = 3) —
P(color =3 | y = yes)P(weight =3 | y = yes)P(y = yes) = 0.5 x 0.5 x 0.4 = 0.1
P(color = 3 | y = no)P(weight = 3 | y = no)P(y = no) = 0.33 x 0.33 x 0.6 = 0.06

f(y | color =0, weight =1) —

P(color =0 |y = yes)P(weight =1 | y = yes)P(y = yes) = 0
P(color =0 |y =no)P(weight =1 |y =no)P(y =no) =0

Naive Bayes

color={0,1,2,3} weight={0,1,2,3,4}
I _
es oo | weer?

eet?
yes
yes
yes
no

yes
no

-+
w N » O

3
2
0
3

yes
1

A N W W s

no

smoothed (Laplacian correction) probabilities:

P(color =0 |y =yes) = (0+1)/(2+4) forcounting frequencryll,
assume every event nhas
Py =yes) = (2+1)/(5 +2) happened once.

f(y | color =0, weight =1) —

1 3
P(color =0 | y = yes)P(weight =1 | y = yes)P(y = yes) = X E X g = 0.01
2 1 4
P(color =0 | y = no)P(weight =1 | y = no)P(y = no) = X g X5 = 0.02

Naive Bayes

advantages:
very fast:
scan the data once, just count: O(mn)
store class-conditional probabilities: O(n)

test an instance: O(cn) (¢ the number of classes)
good accuracy in many cases
parameter free
output a probability
naturally handle multi-class
disadvantages:
the strong assumption may harm the accuracy
does not handle numerical features naturally

