

Lecture 11: Learning 2

Learning

Decision tree learning

Nearest Neighbors

Naive Bayes

Question:

why we can learn?

what can be observed:

on examples/training data:

$$\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\} \quad y_i = f(\mathbf{x}_i)$$

e.g. training error

$$\epsilon_t = \frac{1}{m} \sum_{i=1}^m I(h(\mathbf{x}_i) \neq y_i)$$

what is expected:

over the whole distribution: generalization error

$$\epsilon_g = \mathbb{E}_x[I(h(\mathbf{x}) \neq f(\mathbf{x}))]$$

$$= \int_{\mathcal{X}} p(x) I(h(\mathbf{x}) \neq f(\mathbf{x})) \mathrm{d}x$$

what can be observed:

on examples/training data:

$$\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\} \quad y_i = f(\mathbf{x}_i)$$

e.g. training mean square error/MSE

$$\epsilon_t = \frac{1}{m} \sum_{i=1}^m (h(\mathbf{x}_i) - y_i)^2$$

what is expected:

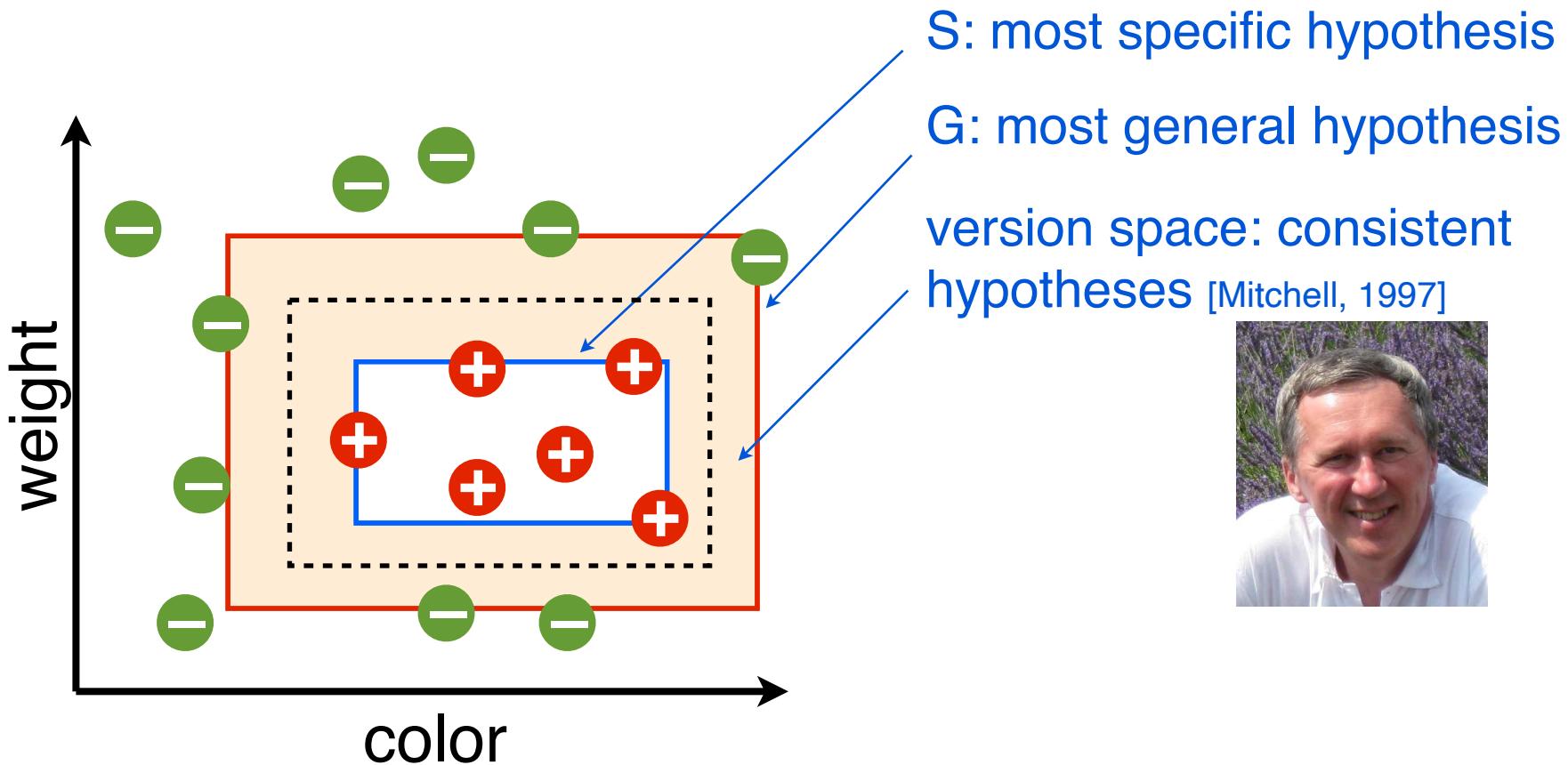
over the whole distribution: generalization MSE

$$\epsilon_g = \mathbb{E}_x (h(\mathbf{x}) \neq f(\mathbf{x}))^2$$

$$= \int_{\mathcal{X}} p(x) (h(\mathbf{x}) - f(\mathbf{x}))^2 dx$$

The version space algorithm

an abstract view of learning algorithms

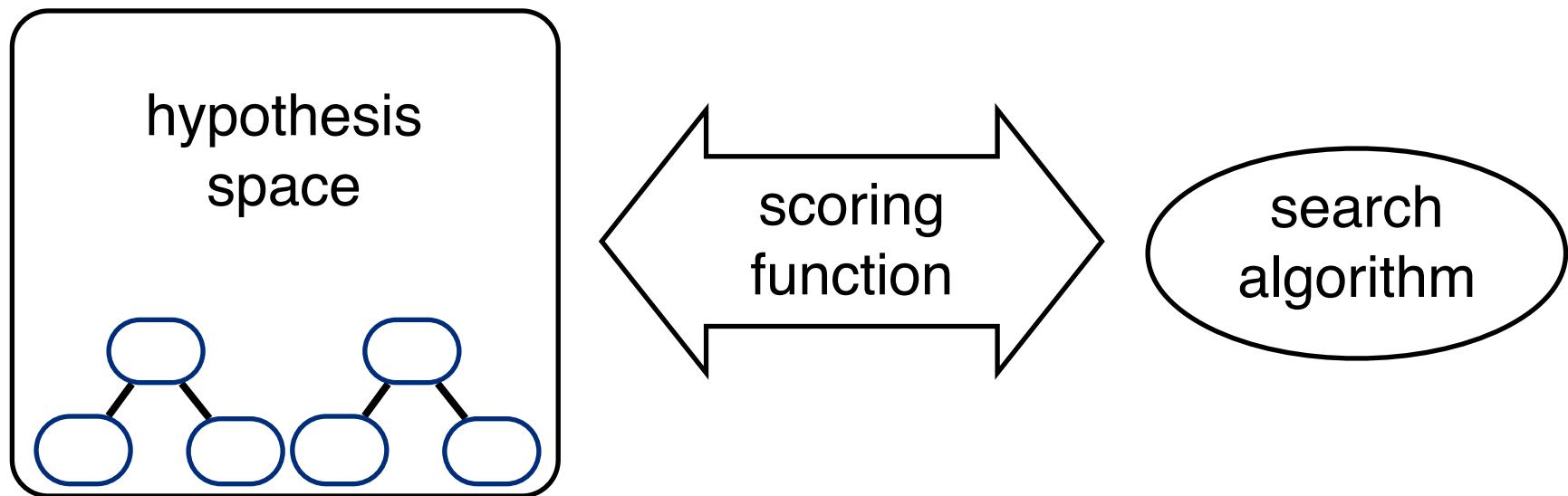


*remove the hypothesis that are inconsistent with the data,
select a hypothesis according to learner's bias*

The version space algorithm

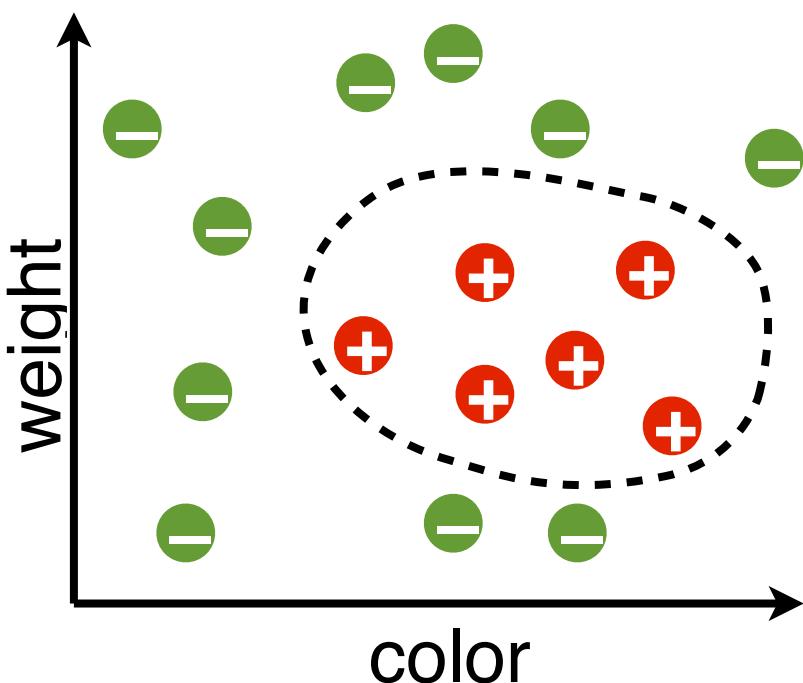
an abstract view of learning algorithms

three components of a learning algorithm

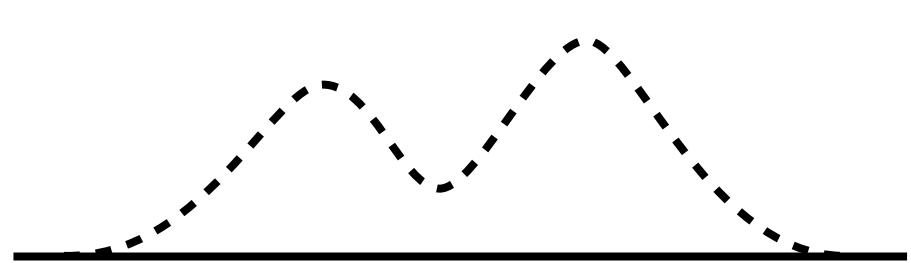


The i.i.d. assumption:

all training examples and future (test) examples are drawn *independently* from an *identical distribution*, the label is assigned by a *fixed ground-truth function*



unknown but fixed distribution D



Bias-variance dilemma

Suppose we have 100 training examples
but there can be different training sets

Start from the expected training MSE:

$$E_D[\epsilon_t] = E_D \left[\frac{1}{m} \sum_{i=1}^m (h(\mathbf{x}_i) - y_i)^2 \right] = \frac{1}{m} \sum_{i=1}^m E_D [(h(\mathbf{x}_i) - y_i)^2]$$

(assume no noise)

$$\begin{aligned}
& E_D [(h(\mathbf{x}) - f(\mathbf{x}))^2] \\
&= E_D [(h(\mathbf{x}) - E_D[h(\mathbf{x})] + E_D[h(\mathbf{x})] - f(\mathbf{x}))^2] \\
&= E_D [(h(\mathbf{x}) - E_D[h(\mathbf{x})])^2] + E_D [(E_D[h(\mathbf{x})] - f(\mathbf{x}))^2] \\
&\quad + E_D [2(h(\mathbf{x}) - E_D[h(\mathbf{x})])(E_D[h(\mathbf{x})] - f(\mathbf{x}))] \\
&= E_D [(h(\mathbf{x}) - E_D[h(\mathbf{x})])^2] + E_D [(E_D[h(\mathbf{x})] - f(\mathbf{x}))^2]
\end{aligned}$$

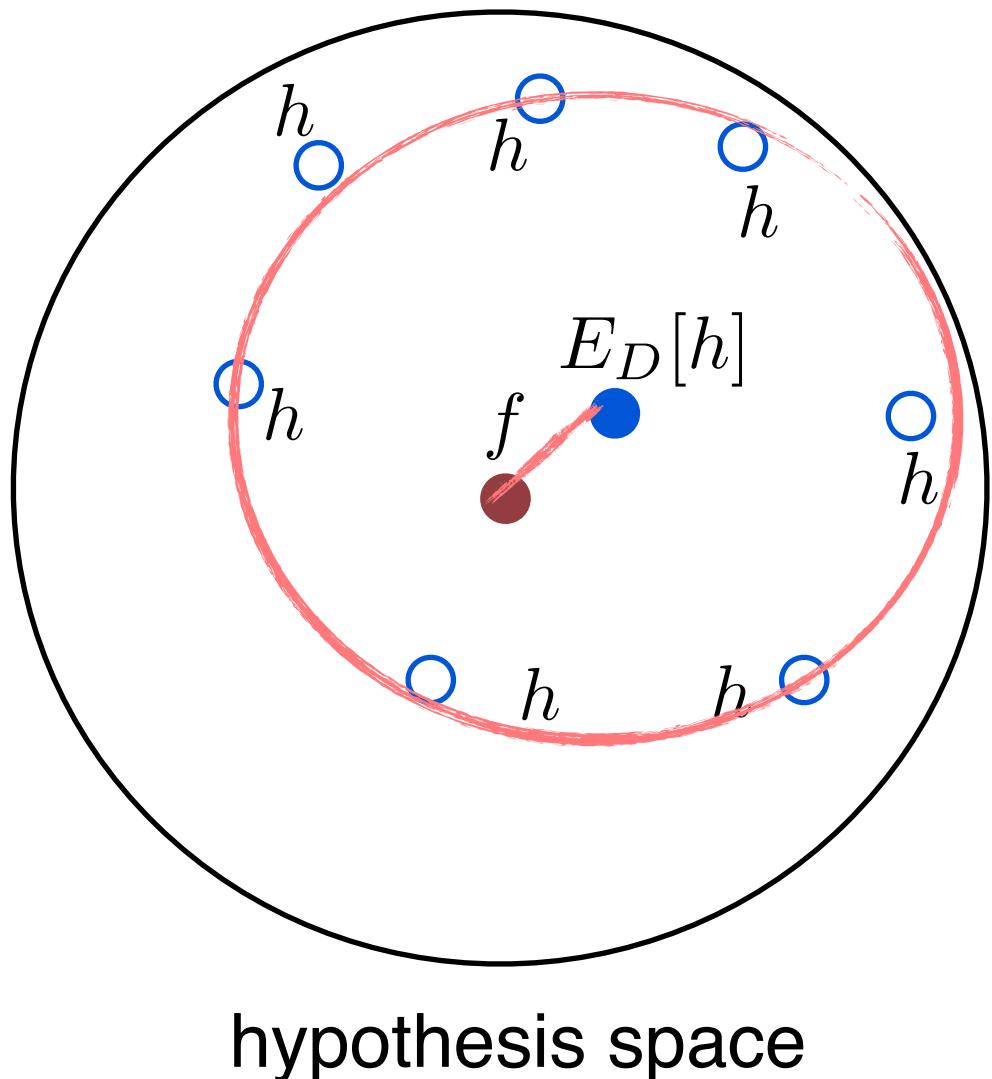
Bias-variance dilemma

larger hypothesis space

⇒

lower bias

but higher variance

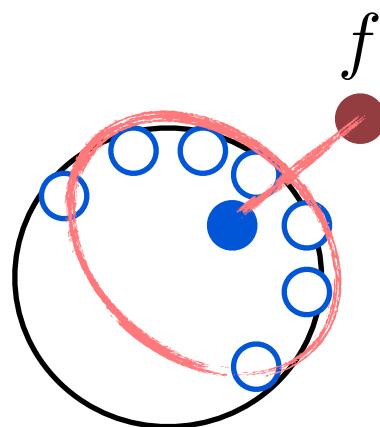


Bias-variance dilemma

smaller hypothesis space

=>

smaller variance
but higher bias

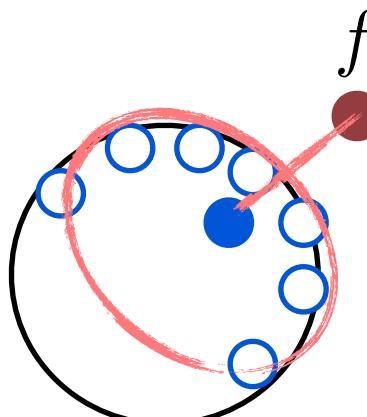
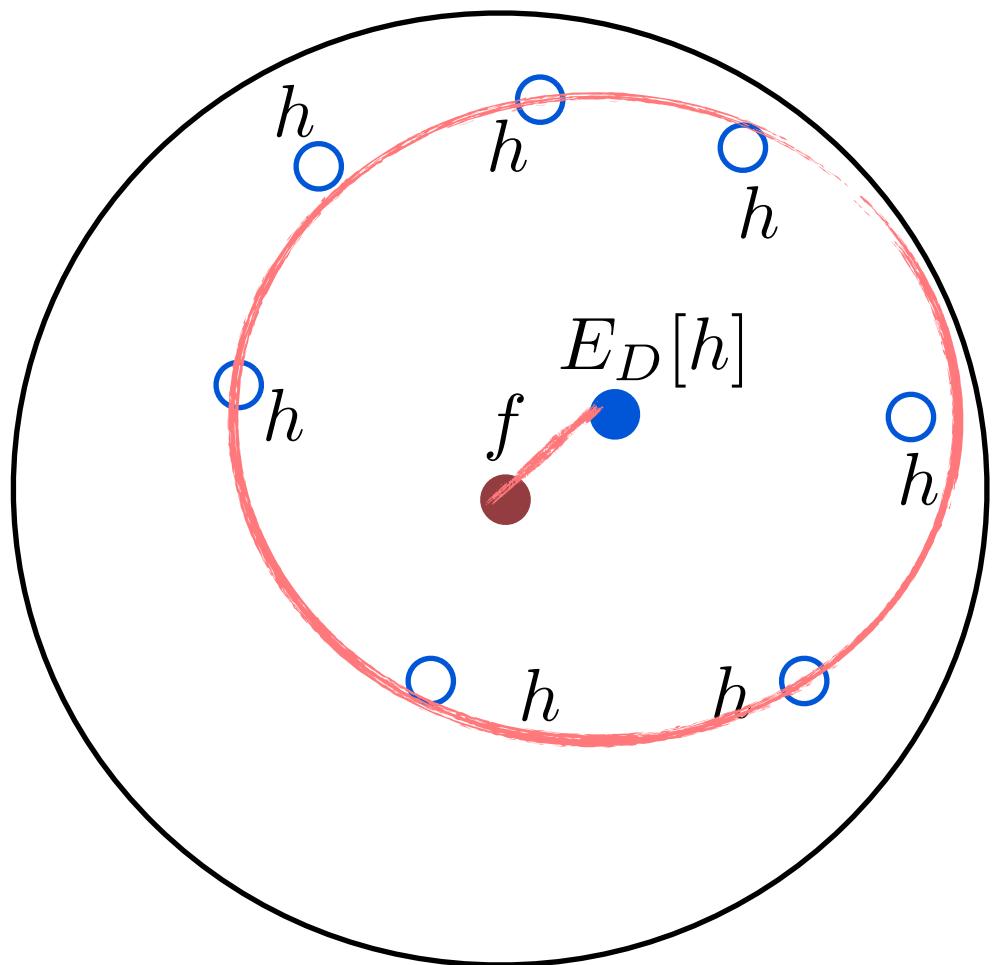


hypothesis space

Bias-variance dilemma

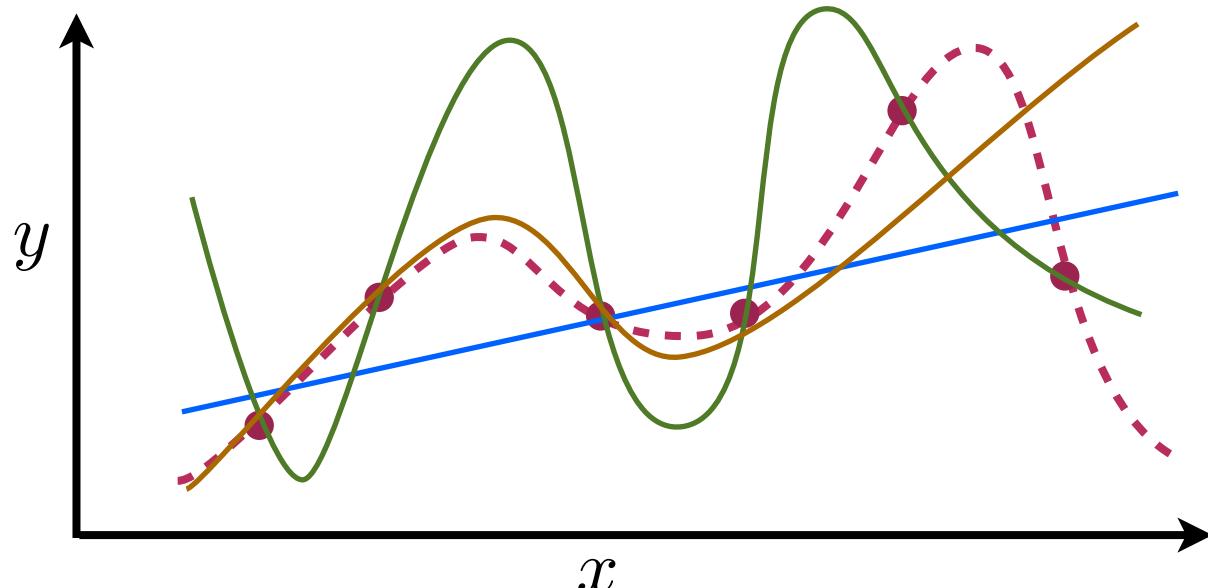
$$E_D [(h(\mathbf{x}) - E_D[h(\mathbf{x})])^2] \quad E_D [(E_D[h(\mathbf{x})] - f(\mathbf{x}))^2]$$

variance bias^2



Overfitting and underfitting

training error v.s. hypothesis space size



linear functions: high training error, small space

$$\{y = a + bx \mid a, b \in \mathbb{R}\}$$

higher polynomials: moderate training error, moderate space

$$\{y = a + bx + cx^2 + dx^3 \mid a, b, c, d \in \mathbb{R}\}$$

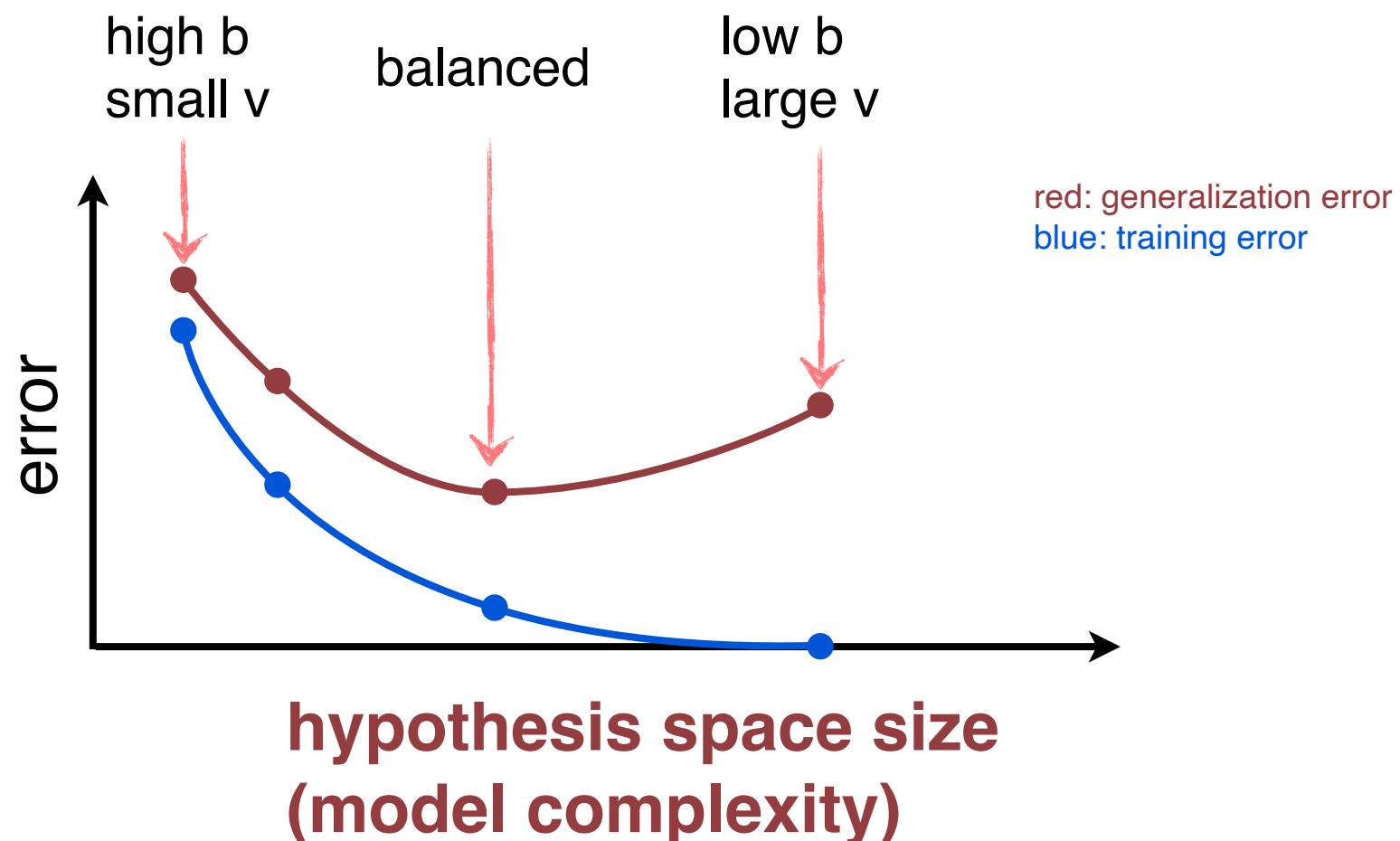
even higher order: no training error, large space

$$\{y = a + bx + cx^2 + dx^3 + ex^4 + fx^5 \mid a, b, c, d, e, f \in \mathbb{R}\}$$

Overfitting and bias-variance dilemma

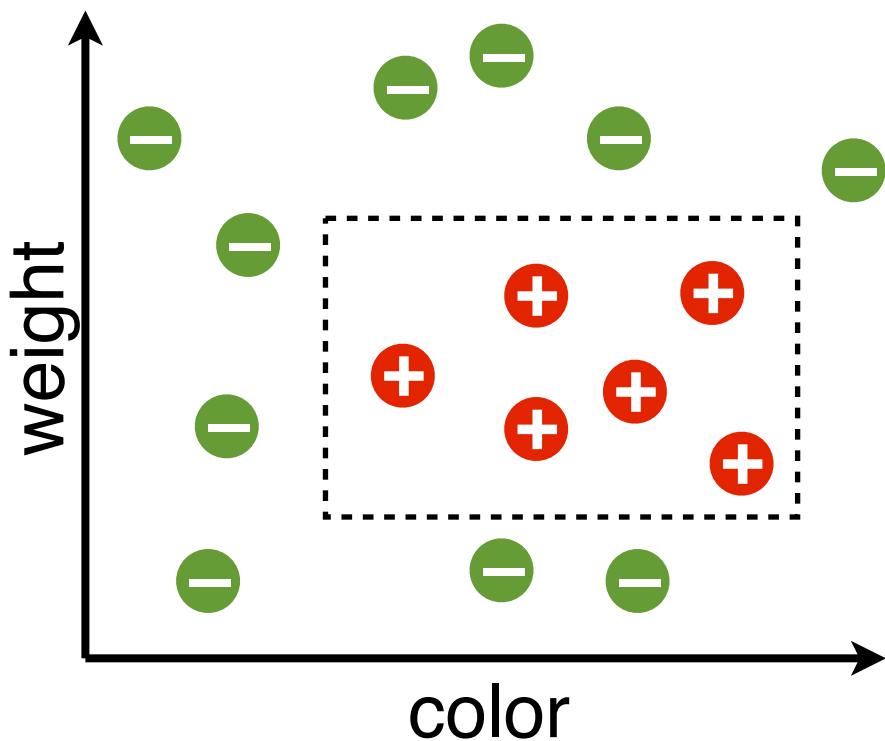
$$E_D [(h(\mathbf{x}) - E_D[h(\mathbf{x})])^2] \quad E_D [(E_D[h(\mathbf{x})] - f(\mathbf{x}))^2]$$

variance bias^2



Generalization error

assume i.i.d. examples, and the ground-truth hypothesis is a box



the error of picking a consistent hypothesis:

with probability at least $1 - \delta$

$$\epsilon_g < \frac{1}{m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$$

smaller generalization error:

- ▶ more examples
- ▶ smaller hypothesis space

Generalization error

for one h

What is the probability of

h is consistent
 $\epsilon_g(h) \geq \epsilon$

assume h is **bad**: $\epsilon_g(h) \geq \epsilon$

h is consistent with 1 example:

$$P \leq 1 - \epsilon$$

h is consistent with m example:

$$P \leq (1 - \epsilon)^m$$

Generalization error

h is consistent with m example:

$$P \leq (1 - \epsilon)^m$$

There are k consistent hypotheses

Probability of choosing a bad one:

h_1 is chosen and h_1 is bad

$$P \leq (1 - \epsilon)^m$$

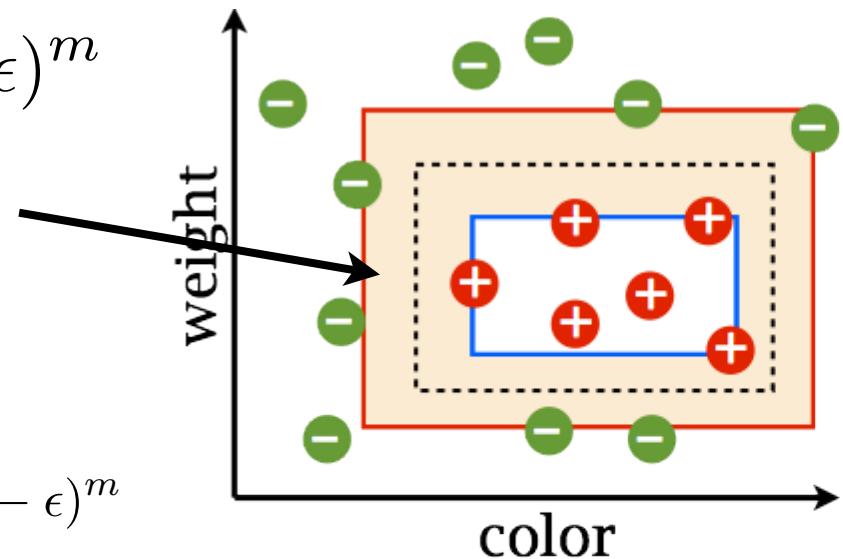
h_2 is chosen and h_2 is bad

$$P \leq (1 - \epsilon)^m$$

...

h_k is chosen and h_k is bad

$$P \leq (1 - \epsilon)^m$$



overall:

$\exists h: h$ can be chosen (consistent) but is bad

Generalization error

h_1 is chosen and h_1 is bad $P \leq (1 - \epsilon)^m$

h_2 is chosen and h_2 is bad $P \leq (1 - \epsilon)^m$

...

h_k is chosen and h_k is bad $P \leq (1 - \epsilon)^m$

overall:

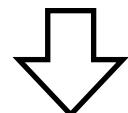
$\exists h: h$ can be chosen (consistent) but is bad

Union bound: $P(A \cup B) \leq P(A) + P(B)$

$P(\exists h \text{ is consistent but bad}) \leq k \cdot (1 - \epsilon)^m \leq |\mathcal{H}| \cdot (1 - \epsilon)^m$

Generalization error

$$P(\exists h \text{ is consistent but bad}) \leq k \cdot (1 - \epsilon)^m \leq |\mathcal{H}| \cdot (1 - \epsilon)^m$$



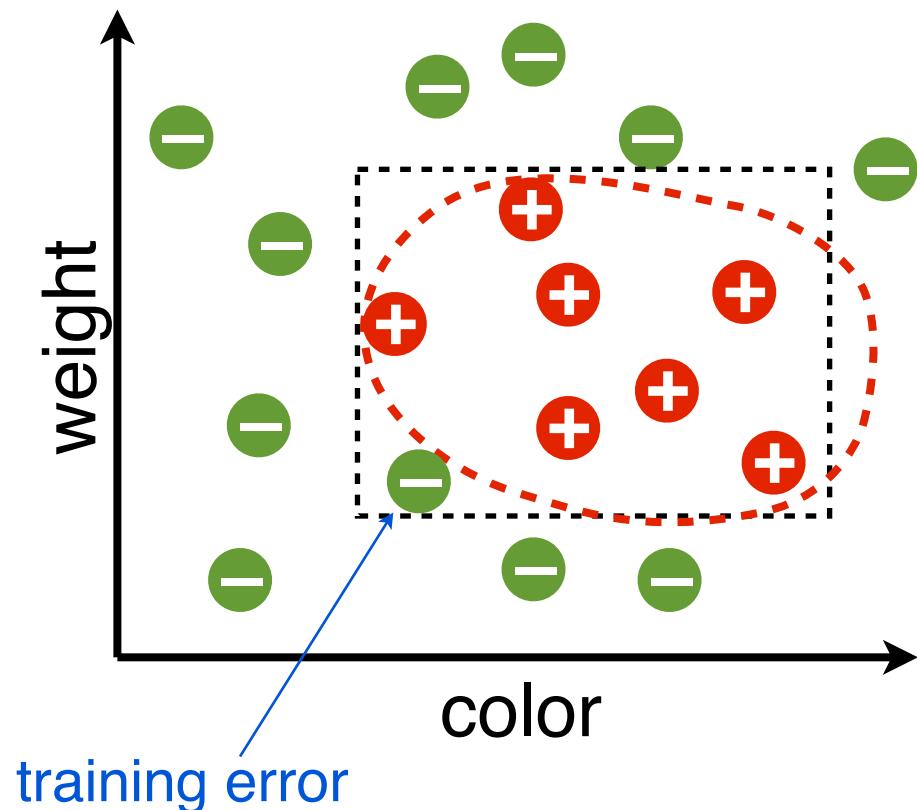
$$P(\epsilon_g \geq \epsilon) \leq \frac{|\mathcal{H}| \cdot (1 - \epsilon)^m}{\delta}$$

with probability at least $1 - \delta$

$$\epsilon_g < \frac{1}{m} \cdot \left(\ln |\mathcal{H}| + \ln \frac{1}{\delta} \right)$$

Inconsistent hypothesis

What if the ground-truth hypothesis is
NOT a box: **non-zero training error**



smaller generalization error:

with probability at least $1 - \delta$

$$\epsilon_g < \epsilon_t + \sqrt{\frac{1}{m} (\ln |\mathcal{H}| + \ln \frac{1}{\delta})}$$

- ▶ more examples
- ▶ smaller hypothesis space
- ▶ **smaller training error**

Hoeffding's inequality

X be an i.i.d. random variable

X_1, X_2, \dots, X_m be m samples $X_i \in [a, b]$

$\frac{1}{m} \sum_{i=1}^m X_i - \mathbb{E}[X] \leftarrow$ difference between sum and expectation

$$P\left(\frac{1}{m} \sum_{i=1}^m X_i - \mathbb{E}[X] \geq \epsilon\right) \leq \exp\left(-\frac{2\epsilon^2 m}{(b-a)^2}\right)$$

Generalization error

for one h

$$X_i = I(h(x_i) \neq f(x_i)) \in [0, 1]$$

$$\frac{1}{m} \sum_{i=1}^m X_i \rightarrow \epsilon_t(h) \quad \mathbb{E}[X_i] \rightarrow \epsilon_g(h)$$

$$P(\epsilon_t(h) - \epsilon_g(h) \geq \epsilon) \leq \exp(-2\epsilon^2 m)$$

$$P(\epsilon_t - \epsilon_g \geq \epsilon)$$

$$\leq P(\exists h \in |\mathcal{H}| : \epsilon_t(h) - \epsilon_g(h) \geq \epsilon) \leq \frac{|\mathcal{H}| \exp(-2\epsilon^2 m)}{\delta}$$

with probability at least $1 - \delta$

$$\epsilon_g < \epsilon_t + \sqrt{\frac{1}{2m} \cdot \left(\ln |\mathcal{H}| + \ln \frac{1}{\delta} \right)}$$

Generalization error: Summary

assume i.i.d. examples

consistent hypothesis case:

with probability at least $1 - \delta$

$$\epsilon_g < \frac{1}{m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})$$

inconsistent hypothesis case:

with probability at least $1 - \delta$

$$\epsilon_g < \epsilon_t + \sqrt{\frac{1}{m} (\ln |\mathcal{H}| + \ln \frac{1}{\delta})}$$

generalization error:

number of examples m

training error ϵ_t

hypothesis space complexity $\ln |\mathcal{H}|$

Probably approximately correct (PAC):

with probability at least $1 - \delta$

$$\epsilon_g < \epsilon_t + \sqrt{\frac{1}{2m} \cdot (\ln |\mathcal{H}| + \ln \frac{1}{\delta})}$$

PAC-learnable: [Valiant, 1984]

A concept class \mathcal{C} is PAC-learnable if exists a learning algorithm A such that for all. $f \in \mathcal{C}$, $\epsilon > 0, \delta > 0$ and distribution D

$$P_D(\epsilon_g \leq \epsilon) \geq 1 - \delta$$

using $m = \text{poly}(1/\epsilon, 1/\delta)$ examples and polynomial time.

Leslie Valiant

Turing Award (2010)
EATCS Award (2008)
Knuth Prize (1997)
Nevanlinna Prize (1986)

Decision Tree

Tree depth and the possibilities

features: n

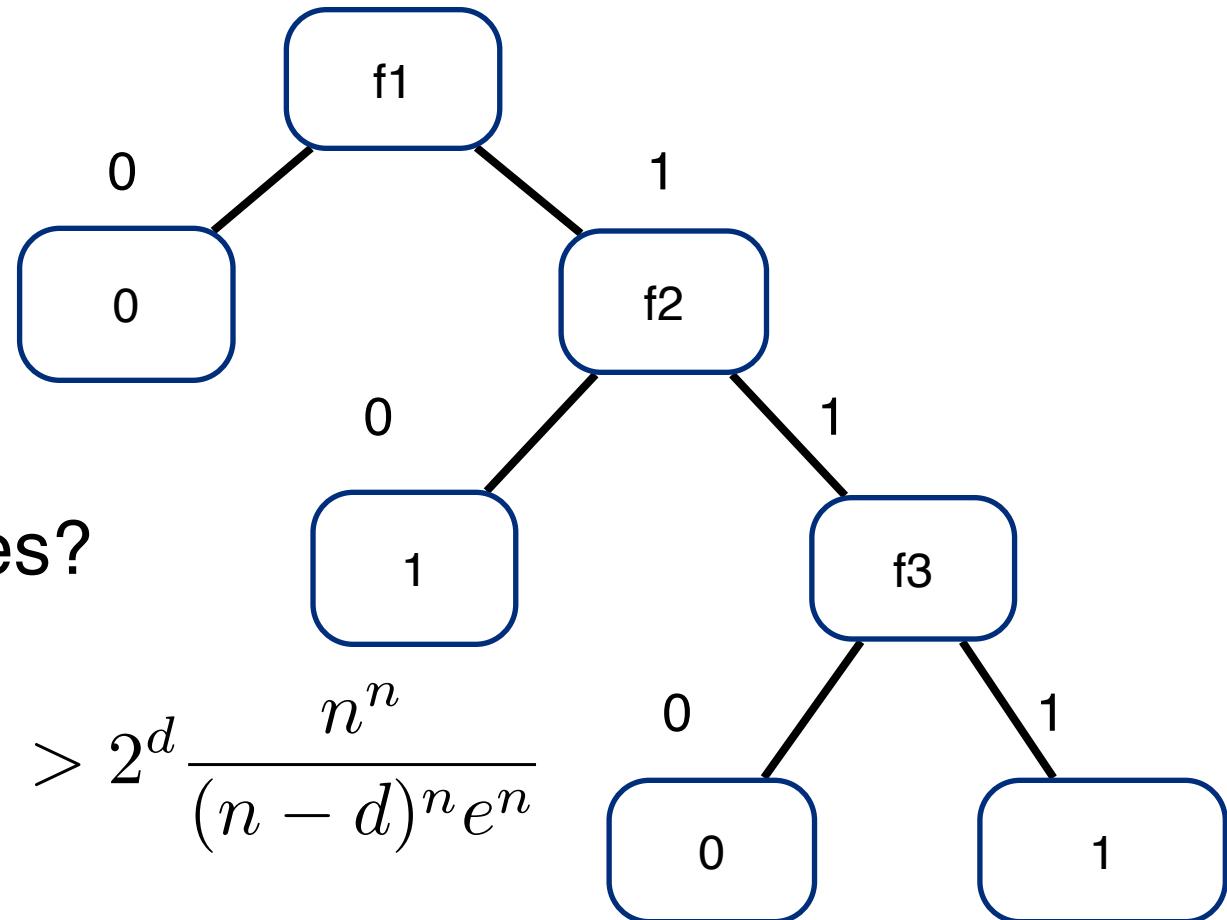
feature type: binary

depth: $d < n$

How many different trees?

one-branch: $2^d \frac{n!}{(n-d)!} > 2^d \frac{n^n}{(n-d)^n e^n}$

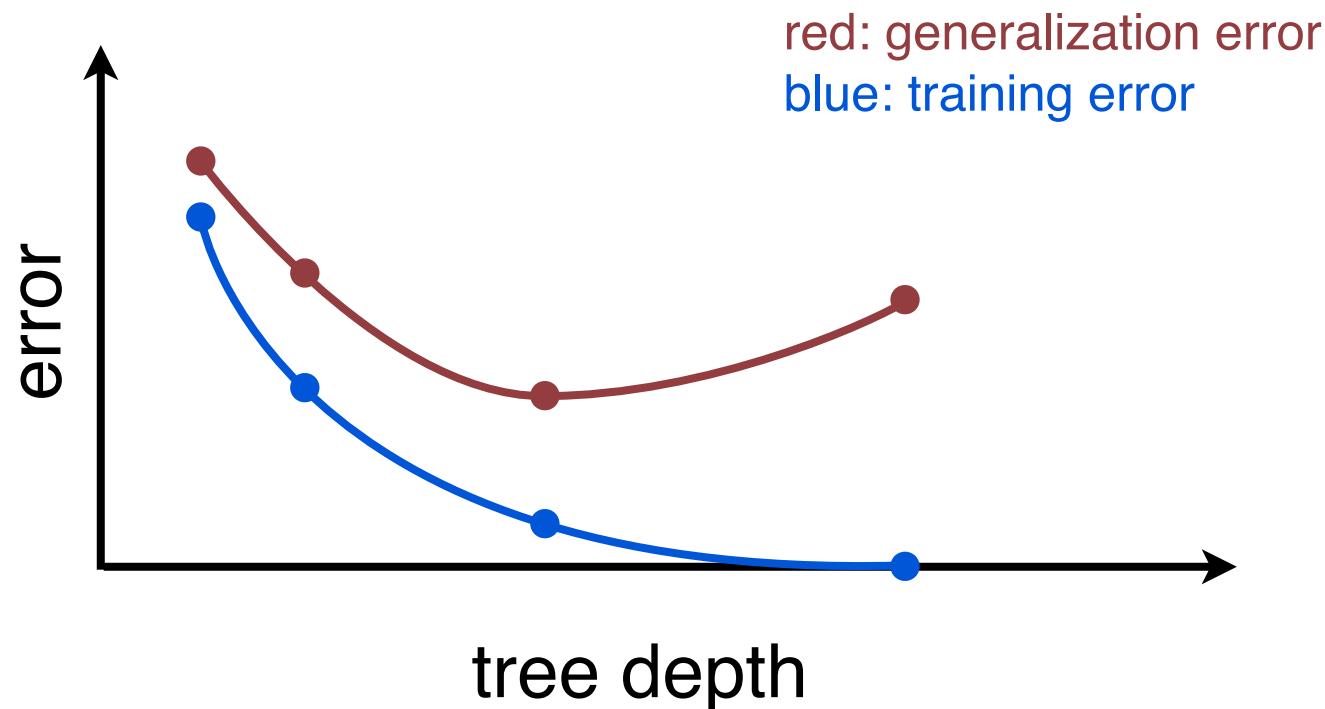
full-tree: $2^{2^d} \prod_{i=0}^{d-1} \frac{(n-i)!}{(n-d-i)!}$



the possibility of trees grows very fast with d

The overfitting phenomena

-- the divergence between infinite and finite samples



To make decision tree less complex

Pre-pruning: early stop

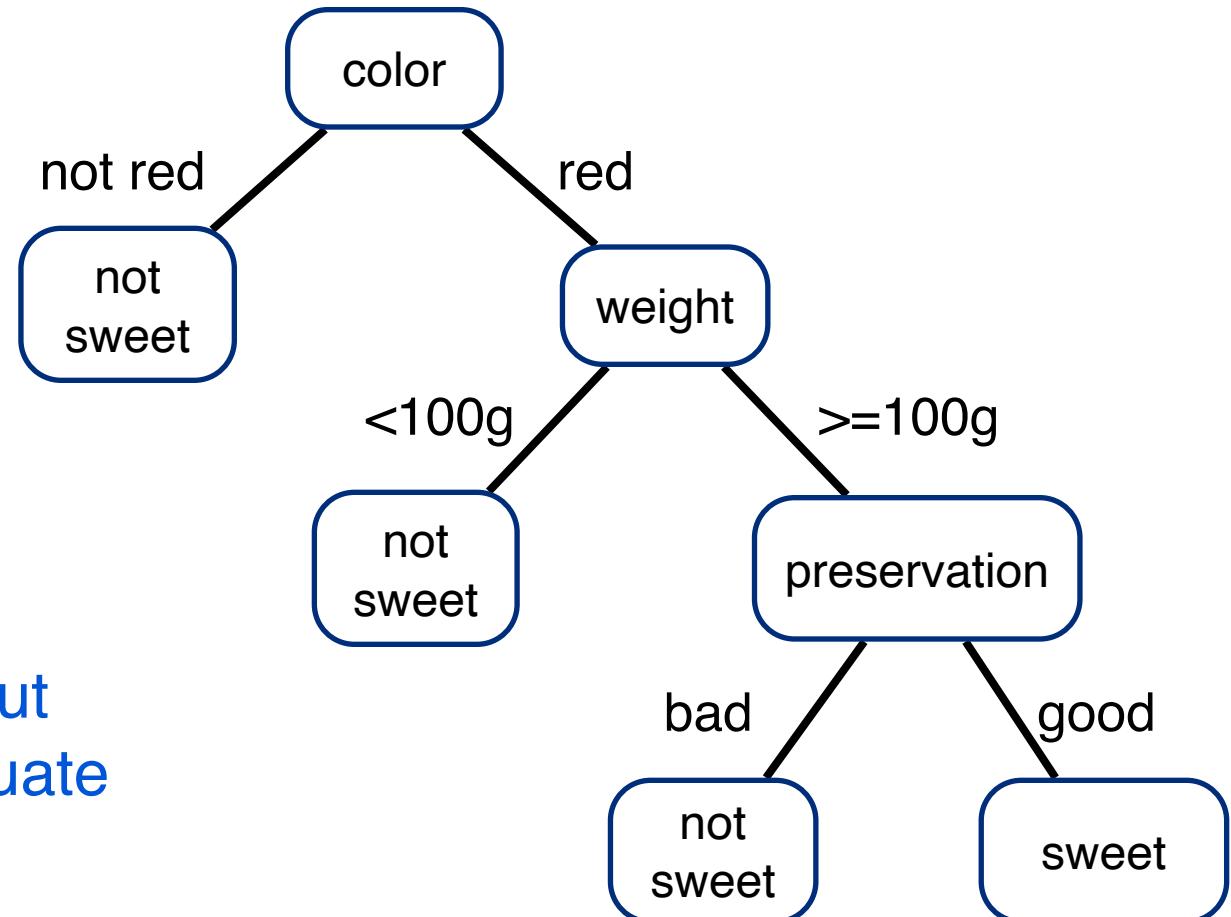
- ▶ minimum data in leaf
- ▶ maximum depth
- ▶ maximum accuracy

Post-pruning: prune full grown DT

reduced error pruning

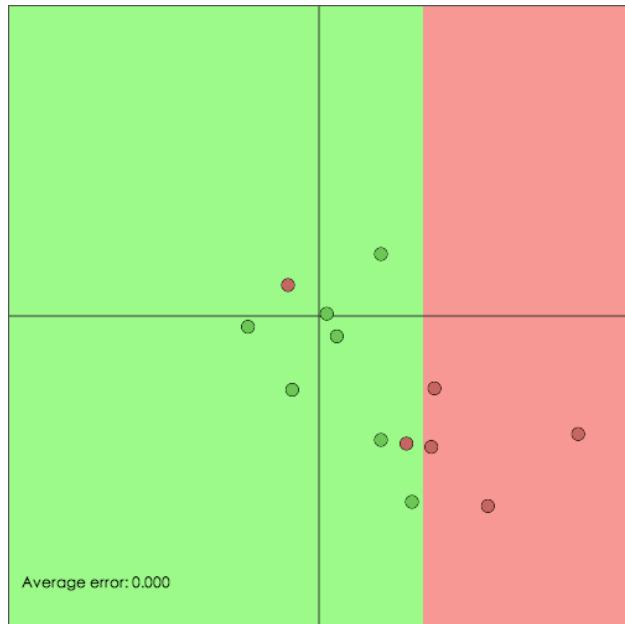
Reduced error pruning

1. Grow a decision tree
2. For every node starting from the leaves
3. Try to make the node leaf, if does not increase the error, keep as the leaf

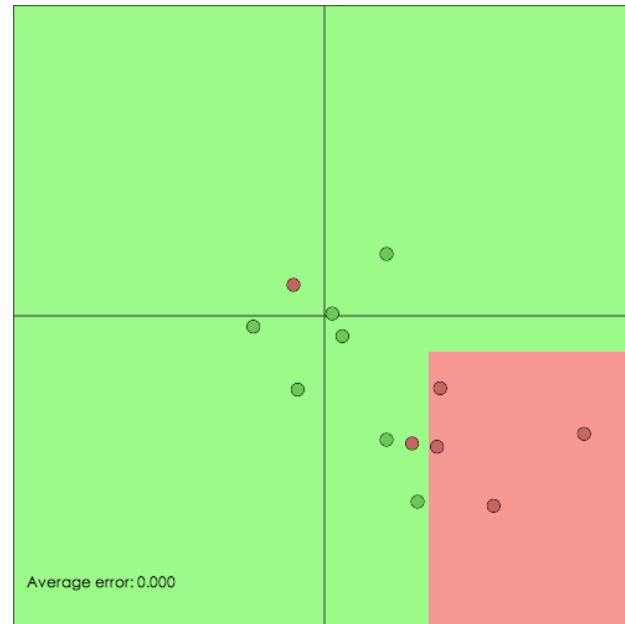


could split a validation set out from the training set to evaluate the error

DT boundary visualization



decision stump



max depth=2

max depth=12

Oblique decision tree

choose a linear combination in each node:

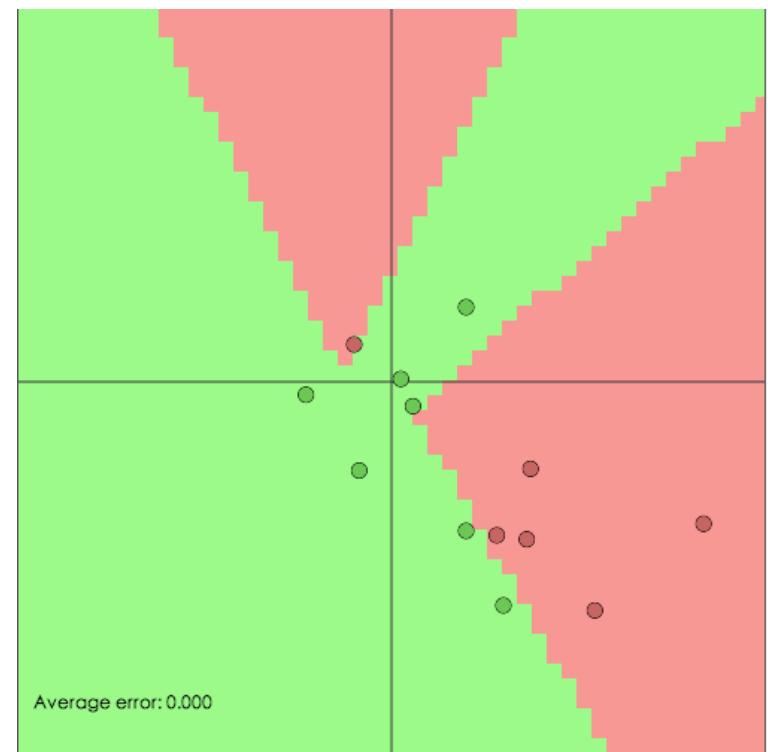
axis parallel:

$$X_1 > 0.5$$

oblique:

$$0.2 X_1 + 0.7 X_2 + 0.1 X_3 > 0.5$$

was hard to train



Linear Models

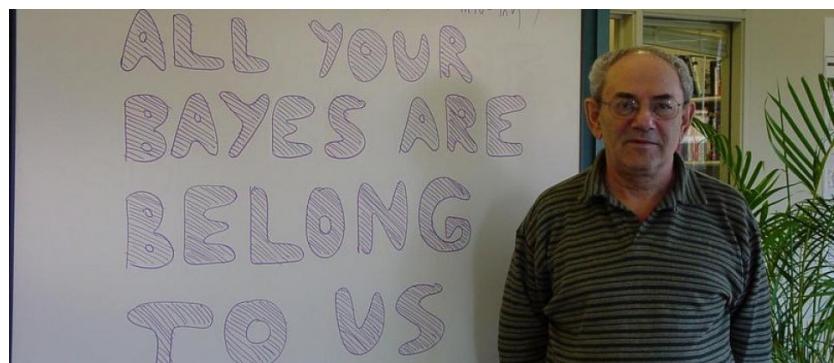
Linear model

$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$

$$\mathbf{w} = w_1, w_2, \dots, w_n \quad b$$

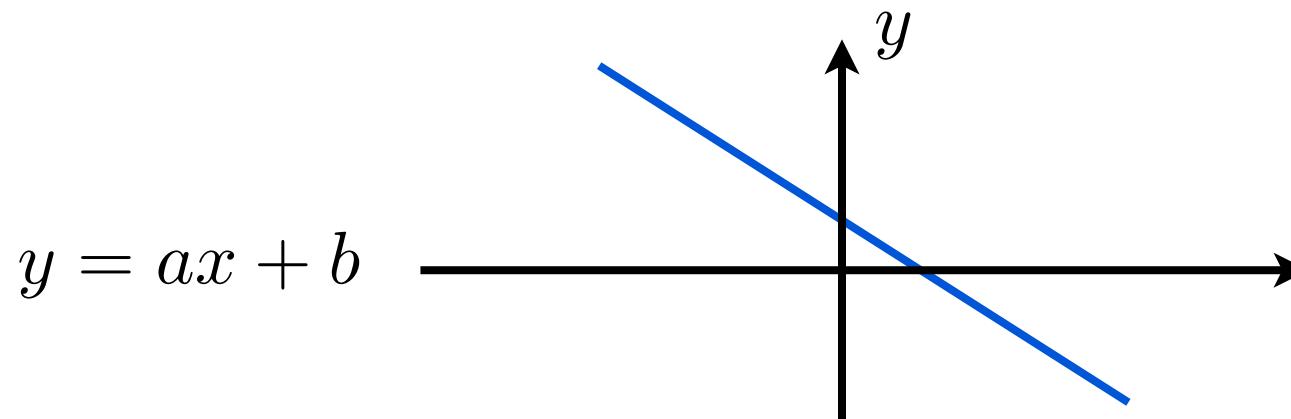
$$w_1 \cdot x_1 + w_2 \cdot x_2 + \dots + w_n \cdot x_n + b$$

$$f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b$$

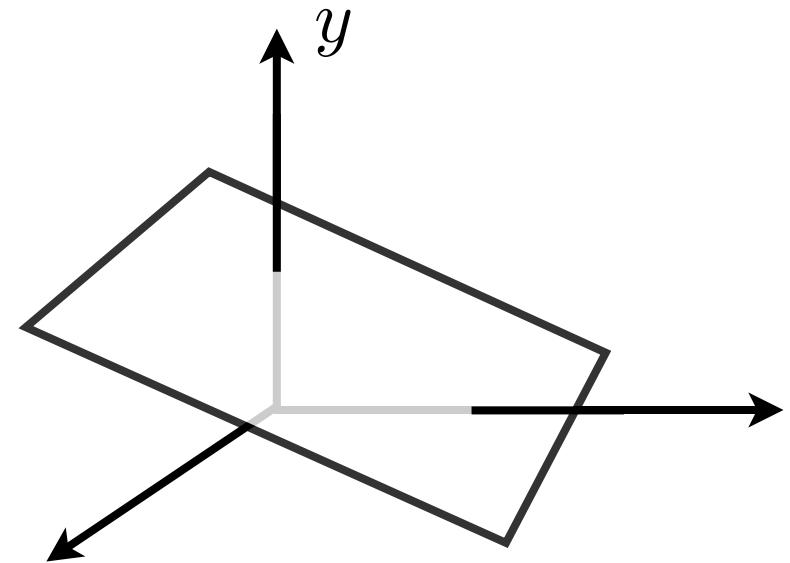


Vladimir Vapnik

Linear model



$$y = w_1 \cdot x_1 + w_2 \cdot x_2 + b$$



is the following a linear model?

$$y = w_1 \cdot x + w_2 \cdot x^2 + b$$

yes, the parameters
are linear

Least square regression

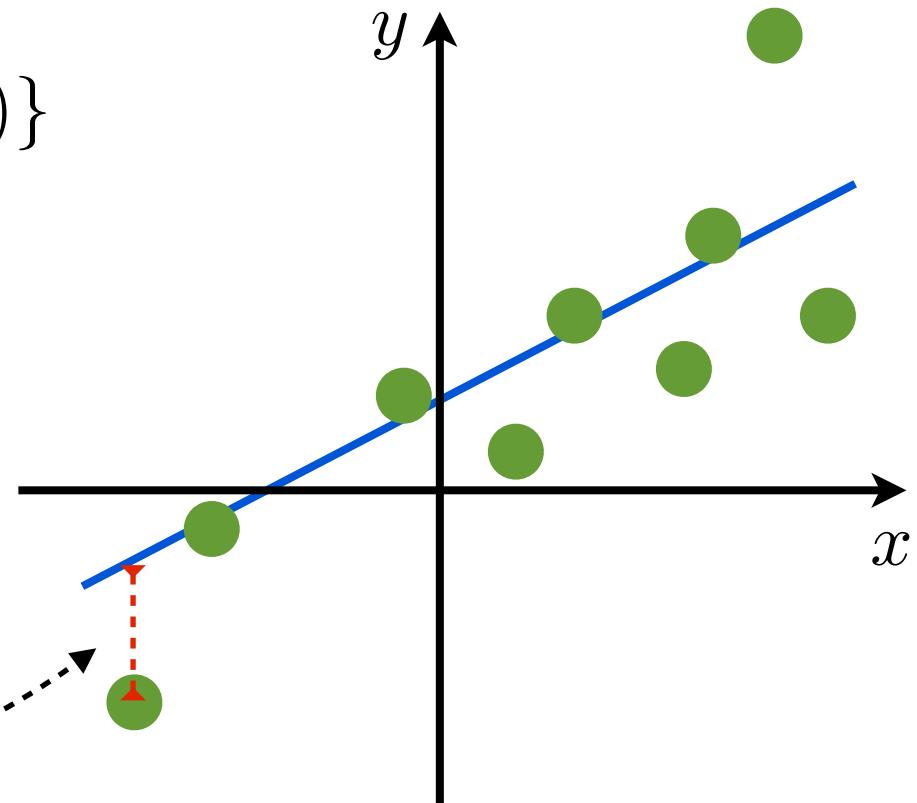
Regression: $y \in \mathbb{R}$

Training data:

$$\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_m, y_m)\}$$

Least square loss:

$$\frac{1}{m} \sum_{i=1}^m (\mathbf{w}^\top \mathbf{x}_i + b - y_i)^2$$



Least square regression

$$L(\mathbf{w}, b) = \frac{1}{m} \sum_{i=1}^m (\mathbf{w}^\top \mathbf{x}_i + b - y_i)^2$$

$$\frac{\partial L(\mathbf{w}, b)}{\partial b} = \frac{1}{m} \sum_{i=1}^m 2(\mathbf{w}^\top \mathbf{x}_i + b - y_i) = 0$$

$$\frac{\partial L(\mathbf{w}, b)}{\partial \mathbf{w}} = \frac{1}{m} \sum_{i=1}^m 2(\mathbf{w}^\top \mathbf{x}_i + b - y_i) \mathbf{x}_i^\top = 0$$

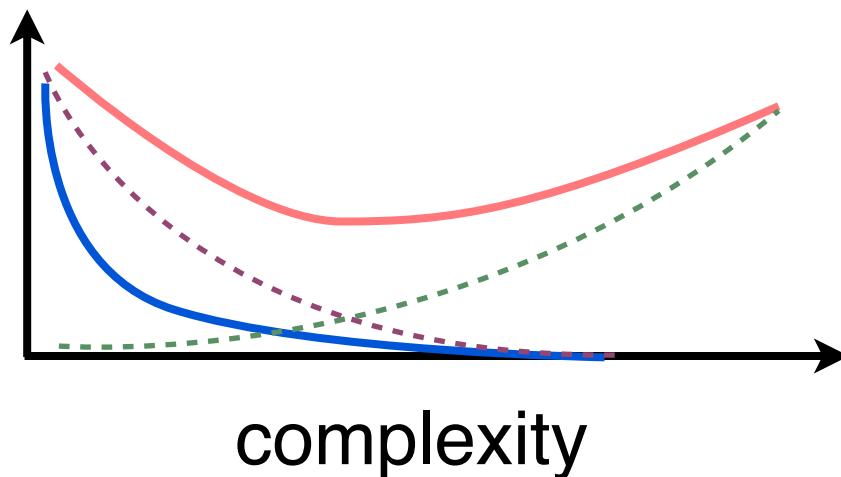
$$b = \frac{1}{m} \sum_{i=1}^m (y_i - \mathbf{w}^\top \mathbf{x}_i) = \bar{y} - \mathbf{w}^\top \bar{\mathbf{x}}$$

$$\mathbf{w} = \left(\frac{1}{m} \sum_{i=1}^m \mathbf{x}_i \mathbf{x}_i^\top - \bar{\mathbf{x}} \bar{\mathbf{x}}^\top \right)^{-1} \left(\frac{1}{m} \sum_{i=1}^m (y_i \mathbf{x}_i) - \bar{y} \bar{\mathbf{x}} \right)$$

$$= \text{var}(\mathbf{x})^{-1} \text{cov}(\mathbf{x}, y) = (X^\top X)^{-1} X^\top Y$$

*closed
form
solution*

Complexity of linear models



$$f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x}$$

↑
possibility of \mathbf{w}

Regularization

make hypothesis space small
→ better generalization ability

make numerical analysis stable

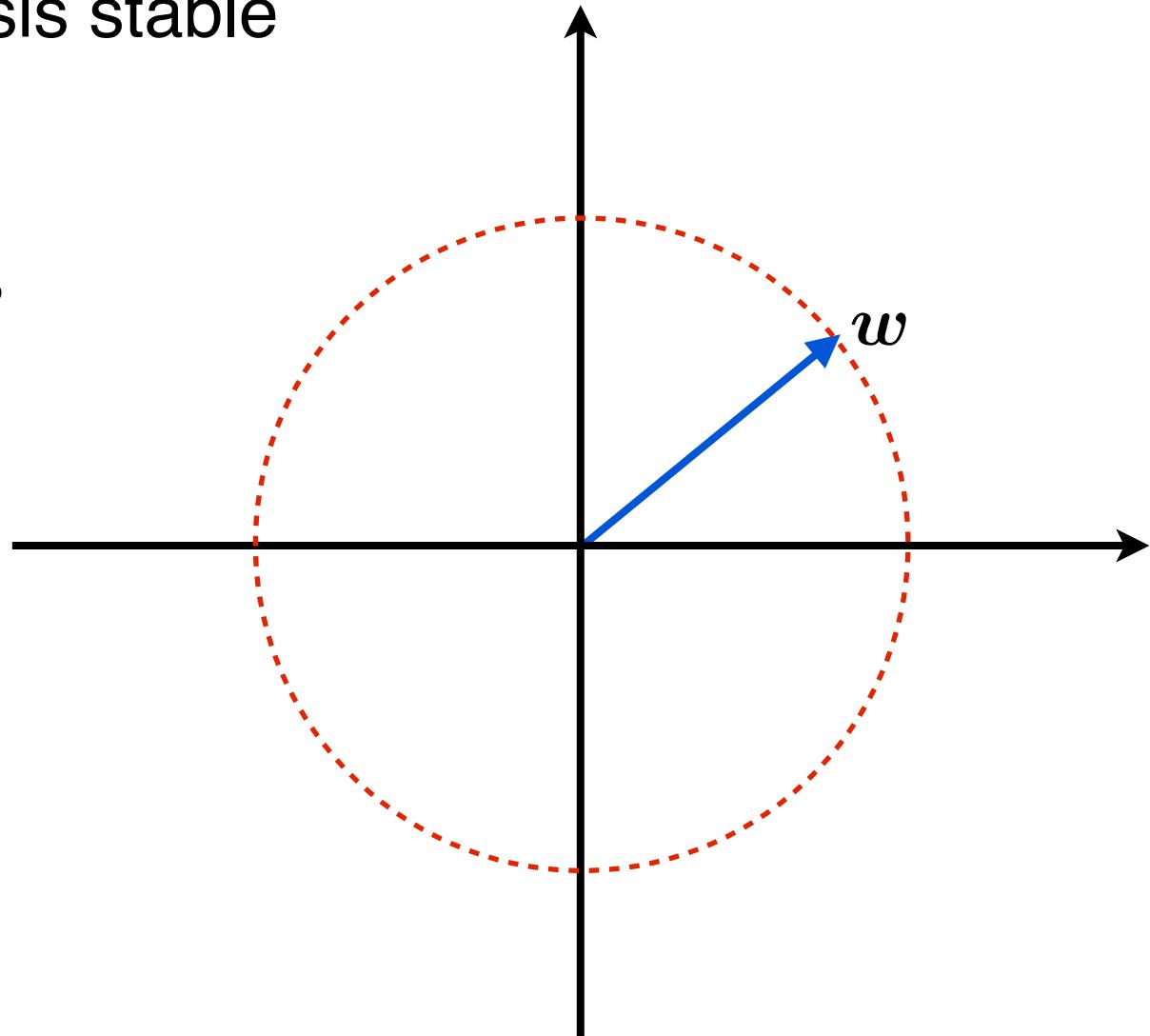
restrict the norm of w

$$\|w\|_p = \left(\sum_{i=1}^n |w_i|^p \right)^{1/p}$$

$$\|w\|_2 = \sqrt{\sum_{i=1}^n w_i^2}$$

$$\|w\|_1 = \sum_{i=1}^n |w_i|$$

$$\|w\|_\infty = \max_{i=1, \dots, n} |w_i|$$



Ridge regression

Regression: $y \in \mathbb{R}$

Training data:

$$\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_m, y_m)\}$$

objective:

$$\arg \min_{\mathbf{w}, b} \frac{1}{m} \sum_{i=1}^m (\mathbf{w}^\top \mathbf{x}_i + b - y_i)^2$$

$$s.t. \quad \|\mathbf{w}\|_2 \leq \theta$$

or:

$$\arg \min_{\mathbf{w}, b} \frac{1}{m} \sum_{i=1}^m (\mathbf{w}^\top \mathbf{x}_i + b - y_i)^2 + \lambda \|\mathbf{w}\|_2$$

Ridge regression

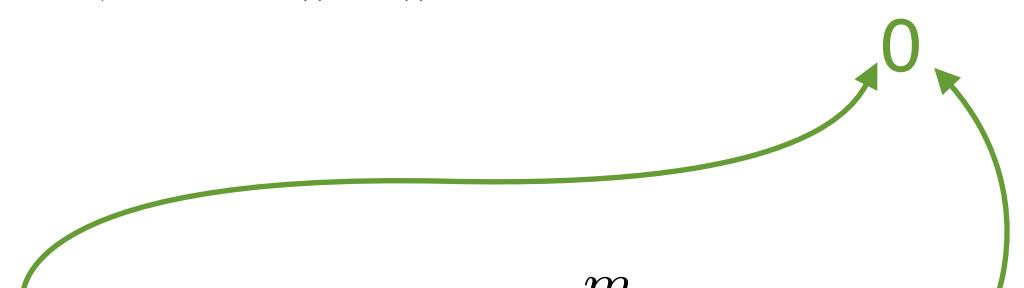
centered data, no bias:

$$\arg \min_{\mathbf{w}} \frac{1}{m} \sum_{i=1}^m (\mathbf{w}^\top \mathbf{x}_i - y_i)^2 + \lambda \|\mathbf{w}\|_2$$

closed form solution:

$$\begin{aligned} \mathbf{w} &= \left(\frac{1}{m} \sum_{i=1}^m \mathbf{x}_i \mathbf{x}_i^\top - \bar{\mathbf{x}} \bar{\mathbf{x}}^\top + \lambda \mathbf{I} \right)^{-1} \left(\frac{1}{m} \sum_{i=1}^m (y_i \mathbf{x}_i) - \bar{y} \bar{\mathbf{x}} \right) \\ &= (var(\mathbf{x}) + \lambda \mathbf{I})^{-1} cov(\mathbf{x}, y) \\ &= (X^\top X + \lambda I)^{-1} X^\top Y \end{aligned}$$

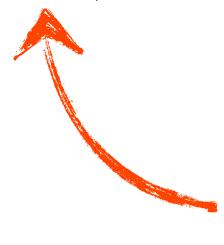
\mathbf{I} is the identity matrix



Least square v.s. ridge regression

$$\begin{aligned} \mathbf{w} &= \left(\frac{1}{m} \sum_{i=1}^m \mathbf{x}_i \mathbf{x}_i^\top - \bar{\mathbf{x}} \bar{\mathbf{x}}^\top \right)^{-1} \left(\frac{1}{m} \sum_{i=1}^m (y_i \mathbf{x}_i) - \bar{y} \bar{\mathbf{x}} \right) \\ &= \text{var}(\mathbf{x})^{-1} \text{cov}(\mathbf{x}, y) = (X^\top X)^{-1} X^\top Y \end{aligned}$$

$$\begin{aligned} \mathbf{w} &= \left(\frac{1}{m} \sum_{i=1}^m \mathbf{x}_i \mathbf{x}_i^\top - \bar{\mathbf{x}} \bar{\mathbf{x}}^\top + \lambda \mathbf{I} \right)^{-1} \left(\frac{1}{m} \sum_{i=1}^m (y_i \mathbf{x}_i) - \bar{y} \bar{\mathbf{x}} \right) \\ &= (\text{var}(\mathbf{x}) + \lambda \mathbf{I})^{-1} \text{cov}(\mathbf{x}, y) \\ &= (X^\top X + \lambda \mathbf{I})^{-1} X^\top Y \end{aligned}$$



stable solution

Least absolute shrinkage and selection operator (LASSO)

Regression: $y \in \mathbb{R}$

Training data:

$$\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_m, y_m)\}$$

objective:

$$\arg \min_{\mathbf{w}, b} \frac{1}{m} \sum_{i=1}^m (\mathbf{w}^\top \mathbf{x}_i + b - y_i)^2$$

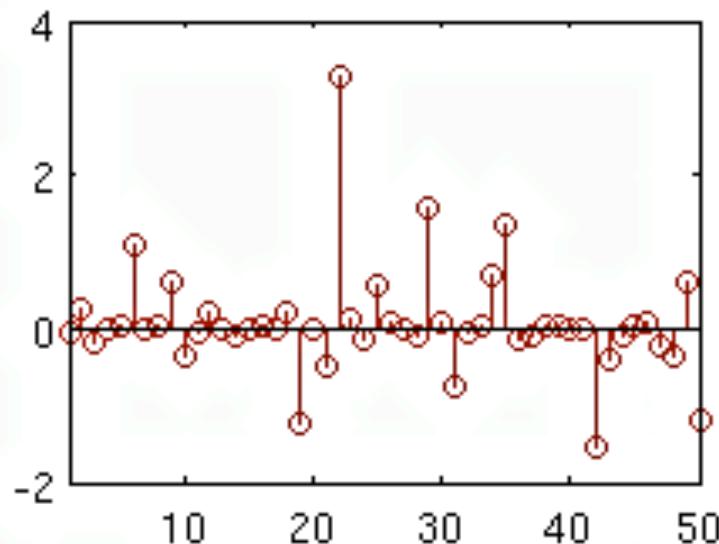
$$s.t. \quad \|\mathbf{w}\|_1 \leq \theta$$

or:

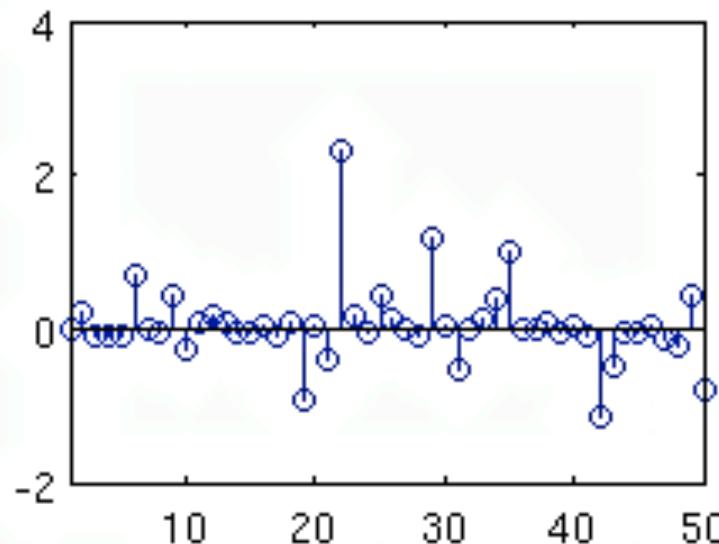
$$\arg \min_{\mathbf{w}, b} \frac{1}{m} \sum_{i=1}^m (\mathbf{w}^\top \mathbf{x}_i + b - y_i)^2 + \lambda \|\mathbf{w}\|_1$$

Comparing different regressions

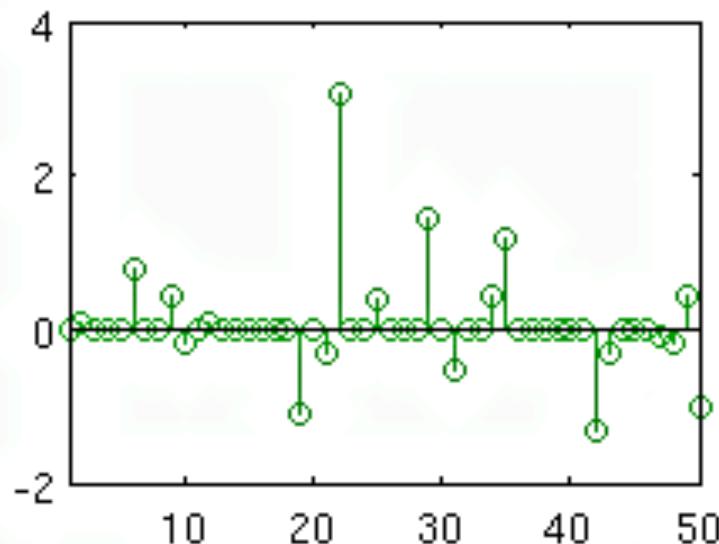
Least Squares



Ridge Regression



LASSO



[Pictures from www.cs.ubc.ca/~schmidtm/Software/L1General/examples.html]

objective function:

$$\arg \min_{\mathbf{w}, b} L(\mathbf{w}, b) + \|\mathbf{w}\|_p$$

how to solve the parameters?

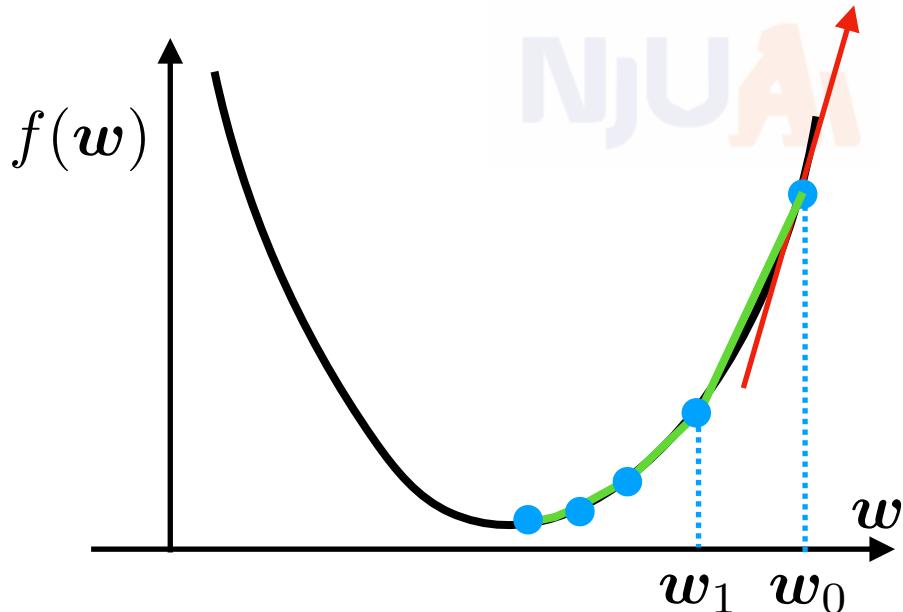
a generally applied technique: **gradient-descent**

Gradient descent

(steepest descent)

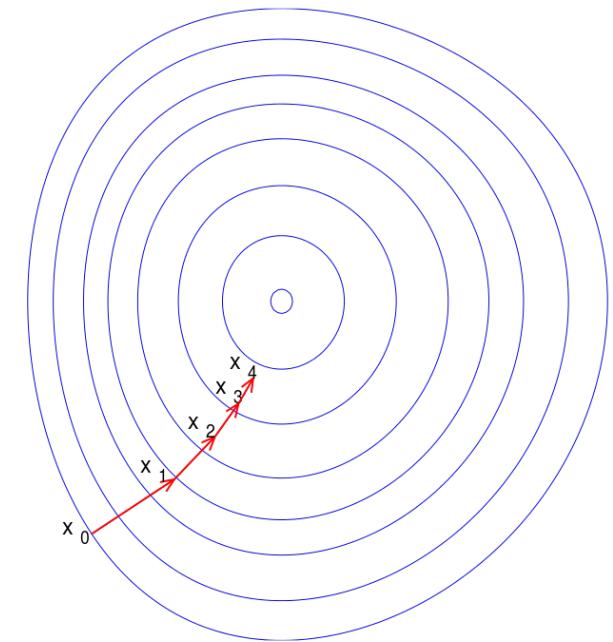
for a differentiable function f

$$\arg \min_{\mathbf{w}} f(\mathbf{w})$$



can be solved by

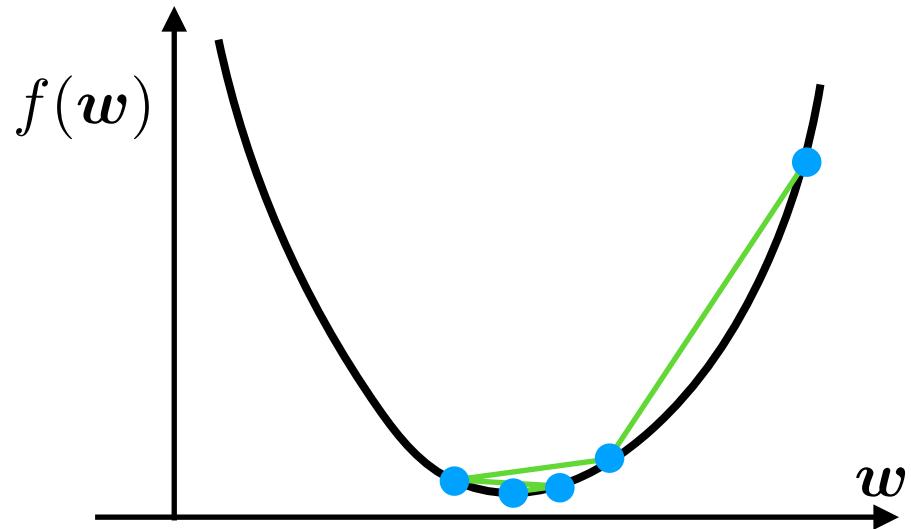
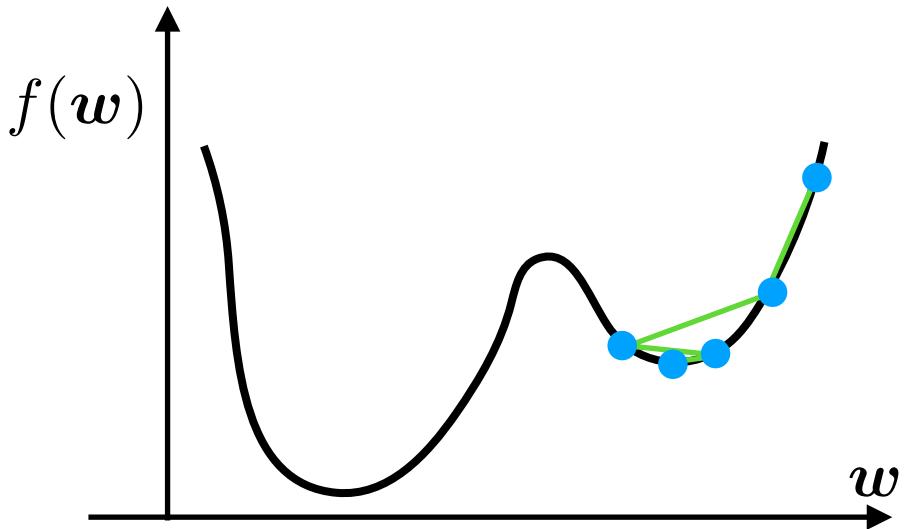
1. start from an arbitrary initial point \mathbf{w}_0
2. loop from $t=0$
3. $\mathbf{w}_{t+1} = \mathbf{w} - \eta \frac{\partial f(\mathbf{w})}{\partial \mathbf{w}}$
or $\mathbf{w}_{t+1} = \mathbf{w} - \eta \nabla_{\mathbf{w}} f(\mathbf{w})$
4. until convergence $\|\nabla_{\mathbf{w}} f(\mathbf{w})\| < \epsilon$



[image from wikipedia]

Gradient descent

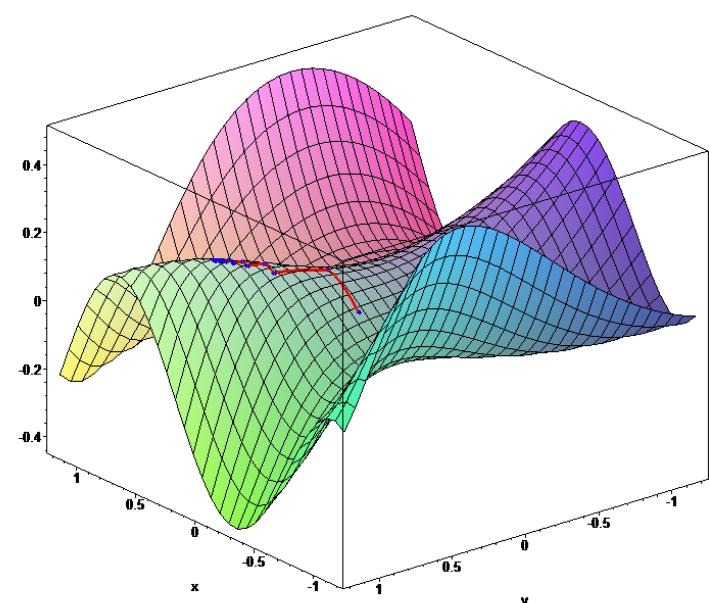
$$\mathbf{w}_{t+1} = \mathbf{w} - \eta \nabla_{\mathbf{w}} f(\mathbf{w})$$



for convex functions: converge to global optima

$$f(\alpha \mathbf{w}_1 + (1 - \alpha) \mathbf{w}_2) \geq \alpha f(\mathbf{w}_1) + (1 - \alpha) f(\mathbf{w}_2)$$

for other functions: converge to stationary points



[image from wikipedia]

objective function:

$$\arg \min_{\mathbf{w}, b} L(\mathbf{w}, b) + \|\mathbf{w}\|_p$$

how to solve the parameters?

general optimization: gradient descent

$$(\mathbf{w}, b) - = \eta \frac{\partial (L(\mathbf{w}, b) + \|\mathbf{w}\|_p)}{\partial (\mathbf{w}, b)}$$

Linear classifier

model space: \mathbb{R}^{n+1}

$$f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b$$

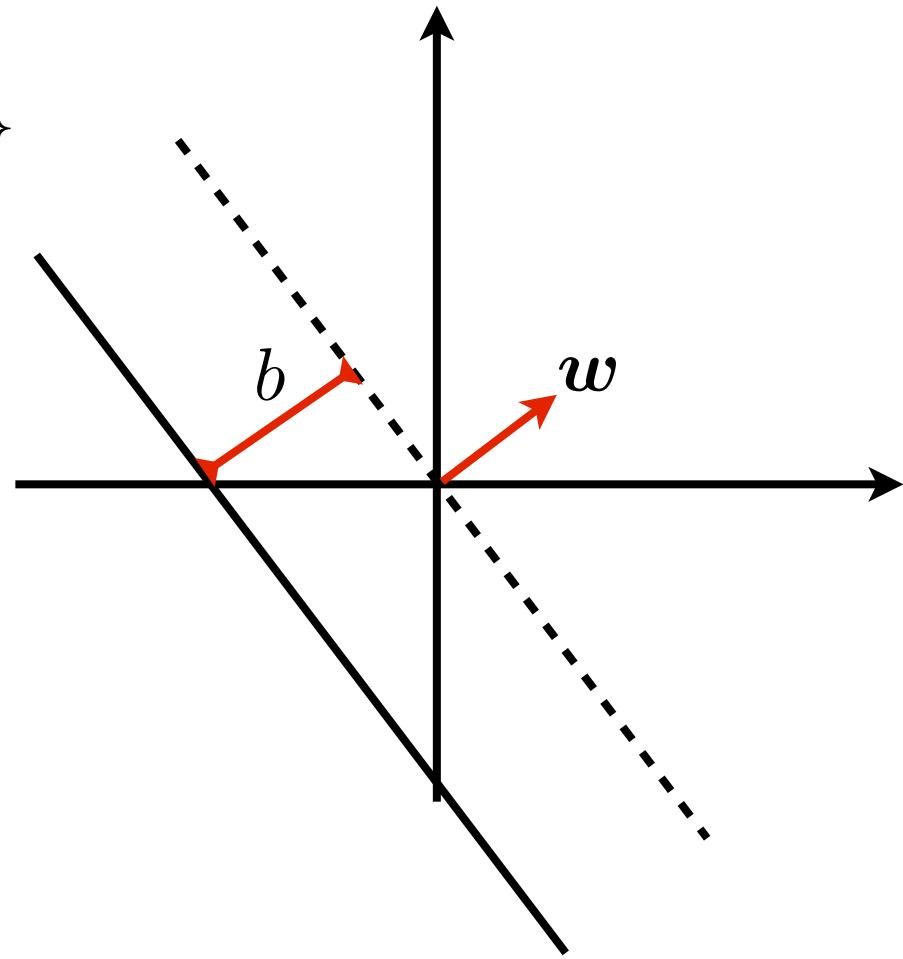
for classification $y \in \{-1, +1\}$

we predict an instance by

$$\begin{aligned} & \text{sign}(\mathbf{w}^\top \mathbf{x} + b) \\ &= \begin{cases} +1, & \mathbf{w}^\top \mathbf{x} + b > 0 \\ -1, & \mathbf{w}^\top \mathbf{x} + b < 0 \\ \text{random}, & \text{otherwise} \end{cases} \end{aligned}$$

for an example (\mathbf{x}, y) a correct prediction means

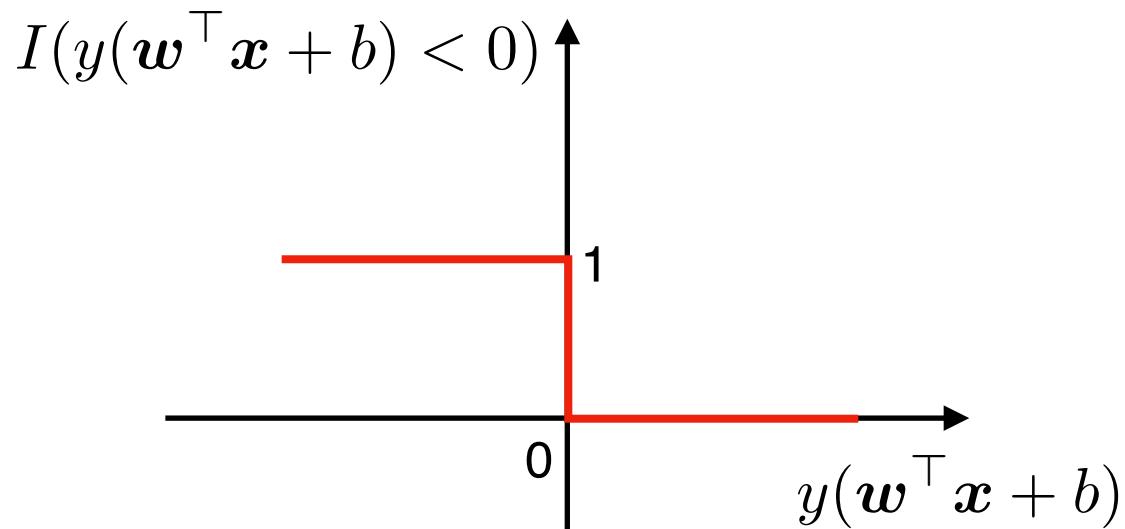
$$y(\mathbf{w}^\top \mathbf{x} + b) > 0$$



Ideal classifier

$$\arg \min_{\mathbf{w}, b} \sum_i I(y(\mathbf{w}^\top \mathbf{x} + b) \leq 0)$$

non-differentiable
hard to solve by gradient descent



Prototype

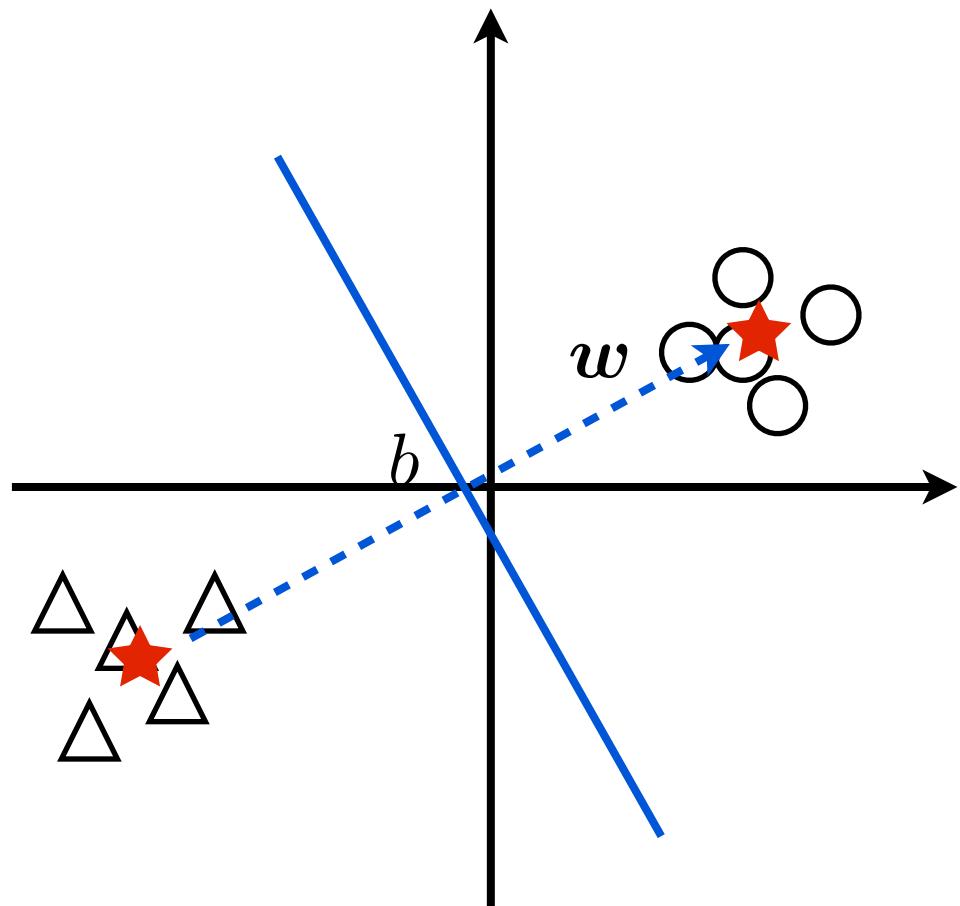
simple, but too restricted

$$\bar{x}^+ = \frac{1}{\sum_{i:y_i=+1} 1} \sum_{i:y_i=+1} x_i$$

$$\bar{x}^- = \frac{1}{\sum_{i:y_i=-1} 1} \sum_{i:y_i=-1} x_i$$

$$w = \bar{x}^+ - \bar{x}^-$$

$$b = -w^\top \cdot \frac{\bar{x}^+ + \bar{x}^-}{2}$$



Perceptron

perception loss

$$\arg \min_{\mathbf{w}, b} \sum_i \max\{-y_i(\mathbf{w}^\top \mathbf{x}_i + b), 0\}$$

$$f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b$$

gradient ascent

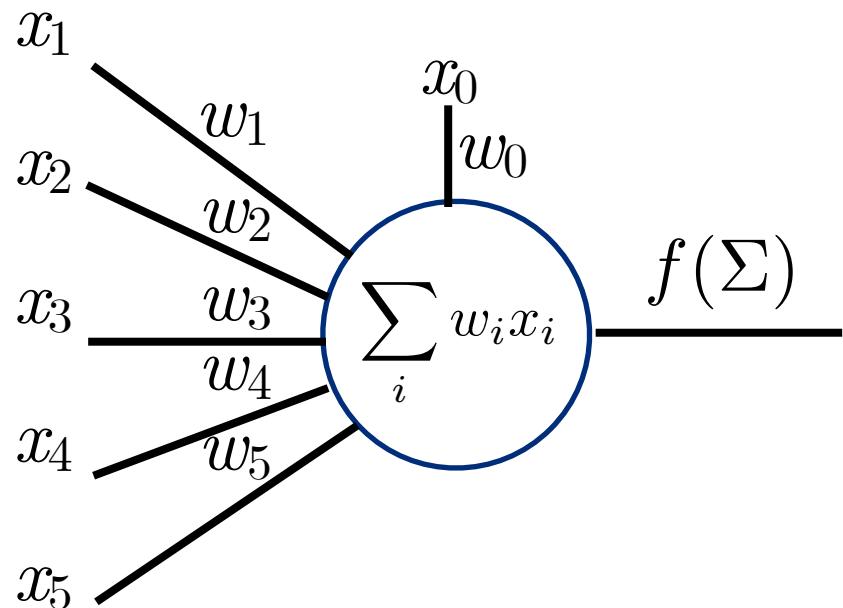
$$\frac{\partial y \mathbf{w}^\top \mathbf{x}}{\partial \mathbf{w}} = y \mathbf{x}$$

feed training examples one by one

1. $\mathbf{w} = 0$

2. for each example (\mathbf{x}, y)
if $\text{sign}(y \mathbf{w}^\top \mathbf{x}) < 0$

$$\mathbf{w} = \mathbf{w} + y \mathbf{x}$$



Logistic regression

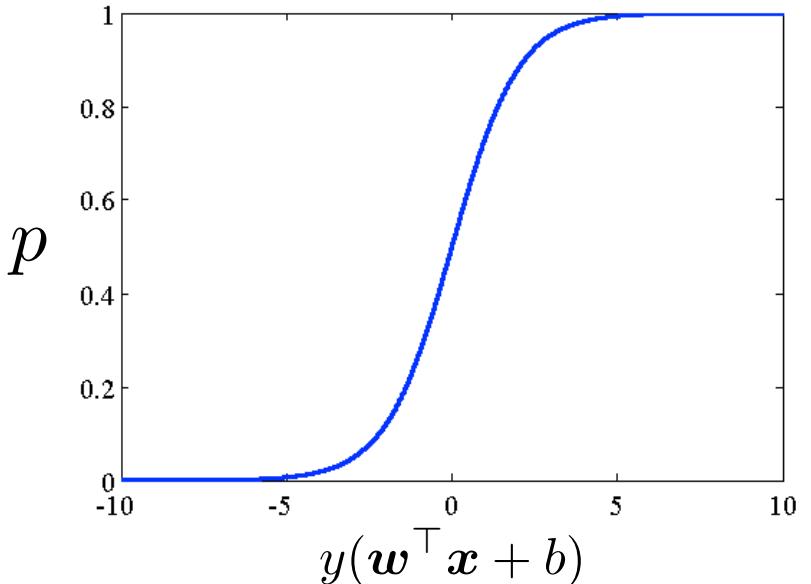
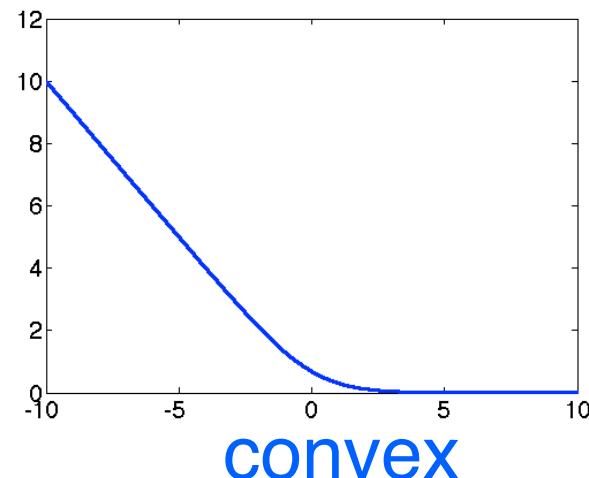
assume logit model: for a positive example

$$\mathbf{w}^\top \mathbf{x} = \log \frac{p(+1 \mid \mathbf{x})}{1 - p(+1 \mid \mathbf{x})}$$

so that $p(y \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-y(\mathbf{w}^\top \mathbf{x})}}$

minimize negative log-likelihood:

$$\begin{aligned} \arg \min_{\mathbf{w}, b} -\log \prod_{i=1}^m p(y_i \mid \mathbf{x}_i, \mathbf{w}) &= -\sum_i \log p(y_i \mid \mathbf{x}_i, \mathbf{w}) \\ &= \sum_i \log \left(1 + e^{-y_i(\mathbf{w}^\top \mathbf{x}_i)} \right) \end{aligned}$$



convex

Linear classifier revisit

model space: \mathbb{R}^{n+1}

$$f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b$$

for classification $y \in \{-1, +1\}$

Original objective:

$$\arg \min_{\mathbf{w}, b} \sum_i I(y(\mathbf{w}^\top \mathbf{x} + b) \leq 0)$$

0-1 loss
hard to optimize

Surrogate objective:

$$\arg \min_{\mathbf{w}, b} \sum_i \log \left(1 + e^{-y_i(\mathbf{w}^\top \mathbf{x}_i + b)} \right)$$

logistic regression

$$\arg \min_{\mathbf{w}, b} \sum_i \max\{-y_i(\mathbf{w}^\top \mathbf{x}_i + b), 0\}$$

perceptron

Linear classifier revisit

0-1 loss

$$I(y(\mathbf{w}^\top \mathbf{x} + b) \leq 0)$$

logistic regression

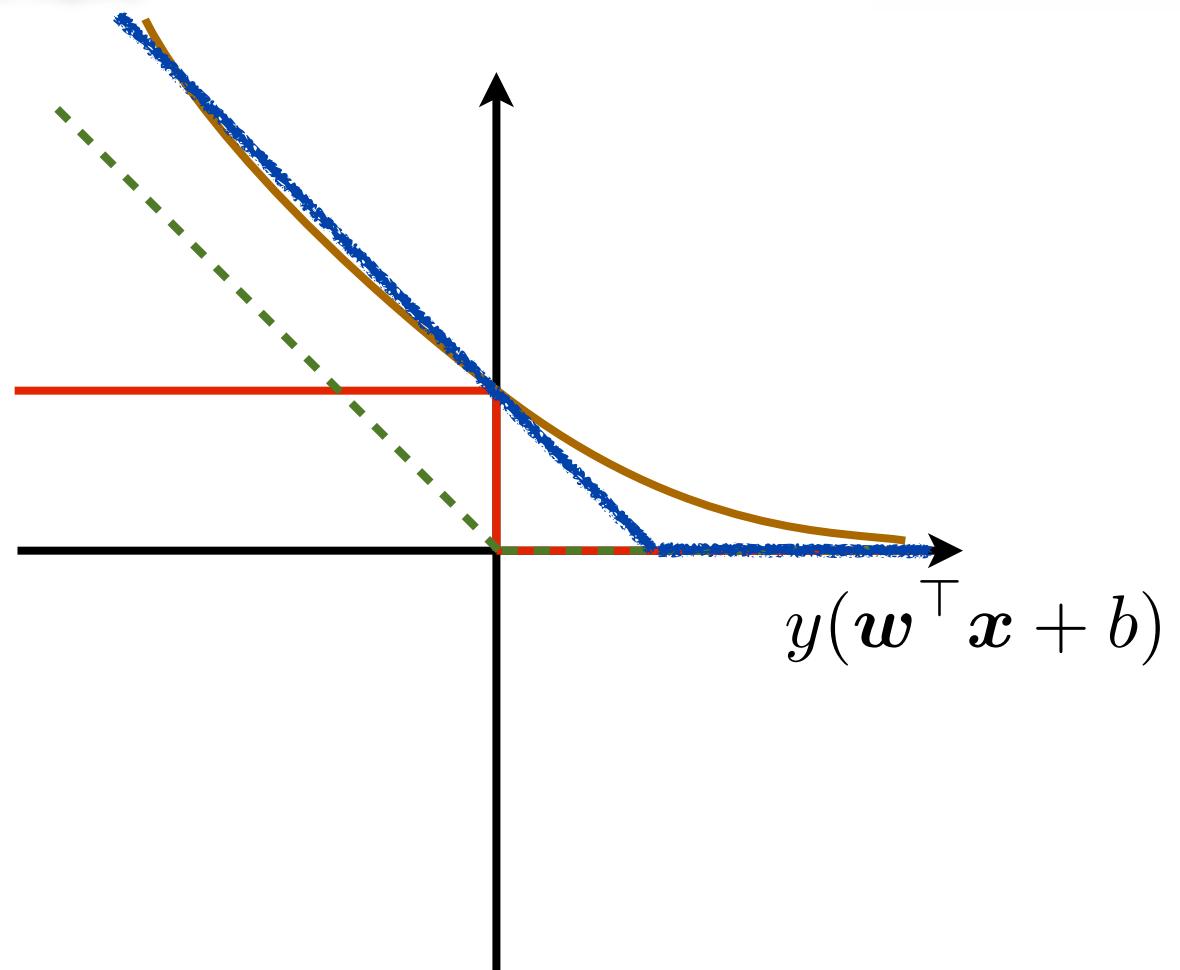
$$\log_2(1 + e^{-y(\mathbf{w}^\top \mathbf{x} + b)})$$

perceptron

$$\max\{-y(\mathbf{w}^\top \mathbf{x} + b), 0\}$$

hinge loss

$$\max\{1 - y(\mathbf{w}^\top \mathbf{x} + b), 0\}$$



Support vector machines (SVM)

hinge loss + L2-norm

$$\arg \min_{\mathbf{w}, b} \sum_i \max(1 - y_i(\mathbf{w}^\top \mathbf{x}_i + b), 0) + \lambda \|\mathbf{w}\|_2$$

$$\arg \min_{\mathbf{w}, b} \frac{1}{2} \|\mathbf{w}\|_2 + C \sum_i \xi_i$$

$$s.t. \quad y_i(\mathbf{w}^\top \mathbf{x}_i + b) \geq 1 - \xi_i$$

$$\xi_i \geq 0$$

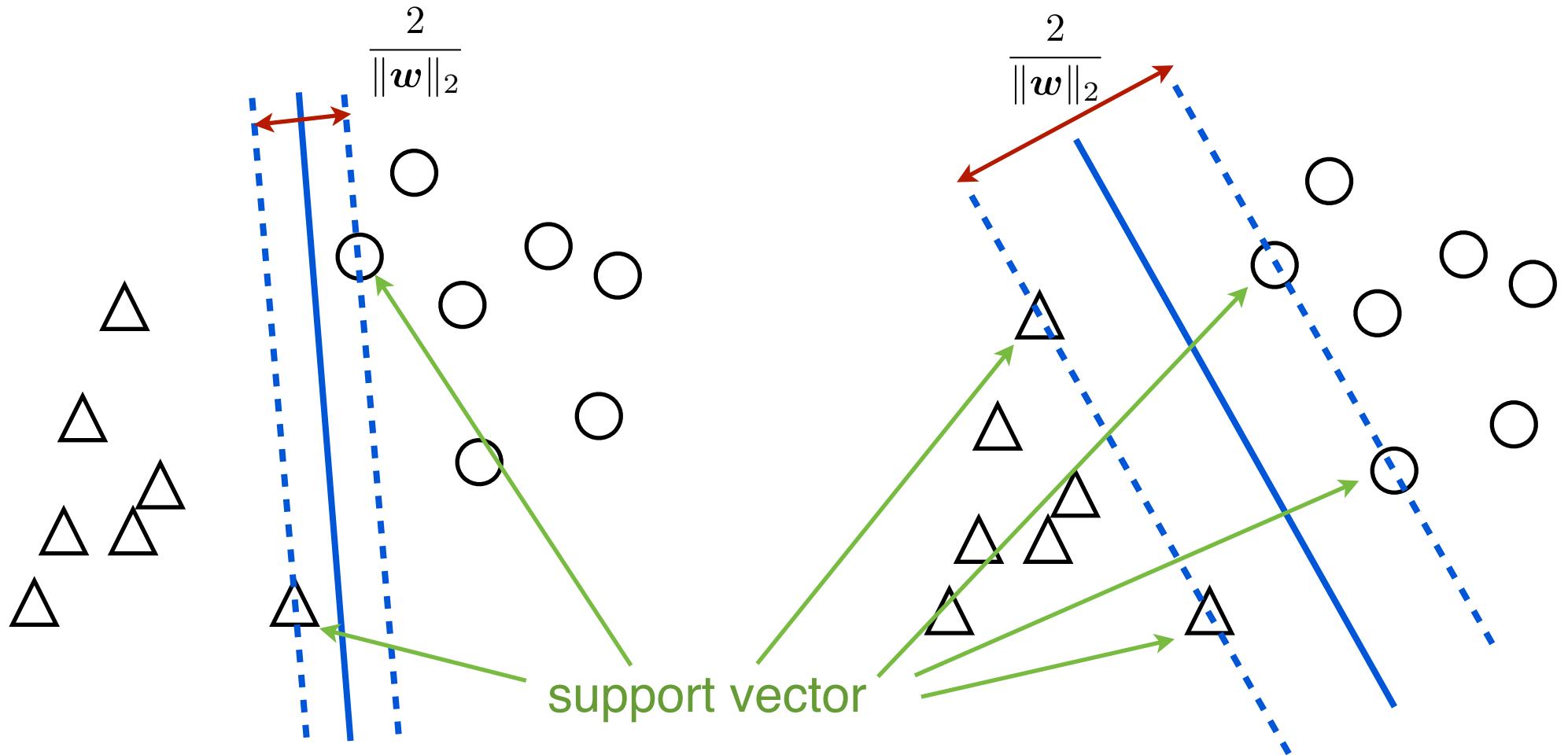
$$\begin{aligned} \max(1 - y_i(\mathbf{w}^\top \mathbf{x}_i + b), 0) &= \xi_i \\ \xi_i &\geq 1 - y_i(\mathbf{w}^\top \mathbf{x}_i + b) \\ \xi_i &\geq 0 \end{aligned}$$

quadratic

Support vector machines (SVM)

$$\arg \min_{\mathbf{w}, b} \frac{1}{2} \|\mathbf{w}\|_2^2$$

$$s.t. \quad y_i(\mathbf{w}^\top \mathbf{x}_i + b) \geq 1$$



Scoring functions

$$\frac{1}{m} \sum_{i=1}^m (\mathbf{w}^\top \mathbf{x}_i + b - y_i)^2 \quad \text{least square regression}$$

$$\frac{1}{m} \sum_{i=1}^m |\mathbf{w}^\top \mathbf{x}_i + b - y_i| \quad \text{LAD regression}$$

$$\frac{1}{m} \sum_{i=1}^m (\mathbf{w}^\top \mathbf{x}_i + b - y_i)^2 + \lambda \|\mathbf{w}\|_2 \quad \text{ridge regression}$$

$$\frac{1}{m} \sum_{i=1}^m (\mathbf{w}^\top \mathbf{x}_i + b - y_i)^2 + \lambda \|\mathbf{w}\|_1 \quad \text{LASSO}$$

Scoring functions

$$\sum_i I(y(\mathbf{w}^\top \mathbf{x} + b) > 0)$$

0-1 loss

$$\sum_i \max\{-y_i(\mathbf{w}^\top \mathbf{x}_i + b), 0\}$$

perceptron

$$\sum_i \log \left(1 + e^{-y_i(\mathbf{w}^\top \mathbf{x}_i + b)} \right)$$

logistic regression

$$\sum_i \log \left(1 + e^{-y_i(\mathbf{w}^\top \mathbf{x}_i + b)} \right) + \lambda \|\mathbf{w}\|_2$$

regularized LR

$$\sum_i \max(1 - y_i(\mathbf{w}^\top \mathbf{x}_i + b), 0) + \lambda \|\mathbf{w}\|_2$$

SVM

minimize loss + regularization