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Lecture 11: Learning 2



Previously...

Learning

Decision tree learning
Nearest Neighbors
Naive Bayes

Question:
why we can learn?



Classification

what can be observed:

on examples/training data:

{(®1,91)s s (T, ym)} i = f@i)

e.g. training error

:_ZI (i) # vi)

what is expected:
over the whole distribution: generalization error

&g = E,[I(h(z) # f(x))
_ /X p(2)I(h(x) # f(@))de



Regression

what can be observed:

on examples/training data:
{(mlayl)aa(mmaym)} Yi :f(ZBZ)

e.g. training mean square error/MSE

1 m
€“ = Z(h(mz) — i)
i=1

what is expected:
over the whole distribution: generalization MSE

¢ = B, (h(x) # f(x))?
_ /X p(x) (h(x) — f(x))2da



The version space algorithm

an abstract view of learning algorithms

S: most specific hypothesis

A G: most general hypothesis
@®
(—) ] version space: consistent
e e / : hypotheses [Mitchell, 1997]
o) & E e
()] . L K il
& —
>
color

remove the hypothesis that are inconsistent with the data,
select a hypothesis according to learner’s bias



The version space algorithm

an abstract view of learning algorithms

three components of a learning algorithm

4 )

hypothesis

Space scoring search
function algorithm
\&&




Theories

The 1.i.d. assumption:

all training examples and future (test)
examples are drawn independently from an
identical distribution, the label is assigned by
a fixed ground-truth function

) - e unknown but fixed
— .. a distribution D
| e PR s
% .' Q Q ‘1 ""s‘ S '
o) O L0 N
(¢)) “ ! R -
; e s~~..® Q', _-'¢
e e e
>




Bias-variance dilemma

Suppose we have 100 training examples
but there can be different training sets

Start from the expected trammg MSE:

Epled] = Ep | — Z = %ZED [(h(a:z) — yz)Z]
(assume no n0|se_) _

Ep [(h(z) — f(x))?]

= Ep [(h(z)—Ep[h(z)] + Eplh(z)] — f(z))?]

= Ep [(h(x) — Ep[h(®)))*] + Ep [(Ep[h(z)] — f(x))?]

| By [2(h(a ) Eplh(@))(Eplh()] - f(x))]
= Ep |(h(z) — Ep[h(x)]
variance bias”2

I




Bias-variance dilemma

Ep [(h(z) — Ep[h(z)]))?]  Ep [(Eplh(z)] — f(x))?]
variance bias2

larger hypothesis space
=>

lower bias

but higher variance

hypothesis space



Bias-variance dilemma

Ep [(h(z) — Ep[h(z)]))?]  Ep [(Eplh(z)] — f(x))?]
variance bias2

smaller hypothesis space
=>

A
. : )
smaller variance @ é
but higher bias )

hypothesis space



Bias-variance dilemma

Ep [(h(z) — Ep[h(z)]))?]  Ep [(Eplh(z)] — f(x))?]
variance bias2




Overfitting and underfitting

training error v.s. hypothesis space size

linear functions: high training error, small space
{y=a+bx|abeR}

higher polynomials: moderate training error, moderate space
{y=a+bxr+cx*+dz’|a,b,c,dcR}

even higher order: no training error, large space

{y:a+b$—|—0$2—|—d$’3—|—€$4‘|—f$5‘aabacadaevfeR}



Overfitting and bias-variance dilemma
Ep [(h(z) — Ep[h(z)])*] Ep [(Ep[h(z)] - f(z))?]

variance bias/2
high b balanced low b
small v large v

error

red: generalization error
blue: training error

hypothesis space size
(model complexity)



(Generalization error

assume i.i.d. examples, and the ground-truth

hypothesis is a box

A
e °“e .
gl ©767s
2| ©i® 09,
e ©e
color

smaller generalization error:

the error of picking a
consistent hypothesis:

with probability at least 1 — o

1 1
€g < E-(ln|?—[|—|—ln5)

» more examples
» smaller hypothesis space



(Generalization error

for one h

h 1s consistent

What is the probability of
atis o ility eg(h) Ny

assume his bad: €4(h) > €

h is consistent with 1 example:

P<1-—e€

h is consistent with m example:

P<(1—¢™



(Generalization error

h is consistent with m example:
P<(1—¢™

There are k consistent hypotheses

J

Probability of choosing a bad one: 8 .

hiischosenand hyisbad P<(1-¢"
ho is chosenand hoisbad P<(1-¢™

h« is chosen and hk is bad P<(1—-¢™

overall:
3h: h can be chosen (consistent) but is bad



(Generalization error

hi iIs chosen and hy is bad
ho is chosen and hq is bad

h« is chosen and hk is bad P<(1—-¢g™

overall:
3h: h can be chosen (consistent) but is bad

Union bound: P(AUB) < P(A) + P(B)

P(3h is consistent but bad) < k- (1 —¢)™ <|H|- (1 —¢)™



(Generalization error

P(3h is consistent but bad) < k- (1 —¢)™ < |H|- (1 —¢)™

Pleg>¢) < |H|- (1™
0

with probability at least 1 — 9

1 1
€g < E'(IHW\JFIHE)



Inconsistent hypothesis

What if the ground-truth hypothesis is
NOT a box: non-zero training error

A
e
e "o o
AN - BERRRE o

_*CE'D | e é} O O " with probability at least 1 — ¢
© © i 1 1
| ©5.0%¢ acary ming

e/ ©eo

training error
J » more examples

smaller generalization error: » smaller hypothesis space
» smaller training error



Hoeffding's inequality

X be an 1.i.d. random variable
X1,Xo,...,X,, be m samples X; € [a,b]

1 m
— E X; — E[X] < difference between sum and expectation
m

i=1

p(% i;Xi —E[X] > €) < exp (— (b2€_2232>



(Generalization error

for one h

X; = I(h(x;) # f(x:)) € [0,1]

P(et(h) — e4(h) > €) < exp (—2€¢°m)

P(e; — €4 > €)
< P(3h € |H] : e1(h) — €4(h) > €) < |H|exp (—2¢°m)
6

with probability at least 1 — o

1
5)

1
€g<€t—|—\/%'(lﬂl7‘”—|—ln



Generalization error: Summary

assume i.i.d. examples
consistent hypothesis case:

with probability at least 1 — o

1 1
€g < E-(ID\HH—IHS)

iInconsistent hypothesis case:

with probability at least 1 — 9
1
5)

1
€g < €t+\/a(1ﬂ\7ﬂ + In

generalization error:
number of examples
training error ¢

hypothesis space complexity ™ H|



PAC-learning

Probably approximately correct (PAC):
with probability at least 1 — 0

1 1
€g < €t + \/% - (In |H| —I—IHS)
PAC-learnable: [valiant, 1984] Leslie Valiant

C ] i i ~ Turing Award (2010)
A concept class U is PAC-learnable if exists a learningeatcs Award (2008)

algorithm A such thatforall. f € C,e>0,6 >0 andianis éliiz?()w%)
distribution D
Pp(e, <€) >1-9

using m = poly(1/e,1/5) examples and polynomial time.



Learning algorithms revisit

Decision Tree



Tree depth and the possibilities

features: n
feature type: binary
depth: d<n

How many different trees?

n!

one-branch: 2¢ 2d
(n—d)! ~
full-tree: 92° dl:[l (n — i)
| Pl (n—d—1)!

the possibility of trees grows very fast with d



The overfitting phenomena

-- the divergence between infinite and
finite samples

red: generalization error

() blue: training error

error

tree depth



Pruning

To make decision tree less complex

Pre-pruning: early stop
» minimum data in leaf
» maximum depth
) maximum accuracy

Post-pruning: prune full grown DT

reduced error pruning



Reduced error pruning

1. Grow a decision tree
2. For every node starting from the leaves

3. Try to make the node leaf, if does not increase the error, keep as
the leaf

not red red

<100g >=100g

not
sweet

could split a validation set out bad \;ood
from the training set to evaluate

not
the error sweet ( sweet ]

preservationj




DT boundary visualization

decision stump max depth=2 max depth=12




b ecision free

choose a linear combination in each node:

axis parallel:
X1>0.5

oblique:
0.2 Xi+ 0.7 Xo-+ 0.1 X5 > 0.5

was hard to train




Linear Models



Linear model

r=(xr1,T2,...,Tp)
W= wWi,Wa,..., Wy, b
< =

wy -1 +woe -To+...+w, T, +0b

flx)=w'z+b

Vladimir Vapnik



Linear model

Y
y=ax +b >
Y
Y =w - T]+wy- To+0b
IS the following a linear model? yes, the parameters
are linear

Yy =wy- T+ wy-x°+b



Least square regression

Regression: ¥ € R
Training data:

{(x1,91), (®2,Y2), (Tm, Ym) }

Least square loss:

1 m
- Z(wTibi +b—y;)?
i=1

-
-
~~~~~

-------

KXY



Least square regression

m

1
L(w,b) = — Z(’UJTC&; +b—y;)?

i=1
OL(w,b) 1 <«

= — ) 2(w'z;+b—y;) =0
50 - ; (w z;, +b—y;)
6L(w,b) 1 i T T
5 :EZ;Q(’UJ r;, +b—y)x, =0
b= ii(y-—me =7 —w' X
m Z closed
1 m N N ~1,1 m form
w = (E ;mzwz — IT ) (E ;(yiwi) — yw) solution
= var(zx) teov(z,y) = (X' X)7'X'Y



Complexity of linear models

A

complexity

flx)=w'=x

|

possibility of w



Regularization

make hypothesis space small
— better generalization ability
make numerical analysis stable A

restrict the norm of w S IREeN .
N 1/]9 o N

Jwlly = { D lwil”

1=1

n
lwlz = | > w?
i=1

.....




Ridge regression

Regression: ¥y € R
Training data:

{(x1,91), (®2,Y2), (Tm, Ym) }

objective:
1T 2
arg min — w x; +b—y;)
w,b m Z:Zl(
s.t. |wl|2 < 6
or.
1T 2
arg min — w x; +b—y;)
w,b m Z(



Ridge regression

centered data, no bias:

m

1
argmm—Z(wTa:Z yi)? + A||w]|2
wo e 0

closed form solution: / /
w—(izmjmm-T—__T—l—)\I) (izm: x;)
_ m Z:1 (] 2 m y’L (/

1=1

= (var(x) + ) tcov(x, y)

= (X'X+X)"'X'y o |
I is the identity matrix



Least square v.S. ridge regression

—~ stable solution



Least absolute shrinkage and selection operator
(LASSO)

Regression: ¥y € R
Training data:

{(3317 yl)? (3327 y2)7 (il?m, ym)}

objective:
1 T 2
arg min — w x; +b—y;
w,b m Z:Zl( )
s.t. |lwl, < 6
or.

m

1
arg min — > (wha;+b— ;) + Awl);
w,b i—1



Comparing different regressions

Least Squares

4
@
2
0
O
-2 A i A i
10 20 30 40 a0
LASS0
4
o

Ridge Regression

[Pictures from www.cs.ubc.ca/
~schmidtm/Software/L1General/
examples.html


http://www.cs.ubc.ca/~schmidtm/Software/L1General/examples.html
http://www.cs.ubc.ca/~schmidtm/Software/L1General/examples.html
http://www.cs.ubc.ca/~schmidtm/Software/L1General/examples.html

A general framework

objective function:

arg min L(w, b) + w],

w,b

how to solve the parameters?

a generally applied technique: gradient-descent



Gradient descent
(steepest descent)

for a differentiable function f

arg min f(w)

can be solved by
1. start from an arbitrary initial point
2. loop from =0

Of (w)
ow
Of wir1 =w — NV f(w)

3. Wiy1 =W — 7

4. until convergence [IVw/f(w)| <e

[image from wikipedia]



Gradient descent

Wit =W — NV [ (W)
A A

fw) fw)

w
>

ve

for convex functions: converge
to global optima

flaw; + (1 —a)ws)) > af(wi) + (1 — o) f(ws)

for other functions:
converge to stationary points

ALALKN XN XN
RS

[image from wikipedia]




A general framework

objective function:
arg min L(w, b) + |lwll,
w,b
how to solve the parameters?

general optimization: gradient descent

O(L(w,b) + |lw|p)

(w,b)==n (w, b)




Linear classifier

model space: R™t!
fl)=w'z+b A
for classification ¥ € {—1,+1} .

we predict an instance by
sign(w '« + b)
(+1, w'x+b>0

=< —1, w'x+b<0

| random, otherwise

for an example (x,ya correct
prediction means

y(w ' x +b) >0




|deal classifier

argmmz.f w'x +b) <0)

w,b

non-differentiable
hard to solve by gradient descent

I(y(w'z+0b) <0)4

y(w ' + b)



Prototype

simple, but too restricted




Perceptron

perception loss flx)=w'x+1b
arg min Z max{—y;(w ' x; + b),0} gradient ascent
w,b (9wa$
ow T

feed training examples one by one
1. w=0

2. for each example (z,v)
if sign(yw'x) <0

w=w -+ yx




Logistic regression

assume logit model: for a positive example

1 1
wTz = log p(+1 | z)
1 —p(+1]| x) o8
p 0.6
Wl mw) = s
sothat ply |z, w)= | T vz v

minimize negative log-likelihood:

arg nl-;lin —log | [ p(yi | s, w) = =) logp(y; | @;,w) "

1=1

=Y log (14 ewlw =)

12

Lo N S (o)) o]

10

0 5

convex

10



Linear classifier revisit

model space: R"*!

ficat e {—1,+1
f@) = w b for classification ¥ € { }

Original objective'

arg min I(y(w Tt <0 0-1 loss
%, b Z ) ) hard to optimize

Surrogate objective:

arg min Z log (1 tevilw @ +b)) logistic regression

w,b

arg min Z max{ — y@(w x; +0b),0} perceptron

w,b



Linear classifier revisit

0-1 loss N N\
I(y(w'z+b) <0)

logistic regression
log, (1 + e~ ¥(w @+b)
perceptron
max{—y(w' = +b),0}

hinge loss
max{1l — y(w '« + b),0}



Support vector machines (SVM)

hinge loss + L2-norm
arg minz max (1 — y;(w ' x; +b),0) + A||Jw]|

w,b

-
-
-
-
-------ﬁ ----------
--
-am="
-
-
PR
-

A . maX(l — yz(’le’z‘ + b)a O) — fz
1 “ &> 1—yi(w'x; +b)
argmin—Hng—l—C’Z& & 20

s.t. yi(w' x; +b) > 1§
& >0

guadratic



Support vector machines (SVM)

1
arg min — ||w||2
w,b 2

st.  yi(w'x; +b)>1




Scoring functions

m

1

m Z( "zi+b—y)® least square regression
1=1

I, T |
. D |lw'®i+b—y| LAD regression
1=1

1 ™m
m Y (wle; +b—y)* + Nwlz2 ridge regression
1=1

1 m
— > (whwi+b—y)? + Awlly  LASSO

1=1



Scoring functions

> I(y(w 'z +b) > 0) 0-1 loss
_ max{—y;(w'a; +b),0} perceptron

(w ' L .
D log (1 + e ¥l ﬁb)) logistic regression

> log (1 + e‘yi("“T“’i*b)) + M|w|2  regularized LR
> max(l —y;(w 2 +),0) + A|w]z2 SVM

minimize loss + regularization



