

Lecture 3: Search 2

Previously...

 $s \leftarrow a \text{ new NODE}$

add s to successors

return successors

 $Depth[s] \leftarrow Depth[node] + 1$


```
function Tree-Search (problem, fringe) returns a solution, or failure fringe \leftarrow Insert (Make-Node (Initial-State [problem]), fringe) loop do

if fringe is empty then return failure

node \leftarrow Remove-Front (fringe)

if Goal-Test (problem, State (node)) then return node fringe \leftarrow Insert All (Expand (node, problem), fringe)

note the time of goal-test: expanding time not generating time

function Expand (node, problem) returns a set of nodes

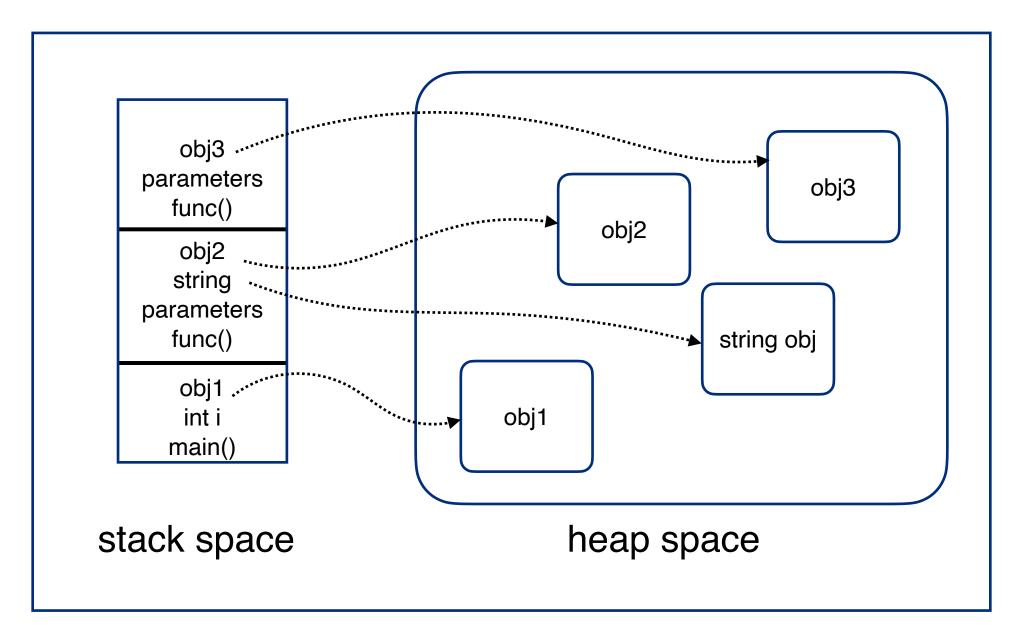
successors \leftarrow the empty set

for each action, result in Successor-Fn (problem, State [node]) do
```

PARENT-NODE[s] $\leftarrow node$; ACTION[s] $\leftarrow action$; STATE[s] $\leftarrow result$

Path-Cost[s] \leftarrow Path-Cost[node] + Step-Cost(node, action, s)

Stack and heap memory space



Deep-first search using stack


```
function Tree-Search(node)
  if node has goal then return true
  for each action, result in Successor-Fn(problem, node) do
    s <- make Node from node
    hasgoal = Tree-Search(s)
    if hasgoal then return true
    end for
return false
```

return true node Tree-Search()

s node Tree-Search()

s node Tree-Search()

stack space

simple to code, risk of stack-overflow

Deep-first search using heap


```
function Tree-Search (problem, fringe) returns a solution, or failure
   fringe \leftarrow Insert(Make-Node(Initial-State[problem]), fringe)
   loop do
       if fringe is empty then return failure
       node \leftarrow Remove-Front(fringe)
       if Goal-Test(problem, State(node)) then return node
       fringe \leftarrow InsertAll(Expand(node, problem), fringe)
function Expand (node, problem) returns a set of nodes
   successors \leftarrow  the empty set
                                                                                                        fringe
   for each action, result in Successor-Fn(problem, State[node]) do
        s \leftarrow a \text{ new NODE}
       Parent-Node[s] \leftarrow node; Action[s] \leftarrow action; State[s] \leftarrow result
       PATH-COST[s] \leftarrow PATH-COST[node] + STEP-COST(node, action, s)
       Depth[s] \leftarrow Depth[node] + 1
        add s to successors
   return successors
```

heap space

flexible memory usage

Informed Search Strategies

best-first search: *f* but what is best?

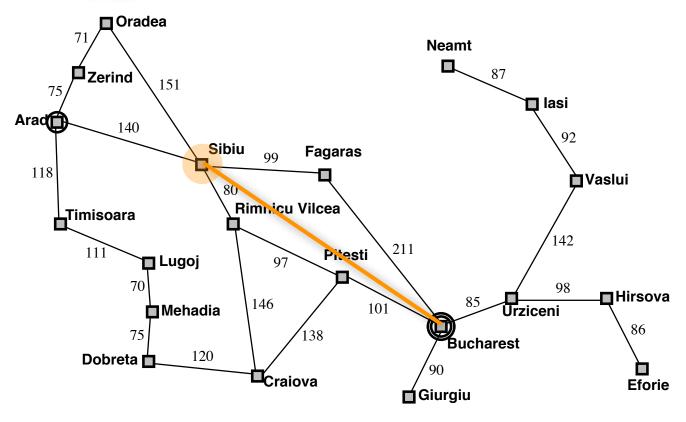
uniform cost search: cost function g

heuristic function: h

$$g(n) \qquad h(n)$$
initial state current state goal state

Example: h_{SLD}

Figure 3.22



Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

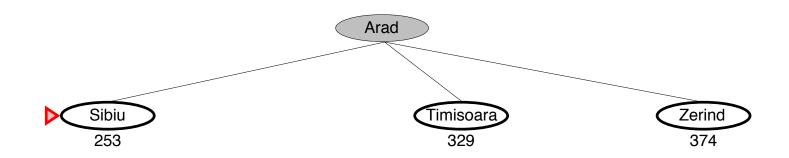
Values of h_{SLD} —straight-line distances to Bucharest.

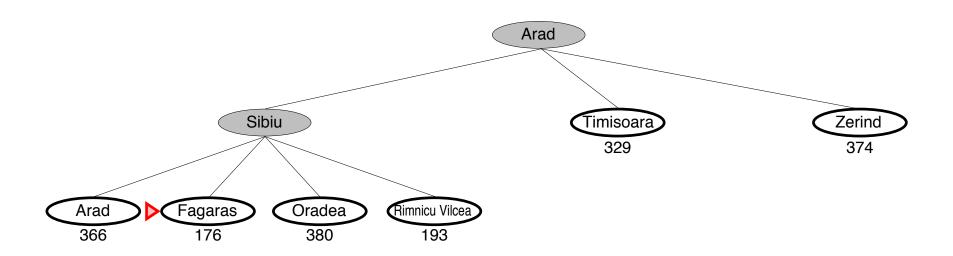
Greedy search

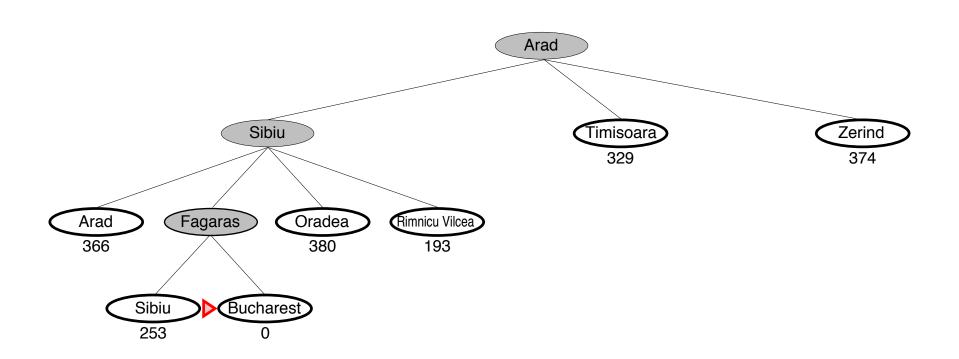
Evaluation function h(n) (heuristic) = estimate of cost from n to the closest goal

E.g., $h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}$

Greedy search expands the node that appears to be closest to goal

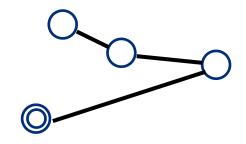






Properties

Complete?? No-can get stuck in loops, e.g.,



Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal?? No

A* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n) = \cos t$ so far to reach n

h(n) =estimated cost to goal from n

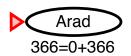
f(n) =estimated total cost of path through n to goal

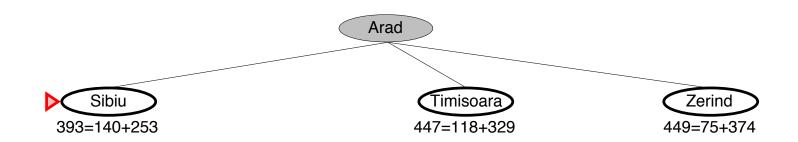
A* search uses an admissible heuristic

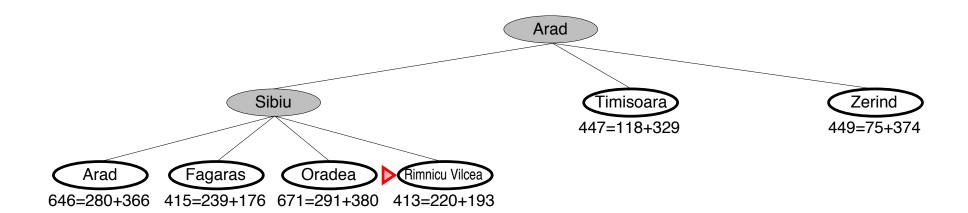
i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the **true** cost from n. (Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.)

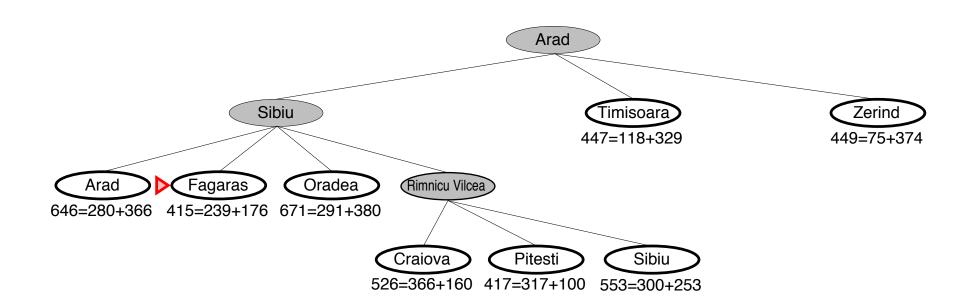
E.g., $h_{\rm SLD}(n)$ never overestimates the actual road distance

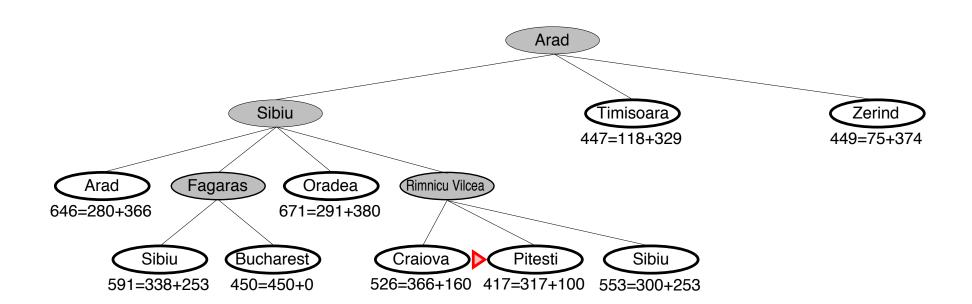
Theorem: A* search is optimal

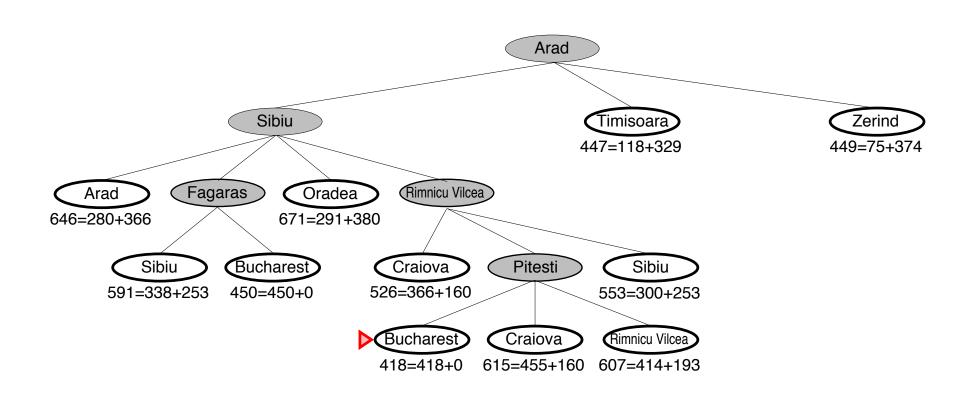




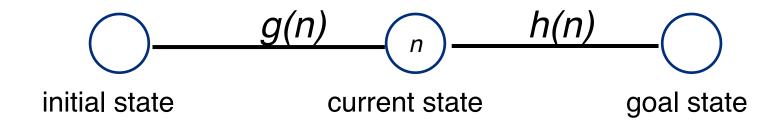




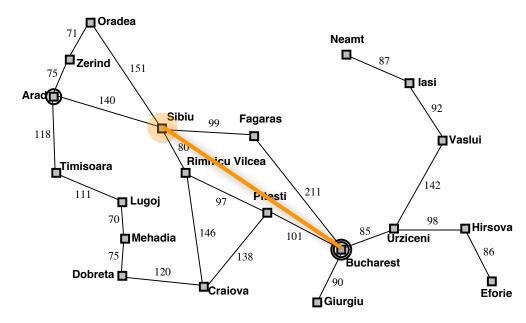




Admissible: never over estimate the cost



no larger than the cost of the optimal path from *n* to the goal



A* is optimal with admissible heuristic 重点理解!

why?

A* is optimal with admissible heuristic

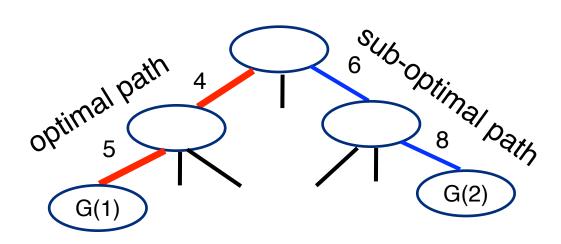
重点理解!

why? 1. when a search algorithm is optimal?

uniform cost search is optimal, because

- a) it expands node with the smallest cost
- b) the goal state on the optimal path has smaller cost than that on any sub-optimal path
- c) it will never expand the goal states on sub-optimal paths before the goal state on the optimal path

key, the goal state on the optimal path has a smaller value than that on any sub-optimal paths



A* is optimal with admissible heuristic 重点理解!

why? 2. when the f=g+h value of the goal state on the optimal path is smaller than that on any sub-optimal path?

A* is optimal with admissible heuristic

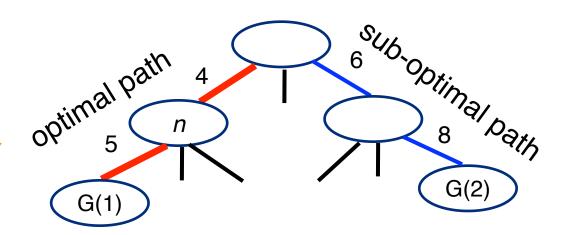
重点理解!

why? 3. if $h(n) \le h^*(n)$, that is, the heuristic value is smaller than the true cost

for any node *n* on the optimal path

$$f(n) = g(n) + h(n) \le g(n) + h^*(n) = g(G(1)) \le g(G(2))$$

so n is always expanded before the goal state on any other sub-optimal path

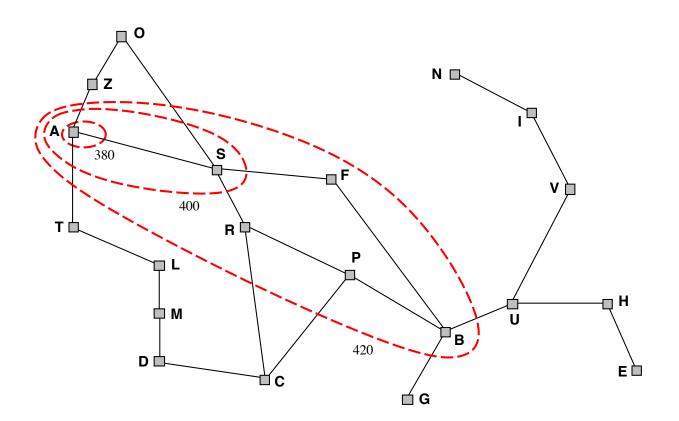


A* is optimal with admissible heuristic

why?

Lemma: A^* expands nodes in order of increasing f value*

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$



Admissible is for tree search, for graph search

A heuristic is consistent if

$$h(n) \le c(n, a, n') + h(n')$$

If h is consistent, we have

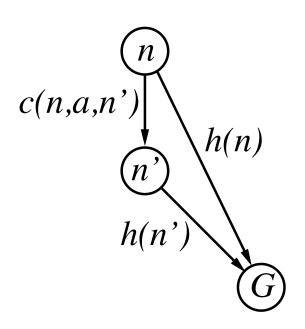
$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n, a, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$= f(n)$$

I.e., f(n) is nondecreasing along any path.



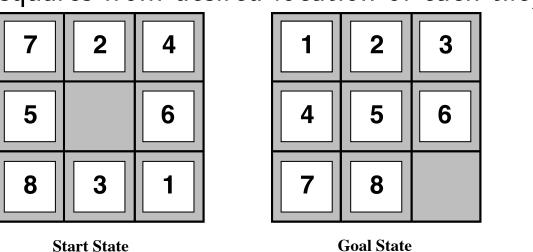
Proof is similar with that of admissible

E.g., for the 8-puzzle:

$$h_1(n) =$$
 number of misplaced tiles

$$h_2(n) = \text{total Manhattan distance}$$

(i.e., no. of squares from desired location of each tile)



$$\frac{h_1(S)}{h_2(S)} = ??$$
 6
 $\frac{h_2(S)}{h_2(S)} = ??$ 4+0+3+3+1+0+2+1 = 14

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

why?

Typical search costs:

$$d=14$$
 IDS = 3,473,941 nodes $A^*(h_1)=539$ nodes $A^*(h_2)=113$ nodes $d=24$ IDS $\approx 54,000,000,000$ nodes $A^*(h_1)=39,135$ nodes $A^*(h_2)=1,641$ nodes

Given any admissible heuristics h_a , h_b ,

$$h(n) = \max(h_a(n), h_b(n))$$

is also admissible and dominates h_a , h_b

Admissible heuristics from relaxed problem

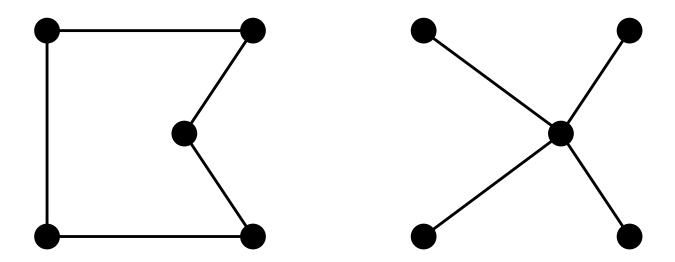
Admissible heuristics can be derived from the **exact** solution cost of a **relaxed** version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Well-known example: travelling salesperson problem (TSP) Find the shortest tour visiting all cities exactly once



Minimum spanning tree can be computed in $O(n^2)$ and is a lower bound on the shortest (open) tour

Where did A* come from

Shakey 50 Years

Shakey the robot was the first generalpurpose mobile robot to be able to reason about its own actions

Developed in SRI International from 1966

