
Lecture 6: Search 5
General Solu2on Space Search

& CSP

Constraint satisfaction problems (CSPs)

Constraint satisfaction problems (CSPs) Constraint satisfaction problems (CSPs)

Standard search problem:
state is a “black box”—any old data structure

that supports goal test, eval, successor

CSP:
state is defined by variables Xi with values from domain Di

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

Chapter 5 3

Example: Map-Coloring
Example: Map-Coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania
Variables WA, NT , Q, NSW , V , SA, T
Domains Di = {red, green, blue}
Constraints: adjacent regions must have different colors

e.g., WA ̸= NT (if the language allows this), or
(WA, NT) ∈ {(red, green), (red, blue), (green, red), (green, blue), . . .}

Chapter 5 4

Example: Map-Coloring
Example: Map-Coloring contd.

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Solutions are assignments satisfying all constraints, e.g.,
{WA = red,NT = green,Q = red,NSW = green, V = red, SA = blue, T = green}

Chapter 5 5

Standard search formulation (incremental) Standard search formulation (incremental)

Let’s start with the straightforward, dumb approach, then fix it

States are defined by the values assigned so far

♦ Initial state: the empty assignment, { }

♦ Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
⇒ fail if no legal assignments (not fixable!)

♦ Goal test: the current assignment is complete

1) This is the same for all CSPs!
2) Every solution appears at depth n with n variables

⇒ use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) b = (n − ℓ)d at depth ℓ, hence n!dn leaves!!!!

Chapter 5 11

Backtracking search

Backtracking search

Variable assignments are commutative, i.e.,
[WA = red then NT = green] same as [NT = green then WA = red]

Only need to consider assignments to a single variable at each node
⇒ b = d and there are dn leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n ≈ 25

Chapter 5 12

Backtracking search

Backtracking search

function Backtracking-Search(csp) returns solution/failure
return Recursive-Backtracking({ }, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure
if assignment is complete then return assignment

var←Select-Unassigned-Variable(Variables[csp],assignment, csp)
for each value in Order-Domain-Values(var,assignment, csp) do

if value is consistent with assignment given Constraints[csp] then

add {var = value} to assignment

result←Recursive-Backtracking(assignment, csp)
if result ̸= failure then return result

remove {var = value} from assignment

return failure

Chapter 5 13

Backtracking search exampleBacktracking example

Chapter 5 17

Improving backtracking efficiency

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?

2. In what order should its values be tried?

3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?

Chapter 5 18

backtracking is uninformed
make it more informed

Minimum remaining values

Minimum remaining values

Minimum remaining values (MRV):
choose the variable with the fewest legal values

Chapter 5 19

Degree heuristic

Degree heuristic

Tie-breaker among MRV variables

Degree heuristic:
choose the variable with the most constraints on remaining variables

Chapter 5 20

Least constraining value

Least constraining value

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

Allows 1 value for SA

Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible

Chapter 5 21

Forward checking
Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T

Chapter 5 25

Constraint propagation

Constraint propagation

Forward checking propagates information from assigned to unassigned vari-
ables, but doesn’t provide early detection for all failures:

WA NT Q NSW V SA T

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally

Chapter 5 26

Arc consistency

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

Chapter 5 27

Arc consistency

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked

Chapter 5 29

Arc consistency Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

Chapter 5 30

Arc consistency Arc consistency algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X1, X2, . . . , Xn}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do

(Xi, Xj)←Remove-First(queue)
if Remove-Inconsistent-Values(Xi, Xj) then

for each Xk in Neighbors[Xi] do

add (Xk, Xi) to queue

function Remove-Inconsistent-Values(Xi, Xj) returns true iff succeeds
removed← false

for each x in Domain[Xi] do

if no value y in Domain[Xj] allows (x,y) to satisfy the constraint Xi ↔ Xj

then delete x from Domain[Xi]; removed← true

return removed

O(n2d3), can be reduced to O(n2d2) (but detecting all is NP-hard)

Chapter 5 31

Problem Structure
Problem structure

Victoria

WA

NT

SA

Q

NSW

V

T

Tasmania and mainland are independent subproblems

Identifiable as connected components of constraint graph

Chapter 5 32

Problem structure contd.

Suppose each subproblem has c variables out of n total

Worst-case solution cost is n/c · dc, linear in n

E.g., n = 80, d = 2, c = 20
280 = 4 billion years at 10 million nodes/sec
4 · 220 = 0.4 seconds at 10 million nodes/sec

Chapter 5 33

Tree-structured CSPs
Tree-structured CSPs

A
B

C
D

E

F

Theorem: if the constraint graph has no loops, the CSP can be solved in
O(n d2) time

Compare to general CSPs, where worst-case time is O(dn)

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions
and the complexity of reasoning.

Chapter 5 34

Algorithm for tree-structured CSPs

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering

A
B

C
D

E

F
A B C D E F

2. For j from n down to 2, apply RemoveInconsistent(Parent(Xj), Xj)

3. For j from 1 to n, assign Xj consistently with Parent(Xj)

Chapter 5 35

Nearly tree-structured CSPs
Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

Victoria

WA

NT
Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size c ⇒ runtime O(dc · (n − c)d2), very fast for small c

Chapter 5 36

Iterative algorithms for CSPs
Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints

Chapter 5 37

Example: 4-Queens
Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

h = 5 h = 2 h = 0

Chapter 5 38

Performance of min-conflicts
Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

R =
number of constraints

number of variables

R

CPU
time

critical
 ratio

Chapter 5 39

Varieties of CSPs

Varieties of CSPs

Discrete variables
finite domains; size d ⇒ O(dn) complete assignments

♦ e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
infinite domains (integers, strings, etc.)

♦ e.g., job scheduling, variables are start/end days for each job
♦ need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

♦ linear constraints solvable, nonlinear undecidable

Continuous variables
♦ e.g., start/end times for Hubble Telescope observations
♦ linear constraints solvable in poly time by LP methods

Chapter 5 7

Varieties of CSPs
Varieties of constraints

Unary constraints involve a single variable,
e.g., SA ̸= green

Binary constraints involve pairs of variables,
e.g., SA ̸= WA

Higher-order constraints involve 3 or more variables,
e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green
often representable by a cost for each variable assignment

→ constrained optimization problems

Chapter 5 8

Real-world CSPs
Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration

Spreadsheets

Transportation scheduling

Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables

Chapter 5 10

Constraint graph
Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

Victoria

WA

NT

SA

Q

NSW

V

T

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent subproblem!

Chapter 5 6

Convert higher-order to binary
A higher-order constraint can be converted to binary
constraints with a hidden-variable

variable: A, B, C domain: {1,2,3} constraint: A+B=C

A B C

h

hidden-variable: h with domain: {1,2,3}

all possible assignments: (A,B,C) = (1,1,2), (1,2,3), (2,1,3)

(each value corresponds to
an assignment)the constraint graph:

constraint:
h=1, C=2
h=2, C=3
h=3, C=3

fro
m th

e d
efi

nit
ion

 of
 h

Example: Cryptarithmetic
Example: Cryptarithmetic

OWTF U R
+

OWT
OWT

F O U R

X2 X1X3

Variables: F T U W R O X1 X2 X3

Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Constraints

alldiff(F, T, U,W, R, O)
O + O = R + 10 · X1, etc.

Chapter 5 9

hidden variables

auxiliary variables

Summary of CSP
Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node

Variable ordering and value selection heuristics help significantly

Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure

Tree-structured CSPs can be solved in linear time

Iterative min-conflicts is usually effective in practice

Chapter 5 40

General (Iterative) Solution Space Search

Greedy idea in continuous space

Example: Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Chapter 3 6

Continuous state spaces

Suppose we want to site three airports in Romania:
– 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
– objective function f(x1, y2, x2, y2, x3, y3) =

sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers ±δ change in each coordinate

Gradient methods compute

∇f =

⎛

⎜⎜⎝
∂f

∂x1
,
∂f

∂y1
,
∂f

∂x2
,
∂f

∂y2
,
∂f

∂x3
,
∂f

∂y3

⎞

⎟⎟⎠

to increase/reduce f , e.g., by x← x + α∇f(x)

Sometimes can solve for ∇f(x) = 0 exactly (e.g., with one city).
Newton–Raphson (1664, 1690) iterates x← x−H−1

f (x)∇f(x)
to solve ∇f(x) = 0, where Hij = ∂2f/∂xi∂xj

Chapter 4, Sections 3–4 13

Greedy idea in continuous space

Example: Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Chapter 3 6

discretize and use hill climbing

Hill climbing

function HillClimb_Step(double[] solution)

 double value = Eval(solution)

 List neighbors = Neighbors(solution)

 double bestv = value

 double[] bestc = none

 for each candidate in neighbors do

 double candivalue = eval(candidate)

 if candivalue < bestv then

 bestv = candivalue

 bestc = candidate

 end if

 end for

return bestc

Greedy idea in continuous space
gradient decent

Continuous state spaces

Suppose we want to site three airports in Romania:
– 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
– objective function f(x1, y2, x2, y2, x3, y3) =

sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers ±δ change in each coordinate

Gradient methods compute

∇f =

⎛

⎜⎜⎝
∂f

∂x1
,
∂f

∂y1
,
∂f

∂x2
,
∂f

∂y2
,
∂f

∂x3
,
∂f

∂y3

⎞

⎟⎟⎠

to increase/reduce f , e.g., by x← x + α∇f(x)

Sometimes can solve for ∇f(x) = 0 exactly (e.g., with one city).
Newton–Raphson (1664, 1690) iterates x← x−H−1

f (x)∇f(x)
to solve ∇f(x) = 0, where Hij = ∂2f/∂xi∂xj

Chapter 4, Sections 3–4 13

Continuous state spaces

Suppose we want to site three airports in Romania:
– 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
– objective function f(x1, y2, x2, y2, x3, y3) =

sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers ±δ change in each coordinate

Gradient methods compute

∇f =

⎛

⎜⎜⎝
∂f

∂x1
,
∂f

∂y1
,
∂f

∂x2
,
∂f

∂y2
,
∂f

∂x3
,
∂f

∂y3

⎞

⎟⎟⎠

to increase/reduce f , e.g., by x← x + α∇f(x)

Sometimes can solve for ∇f(x) = 0 exactly (e.g., with one city).
Newton–Raphson (1664, 1690) iterates x← x−H−1

f (x)∇f(x)
to solve ∇f(x) = 0, where Hij = ∂2f/∂xi∂xj

Chapter 4, Sections 3–4 13

1-order method

Greedy idea in continuous space
gradient decent

Continuous state spaces

Suppose we want to site three airports in Romania:
– 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
– objective function f(x1, y2, x2, y2, x3, y3) =

sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers ±δ change in each coordinate

Gradient methods compute

∇f =

⎛

⎜⎜⎝
∂f

∂x1
,
∂f

∂y1
,
∂f

∂x2
,
∂f

∂y2
,
∂f

∂x3
,
∂f

∂y3

⎞

⎟⎟⎠

to increase/reduce f , e.g., by x← x + α∇f(x)

Sometimes can solve for ∇f(x) = 0 exactly (e.g., with one city).
Newton–Raphson (1664, 1690) iterates x← x−H−1

f (x)∇f(x)
to solve ∇f(x) = 0, where Hij = ∂2f/∂xi∂xj

Chapter 4, Sections 3–4 13

Theoretical Computer Science Cheat Sheet

Series
Taylor’s series:

f(x) = f(a) + (x − a)f ′(a) +
(x − a)2

2
f ′′(a) + · · · =

∞
∑

i=0

(x − a)i

i!
f (i)(a).

Expansions:
1

1 − x
= 1 + x + x2 + x3 + x4 + · · · =

∞
∑

i=0

xi,

1
1 − cx

= 1 + cx + c2x2 + c3x3 + · · · =
∞
∑

i=0

cixi,

1
1 − xn

= 1 + xn + x2n + x3n + · · · =
∞
∑

i=0

xni,

x

(1 − x)2
= x + 2x2 + 3x3 + 4x4 + · · · =

∞
∑

i=0

ixi,

xk dn

dxn

(

1
1 − x

)

= x + 2nx2 + 3nx3 + 4nx4 + · · · =
∞
∑

i=0

inxi,

ex = 1 + x + 1
2x2 + 1

6x3 + · · · =
∞
∑

i=0

xi

i!
,

ln(1 + x) = x − 1
2x2 + 1

3x3 − 1
4x4 − · · · =

∞
∑

i=1

(−1)i+1 xi

i
,

ln
1

1 − x
= x + 1

2x2 + 1
3x3 + 1

4x4 + · · · =
∞
∑

i=1

xi

i
,

sin x = x − 1
3!x

3 + 1
5!x

5 − 1
7!x

7 + · · · =
∞
∑

i=0

(−1)i x2i+1

(2i + 1)!
,

cos x = 1 − 1
2!x

2 + 1
4!x

4 − 1
6!x

6 + · · · =
∞
∑

i=0

(−1)i x2i

(2i)!
,

tan−1 x = x − 1
3x3 + 1

5x5 − 1
7x7 + · · · =

∞
∑

i=0

(−1)i x2i+1

(2i + 1)
,

(1 + x)n = 1 + nx + n(n−1)
2 x2 + · · · =

∞
∑

i=0

(

n

i

)

xi,

1
(1 − x)n+1

= 1 + (n + 1)x +
(n+2

2

)

x2 + · · · =
∞
∑

i=0

(

i + n

i

)

xi,

x

ex − 1
= 1 − 1

2x + 1
12x2 − 1

720x4 + · · · =
∞
∑

i=0

Bixi

i!
,

1
2x

(1 −
√

1 − 4x) = 1 + x + 2x2 + 5x3 + · · · =
∞
∑

i=0

1
i + 1

(

2i

i

)

xi,

1√
1 − 4x

= 1 + x + 2x2 + 6x3 + · · · =
∞
∑

i=0

(

2i

i

)

xi,

1√
1 − 4x

(

1 −
√

1 − 4x

2x

)n

= 1 + (2 + n)x +
(4+n

2

)

x2 + · · · =
∞
∑

i=0

(

2i + n

i

)

xi,

1
1 − x

ln
1

1 − x
= x + 3

2x2 + 11
6 x3 + 25

12x4 + · · · =
∞
∑

i=1

Hix
i,

1
2

(

ln
1

1 − x

)2

= 1
2x2 + 3

4x3 + 11
24x4 + · · · =

∞
∑

i=2

Hi−1xi

i
,

x

1 − x − x2
= x + x2 + 2x3 + 3x4 + · · · =

∞
∑

i=0

Fix
i,

Fnx

1 − (Fn−1 + Fn+1)x − (−1)nx2
= Fnx + F2nx2 + F3nx3 + · · · =

∞
∑

i=0

Fnix
i.

Ordinary power series:

A(x) =
∞
∑

i=0

aix
i.

Exponential power series:

A(x) =
∞
∑

i=0

ai
xi

i!
.

Dirichlet power series:

A(x) =
∞
∑

i=1

ai

ix
.

Binomial theorem:

(x + y)n =
n

∑

k=0

(

n

k

)

xn−kyk.

Difference of like powers:

xn − yn = (x − y)
n−1
∑

k=0

xn−1−kyk.

For ordinary power series:

αA(x) + βB(x) =
∞
∑

i=0

(αai + βbi)xi,

xkA(x) =
∞
∑

i=k

ai−kxi,

A(x) −
∑k−1

i=0 aixi

xk
=

∞
∑

i=0

ai+kxi,

A(cx) =
∞
∑

i=0

ciaix
i,

A′(x) =
∞
∑

i=0

(i + 1)ai+1x
i,

xA′(x) =
∞
∑

i=1

iaix
i,

∫

A(x) dx =
∞
∑

i=1

ai−1

i
xi,

A(x) + A(−x)
2

=
∞
∑

i=0

a2ix
2i,

A(x) − A(−x)
2

=
∞
∑

i=0

a2i+1x
2i+1.

Summation: If bi =
∑i

j=0 ai then

B(x) =
1

1 − x
A(x).

Convolution:

A(x)B(x) =
∞
∑

i=0

⎛

⎝

i
∑

j=0

ajbi−j

⎞

⎠ xi.

God made the natural numbers;
all the rest is the work of man.
– Leopold Kronecker

Continuous state spaces

Suppose we want to site three airports in Romania:
– 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
– objective function f(x1, y2, x2, y2, x3, y3) =

sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers ±δ change in each coordinate

Gradient methods compute

∇f =

⎛

⎜⎜⎝
∂f

∂x1
,
∂f

∂y1
,
∂f

∂x2
,
∂f

∂y2
,
∂f

∂x3
,
∂f

∂y3

⎞

⎟⎟⎠

to increase/reduce f , e.g., by x← x + α∇f(x)

Sometimes can solve for ∇f(x) = 0 exactly (e.g., with one city).
Newton–Raphson (1664, 1690) iterates x← x−H−1

f (x)∇f(x)
to solve ∇f(x) = 0, where Hij = ∂2f/∂xi∂xj

Chapter 4, Sections 3–4 13
2-order method

Greedy idea

1st and 2nd order methods may not find global optimal
solutions Hill-climbing contd.

Useful to consider state space landscape

current
state

objective function

state space

global maximum

local maximum
"flat" local maximum

shoulder

Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves escape from shoulders loop on flat maxima

Chapter 4, Sections 3–4 7

they work for convex functions

Purely random search

function RandomSearch_Step(double[] solution)

 double value = Eval(solution)

 double[] rsol = RandomSolution()

 double vr = Eval(rsol)

 if vr < value then

 return rsol

 end if

return none

optimal after infinite steps! why?

can be more smart? replace RandomSolution

Hill climbing vs. Pure random search
function HillClimb_Step(double[] solution)

 double value = Eval(solution)

 List neighbors = Neighbors(solution)

 double bestv = value

 double[] bestc = none

 for each candidate in neighbors do

 double candivalue = eval(candidate)

 if candivalue < bestv then

 bestv = candivalue

 bestc = candidate

 end if

 end for

return bestc

function RandomSearch_Step(double[] solution)

 double value = Eval(solution)

 double[] rsol = RandomSolution()

 double vr = Eval(rsol)

 if vr < value then

 return rsol

 end if

return none

exploitation vs. exploration
locally optimal vs. globally optimal

Meta-heuristics

“problem independent
“black-box
“zeroth-order method
...

and usually inspired from nature phenomenon

Simulated annealing

temperature from high to low

when high temperature, form the shape
when low temperature, polish the detail

Simulated annealingSimulated annealing

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function Simulated-Annealing(problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”
local variables: current, a node

next, a node
T, a “temperature” controlling prob. of downward steps

current←Make-Node(Initial-State[problem])
for t← 1 to ∞ do

T← schedule[t]
if T = 0 then return current
next← a randomly selected successor of current
∆E←Value[next] – Value[current]
if ∆E > 0 then current←next
else current←next only with probability e∆ E/T

Chapter 4, Sections 3–4 8

the neighborhood range
shrinks with T

the probability of accepting a
bad solution decreases with T

Simulated annealing

a demo

graphic from http://en.wikipedia.org/wiki/Simulated_annealing

http://en.wikipedia.org/wiki/Simulated_annealing

Simulated annealing

a demo

graphic from http://en.wikipedia.org/wiki/Simulated_annealing

http://en.wikipedia.org/wiki/Simulated_annealing

Local beam search

Local beam search

Idea: keep k states instead of 1; choose top k of all their successors

Not the same as k searches run in parallel!
Searches that find good states recruit other searches to join them

Problem: quite often, all k states end up on same local hill

Idea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!

Chapter 4, Sections 3–4 10

Genetic algorithm

a simulation of Darwin’s evolutionary theory
(more generally: evolutionary algorithm)
– over-reproduction with diversity
– nature selection

parent
population

offspring
solutions

reproduction

evaluated
offspring
solutions

selection evaluation

random initialization

Genetic algorithm

Encode a solution as a vector,
1: Pop n randomly drawn solutions from X
2: for t=1,2,. . . do
3: Popm {mutate(s) | 8s 2 Pop}, the mutated solutions
4: Popc {crossover(s1, s2) | 9s1, s2 2 Popm}, the recombined solutions
5: evaluate every solution in Popc by f(s)(8s 2 Popc)
6: Pops selected solutions from Pop and Popc

7: Pop Pops

8: terminate if meets a stopping criterion
9: end for

mutation: some kind of random changes
crossover: some kind of random exchanges
selection: some kind of quality related selection

Genetic algorithmGenetic algorithms

= stochastic local beam search + generate successors from pairs of states

32252124

Selection Cross−Over Mutation

24748552

32752411

24415124

24

23

20

32543213 11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

24752411

32748152

24415417

Fitness Pairs

Chapter 4, Sections 3–4 11

Genetic algorithms contd.

GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components

+ =

GAs ̸= evolution: e.g., real genes encode replication machinery!

Chapter 4, Sections 3–4 12

An evolutionary of virtual life

An evolutionary of virtual life

Example

parameterize

represented as a vector of parameters

Representation:

hard to apply traditional optimization methods
but easy to test a given solution

xi

test by simulation/experiment

f(xi)

Fitness:

Example

Series 700

Series N700

this nose ... has been newly developed ... using the latest
analytical technique (i.e. genetic algorithms)

N700 cars save 19% energy ... 30% increase in the output... This is a
result of adopting the ... nose shape

Example

hard to apply traditional optimization
methods

NASA ST5 satellite

Example

hard to apply traditional optimization
methods

NASA ST5 satellite

Example

hard to apply traditional optimization
methods

NASA ST5 satellite

evolved antennas resulted
in 93% efficiency

QHAs(⼈⼯设计) 38%
efficiency

Properties of meta-heuristics

zeroth order

convergence
P(x* | x)>0will find an optimal solution if

or P(x -> x1 -> ... -> xk -> x*)>0

do not need differentiable functions

parent
population

offspring
solutions

reproduction

evaluated
offspring
solutions

selection evaluation

random initialization

Which is the best algorithm?

X

f

I[k = �(ym|f,m,A)]

Over all objectives

�(ym | f,m,A)

a search algorithm A, objective f, m solutions
arbitrary measure of the objective values of the m solutions:

assume no replicates

Overall performance assessment (for arbitrary k):

f : X ! {1, 2, . . . , Y }

X

f

I[k = �(ym|f,m,A)] =
X

f

I[k = �(f(A(m)))]

=
X

f

X

ym

I[k = �(ym)]I[ym = f(A(m))]

=
X

ym

I[k = �(ym)]
X

f

I[ym = f(A(m))]

=
X

ym

I[k = �(ym)]Y |X |�m

X

f

I[k = �(ym|f,m,A)] =
X

f

I[k = �(f(A(m)))]

=
X

f

X

ym

I[k = �(ym)]I[ym = f(A(m))]

=
X

ym

I[k = �(ym)]
X

f

I[ym = f(A(m))]

=
X

ym

I[k = �(ym)]Y |X |�m

X

f

I[k = �(ym|f,m,A)] =
X

f

I[k = �(f(A(m)))]

=
X

f

X

ym

I[k = �(ym)]I[ym = f(A(m))]

=
X

ym

I[k = �(ym)]
X

f

I[ym = f(A(m))]

=
X

ym

I[k = �(ym)]Y |X |�m

X

f

I[k = �(ym|f,m,A)] =
X

f

I[k = �(f(A(m)))]

=
X

f

X

ym

I[k = �(ym)]I[ym = f(A(m))]

=
X

ym

I[k = �(ym)]
X

f

I[ym = f(A(m))]

=
X

ym

I[k = �(ym)]Y |X |�m

X

f

I[k = �(ym|f,m,A)] =
X

f

I[k = �(f(A(m)))]

=
X

f

X

ym

I[k = �(ym)]I[ym = f(A(m))]

=
X

ym

I[k = �(ym)]
X

f

I[ym = f(A(m))]

=
X

ym

I[k = �(ym)]Y |X |�m

all algorithms have the same average performance
[Wolpert & Macready, 97]

X

f

I[k = �(ym|f,m,A)] =
X

f

I[k = �(f(A(m)))]

=
X

f

X

ym

I[k = �(ym)]I[ym = f(A(m))]

=
X

ym

I[k = �(ym)]
X

f

I[ym = f(A(m))]

=
X

ym

I[k = �(ym)]Y |X |�m

No Free Lunch Theorem

all algorithms have the same average performance
[Wolpert & Macready, 97]

