II

Lecture 8: Knowledge 2

Previously...

function HYBRID-WUMPUS-AGENT(percept) returns an action
inputs: percept, a list, [stench,breeze,glitter,bump,scream]
persistent: KB, a knowledge base, initially the atemporal “wumpus physics”
t, a counter, initially 0, indicating time
plan, an action sequence, initially empty

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
TELL the KB the temporal “physics” sentences for time ¢
safe —{[z,y] : ASK(KB,OK) = true}
if ASK(KB, Glitter') = true then
plan — [Grab] + PLAN-ROUTE(current,{[1,11}, safe) + [Climb]
if plan is empty then
unvisited «— {[z,y] : ASK(KB, Lgyy) = false forall ¢/ < t}
plan < PLAN-ROUTE(current, unvisited N safe, safe)
if plan is empty and ASK (KB, HaveArrow') = true then
possible_wumpus — {[z,y] : ASK(KB,—~ W, ,) = false}
plan < PLAN-SHOT(current, possible_wumpus, safe)
if plan is empty then // no choice but to take a risk
not_unsafe «— {[z,y] : ASK(KB,— OK;y) = false}
plan < PLAN-ROUTE(current, unvisited N not_unsafe, safe)
if plan is empty then
plan < PLAN-ROUTE(current, {[1, 1]}, safe) + [Climb]
action < POP(plan)
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t—1t+1
return action

function PLAN-ROUTE(current,goals,allowed) returns an action sequence
inputs: current, the agent’s current position
goals, a set of squares; try to plan a route to one of them
allowed, a set of squares that can form part of the route

problem < ROUTE-PROBLEM(current, goals,allowed)
return A*-GRAPH-SEARCH(problem)

Pros and cons of propositional logic

Propositional logic is declarative: pieces of syntax correspond to facts

Propositional logic allows partial /disjunctive /negated information
(unlike most data structures and databases)

Propositional logic is compositional:
meaning of B A P, is derived from meaning of B and of P 5

Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context)

Propositional logic has very limited expressive power

(unlike natural language)

E.g., cannot say “pits cause breezes in adjacent squares”
except by writing one sentence for each square

First-order logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

e Objects: people, houses, numbers, theories, Ronald McDonald, colors,
baseball games, wars, centuries . ..

e Relations: red, round, bogus, prime, multistoried . . .,
brother of, bigger than, inside, part of, has color, occurred after, owns,
comes between, ...

e Functions: father of, best friend, third inning of, one more than, end of

Logics in general

Language Ontological Epistemological
Commitment Commitment
Propositional logic | facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times | true/false/unknown
Probability theory | facts degree of belief
Fuzzy logic facts + degree of truth known interval value

Syntax of FOL: Basic elements

Constants KingJohn, 2, UCB, ...

Predicates Brother, >, ...
Functions Sqrt, LeftLeqOf, ...
Variables z, vy, a, 0, ...
Connectives A V = = &
Equality =

Quantifiers VYV 4

Atomic sentences

predicate(termy, ... termy,)
or termy = terms

Atomic sentence

Term = function(termq, ..., term,)
or constant or variable

E.g., Brother(KingJohn, RichardThelLionheart)
> (Length(LeftLegO f(Richard)), Length(Le ft LegO f(KingJohn)))

Complex sentences

Complex sentences are made from atomic sentences using connectives
_IS, Sl /N\ SQ, Sl V SQ, Sl — SQ, Sl — SQ

E.g. Sibling(KingJohn, Richard) = Sibling(Richard, KingJohn)
>(1,2) Vv <(1,2)
>(1,2) A =>(1,2)

Truth in first-order logic

Sentences are true with respect to a model and an interpretation
Model contains > 1 objects (domain elements) and relations among them

Interpretation specifies referents for
constant symbols — objects
predicate symbols — relations
function symbols — functional relations

An atomic sentence predicate(termy, ..., term,,) is true
iIff the objects referred to by termq, ..., term,
are in the relation referred to by predicate

Models for FOL: Example

person
king

eft leg

eft leg

Consider the interpretation in which
Richard — Richard the Lionheart
John — the evil King John
Brother — the brotherhood relation

Under this interpretation, Brother(Richard, John) is true
just in case Richard the Lionheart and the evil King John
are in the brotherhood relation in the model

Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models
We can enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to oo
For each k-ary predicate P in the vocabulary
For each possible k-ary relation on n objects
For each constant symbol C' in the vocabulary
For each choice of referent for C' from n objects . ..

Computing entailment by enumerating FOL models is not easy!

Universal quantification

V (variables) (sentence)

Everyone at Berkeley is smart:
Va At(x, Berkeley) = Smart(x)

Va P s true in a model m iff P is true with x being
each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

(At(KingJohn, Berkeley) = Smart(KingJohn))
A (At(Richard, Berkeley) = Smart(Richard))
N (At(Berkeley, Berkeley) = Smart(Berkeley))
A

A common mistake to avoid

Typically, =- is the main connective with V
Common mistake: using /\ as the main connective with V:

Va At(x, Berkeley) N Smart(x)

means “Everyone is at Berkeley and everyone is smart”

Existential quantification

3 (variables) (sentence)

Someone at Stanford is smart:

dx At(x, Stanford) N Smart(x)

Jx P is true in a model m iff P is true with = being
some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

(At(KingJohn, Stan ford) N Smart(KingJohn))
V (At(Richard, Stanford) A Smart(Richard))
V (At(Stanford, Stanford) N Smart(Stanford))
V

Another common mistake to avoid

Typically, A is the main connective with -
Common mistake: using = as the main connective with 3

dx At(x, Stanford) = Smart(x)

is true if there is anyone who is not at Stanford!

Properties of quantifiers

Vo Vy isthesameasVy Va (why??)
dx Jy isthesameas Jy dx (why??)
Jdxr Vy isnot the sameasVy dx

dx Vy Loves(x,y)
“There is a person who loves everyone in the world"

Vy dx Loves(x,y)
“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other

Va Likes(x,IceCream) —dx - Likes(x, [ceCream)

dx Likes(x, Broccoli) -V —Likes(x, Broccoli)

Fun with sentences

Brothers are siblings

Vax,y Brother(z,y) = Sibling(x,y).

“Sibling” is symmetric

Va,y Sibling(z,y) < Sibling(y,x).

One’s mother is one’s female parent

Va,y Mother(xz,y) < (Female(x) A Parent(x,y)).
A first cousin is a child of a parent’s sibling

Va,y FirstCousin(x,y) < dp,ps Parent(p,x) A Sibling(ps,p) A
Parent(ps,y)

Equality

termy = terms is true under a given interpretation
if and only if term; and terms refer to the same object

Eg, 1=2and Vo Xx(Sqrt(x),Sqrt(x)) = x are satisfiable
2 =2 is valid

E.g., definition of (full) Sibling in terms of Parent:
Va,y Sibling(z,y) < [=(x=y)AIm, [—(m=[)A
Parent(m,x) A Parent(f,x) A Parent(m,y) A Parent(f,y)]

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at ¢t = 5:

Tell(KB, Percept(|Smell, Breeze, Nonel, 5))
Ask(KB,da Action(a,b))

|.e., does K'B entail any particular actions at t = 57
Answer: Yes, {a/Shoot} «— substitution (binding list)

Given a sentence S and a substitution o,

So denotes the result of plugging o into S; e.g.,
S = Smarter(x,y)

o =A{x/Hillary,y/Bill}

So = Smarter(Hillary, Bill)

Ask(K B, S) returns some/all o such that KB = So

Knowledge base for the wumpus world

“Perception”
Vb,g,t Percept(|Smell,b, g|,t) = Smelt(t)
Vs,b,t Percept(|s,b,Glitter|,t) = AtGold(t)

Reflex: Vt AtGold(t) = Action(Grab,t)

Reflex with internal state: do we have the gold already?

Vit AtGold(t) N ~Holding(Gold,t) = Action(Grab,t)

Holding(Gold,t) cannot be observed
= keeping track of change is essential

Deducing hidden properties

Properties of locations:
Va,t At(Agent,z,t) A Smelt(t) = Smelly(z)
Va,t At(Agent,x,t) A\ Breeze(t) = Breezy(x)

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect
Vy Breezy(y) = dx Pit(x) A Adjacent(x,y)

Causal rule—infer effect from cause
Va,y Pit(x) A Adjacent(x,y) = Breezy(y)

Neither of these is complete—e.g., the causal rule doesn't say whether
squares far away from pits can be breezy

Definition for the Breezy predicate:
Vy Breezyly) < [z Pit(x) N Adjacent(x,y)]

Keeping track of change

Facts hold in situations, rather than eternally
E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate
E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function

Result(a, s) is the situation that results from doing a in s
~

SN
~
] P
Iy
T~ % Q
~ r
e
\\ SN
ﬁ\ S
\\E\
\\S Forward

0

Describing actions |

“Effect” axiom—describe changes due to action

Vs AtGold(s) = Holding(Gold, Result(Grab, s))

“Frame” axiom—describe non-changes due to action
Vs HaveArrow(s) = HaveArrow(Result(Grab, s))

Frame problem: find an elegant way to handle non-change
(a) representation—avoid frame axioms
(b) inference—avoid repeated “copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—
what if gold is slippery or nailed down or ...

Ramification problem: real actions have many secondary consequences—
what about the dust on the gold, wear and tear on gloves, . ..

Describing actions ||

Successor-state axioms solve the representational frame problem
Each axiom is “about” a predicate (not an action per se):

P true afterwards < [an action made P true
VP true already and no action made P false|

For holding the gold:
Va,s Holding(Gold, Result(a,s)) <
(a=Grab N\ AtGold(s))
V (Holding(Gold, s) A a # Release)

Making plans

Initial condition in KB:
At(Agentv [17 1}7 SO)
At(GOld, [1, 2], S())

Query: Ask(KB,ds Holding(Gold, s))
I.e., in what situation will | be holding the gold?

Answer: {s/Result(Grab, Result(Forward, Sy))}
l.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S and that 5
is the only situation described in the KB

Making plans: A better way

Represent plans as action sequences |a1, as, . . ., a,)

PlanResult(p, s) is the result of executing p in s

Then the query Ask(KB,dp Holding(Gold, PlanResult(p, Sy)))
has the solution {p/|Forward, Grab|}

Definition of PlanResult in terms of Result:
Vs PlanResult(]],s) = s
Va,p,s PlanResult(|a|p|,s) = PlanResult(p, Result(a, s))

Planning systems are special-purpose reasoners designed to do this type of
inference more efficiently than a general-purpose reasoner

Summary

First-order logic:
— objects and relations are semantic primitives
— syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:
— conventions for describing actions and change in FOL
— can formulate planning as inference on a situation calculus KB

A brief history of reasoning

450B.C.
322B.C.
1565
1847
1879
1922
1930
1930
1931
1960
1965

Stoics
Aristotle
Cardano
Boole

Frege
Wittgenstein
Godel
Herbrand
Godel

propositional logic, inference (maybe)

“syllogisms” (inference rules), quantifiers

probability theory (propositional logic + uncertainty)
propositional logic (again)

first-order logic

proof by truth tables

3 complete algorithm for FOL

complete algorithm for FOL (reduce to propositional)
—3 complete algorithm for arithmetic

Davis/Putnam “practical” algorithm for propositional logic

Robinson

“practical” algorithm for FOL—resolution

Universal instantiation (Ul)

Every instantiation of a universally quantified sentence is entailed by it:

Vv «

SuBST({v/g}, a)

for any variable v and ground term g

Eg, Vo King(x) N Greedy(x) = FEvil(x) yields

King(John) A Greedy(John) = FEuvil(John)
King(Richard) N Greedy(Richard) = FEvil(Richard)
King(Father(John)) A Greedy(Father(John)) = FEwvil(Father(John))

Existential instantiation (El)

For any sentence «, variable v, and constant symbol &
that does not appear elsewhere in the knowledge base:

Jv «

SUuBST({v/k},)
Eg., dz Crown(x) N OnHead(x, John) yields

Crown(Cy) AN OnHead(Cy, John)
provided '} is a new constant symbol, called a Skolem constant
Another example: from 92 d(xY)/dy = 2 we obtain

d(e’)/dy = e’

provided e is a new constant symbol

Instantiation

Ul can be applied several times to add new sentences;
the new KB is logically equivalent to the old

El can be applied once to replace the existential sentence;

the new KB is not equivalent to the old,
but is satisfiable iff the old KB was satisfiable

Reduction to propositional inference

Suppose the KB contains just the following:

Vo King(x) A Greedy(x) = FEvil(x)
King(John)

Greedy(John)

Brother(Richard, John)

Instantiating the universal sentence in all possible ways, we have

King(John) N\ Greedy(John) = FEvil(John)
King(Richard) N\ Greedy(Richard) = FEwvil(Richard)
King(John)

Greedy(John)

Brother(Richard, John)

The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard) etc.

Reduction to propositional inference

Claim: a ground sentence” is entailed by new KB iff entailed by original KB
Claim: every FOL KB can be propositionalized so as to preserve entailment
|dea: propositionalize KB and query, apply resolution, return result

Problem: with function symbols, there are infinitely many ground terms,
e.g., Father(Father(Father(John)))

Theorem: Herbrand (1930). If a sentence « is entailed by an FOL KB,
it is entailed by a finite subset of the propositional KB

ldea: For n = 0 to oo do
create a propositional KB by instantiating with depth-n terms
see if v is entailed by this KB

Problem: works if « is entailed, loops if o is not entailed

Theorem: Turing (1936), Church (1936), entailment in FOL is semidecidable

Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences.
E.g., from

Vo King(x) A Greedy(x) = FEvil(x)
King(John)

Vy Greedy(y)

Brother(Richard, John)

it seems obvious that Fwvil(John), but propositionalization produces lots of
facts such as Greedy(Richard) that are irrelevant

k

With p k-ary predicates and n constants, there are p - n" instantiations

With function symbols, it gets nuch much worse!

Unification

We can get the inference immediately if we can find a substitution 6
such that King(x) and Greedy(z) match King(John) and Greedy(y)

0 ={x/John,y/John} works
UNIFY(a, 8) = 0 if af = (56

p q

0

Knows(John,) KnowS(John Jane)
Knows(John, x) | Knows(y, OJ)
Knows(John, x)| Knows(y, Mother(y))
Knows(John, z)| Knows(z,OJ)

{x/Jane}

{x/OJ,y/John}
{y/John,x/Mother(John)}
fazl

Standardizing apart eliminates overlap of variables, e.g., Knows(z17, OJ)

Generalized Modus Ponens (GMP)
(BUfHEE3E)

plla p2/7 "'7pn/7 <p1/\p2/\/\pn:>Q>

where p;'0 = p,;0 for all ¢
qt

p1’ is King(John) p1is King(x)
po’ is Greedy(y) po is Greedy(x)
0 is {x/John,y/John} qis Evil(x)

q0 is Fvil(John)

GMP used with KB of definite clauses (exactly one positive literal)
All variables assumed universally quantified

Soundness of GMP

Need to show that
pi's ooy iy (MUA APy = q) g0
provided that p,/0 = p;0 for all 7
Lemma: For any definite clause p, we have p = pf by Ul
L. (iAo App=qQ FEmA...Ap,=q)0=(p10 N ... \p,0 = qb)

2. pll, Ce e pn/):pl’/\.../\pn’):pl’é’/\.../\pn’é’

3. From 1 and 2, ¢ follows by ordinary Modus Ponens

Example knowledge base

The law says that it is a crime for an American to sell weapons to hostile
nations. The country Nono, an enemy of America, has some missiles, and
all of its missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal

. it is a crime for an American to sell weapons to hostile nations:
American(x)A\Weapon(y)A\Sells(x,y, z) NHostile(z) = Criminal(x)
Nono ... has some missiles, i.e., 32 Owns(Nono,x) N Missile(x):
Owns(Nono, M) and Missile(M;)
... all of its missiles were sold to it by Colonel West
Va Missile(x) N Owns(Nono,x) = Sells(West, x, Nono)
Missiles are weapons:
Missile(x) = Weapon(x)
An enemy of America counts as “hostile”:
Enemy(x, America) = Hostile(x)
West, who is American . ..
American(West)
The country Nono, an enemy of America . ..
Enemy(Nono, America)

Forward chaining algorithm

function FOL-FC-Ask(KB, a) returns a substitution or false

repeat until new is empty
new<«—{ }
for each sentence rin KB do
(ptA...A p, = @)+ STANDARDIZE-APART(7)
for each 6 such that (py A ... A p,)d = (P A ... A p))b
for some p},...,pl in KB
q' <+ SuBST(0, q)
if ¢’ is not a renaming of a sentence already in KB or new then do
add ¢’ to new
¢ «— UNIFY(q¢',)
if ¢ is not fail then return ¢
add new to KB
return false

Forward chaining proof

American(West)

Criminal(West)
Weapon(M1) Sells(West,M1,Nono)
Missile(M1) Owns(Nono,M1)

Hostile(Nono)

Enemy(Nono,America)

Properties of forward chaining

Sound and complete for first-order definite clauses
(proof similar to propositional proof)

Datalog = first-order definite clauses + no functions (e.g., crime KB)
FC terminates for Datalog in poly iterations: at most p - n" literals

May not terminate in general if o is not entailed

This is unavoidable: entailment with definite clauses is semidecidable

Efficiency of forward chaining

Simple observation: no need to match a rule on iteration k
if a premise wasn't added on iteration & — 1
= match each rule whose premise contains a newly added literal

Matching itself can be expensive

Database indexing allows O(1) retrieval of known facts
e.g., query Missile(x) retrieves Missile(M)

Matching conjunctive premises against known facts is NP-hard

Forward chaining is widely used in deductive databases

Hard matching example

Difflwa, nt) N Difflwa, sa) N
Diff(nt, q) Diff(nt, sa) A

@ Q Diff(q, nsw) N Difflq, sa) N
@" Diffinsw,v) A\ Diffinsw, sa) A
w Difflv, sa) = Colorable()
0 Diff(Red, Blue) Diff(Red, Green)
@ Diff(Green, Red) Diff(Green, Blue)

Diff(Blue, Red) Diff(Blue, Green)

Colorable() is inferred iff the CSP has a solution
CSPs include 3SAT as a special case, hence matching is NP-hard

Backward chaining algorithm

function FOL-BC-ASk(KB, goals, f) returns a set of substitutions
inputs: KB, a knowledge base
goals, a list of conjuncts forming a query (6 already applied)
6, the current substitution, initially the empty substitution { }
local variables: answers, a set of substitutions, initially empty

if goals is empty then return {6}
q' <+ SuBST(#, FIRST(g0als))
for each sentence 7in KB
where STANDARDIZE-APART(7) = (p1 A ... A Dp = q)
and 0’ — UNIFY(q, ¢') succeeds
new_goals<— | p1, ..., pu| REST(goals)]
answers «— FOL-BC-ASkK(KB, new_goals, COMPOSE(6’, #)) U answers
return answers

Backward chaining example

Criminal(West)

American(x)

Weapon(y)

Sells(x,y,z)

{x/West}

Hostile(z)

Backward chaining example

Criminal(West)

American(West)

Weapon(y)

17

Missile(y)

Sells(x,y,z)

{x/West}

Hostile(z)

Backward chaining example

Criminal(West)

American(West)

Weapon(y)

{1}

Missile(y)

{y/MI1}

Sells(x,y,z)

{x/West, y/M1}

Hostile(z)

Backward chaining example

Criminal(West) {x/West, y/M1, z/Nono}
American(West) Weapon(y) Sells(West,M1,z) Hostile(z)
{} { z/Nono }

Missile(y) Missile(M1) Owns(Nono,M]1)
{yMm1}

Backward chaining example

Criminal(West)

{x/West, y/M1, z/Nono}

American(West) Weapon(y) Sells(West,M1 ,z) Hostile(Nono)
{} { z/Nono }
Missile(y) Missile(M1) Owns(Nono,M1) | | Enemy(Nono,America)
{yM1} {} i} {J

Properties of backward chaining

Depth-first recursive proof search: space is linear in size of proof

Incomplete due to infinite loops
= fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and failure)
= fix using caching of previous results (extra space!)

Widely used (without improvements!) for logic programming

Logic programming

Sound bite: computation as inference on logical KBs

Logic programming Ordinary programming
1. ldentify problem |dentify problem
2. Assemble information Assemble information
3. Tea break Figure out solution
4. Encode information in KB Program solution
5. Encode problem instance as facts Encode problem instance as data
6. Ask queries Apply program to data
7. Find false facts Debug procedural errors

Should be easier to debug Capital(NewY ork,US) than x .= x + 2|

Prolog systems

Basis: backward chaining with Horn clauses + bells & whistles
Widely used in Europe, Japan (basis of 5th Generation project)
Compilation techniques = approaching a billion LIPS

Program = set of clauses = head :- literal;, ... literal,.

criminal (X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

Efficient unification by open coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
Closed-world assumption (“negation as failure”)
e.g., given alive(X) :- not dead(X).
alive(joe) succeeds if dead(joe) fails

Prolog examples

Depth-first search from a start state X:

dfs(X) :- goal(X).
dfs(X) :- successor(X,S),dfs(S).

No need to loop over S: successor succeeds for each

Appending two lists to produce a third:

append([],Y,Y).
append ([X|L],Y, [X|Z]) :- append(L,Y,Z).

query: append(A,B,[1,2]) 7

answers: A=[] B=[1,2]
A=[1] B=[2]
A=[1,2] B=[]

Prolog example

Let’s try

member(1,[1,2,3,4,5])

query: grandfather(X,yuqing)?

male(di).

male(jianbo).

female(xin).

female(yuan).

female(yuqing).

father(jianbo,di).

father(di,yuqing).

mother(xin,di).

mother(yuan,yuqing).
grandfather(X,Y):-father(X,Z),father(Z,Y).
grandmother(X,Y):-mother(X,Z),father(Z,Y).
daughter(X,Y):-father(X,Y),female(Y).

Prolog example

eyounxRMBP15:AT17 yuy$ ||

Resolution: brief summary

Full first-order version:
iV - N Ay, miV---Vm,
(€1V"°\/62'_1\/&“\/"'\/6]@1\/7711\/"'ij_lvmj+1V"'an)9

where UNIFY (/;, =m;) =0.

For example,

—Rich(z) VvV Unhappy(x)
Rich(Ken)
Unhappy(Ken)

with 0 = {x/Ken}

Apply resolution steps to C' N I'(K B N —«); complete for FOL

Conversion to CNF

Everyone who loves all animals is loved by someone:
Vo Vy Animal(y) = Loves(z,y)] = [y Loves(y,x)]

1. Eliminate biconditionals and implications
Vo [-Vy —Animal(y)V Loves(x,y)| V |dy Loves(y, x)]

2. Move — inwards: -V2,p =dz —-p, —-dx,p =Yz —p:

Vo [Fy —(=Animal(y) V Loves(x,y))| V |dy Loves(y, x)]
Vo [y ——Animal(y) A ~Loves(z,y)| V |3y Loves(y, x)|
Va [y Animal(y) A ~Loves(x,y)| V |3y Loves(y, x)]

Conversion to CNF

3. Standardize variables: each quantifier should use a different one
Va [y Animal(y) A —=Loves(x,y)| V |3z Loves(z,x)]

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function
of the enclosing universally quantified variables:

Va [Animal(F(x)) AN —Loves(xz, F(x))| V Loves(G(x), x)
5. Drop universal quantifiers:

[Animal(F(x)) N ~Loves(x, F'(x))| V Loves(G(x), x)
6. Distribute A over V:

[Animal(F(z)) V Loves(G(x),x)| A |mLoves(z, F(x)) V Loves(G(x), x)]

R

\esolution proof: definite clauses

=1 American(x) v —1 Weapon(y) v = Sells(x,y,z) v —1 Hostile(z) v Criminal(x) =1 Criminal(West)

American(West) =1 American(West) v —1 Weapon(y) v =1 Sells(West,y,z)

=1 Missile(x) v Weapon(x)

=1 Weapon(y) v = Sells(West,y,z) v —1 Hostile(z)

v =1 Hostile(z)

Missile(M1) =1 Missile(y) v =1 Sells(West,y,z) v —1 Hostile(z)
=1 Missile(x) v —1 Owns(Nono,x) v Sells(West,x,Nono) = Sells(West,M1,z) v — Hostile(z)
Missile(M1) =1 Missile(M1) v — 0wns(N{n0,M]) v =1 Hostile(Nono)
Owns(Nono,M1) =1 Owns(Nono,M1) v/—l Hostile(Nono)

e

=1 Enemy(x,America) v Hostile(x)

=1 Hostile(Nono)

Enemy(Nono,America)

e

= Enemy(Nono,America)

D/

Previously...

Propositional Logic

PL-Forward chaining
PL-Backward chaining

PL-Resolution

First Order Logic (FOL)

Instantiation

FO
FO
FO

_-Forward chaining
_-Backward chaining

_-Resolution

Planning

Language

There are many languages description the world
Planning Domain Definition Language
1.2,21,2.2,3.0, 3.1

state s
Action(s)
Result(s,a)

Action(Fly(p, from, to),
PRECOND: At(p, from) N\ Plane(p) N\ Airport(from) N\ Airport(to)
EFFECT: —~At(p, from) N At(p, to))

Action(Fly(Py, SFO, JFK),
PRECOND: At(Py, SFO) A Plane(P1) N Airport(SFO) A Airport(JFK)
EFFECT: = At(Py, SFO) N\ At(Py, JFK))

Precondition

action a is applicable in state S if the preconditions are
satisfied by S

(a € ACTIONS(s)) < s = PRECOND(a)

Vp, from,to (Fly(p,from,to) € ACTIONS(s)) <
s = (At(p, from) A Plane(p) A Airport(from) A Airport(to))

Result

removing the fluents that appear as negative literals in the action’s effects
(what we call the delete list or DEL(a)), and adding the fluents that are
positive literals in the action’s effects (what we call the add list or
ADD(a))

RESULT(s,a) = (s — DEL(a)) U ADD(a) .

Action(Fly(Py1, SFO, JFK),
PRECOND: At(Py, SFO) N Plane(Py) N\ Airport(SFO) N Airport(JFK)
EFFECT:—At(Py, SFO) N At(Py, JFK))

Example

Init(On(A, Table) N On(B, Table) N On(C, A)

N Block(A) N Block(B) N Block(C) A Clear(B) A Clear(C))
Goal(On(A,B) N On(B,(C))
Action(Move(b, z,y),

PRECOND: On(b,x) A Clear(b) N Clear(y) A Block(b) N Block(y) A

(b#2) A (by) A (57y),

EFFECT: On(b,y) A Clear(x) N —=On(b,x) N —Clear(y))
Action(MoveToTable (b, x),

PRECOND: On(b,x) A Clear(b) N Block(b) N (b#x),

EFFECT: On(b, Table) N Clear(z) N —~On(b,x))

Figure 10.3 A planning problem in the blocks world: building a three-block tower. One
solution is the sequence [MoveToTable(C, A), Move (B, Table, C'), Move(A, Table, B)].

@
Inw:>

E]A
LA

Start State Goal State

Figure 10.4 Diagram of the blocks-world problem in Figure 10.3.

Ontology and Semantic Web

Up ontology

Anything
/\
AbstractObjects GeneralizedEvents

/\ /\

Sets Numbers RepresentationalObjects Interval Places PhysicalObjects Processes
/\ /\
Categories Sentences Measurements Moments Things Stuff

N\ N\ AN

Times Weights Animals Agents Solid Liquid Gas

N/

Humans

Domain ontology

SubsetOf

MemberOf

SisterOf

Figure 12.5 A semantic network with four objects (John, Mary, 1, and 2) and four cate-
gories. Relations are denoted by labeled links.

MemberOf

During

Destination

Figure 12.6 A fragment of a semantic network showing the representation of the logical
assertion Fly(Shankar, NewYork, NewDelhi, Yesterday).

Example: Wordnet

Hamburger

- Hamburger (an inhabitant of Hamburg)
- direct hypernym:
- German (a person of German nationality)
- sister term
- German (a person of German nationality)
- East German (a native/inhabitant of the former GDR)
- Bavarian (a native/inhabitant of Bavaria)
- derivationally related form
- Hamburg (a port city in northern Germany on the Elbe
River that was founded by Chalemagne in the...)

[from wikipedia]

Semantic web

® handling complex and heterogeneous information resources

® retrieving documents based on a set of relationships that are external to these documents
e providing multiple search options for richer investigation

e targeting and sifting results more efficiently

® using authoritative information resources more effectively as guides to searching

Adarm™ “Adam’s Home page”™

rdf: label rdf: label

rdf:type

do:icreator
i http://www.hyz.com/ home . html

Personl |+

hasBirthda bornln rdf:type

Y
“1.-"’ 1;"0000” Homepage Rules/Que ry
rdf:type rdf: label

An RDF graph

URI/IRI

Freebase

Freebase API (Deprecated)

Q #= R B

Hey there! Are you maybe looking for Firebase instead?

Data Dumps

Search

Search Overview
Search Cookbook
Search Output
Search Metaschema

Search Widget

Data Dumps

A The Freebase API will be completely shut-down on Aug 31 2016. This page provides access to the last available data dump.

Read more.

B
Freebase Triples

Freebase Deleted Triples

Data Dumps are a downloadable version of the data in Freebase. They constitute a snapshot of the data stored in
Freebase and the Schema that structures it, and are provided under the same CC-BY license. The Freebase/Wikidata

mappings are provided under the CCO license.

Freebase Triples

This dataset contains every fact currently in Total triples: 1.9 billion

Freebase. Updated: Weekly
Data Format: N-Triplt

License: CC-BY

The RDF data is serialized using the N-Triples format, encoded as L

RDF

<http://rdf.freebase.com/ns/g.11vjzlynm> <http://rdf.fr
<http://rdf.freebase.com/ns/g.11vjzlynm> <http://rdf.f
<http://rdf.freebase.com/ns/g.11vjzlynm> <http://rdf.f
<http://rdf.freebase.com/ns/g.11vjzlynm> <http://rdf.f
<http://rdf.freebase.com/ns/g.11vjzlynm> <http://www.w

|

* If you're writing your own code to parse the RDF dumps its often m
extracting the data first and then processing the uncompressed da

<subject> <predicate> <object> .

Note: In Freebase, objects have MIDs that look like /m/812rkqgx . Ir
Freebase schema like /common/topic are written as common. top:

The subject is the ID of a Freebase object. It can be a Freebase MIL
readable ID (ex. common.topic) for schema.

The predicate is always a human-readable ID for a Freebase proper., . - e e e
RDFS. Freebase foreign key namespaces are also used as predicates to make it easier to look up keys by namespace.

22 GB gzip
250 GR

5

Type: Person

|

Type: Body Builder

|

Type: Actor

|

Type: Politician

|

Freebase/Wikidata
Mappings
License
Citing
Topic: Austria
instances citizen
: type country of birth
instances —___
type Topic: Amold
Schwarzenegger
e
instances —— P
type party films
instances members cast
Topic: Republican Topic: Terminator
type

instances

Type: Film

The object field may contain a Freebase MID for an object or a human-readable ID for schema from Freebase or other
RDF vocabularies. It may also include literal values like strings, booleans and numeric values.

WikiData

WIKIDATA

Main page
Community portal
Project chat
Create a new item
Recent changes
Random item
Query Service
Nearby

Help

Donate

Print/export
Create a book
Download as PDF
Printable version

_Douglas Adams)

R T L e, T i

Read View source View history |Search Wikidata Q

\ / Mative \
Welcome to Wikidata
the free knowledge base with 47,001,953 data items that anyone can edit.
Introduction « Project Chat - Community Portal - Help
s \ ~ / ~N / ~
Want to help translate? T the missi
\ A TN

Ml Learn about data

New to the wonderful world of data? Develop and improve your data

Main Page Discussion

Ml weicomet

Wikidata is a free and open knowledge base that can be read and

edi‘;‘@ Wboth humans and machines.

ideptifier)
Wikidata acts as central storage for the structured data of its

Wikimedia sister projects including Wikipedia, Wikivoyage, Wikisource,

literacy through content designed to get you up to speed and feeling
comfortable with the fundamentals in no time.

g gl
Wikidata also provides support to many other sites and services
beyond just Wikimedia projects! The content of Wikidata is available
under a free license, exported using standard formats, and can be
interlinked to other open data sets on the linked data web.

item: Earth (Q2) property: highest point custom value: Mount

value

1974

English literature
Bachelor ofArts
1971

(P610) Everest (Q513)
Ml Getinvolved

label
r—— English writer and humorist
description glas Noél Adams | Douglas Noel Adams
» In more languages
Statements

property { educated at | & |StJohn's College |
end time
academic major
academic degree
start time

rank v 2 references
stated in
reference URL
original language of work

statement retrieved

group publisher
title

Encyclopaedia Britannica Online

http://mwww.nndb.com/people/731/00002366 2

English
7 December 2013
NNDB

Douglas Adams (English)

qualiriers
Learn about Wikidata

« What is Wikidata? Read the Wikidata introduction.

« Explore Wikidata by looking at a featured showcase item for author
Douglas Adamsz.

» Get started with Wikidata's SPARQL query service.

Oéiibhe to wikidata

Popular items

« 2018 Toronto van attack (Q52152274)
« 2018 Giro dell'Appennino (Q51687919)
o Liege—Bastogne-Liége for Women 2018

s Brentwood School

+ add reference

(Q42116955)
« Saleh Ali al-Sammad (Q19429078)

references, A
o Learn to edit Wikidata: follow the tutorials.

« Work with other volunteers on a subject that interests you: join a
WikiProject.
« Individuals and organisations can also donate data.

o Marguerite Rouviére (Q51954596)
« Karen Karapetyan (Q1979923) (pictured)
o Semiramis Hotel bombing (Q2086153)

Meet the Wikidata community

+ add (statement)

end time 1970 « Visit the community portal or attend a Wikidata event.
start time 1959 « Create a user account. [l Discover
3 RS PSP I SN
| collapsed
| reference

Example application

Bai'éﬁ'gg 3k Il EE—T

MR HA KE HE BRx B #M BB XFE E»

< R #8%
PR MPAMWE. W)l FEXKE

- flifr: ¢ (7 -221%F) , PHE, BAHEB (STILEREDER
- ' MH) AR, ZERAIREH. WECRERGR, K.
APEF HEFM B ZAREE KWPAK TZ>>

<2V
- “ ” 14 >>
= @, baike.baidu.com/ 2014-10-12 ~

2

¢
.
- ‘ ’
image.baidu.com ~ - L 283,345 M A

A LK R AR A F AN

9 EI% - $Ri0)RYE): 2012504 5218

BEER EHELK K BB RELHRBRESHRE RiEALBRIDW. EERLE=
EAOREGK R K R — P AERE KEMTR. REZRH,...

zhidao.baidu.com/link?... ~ - 80%Fi¥
o KA IEFER! 1040 @E% 2013-07-17
VRO K AZ? 5 E1% 2009-04-11
¥ 2 5N A% o) f>>

b S=D A

AFEZRMP: 3224\ Rit2M: 105

Mag[i] Kekwaea =

B i
FARAY .
ARASETHER, WRESHFEB! _hEAZ
P ‘
PESMANAS RERKOSSE hE R
RFFOSSRMEIR RIS A, 21 PA%SER, TARA TR
TERERRNERE NS SHEERA KNG AR EENEERR ‘)
itk Lkl FEREANNFAS BEENEETEER! [HFRBERITEER..
I T K
i AT EESHAREFEATR? BaATEELWRENISHE. .
AT SRR K A I D e
HRA EEEH
BEEBIE SHERY ek [y —
2 E30FTO85 AL AMLE_EEAIE
Baz AT SRR e B Heol :
ARAZHIN-2010 B AERERES: BHRASMIILSISE..
R A BEHIE KR Lon
FREGRREARSE B EREREE, k. SRENDH_
EFE R K bk WK XREE ‘
AN
e ‘
B OAZ BR 2B N BE 8K 2F NP B RRERPESRERAS (E) - WHRe
I
Eaky BERE WS BNHRR Sakks
ST
Nanjing University ~ NJU BE@RAF EILREARFE
BRASIR =
e
i EEORR 2ATM &S
ARASHIE -

FARARFRIIFWEFAR. HREE. SCBEMEXEE (20190 E#O...
http://about.gmw.cn/2019-11/13/content_33315363.htm

2 1 - KA RIRBITISARSEURN, AINRFRBESUFARS, HESERFES
FEME. BNNB, APEEFREFLT/T R S+ SE TS E, KIIFLE
FRRRITEARA . ARTEAZERAOARPOEERE (B2 KBENMCEEE)

ARAEREABILIA, SEEWHRLE SLEB50%, REFESE! _5HiE
https://www.sohu.com/a/353240253_100123142

12 5 - [RARR: REANEIEST, SHEWHRESLEB50%, REFE
B! SREBRGEHREF IR & YETHRES. RIBLENZEEE,

B__GBREFhitlssr =S EMATSELES FI=211T3FI8 OQET IO =H=E S840 4H5

http://magi.com

