Last class

* Renewal process
 Elementary renewal theorem
* Key renewal theorem

* Alternating renewal process
* Delayed renewal process
* Renewal reward process
¢ Symmetric random walk

References: Chapter 3, Stochastic Processes, 2nd edition,
1995, by Sheldon M. Ross
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Markov chain

A stochastic process {X(t),t € T} with state space S is said to
be a Markov chainif Vt; <t, < ---<t, <t x,x; €ES

P(X(t) =X | X(tl) = X1, ,X(tn) — xn)
=P(X(t) =x | X(t,) = xp) Markovian property

Here, we consider
Markov chains

discrete-timexdiscrete-statglhomogeneous

Xnn=012..} §=1{01,2..}, unless otherwise mentioned

Vty < t,x9,x €S: P(X(t) = x| X(ty) = x¢)

is independent of t,, but depends only on t — ¢t
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Markov chain

Example [General Random Walk]: Let X;,i > 1 be iid with
P(Xl =]) — Clj, _] S {0, il,iZ, }

If we let =
So =0 Sn = ZX,;
=1

then {S,,,n = 0} is a Markov chain for which

Pij =a;_;

One-step transition probability: P;; = P(Sp4q =Jj | Sp = 1)
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Markov chain

Example [Simple Random Walk]: The random walk {S,,,n =
0}, where S,, = ),;-; X;, is said to be a simple random walk if for
somep, 0 <p <1,

PXi=1)=p PX,=-1)=q=1-p

The absolute value {|S;,|,n = 0} of the simple random walk is
a Markov chain.

P(lSn+1| =141 | |S7’l| — i, |S‘I’l—1| — i’l’l—l' e |S]_| — ll) ?
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Markov chain

Lemma: If {S,,,n = 0} is a simple random walk, then Vi>0
P(Sp =101 1Su] =10 Sn-1]l = in_q, ., IS1] =11) =

* l+q
Proof: Leti, = 0, and define j = max{k:i, = 0,0 < k < n}
= P(Sp =i |[Spl =0, |Sn-1l =i, ., IS =11)
=P(Sy =i |ISul =0, 1Sn-1l = in_q, ., |Sj| = 0)
Now there are two possible cases for | +1| = Ligts or |Snoal = oy, [Spl =i
Case1: S5, =i, then S,,_; = in 1 - »Si+1 = lj+1 and has probablhty
p%# q%_% ( + * take the value of 1, ———take the value of -1)
Case2: S5, = —i, then S,,_; = ln 1o Sjp1 = l]+1 and has probability
p% L qnz]+2 (———take the value of 1, —+ - take the value of -1)
n-j, i n-j_ i ;
I:>*= ..p22-q22. ..=.p

n—-j i n—j i n—-j i n—j i pl+qi
p2 2:q2 24p 2 2:q 2 2
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Markov chain

P(ISps1l =i+ 11 [Spl =1, [S,- 1| —ln 1 |51 = 1)
7 PUSual = 4118, =0)- p+q
Law of total +P(|S,41|=i+11S, = —l)
probability i1, i+

Hence, {|S,|,n = 0} is a Markov chain with transition probabilities
pi+1 +qi+1

pi+qi =1-— Pi,i—li L > 0

Piit1=
P01 = 1
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Chapman-Kolmogorov equations

For a Markov chain {X,,,n = 0,1,2, ...},
* one-step transition probability: P;; = P(X;41 = J | Xip = 1)
* n-step transition probabilities:

Pji = P(Xm4n =J | X;m =1)  How to compute it?

Chapman-Kolmogorov equations:

prm = z PLP  foralln,m = 0,i,j
k=0
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Chapman-Kolmogorov equations

Chapman-Kolmogorov equations:
Pi’}+m = z P.P¢;  foralln,m =0,i,j
k=0

Proof: P =P(Xpym=JjlXo=1i) (Homogeneousby default)

Law of total = = 2 P(Xpom=j,Xn=k|Xy=1)
probability k=0

=2P(xn+m=j | Xp =k Xo=i)P(Xp=k|Xo=10)
k=0

http://www.lamda.nju.edu.cn/qgianc/



Chapman-Kolmogorov equations

* n-step transition probabilities:
Pji = P(Xm4n =J | X,y =1)  How to compute it?

Chapman-Kolmogorov equations:
Pi’}+m = z Pi’}(P,’g} foralln,m > 0,i,j
=0

Solution: Let P™M denote the matrix of n-step transition probability P[]l-,
then by Chapman-Kolmogorov equations:

pm+n) — p(m) ., p(m)

Hence,
pm) —p.pn-1) _ p.p.pn-2) — ... = pn
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Communication
 State j is said to be accessible from state i if for some
n=0, Pl-’} >0

« Two states i and j accessible to each other are said to
communicate, denoted as i © j

Proposition: Communication is an equivalence relation, i.e.,

vViel (Follows trivially from definition)
v Ifieoj thenj o i (Follows trivially from definition)

vifieojandj o k, theni ok Similarly, we can show k — i

am, s.t. P} >0,3n, s.t. P >0, Pt = ¥, PP, 2 PP >0 = i~k
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Irreducible

« Two states that communicate are said to be in the

same class

the equivalence relation
of communication

-

any two classes are either
disjoint or identical

* A Markov chain is irreducible if there is only one

class

v

All states communicate with each other
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Period

» A state j has period d if d is the greatest common divisor
of the number of transitions by which j can be reached,
starting from j

= gcd{n > 0: P; > 0}

period of j
» If P/, =0foralln > 0, then d(j) = o

* A state with period 1 is said to be aperiodic
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Period

Proposition: If i < j, then d(i) = d(j)

Proof: i< j= P/ Pj >0 forsomemandn

Suppose P;; > 0, then
PIT™ > PRP >0 d(j) divides both n + m
p]?}+5+m > prpSpm s ( andn+s+m

= Ljitiitij
1

d(j) divides s

So, if P;; > 0, then d(j) divides s.

Pi?(l) > (0 is obvious, so d(j) divides d(i).

A similar argument yields that d (i) divides d(j).
= d(i) = d(j)
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Recurrent

For any states i and j, define f;; to be the probability that,
starting in I, the first transition into j occurs at time n

fy =0
f;,:’]l :P(Xn:];Xk :lt];k: 1;2)"')n_1 |X0 :l)

Let f;; denote the probability of ever making a transition into
state j, given that the process starts in i

fij = z fii
n=1

State j is said to be recurrent if f;; = 1, and transient otherwise
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Recurrent

Proposition: State j is recurrent if and only if z Pj; = o

n=1

Proof: jis recurrent = with probability 1, return to j
Markov property = once returning to j, the process restarts
So, with probability 1, the number of visits to j is o
= E[number of visitstoj | X, =j] = o

. : the number of visits to j is geometric
] 1s transient =

. 1
with mean
1-1jj

Thus, j is recurrent if and only if
E[number of visitstoj | X, =j] = o
1 ifX, =]
Letl, = n
i { 0 otherwise
= E|number of visitsto j | Xg = j] = E[Xmeo InlXo = J]
= Yn=o0 Elln|Xo = j] = Xn=0 P
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Recurrent

Corollary: If i is recurrent and i < j, then j is recurrent

Proof: i< j= 3Im,nsuchthatP]> 0P >0

» Ui
m+n+s mpSpn
VS>O,P]] ZPJL PllPl]

DN AEL DY ACINN
s=1 s=1
= . By Proposition on
= z Pjj = o0 = jisrecurrent the previous page
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Recurrent

Example [Simple Random Walk]: The random walk {S,,,n >

0}, where S,, = ),/ X;, is said to be a simple random walk if for
somep, 0 <p <1,

PX;=1)=p PX;=-1)=q=1-p

Which states are transient? Which are recurrent?

Solution:
All states communicates = they are either all transient or all recurrent
Only need to consider state 0 i.e., if ).~ Pgp is finite or not

Pl =0,n=0,1,2,.. Note that
Pgo = Conp" (1 —p)" = —E,Z,L’,?z! pr1—-p)n=12,.. » | @~bn when
Stirling’s approximation: n! ~n"*1/2e~"\/2 = Pt~ (42?2/1%9)) am o, = 1

n=1 NERD 1

w (Apa-p)" [p = %,4}9(1 —p) =1=Y7_, Pjy = 00 = recurrent
p E (O’E) U G, 1),4p(1 —p) <1=Y>_,Pfy < oo = transient
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Recurrent

Corollary: If j is recurrent and i « j, then f;; = 1

Proof: i & j=3n, P/} >0
[ & j,j1s recurrent = [ is recurrent
Suppose X, = i, let T; denote the next time we enter i (T} is finite
by Corollary)

XO XTL XT1

Xn = j with probability P;j

The number of above process needed to access state j is a

geometric random variable with mean 1/P;}, and is thus finite

with probability 1
[ is recurrent = the number of above process is infinite
— fij =1

http://www.lamda.nju.edu.cn/qgianc/



Positive and Null Recurrent

Let u;; denote the expected number of transitions needed to
return to state j

(00 if j is transient
00)
Hjj = S N sg s
nfj; ifjisrecurrent
\ n=1

If state j is recurrent, then we say that it is positive recurrent
if yj; < oo and null recurrent if y;; = co
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Limit theorems

Let N;(t) denote the number of transitions into j by time ¢

By interpreting transitions into state j as being renewals,

Theorem: If i & j, then

— t U

N:(t - T Np(t) 1
s p (hm O _ 1y l.) _ 1 (With probability 1, "2 — 2 a5 ¢  oo)

tmeo b K 1 ifX =
YR PE 1 le = herwi
vV lim 2ty b 0 otherwise
nooco N Wjj (th(t) _)i as t > 00, mp(t) = E[Xkoy I] = Tho1 PE)
. .1 . 1
v' 1f j is aperiodic, then lim Pj; = — (Blackwell's Theorem)
n-—0c0 Hjj

v If j has period d, then lim Pj’}-d = ui (Blackwell's Theorem)
n—eo ji
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Delayed renewal process

Properties of delayed renewal process: U= j xdF (x)
0
With probability 1, NDLf” R i as t — oo
th(t) 51 asto o Elementary Renewal Theorem
u

If F is not lattice, then mp(t +a) —mp(t) > a/u ast —» o

If F and G are lattice with period d, then Blackwell's Theorem

E[#renewalsatnd] - d/u asn - o
If F is not lattice, u < oo and h(t) is directly Riemann integrable,

(0] 1 (0/0)
j h(t — x)dmp(x) = ; f h(t)dt Key Renewal Theorem
0 0
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Positive and Null Recurrent

If state j is recurrent, then we say that it is positive recurrent
if yt;; < oo and null recurrent if u;; = oo

m; = lim P™Y) = @
] nSe ) Wjj

If state j is recurrent, then we say that it is positive recurrent
if 7; > 0 and null recurrentif 7; = 0
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Positive and Null Recurrent

Proposition: If i is positive (null) recurrent and i « j, then j is
positive (null) recurrent

Proof:. Case 1: positive recurrent
ioj=2dl)=d@)=d=1
d
m; = lim P4 =— >0

l
n-o Hii

i ©j=>13s,t>0,P5>0P,>0

) »EJi
t+s+md t dps
R” > })jl’Pl'l' PU

d
lim pj*™¢ > pEpS - lim P* = —- PiPj > 0

P = PiPj >0 = d divides t + s
m; = lim P*™¢ > 0 = j is positive recurrent
m-—-0o

For the null recurrent case, leave as the exercise
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Stationary distribution

Definition: A probability distribution {r;, j = 0} is said to be
stationary for the Markov chain if

0.0)

‘v’] T[j = 2 T[iPij

=0

If the initial distribution, i.e., the distribution of X, is a stationary
distribution, X,, will have the same distribution for all n.

Proof: " "

PO, =)= ) PUy=j| Xo= DP(Xo = D) = ) Pym =,
" ‘=0 &  Definition of stationary

Py =)= ) POy =]l Xpy=DP(yy =D = ) Pym Zm,
i=0 =0
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Stationary distribution

Theorem: An irreducible aperiodic Markov chain belongs to
one of the following two classes

» FEither the states are all transient or all null recurrent. In this case,
Pj; > 0 asn — oo for all i, j and there exists no stationary distribution

* Or else, all states are positive recurrent, that is,

nj=limPi’}>0

Nn—>0o

In this case, {;,j = 0,1,2, ..., } is a stationary distribution and there
exists no other stationary distribution

Proof:

Proof for the first class:

transient or null recurrent = u;; = co. By Limit Theorem, lim P;; = L =0

n—co o pjj
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Stationary distribution

Suppose there exists a stationary distribution P;, then

P =PXy =J) = 220 P(Xy —j|Xo=i)P<Xo=i)=Zl oPZ}P
_Zl 0 l]P +Zl M+1PLT]lP <Zl 0 l]P +Zl M+1

Letn — oo, we have P; < 32/, P;. Then, let M — o, we have P; < 0,
which leads to a contradiction

Proof for the second class:
Note that P-"-+1 Yo PlPrj = Y=o PPy, forallM

Letn —» o, we have rr; = > Ty Py
then let M — oo, we have m; > i my Py
Suppose 3j, such that m; > Y., 7Py, then
2jzo Mj > Xjzo Lk=o TkPrj = Xk=0 Tk Xj=0 Prj = Zk=0 Tk,

which leads to a contradiction. Thus, Vj: m; = Y=o TxPr j
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Stationary distribution

Suppose P; is a stationary distribution, then
Pi=P(Xy =) = X2 P(Xy = j | Xo = i)P(Xo = i) = X2, PP,
« P =X, PP forallM
Letn — oo, we have P; = Mo TPy,
then let M — o, we have P; > }:2, m;iP; = m;
© P <YL, PIPi+ X2y P forallM
Let n - oo, we have P; < YiLo miP; + Y2441 P,
then let M - oo, we have P; < ;2 m;P; = m;

Thus, Vj: P; = m;
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Stationary distribution

* For an irreducible, positive recurrent and aperiodic
Markov chain, {m;,j =0,1,2,..,}is the unique stationary
distribution, where

m; = lim P = —

] l
n—oo Hjj

* For an irreducible, positive recurrent and periodic Markov
chain (where the period is d), {m; = ui j=0,1,2,..,}isstill
jj
the unique stationary distribution

d
lim P/} = — = dm;
n=eo Hjj
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Transitions among classes

Proposition: Let R be a recurrent class of states. If i ER, j € R,
then Pl] = 0.

Proof:

Suppose P;; > 0

Then, as i and j do not communicate (since j € R)

= P]’;‘ =0,Vn

Hence, if the process starts in state i, there is a positive
probability of at least P;; that the process will never return to i
= contradicts the fact that i is recurrent

So Pl] =0
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Transitions among classes

Proposition: If j is recurrent, then the set of probabilities
{fij, i € T} satisfies

ViET:fijzzPikfkj_l_zPik

keT keR

where T denotes the set of all transient states, and R denotes
the set of states communicating with j

Proof:
fij = P(Nj(®) > 0| Xo = i)
=Y P(N;(0) > 01Xy =1i,X; =k)P(Xy =k | Xo =10)

= Yker fxjPik + Zker fxjPik + Xker ket fkjPik
_ —=, k belongs to a recurrent
= Yker /1 kjPir + ker Pik class that is different

from R, thus f;; = 0
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Gambler's ruin problem

Gambler's ruin problem: Consider a gambler who at each
play of the game has probability p of winning 1 unit and
probability g = 1 — p of losing 1 unit. Assuming successive
plays of the game are independent.

What is the probability that, starting with i units, the
gambler's fortune will reach N before reaching 0?

Solution: X, : the player's fortune at time n

{Xp,m=0,1,2,...}: a Markov chain with transition probabilities
POOZPNN:]‘ Pi,i+1=p=1_Pi,i_1 l=1,2,,N_1

{0} (1,2,..,N — 1} {N}
recurrent class transient class recurrent class
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Gambler's ruin problem

Let f; = f; y denote the probability that, starting withi, 1 <i <N,
the fortune will eventually reach N . : -
just the desired probability
. q
ﬁ:pﬁ+1+qﬁ—1 l:1J2J---;N_1:>ﬁ+1_ﬁ:;(ﬁ_ﬁ—1)
2
Then, f —fi = %(ﬁ _fo) — %fl'ff% —fo = %(fz —f1) = (g) fir e

fimfs =G~ = (9 A

p
2 i—1 1_(Q/p)lf lfg ¢ 1
Thus, f; = f1 + f1 [(%) + (%) 4ot (%) ] — J 1-(q/p) 1 Z
1-(q/p)* . 1 . 1
—— ifp#F- N-o 1—-(q/p)t ifp>-=
By fy =1, fi =1" (qi/p) i — f - | 2
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Gambler's ruin problem

What is the expected number of bets that the gambler,
starting at i, makes before reaching either 0 or n?

Solution:  X;: the winnings on the jth bet

B: the number of bets until the fortune reaches either 0 or n

m m
B = min m:ZXj=—i orZXj=n—i
j=1 J=1

B is a stopping time for X;, then by Wald's equation,
E[Ej-1 Xj] = E|X|E[B] = (2p — DE[B]

. . 1_(q/p)i EIB] = 1 Tl[l—(CI/p) l] -
By Xj-1 X; = {n i withprob. o w = ELB] 2p—1{ —@m"

—i otherwise (here we consider p # 1/2)
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ITransitions among transient states

T ={1,2,...,t}: the set of transient states

How about the probability @ where both i and j are transient?
ie,i,jET

the probability of ever making a transition into state j given that

the chain starts in state i

Fori,j € T, m; ;: the expected total number of time periods
spent in state j given that the chain starts in state i

m;; =m;; - fi; I:> fij = mij/m;;

How to compute m; ;?
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Transitions among transient states

’zplkmk] —5(l]) lkmk]

if i=j
0 otherwise =0fork €T
t 1t1 - T
rinsg.i.(?:l Piy - Py m.ll . m.lt
probabilities 0=|: : M= : : :
among Ptl Ptt meq e Myt

transient states

M=1+QM —> M=U-Q)!
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ITransitions among transient states

Example: Consider the gambler's ruin problem with p = 0.4
and N = 6. Starting in state 3, determine

* the expected amount of time spent in state 3 ~ mg33
* the expected number of visits to state 2 ms o

* the probability of ever visiting state 4 @

Leave as the exercise

Equivalent to f3 under N = 4
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Branching processes

Branching processes: Consider a population consisting of
individuals able to produce offspring of the same kind. Suppose that
each individual will, by the end of its lifetime, have produced j new
offspring with probability P;,j > 0, independently of the number
produced by any other individual. Let X,, denote the size of the nth
generation. The Markov chain {X,,n > 0} is called a branching process

Suppose that X, = 1 o = lim P(X,, = 0)

n—>00

Let my denote the probability that the population ever dies out

o = P(population dies out)

(00)

= Z P(population dies out | X; = j )P; = Z ﬂ(];IDj
j=0 /=0
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Branching processes

Theorem: Suppose that P, > 0 and Py + P; < 1. Then,

* Ty is the smallest positive number satistying r, = z )P,
j=0
* my = lifand only if u < 1, where u = 72 jP; is the mean
number of offspring produced by each individual
Proof: Letm = 0 satisty w = };2,m/P;, prove m = P(X;,, = 0) for alln
m=Yi2om Pj =m°Py =Py =P(X; = 0)
Assume that m = P(X,, = 0), then
P(Xp41=0) = Z?:o P(Xne1=0] X4 :J)P]
- Z(JD'O=0(P(Xn = O))]Pj < YRom/P=m
Hence, 1 = P(X,, = 0) for alln
Letn - o= > lim P(X,, =0) =m,

n—oo

The proof of the second point is left as the exercise
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Time-reversible Markov chains

Stationary Markov chain: An irreducible positive recurrent
Markov chain is stationary if the initial state is chosen
according to the stationary probabilities

The reversed process of a stationary Markov chain is also a
Markov chain with transition probabilities given by

i =
T;
Proof: P(Xm =j | Xpy1 = L, X2 = Ug, o, Xy = ik)
— P(Xm:j:Xm+1:i'Xm+2:iz'---er+k:ik)
P(Xm+_1:i'Xm+2:l:Z""er-!-k:ik) _ ] _
— PXm+42=12, o Xm+k=lk|Xm=J Xm+1=0P(Xm=J,Xm+1=1)

P(Xmt2=lz, o Xmak =ikl Xm+1=DP X1 =1)
_ PCm=jXm41=0) _ PEmt1=tXm=DPXm=J) _ TjPji Stationary

P(Xm+1=1) P(Xm+1=1) i P
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Time-reversible Markov chains

[Definition] Time-reversible Markov chain: A stationary
Markov chain is time-reversible if Vi, j

Pi=P; <= mPy=mb;
pr. = Tl
lj
T

[Necessary and Sufficient Condition]: A stationary Markov
chain is time-reversible if and only if, starting in state i, any path
back to i has the same probability as the reversed path for all i.

That is, Vi, iy, ..., ig:

Pll1P Pikik—1 .

.. P,

lk—1lk

iaiy P i = Pij P, P
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Time-reversible Markov chains

Proof: [Necessary Condition]

Time-reversible: m;P;; = m;P

g

ki Ly lkik_1

P;

. P

k-1lk

(P, P

P, P; P

iz Piyi inia Pigi

. P

Ik—1lk

P

Ik—1lk

Kkl

P;

1l2

= Py imi P, i

= P iPpi i, Py i,

P;

Kl

= P iPii, o Py T Piyi

= Py, P; P

elp—1

P;

2y " ir T

Eliminate m; on both sides, finish the proof
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Time-reversible Markov chains

Proof: [Sufficient Condition]
Pii, Py, - Piy_ i Pii = P

lk—1lk

Time-reversible: m;P;; = 1;P};

105 ixPigin—y Pty Pigi

P, P, ; P P; :Pi; = P;;P;; P; Py

Ie—1lk" It i Ljtjig

iz Pii, kik—1 Py i

Jl Summing over all states iy, iy, ..., ik
k+1 p k+1
Fi B ﬂ Fibl Note that

lima, =a=
1 +1 _1 k+1 n
—(ZR=a PSP = - (Bk=a PPy | 10
lim =)}_,a, =a

n-oon

|

Letn » o T[jpji = T[ipij
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Time-reversible Markov chains

Theorem: Consider an irreducible Markov chain with transition
probabilities P;;. If one can find nonnegative numbers m;, i = 0,

summing to unity, and a transition probability matrix P* = [P;;]

ij
such that

mPij = mjP;;
then m;, i = 0 are the stationary probabilities of the original chain, and
P/; are the transition probabilities of the reverse chain

PI’OOfZ Zinipij — Zi Tl'jpﬁ = T ZLP;; = Ty
= m;, i = 0 are the stationary probabilities of the original chain

P — TiPjj

are the transition probabilities of the reverse chain

Leave as the exercise
m;, i = 0 are also the stationary probabilities of the reverse chain
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Markov chain Monte Carlo

Suppose X € {x;,i = 1} is a discrete random variable with
probability distribution m; = P(X = x;), and h is a function

Problem: How to calculate E[h(X)] = }; h(x;)m;?

Monte Carlo Method: draw samples X;, X, ..., X;, from the
probability distribution of X, use %Z’{Ll h(X;) to estimate E|h(X)]

Practical situations: m; can be calculated, but hard to be sampled

Problem: How to generate a set of independent samples of X?
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Markov chain Monte Carlo

Theorem: If {X,,,n = 0} is an irreducible Markov chain
with stationary distribution m;, and h is a bounded
function over the state space {x;,i = 1}, then

n

lim — " h(X) = EIR(O] = . hGx,

n-on
=1

Now we only need to construct an irreducible Markov chain with
stationary distribution being the desired probability distribution

Proof: Let a;(n) denote the number of transitions into x; by time n

%Z?:l h(X;) =2 % h(x;) Since there is already a
With probability 1, 2@ L — 7 asn - oo stationary distribution,
. n Hii the MC must be

= lim ~Yi=1 h(X;) = X h(x)m positive recurrent
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Markov chain Monte Carlo

Theorem: Suppose {r;,i € S} is a probability distribution,
there exists a time-reversible Markov chain {X,,,n = 0}
with state space S and stationary distribution m;

Proof:

Target: construct P such that ; P;; = ;P DA¢

W.lo.g., we assume S = {0,1, ... }, let Q be the transition probability
matrix of an irreducible Markov chain such that

Vl'#:j,Qij=OC>jS:0

Now we construct P as follows:
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Markov chain Monte Car.

O

Q=0 = a;=1 Pij = Qijai;

]il

Qij >0 = Aij = min {T[ijl:'l} = Qi + Ql](l aij)

P is a transition probability matrix such that Vi # j,P;; = 0 & P; = 0, and
the MC w.r.t. P is irreducible
Now we examine 5% for j # i (the case j = i is trivial)
case 1: a;; < 1, then a;; = 1 by the definition of «;;, thus
miPj = m; Qi = mQj; = m;Qja; = miPy;

case 2: a;; = 1, then m;Q;; = m;Q;; and aj; < 1, thus

miPij = miQij = m;Qji a5 = P
Thus, y¢ holds, which implies

* m; is the stationary distribution of the MC w.r.t. to P (sum over i)
* the MC wi.r.t. to P is time-reverse
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Metropolis sampling

Qii=0 = a;=1 Pij = Qijaij
. [(miQj;
Qij >0 :> i = min 1 Pii :Qii+ Ql](l_al])

m;Q;j j#i

Metropolis Sampling:

We need to set a transition

1. X 1s initialized with any value probability matrix Q

2. Suppose the current state X, = i

3. Sample a random number j from the probability distribution {Q;;,j = 0}

Qi

4. If > 1, then Xy 4+1 = j and go to step 2

TiQyj
5. Otherwise, sample a random number r from the uniform distribution

U0,1). Ifr < njgji, then Xy +1 = J, otherwise Xy 41 = i. Go to step 2

TiQij
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Gibbs sampling

Suppose Z = (Z4, ..., Zy) is a discrete random variable, and S is
the set of all possible values of Z

Assumption 1: for all z € S,

n,=P(Z=2z)=c-g(z)

where ¢ > 0

Assumption 2: forall1 <i<n,andz;, 1 <j<n,j#ithe
conditional probability distribution

P(Z;=1Zj =2 Vj#1i)
exists and is known
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Gibbs sampling

Set a specific transition probability matrix Q
« If x and y are different on at least two dimensions, Qxy = 0

« If x and y are different on only one dimension, denoted as i,

cg(y)
TLP(Z] = xj Vj == l)

1
Qy=—P(Zi=y1|Z =xVj#1i)=

 If x =1y, then

1
Qxle_ZQxy:]-_ﬁ
YE£EX =1

VE

(1-P(zi=x|2=xvj#1))

V VX £ Y:Qy =0iff @)y =0

cg(x) = 1
= " z PZ =x Vj £0) v' The Markov chain w.r.t.
el A Q is irreducible

http://www.lamda.nju.edu.cn/qgianc/




Gibbs sampling

Qii=0 = a;;=1 Pij = Qijai;

_|miQji
Q;; >0 = a;; =min Lo | [Py=0Qu+ Qi (1 — ayj)

)
;Q;j i

o 7Tyny T £ (y) ‘g (x) _
Qxy >0 = ayy, = min {T[xQxy,l} = min {cg(x) . cg(y)'l} =1

Vx +y: ny — Qxyaxy — Qxy

Pex = Qxx + Qxy(1 - axy) = Uxx _

YV+X
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Gibbs sampling

Gibbs Sampling:

1. Xy is initialized with any xq € S

2. Suppose the current state X, = x = (x4, ...,Xp) €S

3. Sample a random number i uniformly from {1,2, ...,n}

4. Sample a random value x from the conditional probability distribution

P(Z;=1Z; =x; Vj # i)
5. X1 = (X1, o) Xi—1, X, X1, - » X ). GO to step 2
Thus, Gibbs sampling is actually Metropolis sampling with

a specific matrix @, under some assumptions about the
desired probability distribution
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Semi-Markov processes

Consider a stochastic process with states 0,1, ..., which is such
that, whenever it enters state i,i > 0:

* The next state it will enter is state j with probability P;;,i,j = 0

* Given that the next state to be entered is state j, the time until the
transition from i to j occurs has distribution F;;

If we let Z(t) denote the state at time ¢, then {Z(t),t = 0} is
called a semi-Markov process

v A semi-Markov process does not possess the Markovian property

v A Markov chain is a semi-Markov process in which

0 t<1
Fij(t)={1 £ 1
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Semi-Markov processes

Let X,, denote the nth state visited, then {X,,n > 0} with transition
probabilities P;; is called thelembedded Markov Chainl of the semi-

Markov process

Proposition: If the semi-Markov process is and if
has a nonlattice distribution with finite mean,

Pi:tli_)I?OP(Z(t):i|Z(O):j):@; Vi,j
 1;: time that the process spends in state i before making a transition
Hi :E[Ti] P(Ti < t) :zpl]Fl](t)
J

T;;: time between successive transitions into state i p;; = E[Tj;]

http://www.lamda.nju.edu.cn/qgianc/



Semi-Markov processes

Proposition: If the semi-Markov process is irreducible and if
T;; has a nonlattice distribution with finite mean, then

Pi=lim P(2() =112(0)=j) =L, Vi
00 ii
Proof: A delayed alternating renewal process
on off . .
on: In state {
/<Y~
> off: not in state i
renewal occurs renewal occurs
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Semi-Markov processes

Proposition: If the semi-Markov process is irreducible and if
T;; has a nonlattice distribution with finite mean, then

Pi=lim P(2() =112(0)=j) =L, Vi

l

limP(t) = P; ﬁ ElZ,] = E[t;] = w
t—oo l E[Zn] -+ E[Yn] — E[Tll] = Uy

Theorem: If E[Z,, + Y,,] < oo and F is nonlattice, then
E|Zy]
E[Zy] + E[Y,]

L}im P(t) = P(systemison attimet) =

from the part of alternating renewal process in lecture 3
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Semi-Markov processes

Theorem: If the semi-Markov process is irreducible and not
lattice, then

lim P(Z(t) = l@> . w) Py f () dy

time from t until state entered at the
the next transition first transition after t

Proof: A delayed alternating renewal process

on off on: the state is i, and will
<—Zﬁ<<*Y2—> remain i for at least the next x
> time units; the next state Is j

off:’ otherwise

renewal occurs renewal occurs
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Semi-Markov processes

Proof:

lim P(t) = P(system is on@: ?

tli_)rgloP(Z(t) =1,Y(t) >‘ x,S(t)=j1Z(0)=k)

E(Z,] + E|Y,,] = E[time of a cycle] = E|T;;] = u;

E[Z,] = E["on" time in a cycle] = Pi] — x, 0}]

time to make a transition from i to j,
i.e., a random variable having distribution F;;
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Semi-Markov processes

Proof:

lim P(t) = P(system is on@: ?

t“_{?op(z(t) =1,Y(t) >‘ x,S(t)=j1Z(0)=k)

E(Z,] + E|Y,,] = E[time of a cycle] = E|T;;] = u;

E[Z,] = E["on" time in a cycle] = Pij@{rij —@

http://www.lamda.nju.edu.cn/qgianc/



Semi-Markov processes

Theorem: If the semi-Markov process is irreducible and not
lattice, then

gi_)rgloP(Z(t) =i, Yt)>x | Z(0) =k) = fx P(Tl:> y)dy

7;: time that the process spends in state i before making
a transition

Z P;; fxoo Fii(y)dy _ fxoo Y Pij Fij(y)dy

. Ui Hii
J
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Summary

« Markov chain

* Chapman-Kolmogorov equations and classification of states
* Stationary distribution

 Transitions and gambler's ruin problem

 Branching processes

* Time-reversible Markov chains and MCMC

* Semi-Markov processes

References: Chapter 4, Markov Chains, 2nd edition,
1995, by Sheldon M. Ross
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