Last class

- Renewal process
- Elementary renewal theorem
- Key renewal theorem
- Alternating renewal process
- Delayed renewal process
- Renewal reward process
- Symmetric random walk

References: Chapter 3, Stochastic Processes, 2nd edition, 1995, by Sheldon M. Ross Schaql af Artificial Intelligence，Nanding University

Stochastic Processes Lecture 4：Markov Chains

Chao Qian（钱超）
Associate Professor，Nanjing University，China

Email：qianc＠nju．edu．cn
Homepage：http：／／www．lamda．nju．edu．cn／qianc／

Markov chain

A stochastic process $\{X(t), t \in T\}$ with state space S is said to be a Markov chain if $\forall t_{1}<t_{2}<\cdots<t_{n}<t, x, x_{i} \in S$

$$
\begin{aligned}
& P\left(X(t)=x \mid X\left(t_{1}\right)=x_{1}, \ldots, X\left(t_{n}\right)=x_{n}\right) \\
& =P\left(X(t)=x \mid X\left(t_{n}\right)=x_{n}\right) \quad \text { Markovian property }
\end{aligned}
$$

Here, we consider discrete-time discrete-state homogeneous Markov chains
$\left\{X_{n}, n=0,1,2, \ldots\right\} \quad S=\{0,1,2, \ldots\}$, unless otherwise mentioned

$$
\forall t_{0}<t, x_{0}, x \in S: P\left(X(t)=x \mid X\left(t_{0}\right)=x_{0}\right)
$$

is independent of t_{0}, but depends only on $t-t_{0}$

Markov chain

Example [General Random Walk]: Let $X_{i}, i \geq 1$ be iid with

$$
P\left(X_{i}=j\right)=a_{j}, \quad j \in\{0, \pm 1, \pm 2, \ldots\}
$$

If we let

$$
S_{0}=0 \quad S_{n}=\sum_{i=1}^{n} X_{i}
$$

then $\left\{S_{n}, n \geq 0\right\}$ is a Markov chain for which

$$
P_{i j}=a_{j-i}
$$

One-step transition probability: $P_{i j}=P\left(S_{n+1}=j \mid S_{n}=i\right)$

Markov chain

Example [Simple Random Walk]: The random walk $\left\{S_{n}, n \geq\right.$ $0\}$, where $S_{n}=\sum_{i=1}^{n} X_{i}$, is said to be a simple random walk if for some $p, 0<p<1$,

$$
P\left(X_{i}=1\right)=p \quad P\left(X_{i}=-1\right)=q=1-p
$$

The absolute value $\left\{\left|S_{n}\right|, n \geq 0\right\}$ of the simple random walk is a Markov chain.

$$
P\left(\left|S_{n+1}\right|=i+1| | S_{n}\left|=i,\left|S_{n-1}\right|=i_{n-1}, \ldots,\left|S_{1}\right|=i_{1}\right) ?\right.
$$

Markov chain

Lemma: If $\left\{S_{n}, n \geq 0\right\}$ is a simple random walk, then $\forall i>0$

$$
\frac{P\left(S_{n}=i| | S_{n}\left|=i,\left|S_{n-1}\right|=i_{n-1}, \ldots,\left|S_{1}\right|=i_{1}\right)\right.}{\star}=\frac{p^{i}}{p^{i}+q^{i}}
$$

Proof: Let $i_{0}=0$, and define $j=\max \left\{k: i_{k}=0,0 \leq k \leq n\right\}$

$$
\begin{aligned}
& \Rightarrow P\left(S_{n}=i| | S_{n}\left|=i,\left|S_{n-1}\right|=i_{n-1}, \ldots,\left|S_{1}\right|=i_{1}\right)\right. \\
& \quad=P\left(S_{n}=i| | S_{n}\left|=i,\left|S_{n-1}\right|=i_{n-1}, \ldots,\left|S_{j}\right|=0\right)\right.
\end{aligned}
$$

Now there are two possible cases for $\left|S_{j+1}\right|=i_{j+1}, \ldots,\left|S_{n-1}\right|=i_{n-1},\left|S_{n}\right|=i$
Case 1: $S_{n}=i$, then $S_{n-1}=i_{n-1}, \ldots, S_{j+1}=i_{j+1}$ and has probability

$$
p^{\frac{n-j}{2}+\frac{i}{2}} \cdot q^{\frac{n-j}{2}-\frac{i}{2}} \quad\left(\frac{n-j}{2}+\frac{i}{2} \text { take the value of } 1, \frac{n-j}{2}-\frac{i}{2} \text { take the value of }-1\right)
$$

Case 2: $S_{n}=-i$, then $S_{n-1}=-i_{n-1}, \ldots, S_{j+1}=-i_{j+1}$ and has probability

$$
\begin{aligned}
& p^{\frac{n-j}{2}-\frac{i}{2}} \cdot q^{\frac{n-j}{2}+\frac{i}{2}} \quad\left(\frac{n-j}{2}-\frac{i}{2} \text { take the value of } 1, \frac{n-j}{2}+\frac{i}{2} \text { take the value of }-1\right) \\
\Rightarrow & \star=\frac{p^{\frac{n-j}{2}+\frac{i}{2}} \cdot q^{\frac{n-j}{2}-\frac{i}{2}}}{p^{\frac{n-j}{2}+\frac{i}{2}} \cdot q^{\frac{n-j}{2}-\frac{i}{2}}+p^{\frac{n-j}{2}-\frac{i}{2}} \cdot q^{\frac{n-j}{2}+\frac{i}{2}}}=\frac{p^{i}}{p^{i}+q^{i}}
\end{aligned}
$$

Markov chain

$$
\begin{gathered}
P\left(\left|S_{n+1}\right|=i+1| | S_{n}\left|=i,\left|S_{n-1}\right|=i_{n-1}, \ldots,\left|S_{1}\right|=i_{1}\right)\right. \\
\bar{Z}=P\left(\left|S_{n+1}\right|=i+1 \mid S_{n}=i\right) \cdot \frac{p^{i}}{p^{i}+q^{i}} \\
\text { Law of total }+P\left(\left|S_{n+1}\right|=i+1 \mid S_{n}=-i\right) \cdot \frac{q^{i}}{p^{i}+q^{i}}
\end{gathered}
$$

probability $=\frac{p^{i+1}+q^{i+1}}{p^{i}+q^{i}}$

Hence, $\left\{\left|S_{n}\right|, n \geq 0\right\}$ is a Markov chain with transition probabilities

$$
\begin{aligned}
& P_{i, i+1}=\frac{p^{i+1}+q^{i+1}}{p^{i}+q^{i}}=1-P_{i, i-1}, \quad i>0 \\
& P_{01}=1
\end{aligned}
$$

Chapman-Kolmogorov equations

For a Markov chain $\left\{X_{n}, n=0,1,2, \ldots\right\}$,

- one-step transition probability: $P_{i j}=P\left(X_{m+1}=j \mid X_{m}=i\right)$
- n-step transition probabilities:

$$
P_{i j}^{n}=P\left(X_{m+n}=j \mid X_{m}=i\right) \quad \text { How to compute it? }
$$

Chapman-Kolmogorov equations:

$$
P_{i j}^{n+m}=\sum_{k=0}^{\infty} P_{i k}^{n} P_{k j}^{m} \quad \text { for all } n, m \geq 0, i, j
$$

Chapman-Kolmogorov equations

Chapman-Kolmogorov equations:

$$
P_{i j}^{n+m}=\sum_{k=0}^{\infty} P_{i k}^{n} P_{k j}^{m} \quad \text { for all } n, m \geq 0, i, j
$$

Proof: $\quad P_{i j}^{n+m}=P\left(X_{n+m}=j \mid X_{0}=i\right) \quad$ (Homogeneous by default)
$\begin{aligned} & \text { Law of total } \\ & \text { probability }\end{aligned} \Rightarrow=\sum_{\substack{k=0 \\ \infty}}^{\infty} P\left(X_{n+m}=j, X_{n}=k \mid X_{0}=i\right)$

$$
\begin{aligned}
& =\sum_{k=0}^{k=0} P\left(X_{n+m}=j \mid X_{n}=k, X_{0}=i\right) P\left(X_{n}=k \mid X_{0}=i\right) \\
& =\sum_{k=0}^{\infty} P_{k j}^{m} P_{i k}^{n}
\end{aligned}
$$

Chapman-Kolmogorov equations

- n-step transition probabilities:

$$
P_{i j}^{n}=P\left(X_{m+n}=j \mid X_{m}=i\right) \quad \text { How to compute it? }
$$

Chapman-Kolmogorov equations:

$$
P_{i j}^{n+m}=\sum_{k=0}^{\infty} P_{i k}^{n} P_{k j}^{m} \quad \text { for all } n, m \geq 0, i, j
$$

Solution: Let $P^{(n)}$ denote the matrix of n-step transition probability $P_{i j}^{n}$, then by Chapman-Kolmogorov equations:

$$
P^{(m+n)}=P^{(n)} \cdot P^{(m)}
$$

Hence,

$$
P^{(n)}=P \cdot P^{(n-1)}=P \cdot P \cdot P^{(n-2)}=\cdots=P^{n}
$$

Communication

- State j is said to be accessible from state i if for some $n \geq 0, P_{i j}^{n}>0$
- Two states i and j accessible to each other are said to communicate, denoted as $i \leftrightarrow j$

Proposition: Communication is an equivalence relation, i.e.,
$\checkmark i \leftrightarrow i \quad$ (Follows trivially from definition)
\checkmark If $i \leftrightarrow j$, then $j \leftrightarrow i \quad$ (Follows trivially from definition)
\checkmark If $i \underset{\Downarrow}{\leftrightarrow} j$ and $j \underset{\downarrow}{\leftrightarrow} k$, then $i \leftrightarrow k \quad$ Similarly, we can show $k \rightarrow i$
$\exists m$, s.t. $P_{i j}^{m}>0, \exists n$, s.t. $P_{j k}^{n}>0, P_{i k}^{m+n}=\sum_{r=0}^{\infty} P_{i r}^{m} P_{r k}^{n} \geq P_{i j}^{m} P_{j k}^{n}>0 \Longrightarrow i \rightarrow k$

Irreducible

- Two states that communicate are said to be in the same class

the equivalence relation of communication

any two classes are either disjoint or identical

- A Markov chain is irreducible if there is only one class

All states communicate with each other

Period

- A state j has period d if d is the greatest common divisor of the number of transitions by which j can be reached, starting from j

$$
d(j)=\operatorname{gcd}\left\{n>0: P_{j j}^{n}>0\right\}
$$

period of j

- If $P_{j j}^{n}=0$ for all $n>0$, then $d(j)=\infty$
- A state with period 1 is said to be aperiodic

Period

Proposition: If $i \leftrightarrow j$, then $d(i)=d(j)$

Proof: $i \leftrightarrow j \Rightarrow P_{i j}^{m} P_{j i}^{n}>0$ for some m and n
Suppose $P_{i i}^{S}>0$, then

$$
\left.\begin{array}{c}
P_{j j}^{n+m} \geq P_{j i}^{n} P_{i j}^{m}>0 \\
P_{j j}^{n+s+m} \geq P_{j i}^{n} P_{i i}^{s} P_{i j}^{m}>0
\end{array}\right\} \Rightarrow \begin{gathered}
d(j) \text { divides both } n+m \\
\text { and } n+s+m \\
\downarrow \\
d(j) \text { divides } s
\end{gathered}
$$

So, if $P_{i i}^{S}>0$, then $d(j)$ divides s.
$P_{i i}^{d(i)}>0$ is obvious, so $d(j)$ divides $d(i)$.
A similar argument yields that $d(i)$ divides $d(j)$.
$\Rightarrow d(i)=d(j)$

Recurrent

For any states i and j, define $f_{i j}^{n}$ to be the probability that, starting in i, the first transition into j occurs at time n

$$
\begin{aligned}
& f_{i j}^{0}=0 \\
& f_{i j}^{n}=P\left(X_{n}=j, X_{k} \neq j, k=1,2, \ldots, n-1 \mid X_{0}=i\right)
\end{aligned}
$$

Let $f_{i j}$ denote the probability of ever making a transition into state j, given that the process starts in i

$$
f_{i j}=\sum_{n=1}^{\infty} f_{i j}^{n}
$$

State j is said to be recurrent if $f_{j j}=1$, and transient otherwise

Recurrent

Proposition: State j is recurrent if and only if $\sum_{n=1}^{\infty} P_{j j}^{n}=\infty$
Proof: j is recurrent \Rightarrow with probability 1 , return to j Markov property \Rightarrow once returning to j, the process restarts So, with probability 1 , the number of visits to j is ∞

$$
\Rightarrow E\left[\text { number of visits to } j \mid X_{0}=j\right]=\infty
$$

j is transient \Rightarrow the number of visits to j is geometric with mean $\frac{1}{1-f_{j j}}$
Thus, j is recurrent if and only if
E [number of visits to $\left.j \mid X_{0}=j\right]=\infty$
Let $I_{n}=\left\{\begin{array}{cc}1 & \text { if } X_{n}=j \\ 0 & \text { otherwise }\end{array}\right.$
$\Longrightarrow E\left[\right.$ number of visits to $\left.j \mid X_{0}=j\right]=E\left[\sum_{n=0}^{\infty} I_{n} \mid X_{0}=j\right]$

$$
=\sum_{n=0}^{\infty} E\left[I_{n} \mid X_{0}=j\right]=\sum_{n=0}^{\infty} P_{j j}^{n}
$$

Recurrent

Corollary: If i is recurrent and $i \leftrightarrow j$, then j is recurrent

Proof: $\quad i \leftrightarrow j \Rightarrow \exists m, n$ such that $P_{i j}^{n}>0, P_{j i}^{m}>0$

$$
\begin{aligned}
& \forall s>0, P_{j j}^{m+n+s} \geq P_{j i}^{m} P_{i i}^{S} P_{i j}^{n} \\
& \Rightarrow \sum_{s=1}^{\infty} P_{j j}^{m+n+s} \geq P_{j i}^{m} P_{i j}^{n} \sum_{s=1}^{\infty} P_{i i}^{s}=\infty \\
& \Rightarrow \sum_{s=1}^{\infty} P_{j j}^{s}=\infty \Rightarrow j \text { is recurrent }
\end{aligned}
$$

Recurrent

Example [Simple Random Walk]: The random walk $\left\{S_{n}, n \geq\right.$ $0\}$, where $S_{n}=\sum_{i=1}^{n} X_{i}$, is said to be a simple random walk if for some $p, 0<p<1$,

$$
P\left(X_{i}=1\right)=p \quad P\left(X_{i}=-1\right)=q=1-p
$$

Which states are transient? Which are recurrent?

Solution:

All states communicates \Rightarrow they are either all transient or all recurrent Only need to consider state 0 i.e., if $\sum_{n=1}^{\infty} P_{00}^{n}$ is finite or not $P_{00}^{2 n+1}=0, n=0,1,2, \ldots$
$P_{00}^{2 n}=C_{2 n}^{n} p^{n}(1-p)^{n}=\frac{(2 n)!}{(n!)^{2}} p^{n}(1-p)^{n}, n=1,2, \ldots$
Stirling's approximation: $n!\sim n^{n+1 / 2} e^{-n} \sqrt{2 \pi} \Rightarrow P_{00}^{2 n} \sim \frac{(4 p(1-p))^{n}}{\sqrt{\pi n}} \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$

$$
\sum_{n=1}^{\infty} \frac{(4 p(1-p))^{n}}{\sqrt{\pi n}}\left\{\begin{array}{l}
p=\frac{1}{2}, 4 p(1-p)=1 \Rightarrow \sum_{n=1}^{\infty} P_{00}^{n}=\infty \Rightarrow \text { recurrent } \\
p \in\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right), 4 p(1-p)<1 \Rightarrow \sum_{n=1}^{\infty} P_{00}^{n}<\infty \Rightarrow \text { transient }
\end{array}\right.
$$

Recurrent

Corollary: If j is recurrent and $i \leftrightarrow j$, then $f_{i j}=1$

Proof: $i \leftrightarrow j \Rightarrow \exists n, P_{i j}^{n}>0$
$i \leftrightarrow j, j$ is recurrent $\Rightarrow i$ is recurrent
Suppose $X_{0}=i$, let T_{1} denote the next time we enter $i\left(T_{1}\right.$ is finite by Corollary)

X_{0}	X_{n}	$X_{T_{1}}$
	$X_{n}=j$ with probability $P_{i j}^{n}$	

The number of above process needed to access state j is a geometric random variable with mean $1 / P_{i j}^{n}$, and is thus finite with probability 1
i is recurrent \Rightarrow the number of above process is infinite
$\Rightarrow f_{i j}=1$

Positive and Null Recurrent

Let $\mu_{j j}$ denote the expected number of transitions needed to return to state j

$$
\mu_{j j}= \begin{cases}\infty & \text { if } j \text { is transient } \\ \sum_{n=1}^{\infty} n f_{j j}^{n} & \text { if } j \text { is recurrent }\end{cases}
$$

If state j is recurrent, then we say that it is positive recurrent if $\mu_{j j}<\infty$ and null recurrent if $\mu_{j j}=\infty$

Limit theorems

Let $N_{j}(t)$ denote the number of transitions into j by time t
By interpreting transitions into state j as being renewals,
Theorem: If $i \leftrightarrow j$, then
$\checkmark P\left(\left.\lim \frac{N_{j}(t)}{t}=\frac{1}{\mu} \right\rvert\, X_{0}=i\right)=1$ (With probability $1, \frac{N_{D}(t)}{t} \rightarrow \frac{1}{\mu}$ as $t \rightarrow \infty$)
$\checkmark \lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} P_{i j}^{k}}{n}=\frac{1}{\mu_{j j}}$

$$
\begin{gathered}
I_{k}=\left\{\begin{array}{cc}
1 & \text { if } X_{k}=j \\
0 & \text { otherwise }
\end{array}\right. \\
\left.E\left[\sum_{k=1}^{t} I_{k}\right]=\sum_{k=1}^{t} P_{i j}^{k}\right)
\end{gathered}
$$

\checkmark If j is aperiodic, then $\lim _{n \rightarrow \infty} P_{i j}^{n}=\frac{1}{\mu_{j j}}$
(Blackwell's Theorem)
\checkmark If j has period d, then $\lim _{n \rightarrow \infty} P_{j j}^{n d}=\frac{d}{\mu_{j j}}$
(Blackwell's Theorem)

Delayed renewal process

Properties of delayed renewal process:

$$
\mu=\int_{0}^{\infty} x d F(x)
$$

- With probability $1, \frac{N_{D}(t)}{t} \rightarrow \frac{1}{\mu} \quad$ as $t \rightarrow \infty$
- $\frac{m_{D}(t)}{t} \rightarrow \frac{1}{\mu} \quad$ as $t \rightarrow \infty \quad$ Elementary Renewal Theorem
- If F is not lattice, then $m_{D}(t+a)-m_{D}(t) \rightarrow a / \mu \quad$ as $t \rightarrow \infty$
- If F and G are lattice with period d, then

Blackwell's Theorem

$$
E[\# \text { renewals at } n d] \rightarrow d / \mu \quad \text { as } n \rightarrow \infty
$$

- If F is not lattice, $\mu<\infty$ and $h(t)$ is directly Riemann integrable,

$$
\int_{0}^{\infty} h(t-x) d m_{D}(x)=\frac{1}{\mu} \int_{0}^{\infty} h(t) d t \quad \text { Key Renewal Theorem }
$$

Positive and Null Recurrent

If state j is recurrent, then we say that it is positive recurrent if $\mu_{j j}<\infty$ and null recurrent if $\mu_{j j}=\infty$

$$
\widehat{\int} \pi_{j}=\lim _{n \rightarrow \infty} P_{j j}^{n d(j)}=\frac{d(j)}{\mu_{j j}}
$$

If state j is recurrent, then we say that it is positive recurrent if $\pi_{j}>0$ and null recurrent if $\pi_{j}=0$

Positive and Null Recurrent

Proposition: If i is positive (null) recurrent and $i \leftrightarrow j$, then j is positive (null) recurrent

Proof: Case 1: positive recurrent

$$
\begin{aligned}
& i \leftrightarrow j \Rightarrow d(i)=d(j)=d \geq 1 \\
& \pi_{i}=\lim _{n \rightarrow \infty} P_{i i}^{n d}=\frac{d}{\mu_{i i}}>0 \\
& i \leftrightarrow j \Rightarrow \exists s, t \geq 0, P_{i j}^{s}>0, P_{j i}^{t}>0 \\
& P_{j j}^{t+s+m d} \geq P_{j i}^{t} P_{i i}^{m d} P_{i j}^{s} \\
& \lim _{m \rightarrow \infty} P_{j j}^{t+s+m d} \geq P_{j i}^{t} P_{i j}^{s} \cdot \lim _{m \rightarrow \infty} P_{i i}^{m d}=\frac{d}{\mu_{i i}} \cdot P_{j i}^{t} P_{i j}^{s}>0 \\
& P_{j j}^{t+s} \geq P_{j i}^{t} P_{i j}^{s}>0 \Rightarrow d \text { divides } t+s \\
& \pi_{j}=\lim _{m \rightarrow \infty} P_{j j}^{t+s+m d}>0 \Rightarrow j \text { is positive recurrent }
\end{aligned}
$$

For the null recurrent case, leave as the exercise

Stationary distribution

Definition: A probability distribution $\left\{\pi_{j}, j \geq 0\right\}$ is said to be stationary for the Markov chain if

$$
\forall j: \pi_{j}=\sum_{i=0}^{\infty} \pi_{i} P_{i j}
$$

If the initial distribution, i.e., the distribution of X_{0}, is a stationary distribution, X_{n} will have the same distribution for all n.
Proof:

$$
\begin{aligned}
& P\left(X_{1}=j\right)=\sum_{i=0}^{\infty} P\left(X_{1}=j \mid X_{0}=i\right) P\left(X_{0}=i\right)=\sum_{i=0}^{\infty} P_{i j} \pi_{i}=\pi_{j} \\
& P\left(X_{n}=j\right)=\sum_{i=0}^{\infty} P\left(X_{n}=j \mid X_{n-1}=i\right) P\left(X_{n-1}=i\right)=\sum_{i=0}^{\infty} P_{i j} \pi_{i}=\pi_{i} \pi_{j}
\end{aligned}
$$

Stationary distribution

Theorem: An irreducible aperiodic Markov chain belongs to one of the following two classes

- Either the states are all transient or all null recurrent. In this case, $P_{i j}^{n} \rightarrow 0$ as $n \rightarrow \infty$ for all i, j and there exists no stationary distribution
- Or else, all states are positive recurrent, that is,

$$
\pi_{j}=\lim _{n \rightarrow \infty} P_{i j}^{n}>0
$$

In this case, $\left\{\pi_{j}, j=0,1,2, \ldots,\right\}$ is a stationary distribution and there exists no other stationary distribution

Proof:

Proof for the first class:

transient or null recurrent $\Rightarrow \mu_{j j}=\infty$. By Limit Theorem, $\lim _{n \rightarrow \infty} P_{i j}^{n}=\frac{1}{\mu_{j j}}=0$

Stationary distribution

Suppose there exists a stationary distribution P_{j}, then

$$
\begin{aligned}
P_{j} & =P\left(X_{n}=j\right)=\sum_{i=0}^{\infty} P\left(X_{n}=j \mid X_{0}=i\right) P\left(X_{0}=i\right)=\sum_{i=0}^{\infty} P_{i j}^{n} P_{i} \\
& =\sum_{i=0}^{M} P_{i j}^{n} P_{i}+\sum_{i=M+1}^{\infty} P_{i j}^{n} P_{i} \leq \sum_{i=0}^{M} P_{i j}^{n} P_{i}+\sum_{i=M+1}^{\infty} P_{i}
\end{aligned}
$$

Let $n \rightarrow \infty$, we have $P_{j} \leq \sum_{i=M+1}^{\infty} P_{i}$. Then, let $M \rightarrow \infty$, we have $P_{j} \leq 0$, which leads to a contradiction

Proof for the second class:

Note that $P_{i j}^{n+1}=\sum_{k=0}^{\infty} P_{i k}^{n} P_{k j} \geq \sum_{k=0}^{M} P_{i k}^{n} P_{k j}$ for all M
Let $n \rightarrow \infty$, we have $\pi_{j} \geq \sum_{k=0}^{M} \pi_{k} P_{k j}$,

$$
\text { then let } M \rightarrow \infty \text {, we have } \pi_{j} \geq \sum_{k=0}^{\infty} \pi_{k} P_{k j}
$$

Suppose $\exists j$, such that $\pi_{j}>\sum_{k=0}^{\infty} \pi_{k} P_{k j}$, then
$\sum_{j=0}^{\infty} \pi_{j}>\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \pi_{k} P_{k j}=\sum_{k=0}^{\infty} \pi_{k} \sum_{j=0}^{\infty} P_{k j}=\sum_{k=0}^{\infty} \pi_{k}$, which leads to a contradiction. Thus, $\forall j: \pi_{j}=\sum_{k=0}^{\infty} \pi_{k} P_{k j}$

Stationary distribution

Suppose P_{j} is a stationary distribution, then

$$
P_{j}=P\left(X_{n}=j\right)=\sum_{i=0}^{\infty} P\left(X_{n}=j \mid X_{0}=i\right) P\left(X_{0}=i\right)=\sum_{i=0}^{\infty} P_{i j}^{n} P_{i}
$$

- $P_{j} \geq \sum_{i=0}^{M} P_{i j}^{n} P_{i}$ for all M

Let $n \rightarrow \infty$, we have $P_{j} \geq \sum_{i=0}^{M} \pi_{j} P_{i}$,
then let $M \rightarrow \infty$, we have $P_{j} \geq \sum_{i=0}^{\infty} \pi_{j} P_{i}=\pi_{j}$

- $P_{j} \leq \sum_{i=0}^{M} P_{i j}^{n} P_{i}+\sum_{i=M+1}^{\infty} P_{i}$ for all M

Let $n \rightarrow \infty$, we have $P_{j} \leq \sum_{i=0}^{M} \pi_{j} P_{i}+\sum_{i=M+1}^{\infty} P_{i}$,
then let $M \rightarrow \infty$, we have $P_{j} \leq \sum_{i=0}^{\infty} \pi_{j} P_{i}=\pi_{j}$
Thus, $\forall j: P_{j}=\pi_{j}$

Stationary distribution

- For an irreducible, positive recurrent and aperiodic Markov chain, $\left\{\pi_{j}, j=0,1,2, \ldots,\right\}$ is the unique stationary distribution, where

$$
\pi_{j}=\lim _{n \rightarrow \infty} P_{i j}^{n}=\frac{1}{\mu_{j j}}
$$

- For an irreducible, positive recurrent and periodic Markov chain (where the period is d), $\left\{\pi_{j}=\frac{1}{\mu_{j j}}, j=0,1,2, \ldots,\right\}$ is still the unique stationary distribution

$$
\lim _{n \rightarrow \infty} P_{j j}^{n d}=\frac{d}{\mu_{j j}}=d \pi_{j}
$$

Transitions among classes

Proposition: Let R be a recurrent class of states. If $i \in R, j \notin R$, then $P_{i j}=0$.

Proof: Suppose $P_{i j}>0$
Then, as i and j do not communicate (since $j \notin R$)
$\Rightarrow P_{j i}^{n}=0, \forall n$
Hence, if the process starts in state i, there is a positive probability of at least $P_{i j}$ that the process will never return to i
\Rightarrow contradicts the fact that i is recurrent
So $P_{i j}=0$

Transitions among classes

Proposition: If j is recurrent, then the set of probabilities $\left\{f_{i j}, i \in T\right\}$ satisfies

$$
\forall i \in T: f_{i j}=\sum_{k \in T} P_{i k} f_{k j}+\sum_{k \in R} P_{i k}
$$

where T denotes the set of all transient states, and R denotes the set of states communicating with j
Proof:

$$
\begin{aligned}
f_{i j} & =P\left(N_{j}(\infty)>0 \mid X_{0}=i\right) \\
& =\sum_{k} P\left(N_{j}(\infty)>0 \mid X_{0}=i, X_{1}=k\right) P\left(X_{1}=k \mid X_{0}=i\right) \\
& =\sum_{k \in T} f_{k j} P_{i k}+\sum_{k \in R} f_{k j} P_{i k}+\sum_{k \notin R, k \notin T} f_{k j} P_{i k} \quad \begin{array}{l}
k \text { belongs to a recurrent } \\
\text { class that is different } \\
\text { from } R, \text { thus } f_{k j}=0
\end{array} \\
& =\sum_{k \in T} f_{k j} P_{i k}+\sum_{k \in R} P_{i k} \quad
\end{aligned}
$$

Gambler's ruin problem

Gambler's ruin problem: Consider a gambler who at each play of the game has probability p of winning 1 unit and probability $q=1-p$ of losing 1 unit. Assuming successive plays of the game are independent.

What is the probability that, starting with i units, the gambler's fortune will reach N before reaching 0 ?

Solution: $\quad X_{n}$: the player's fortune at time n
$\left\{X_{n}, n=0,1,2, \ldots\right\}:$ a Markov chain with transition probabilities
$P_{00}=P_{N N}=1 \quad P_{i, i+1}=p=1-P_{i, i-1} \quad i=1,2, \ldots, N-1$
\{0\}
recurrent class
$\{1,2, \ldots, N-1\}$
transient class
$\{N\}$
recurrent class

Gambler's ruin problem

Let $f_{i}=f_{i, N}$ denote the probability that, starting with $i, 1 \leq i \leq N$, the fortune will eventually reach N

just the desired probability

$$
f_{i}=p f_{i+1}+q f_{i-1} \quad i=1,2, \ldots, N-1 \longmapsto f_{i+1}-f_{i}=\frac{q}{p}\left(f_{i}-f_{i-1}\right)
$$

Then, $\quad f_{2}-f_{1}=\frac{q}{p}\left(f_{1}-f_{0}\right)=\frac{q}{p} f_{1}, f_{3}-f_{2}=\frac{q}{p}\left(f_{2}-f_{1}\right)=\left(\frac{q}{p}\right)^{2} f_{1}, \ldots$,

$$
f_{i}-f_{i-1}=\frac{q}{p}\left(f_{i-1}-f_{i-2}\right)=\left(\frac{q}{p}\right)^{i-1} f_{1}
$$

Thus, $f_{i}=f_{1}+f_{1}\left[\left(\frac{q}{p}\right)+\left(\frac{q}{p}\right)^{2}+\cdots+\left(\frac{q}{p}\right)^{i-1}\right]=\left\{\begin{array}{cc}\frac{1-(q / p)^{i}}{1-(q / p)} f_{1} & \text { if } \frac{q}{p} \neq 1 \\ i f_{1} & \text { if } \frac{q}{p}=1\end{array}\right.$
By $f_{N}=1, f_{i}=\left\{\begin{array}{cc}\frac{1-(q / p)^{i}}{1-(q / p)^{N}} & \text { if } p \neq \frac{1}{2} \\ \frac{i}{N} & \text { if } p=\frac{1}{2}\end{array} \quad \stackrel{N \rightarrow \infty}{ } f_{i} \rightarrow\left\{\begin{array}{cl}1-(q / p)^{i} & \text { if } p>\frac{1}{2} \\ 0 & \text { if } p \leqslant \frac{1}{2}\end{array}\right.\right.$

Gambler's ruin problem

What is the expected number of bets that the gambler, starting at i, makes before reaching either 0 or n ?

Solution: $\quad X_{j}$: the winnings on the j th bet
B : the number of bets until the fortune reaches either 0 or n

$$
B=\min \left\{m: \sum_{j=1}^{m} X_{j}=-i \text { or } \sum_{j=1}^{m} X_{j}=n-i\right\}
$$

B is a stopping time for X_{j}, then by Wald's equation,
$E\left[\sum_{j=1}^{B} X_{j}\right]=E\left[X_{j}\right] E[B]=(2 p-1) E[B]$

By $\sum_{j=1}^{B} X_{j}=\left\{\right.$| $n-i$ | with prob. $\frac{1-(q / p)^{i}}{1-(q / p)^{N}}$ | | | | $E[B]=\frac{1}{2 p-1}\left\{\frac{n\left[1-(q / p)^{i}\right]}{1-(q / p)^{n}}-i\right\}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $-i$ | otherwise | (here we consider $p \neq 1 / 2)$ | | | |

Transitions among transient states

$T=\{1,2, \ldots, t\}$: the set of transient states
How about the probability $f_{i, j}$, where both i and j are transient? i.e., $i, j \in T$
the probability of ever making a transition into state j given that the chain starts in state i

For $i, j \in T, m_{i, j}$: the expected total number of time periods spent in state j given that the chain starts in state i

$$
\begin{gathered}
m_{i, j}=m_{j, j} \cdot f_{i, j} \quad \square f_{i, j}=m_{i, j} / m_{j, j} \\
\text { How to compute } m_{i, j} ?
\end{gathered}
$$

Transitions among transient states

$$
\begin{gathered}
m_{i, j}=\delta(i, j)+\sum_{k} P_{i, k} m_{k, j}=\delta(i, j)+\sum_{k=1}^{t} P_{i, k} m_{k, j} \\
\left\{\begin{array}{l}
1 \quad \text { if } i=j \\
0 \quad \text { otherwise }
\end{array} \quad m_{k, j}=0 \text { for } k \notin T\right.
\end{gathered}
$$

transition probabilities among transient states

$$
Q=\left[\begin{array}{ccc}
P_{11} & \cdots & P_{1 t} \\
\vdots & \ddots & \vdots \\
P_{t 1} & \cdots & P_{t t}
\end{array}\right] \quad M=\left[\begin{array}{ccc}
m_{11} & \cdots & m_{1 t} \\
\vdots & \ddots & \vdots \\
m_{t 1} & \cdots & m_{t t}
\end{array}\right]
$$

$$
M=I+Q M \quad \square \quad M=(I-Q)^{-1}
$$

Transitions among transient states

Example: Consider the gambler's ruin problem with $p=0.4$ and $N=6$. Starting in state 3 , determine

- the expected amount of time spent in state $3 m_{3,3}$
- the expected number of visits to state 2
- the probability of ever visiting state 4

Leave as the exercise

Equivalent to f_{3} under $N=4$

Branching processes

Branching processes: Consider a population consisting of individuals able to produce offspring of the same kind. Suppose that each individual will, by the end of its lifetime, have produced \boldsymbol{j} new offspring with probability $\boldsymbol{P}_{\boldsymbol{j}}, \boldsymbol{j} \geq \mathbf{0}$, independently of the number produced by any other individual. Let $\boldsymbol{X}_{\boldsymbol{n}}$ denote the size of the \boldsymbol{n} th generation. The Markov chain $\left\{X_{n}, n \geq 0\right\}$ is called a branching process

Suppose that $X_{0}=1 \quad \pi_{0}=\lim _{n \rightarrow \infty} P\left(X_{n}=0\right)$
Let π_{0} denote the probability that the population ever dies out $\pi_{0}=P($ population dies out $)$
$=\sum_{j=0}^{\infty} P\left(\right.$ population dies out $\left.\mid X_{1}=j\right) P_{j}=\sum_{j=0}^{\infty} \pi_{0}^{j} P_{j}$

Branching processes

Theorem: Suppose that $P_{0}>0$ and $P_{0}+P_{1}<1$. Then,

- π_{0} is the smallest positive number satisfying $\pi_{0}=\sum_{j=0}^{\infty} \pi_{0}^{j} P_{j}$
- $\pi_{0}=1$ if and only if $\mu \leq 1$, where $\mu=\sum_{j=0}^{\infty} j P_{j}$ is the mean number of offspring produced by each individual
Proof: Let $\pi \geq 0$ satisfy $\pi=\sum_{j=0}^{\infty} \pi^{j} P_{j}$, prove $\pi \geq P\left(X_{n}=0\right)$ for all n

$$
\pi=\sum_{j=0}^{\infty} \pi^{j} P_{j} \geq \pi^{0} P_{0}=P_{0}=P\left(X_{1}=0\right)
$$

Assume that $\pi \geq P\left(X_{n}=0\right)$, then

$$
\begin{aligned}
P\left(X_{n+1}=0\right) & =\sum_{j=0}^{\infty} P\left(X_{n+1}=0 \mid X_{1}=j\right) P_{j} \\
& =\sum_{j=0}^{\infty}\left(P\left(X_{n}=0\right)\right)^{j} P_{j} \leq \sum_{j=0}^{\infty} \pi^{j} P_{j}=\pi
\end{aligned}
$$

Hence, $\pi \geq P\left(X_{n}=0\right)$ for all n
Let $n \rightarrow \infty \Rightarrow \pi \geq \lim _{n \rightarrow \infty} P\left(X_{n}=0\right)=\pi_{0}$
The proof of the second point is left as the exercise

Time-reversible Markov chains

Stationary Markov chain: An irreducible positive recurrent Markov chain is stationary if the initial state is chosen according to the stationary probabilities

The reversed process of a stationary Markov chain is also a Markov chain with transition probabilities given by

$$
P_{i j}^{*}=\frac{\pi_{j} P_{j i}}{\pi_{i}}
$$

Proof: $P\left(X_{m}=j \mid X_{m+1}=i, X_{m+2}=i_{2}, \ldots, X_{m+k}=i_{k}\right)$

$$
\begin{aligned}
& =\frac{P\left(X_{m}=j, X_{m+1}=i, X_{m+2}=i_{2}, \ldots, X_{m+k}=i_{k}\right)}{P\left(X_{m+1}=i, X_{m+2}=i_{2}, \ldots, X_{m+k}=i_{k}\right)} \\
& =\frac{P\left(X_{m+2}=i_{2}, \ldots, X_{m+k}=i_{k} \mid X_{m}=j, X_{m+1}=i\right) P\left(X_{m}=j, X_{m+1}=i\right)}{P\left(X_{m+2}=i_{2}, \ldots, X_{m+k}=i_{k} \mid X_{m+1}=i\right) P\left(X_{m+1}=i\right)} \\
& =\frac{P\left(X_{m}=j, X_{m+1}=i\right)}{P\left(X_{m+1}=i\right)}=\frac{P\left(X_{m+1}=i \mid X_{m}=j\right) P\left(X_{m}=j\right)}{P\left(X_{m+1}=i\right)}=\frac{\pi_{j} P j i}{\pi_{i}} \quad \text { Stationary }
\end{aligned}
$$

Time-reversible Markov chains

[Definition] Time-reversible Markov chain: A stationary Markov chain is time-reversible if $\forall i, j$

$$
P_{i j}^{*}=P_{i j} \quad \Longleftrightarrow{ }_{P_{i j}^{*}}=\frac{\pi_{j} P_{j i}}{\pi_{i}} \quad \pi_{i} P_{i j}=\pi_{j} P_{j i}
$$

[Necessary and Sufficient Condition]: A stationary Markov chain is time-reversible if and only if, starting in state i, any path back to i has the same probability as the reversed path for all i. That is, $\forall i, i_{1}, \ldots, i_{k}$:

$$
P_{i i_{1}} P_{i_{1} i_{2}} \cdots P_{i_{k-1} i_{k}} P_{i_{k} i}=P_{i i_{k}} P_{i_{k} i_{k-1}} \cdots P_{i_{2} i_{1}} P_{i_{1} i}
$$

Time-reversible Markov chains

Proof: [Necessary Condition]

Time-reversible: $\pi_{i} P_{i j}=\pi_{j} P_{j i}$

$$
\begin{aligned}
& P_{i i_{1}} P_{i_{1} i_{2}} \cdots P_{i_{k-1} i_{k}} P_{i_{k} i}=P_{i i_{k}} P_{i_{k} i_{k-1}} \cdots P_{i_{2} i_{1}} P_{i_{1} i} \\
& \\
& =\pi_{i} P_{i i_{1}} P_{i_{1} i_{2}} \cdots P_{i_{k-1} i_{k}} P_{i_{k} i} \\
& =P_{i_{1} i} \pi_{i_{1}} P_{i_{1} i_{2}} \cdots P_{i_{k-1} i_{k}} P_{i_{k} i} \\
& =P_{i_{1} i} P_{i_{2} i_{1}} \pi_{i_{2}} \cdots P_{i_{k-1} i_{k}} P_{i_{k} i} \\
& =P_{i_{1} i} P_{i_{2} i_{1}} \cdots P_{i_{k} i_{k-1}} \pi_{i_{k}} P_{i_{k} i} \\
& =P_{i_{1} i} P_{i_{2} i_{1}} \cdots P_{i_{k} i_{k-1}} P_{i i_{k}} \pi_{i}
\end{aligned}
$$

Eliminate π_{i} on both sides, finish the proof

Time-reversible Markov chains

Proof: [Sufficient Condition]

$$
P_{i i_{1}} P_{i_{1} i_{2}} \cdots P_{i_{k-1} i_{k}} P_{i_{k} i}=P_{i i_{k}} P_{i_{k} i_{k-1}} \cdots P_{i_{2} i_{1}} P_{i_{1} i}
$$

Time-reversible: $\pi_{i} P_{i j}=\pi_{j} P_{j i}$

$$
\text { Let } n \rightarrow \infty \pi_{j} P_{j i}=\pi_{i} P_{i j}
$$

$$
\begin{aligned}
& P_{i i_{1}} P_{i_{1} i_{2}} \cdots P_{i_{k-1} i_{k}} P_{i_{k} j} P_{j i}=P_{i j} P_{j i_{k}} P_{i_{k} i_{k-1}} \cdots P_{i_{2} i_{1}} P_{i_{1} i} \\
& \rrbracket \text { Summing over all states } i_{1}, i_{2}, \ldots, i_{k} \\
& P_{i j}^{k+1} P_{j i}=P_{i j} P_{j i}^{k+1} \\
& \frac{1}{n}\left(\sum_{k=1}^{n} P_{i j}^{k+1}\right) P_{j i} \stackrel{\downarrow}{=} \frac{1}{n}\left(\sum_{k=1}^{n} P_{j i}^{k+1}\right) P_{i j} \\
& \begin{array}{l}
\text { Note that } \\
\lim _{n \rightarrow \infty} a_{n}=a \Rightarrow \\
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} a_{k}=a
\end{array}
\end{aligned}
$$

Time-reversible Markov chains

Theorem: Consider an irreducible Markov chain with transition probabilities $P_{i j}$. If one can find nonnegative numbers $\pi_{i}, i \geq 0$, summing to unity, and a transition probability matrix $\boldsymbol{P}^{*}=\left[P_{i j}^{*}\right]$ such that

$$
\pi_{i} P_{i j}=\pi_{j} P_{j i}^{*}
$$

then $\pi_{i}, i \geq 0$ are the stationary probabilities of the original chain, and $P_{i j}^{*}$ are the transition probabilities of the reverse chain

Proof: $\sum_{i} \pi_{i} P_{i j}=\sum_{i} \pi_{j} P_{j i}^{*}=\pi_{j} \sum_{i} P_{j i}^{*}=\pi_{j}$
$\Rightarrow \pi_{i}, i \geq 0$ are the stationary probabilities of the original chain
$P_{j i}^{*}=\frac{\pi_{i} P_{i j}}{\pi_{j}}$ are the transition probabilities of the reverse chain Leave as the exercise
$\pi_{i}, i \geq 0$ are also the stationary probabilities of the reverse chain

Markov chain Monte Carlo

Suppose $X \in\left\{x_{i}, i \geq 1\right\}$ is a discrete random variable with probability distribution $\pi_{i}=P\left(X=x_{i}\right)$, and h is a function

Problem: How to calculate $E[h(X)]=\sum_{i} h\left(x_{i}\right) \pi_{i}$?

Monte Carlo Method: draw samples $X_{1}, X_{2}, \ldots, X_{n}$ from the probability distribution of X, use $\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)$ to estimate $E[h(X)]$

Practical situations: π_{i} can be calculated, but hard to be sampled

Problem: How to generate a set of independent samples of X ?

Markov chain Monte Carlo

Theorem: If $\left\{X_{n}, n \geq 0\right\}$ is an irreducible Markov chain with stationary distribution π_{i}, and h is a bounded function over the state space $\left\{x_{i}, i \geq 1\right\}$, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)=E[h(X)]=\sum_{i} h\left(x_{i}\right) \pi_{i}
$$

Now we only need to construct an irreducible Markov chain with stationary distribution being the desired probability distribution
Proof: Let $a_{i(n)}$ denote the number of transitions into x_{i} by time n

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)=\sum_{i} \frac{a_{i(n)}}{n} h\left(x_{i}\right) \\
& \text { With probability } 1, \frac{a_{i(n)}}{n} \rightarrow \frac{1}{\mu_{i i}}=\pi_{i} \text { as } n \rightarrow \infty
\end{aligned}
$$

$$
\Rightarrow \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)=\sum_{i} h\left(x_{i}\right) \pi_{i}
$$

Since there is already a stationary distribution, the MC must be positive recurrent

Markov chain Monte Carlo

Theorem: Suppose $\left\{\pi_{i}, i \in S\right\}$ is a probability distribution, there exists a time-reversible Markov chain $\left\{X_{n}, n \geq 0\right\}$ with state space S and stationary distribution π_{i}

Proof:

Target: construct P such that $\pi_{i} P_{i j}=\pi_{j} P_{j i} \quad \mathcal{Z}$
W.l.o.g., we assume $S=\{0,1, \ldots\}$, let Q be the transition probability matrix of an irreducible Markov chain such that

$$
\forall i \neq j, Q_{i j}=0 \Leftrightarrow Q_{j i}=0
$$

Now we construct P as follows:

Markov chain Monte Carlo

$$
\begin{gathered}
Q_{i j}=0 \Rightarrow \alpha_{i j}=1 \\
Q_{i j}>0 \Rightarrow \alpha_{i j}=\min \left\{\frac{\pi_{j} Q_{j i}}{\pi_{i} Q_{i j}}, 1\right\}
\end{gathered} \quad \begin{gathered}
Q_{i j} \alpha_{i j} \\
P_{i i}=Q_{i i}+\sum_{j \neq i} Q_{i j}\left(1-\alpha_{i j}\right)
\end{gathered}
$$

P is a transition probability matrix such that $\forall i \neq j, P_{i j}=0 \Leftrightarrow P_{j i}=0$, and the MC w.r.t. P is irreducible
Now we examine λ for $j \neq i$ (the case $j=i$ is trivial) case 1: $\alpha_{i j}<1$, then $\alpha_{j i}=1$ by the definition of $\alpha_{i j}$, thus

$$
\pi_{i} P_{i j}=\pi_{i} Q_{i j} \alpha_{i j}=\pi_{j} Q_{j i}=\pi_{j} Q_{j i} \alpha_{j i}=\pi_{j} P_{j i}
$$

case 2: $\alpha_{i j}=1$, then $\pi_{j} Q_{j i} \geq \pi_{i} Q_{i j}$ and $\alpha_{j i} \leq 1$, thus

$$
\pi_{i} P_{i j}=\pi_{i} Q_{i j}=\pi_{j} Q_{j i} \alpha_{j i}=\pi_{j} P_{j i}
$$

Thus, is holds, which implies

- π_{i} is the stationary distribution of the MC w.r.t. to P (sum over i)
- the MC w.r.t. to P is time-reverse

Metropolis sampling

$Q_{i j}=0 \Rightarrow \alpha_{i j}=1$
$Q_{i j}>0 \Rightarrow \alpha_{i j}=\min \left\{\frac{\pi_{j} Q_{j i}}{\pi_{i} Q_{i j}}, 1\right\}$

$$
\begin{gathered}
P_{i j}=Q_{i j} \alpha_{i j} \\
P_{i i}=Q_{i i}+\sum_{j \neq i} Q_{i j}\left(1-\alpha_{i j}\right)
\end{gathered}
$$

Metropolis Sampling:

1. X_{0} is initialized with any value

We need to set a transition probability matrix \boldsymbol{Q}
2. Suppose the current state $X_{k}=i$
3. Sample a random number j from the probability distribution $\left\{Q_{i j}, j \geq 0\right\}$ 4. If $\frac{\pi_{j} Q_{j i}}{\pi_{i} Q_{i j}} \geq 1$, then $X_{k+1}=j$ and go to step 2
5. Otherwise, sample a random number r from the uniform distribution $U(0,1)$. If $r \leq \frac{\pi_{j} Q_{j i}}{\pi_{i} Q_{i j}}$, then $X_{k+1}=j$, otherwise $X_{k+1}=i$. Go to step 2

Gibbs sampling

Suppose $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{n}\right)$ is a discrete random variable, and S is the set of all possible values of \boldsymbol{Z}

Assumption 1: for all $\boldsymbol{z} \in S$,

$$
\pi_{\mathbf{z}}=P(\mathbf{Z}=\mathbf{z})=c \cdot g(\mathbf{z})
$$

where $c>0$
Assumption 2: for all $1 \leq i \leq n$, and $z_{j}, 1 \leq j \leq n, j \neq i$, the conditional probability distribution

$$
P\left(Z_{i}=\cdot \mid Z_{j}=z_{j} \forall j \neq i\right)
$$

exists and is known

Gibbs sampling

Set a specific transition probability matrix \boldsymbol{Q}

- If \boldsymbol{x} and \boldsymbol{y} are different on at least two dimensions, $Q_{x y}=0$
- If \boldsymbol{x} and \boldsymbol{y} are different on only one dimension, denoted as i,

$$
Q_{x y}=\frac{1}{n} P\left(Z_{i}=y_{i} \mid Z_{j}=x_{j} \forall j \neq i\right)=\frac{c g(\boldsymbol{y})}{n P\left(Z_{j}=x_{j} \forall j \neq i\right)}
$$

- If $x=y$, then

$$
\begin{aligned}
Q_{x x} & =1-\sum_{y \neq \boldsymbol{x}} Q_{x y}=1-\frac{1}{n} \sum_{i=1}^{n}\left(1-P\left(Z_{i}=x_{i} \mid Z_{j}=x_{j} \forall j \neq i\right)\right) \\
& =\frac{c g(\boldsymbol{x})}{n} \sum_{i=1}^{n} \frac{1}{P\left(Z_{j}=x_{j} \forall j \neq i\right)} \quad \begin{array}{c}
\checkmark \forall \boldsymbol{x} \neq \boldsymbol{y}: Q_{x y}=0 \text { iff } Q_{y x}=0 \\
\checkmark \text { The Markov chain w.r.t. } \\
\boldsymbol{Q} \text { is irreducible }
\end{array}
\end{aligned}
$$

Gibbs sampling

$$
\left.\begin{aligned}
& Q_{i j}=0 \Rightarrow \alpha_{i j}=1 \\
& Q_{i j}>0 \Rightarrow \alpha_{i j}=\min \left\{\frac{\pi_{j} Q_{j i}}{\pi_{i} Q_{i j}}, 1\right\}
\end{aligned} \right\rvert\, \begin{gathered}
P_{i j}=Q_{i j} \alpha_{i j} \\
P_{i i}=Q_{i i}+\sum_{j \neq i} Q_{i j}\left(1-\alpha_{i j}\right)
\end{gathered}
$$

$Q_{x y}>0 \Rightarrow \alpha_{x y}=\min \left\{\frac{\pi_{y} Q_{y x}}{\pi_{x} Q_{x y}}, 1\right\}=\min \left\{\frac{c g(\boldsymbol{y}) \cdot c g(\boldsymbol{x})}{c g(\boldsymbol{x}) \cdot c g(\boldsymbol{y})}, 1\right\}=1$

$$
\left.\begin{array}{c}
\forall \boldsymbol{x} \neq \boldsymbol{y}: P_{x y}=Q_{x y} \alpha_{x y}=Q_{x y} \\
P_{x x}=Q_{x x}+\sum_{y \neq x} Q_{x y}\left(1-\alpha_{x y}\right)=Q_{x x}
\end{array}\right\} \boldsymbol{P}=\boldsymbol{Q}
$$

Gibbs sampling

Gibbs Sampling:

1. X_{0} is initialized with any $x_{0} \in S$
2. Suppose the current state $X_{k}=\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in S$
3. Sample a random number i uniformly from $\{1,2, \ldots, n\}$
4. Sample a random value x from the conditional probability distribution

$$
P\left(Z_{i}=\cdot \mid Z_{j}=x_{j} \forall j \neq i\right)
$$

5. $X_{k+1}=\left(x_{1}, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_{n}\right)$. Go to step 2

Thus, Gibbs sampling is actually Metropolis sampling with a specific matrix Q, under some assumptions about the desired probability distribution

Semi-Markov processes

Consider a stochastic process with states $0,1, \ldots$, which is such that, whenever it enters state $i, i \geq 0$:

- The next state it will enter is state j with probability $P_{i j}, i, j \geq 0$
- Given that the next state to be entered is state j, the time until the transition from i to j occurs has distribution $F_{i j}$

If we let $Z(t)$ denote the state at time t, then $\{Z(t), t \geq 0\}$ is called a semi-Markov process
\checkmark A semi-Markov process does not possess the Markovian property
\checkmark A Markov chain is a semi-Markov process in which

$$
F_{i j}(t)= \begin{cases}0 & t<1 \\ 1 & t \geq 1\end{cases}
$$

Semi-Markov processes

Let X_{n} denote the nth state visited, then $\left\{X_{n}, n \geq 0\right\}$ with transition probabilities $P_{i j}$ is called the embedded Markov chain of the semiMarkov process

Proposition: If the semi-Markov process is rreducibleand if $T_{i i}$ has a nonlattice distribution with finite mean, then

$$
P_{i}=\lim _{t \rightarrow \infty} P(Z(t)=i \mid Z(0)=j)=\frac{\mu_{i}}{\mu_{i i}}, \quad \forall i, j
$$

- τ_{i} : time that the process spends in state i before making a transition

$$
\mu_{i}=E\left[\tau_{i}\right] \quad P\left(\tau_{i} \leq t\right)=\sum_{j} P_{i j} F_{i j}(t)
$$

- $T_{i i}$: time between successive transitions into state $i \quad \mu_{i i}=E\left[T_{i i}\right]$

Semi-Markov processes

Proposition: If the semi-Markov process is irreducible and if $T_{i i}$ has a nonlattice distribution with finite mean, then

$$
P_{i}=\lim _{t \rightarrow \infty} P(Z(t)=i \mid Z(0)=j)=\frac{\mu_{i}}{\mu_{i i}}, \quad \forall i, j
$$

Proof: A delayed alternating renewal process

Semi-Markov processes

Proposition: If the semi-Markov process is irreducible and if $T_{i i}$ has a nonlattice distribution with finite mean, then

$$
\begin{aligned}
& P_{i}=\lim _{t \rightarrow \infty} P(Z(t)=i \mid Z(0)=j)=\frac{\mu_{i}}{\mu_{i i}}, \quad \forall i, j \\
& \lim _{t \rightarrow \infty} P(t)=P_{i} \quad\left\{\begin{array}{l}
E\left[Z_{n}\right]=E\left[\tau_{i}\right]=\mu_{i} \\
E\left[Z_{n}\right]+E\left[Y_{n}\right]=E\left[T_{i i}\right]=\mu_{i i}
\end{array}\right.
\end{aligned}
$$

Theorem: If $E\left[Z_{n}+Y_{n}\right]<\infty$ and F is nonlattice, then

$$
\lim _{t \rightarrow \infty} P(t)=P(\text { system is on at time } t)=\frac{E\left[Z_{n}\right]}{E\left[Z_{n}\right]+E\left[Y_{n}\right]}
$$

from the part of alternating renewal process in lecture 3

Semi-Markov processes

Theorem: If the semi-Markov process is irreducible and not lattice, then

$$
\left.\lim _{t \rightarrow \infty} P(Z(t)=i, Y(t)>x, S(t))=j \mid Z(0)=k\right)=\frac{P_{i j} \int_{x}^{\infty} \bar{F}_{i j}(y) d y}{\mu_{i i}}
$$

time from t until
the next transition
state entered at the
first transition after t

Proof: A delayed alternating renewal process

Semi-Markov processes

Proof:

$\lim _{t \rightarrow \infty} P(Z(t)=i, Y(t)>x, S(t)=j \mid Z(0)=k)$
$E\left[Z_{n}\right]+E\left[Y_{n}\right]=E[$ time of a cycle $]=E\left[T_{i i}\right]=\mu_{i i}$
$E\left[Z_{n}\right]=E[$ "on" time in a cycle $]=P_{i j} E\left[\max \left\{\left\{\tau_{i j}\right]-x, 0\right\}\right]$ time to make a transition from i to j, i.e., a random variable having distribution $F_{i j}$

Semi-Markov processes

Proof:

$\lim _{t \rightarrow \infty} P(Z(t)=i, Y(t)>x, S(t)=j \mid Z(0)=k)$
$E\left[Z_{n}\right]+E\left[Y_{n}\right]=E[$ time of a cycle $]=E\left[T_{i i}\right]=\mu_{i i}$
$E\left[Z_{n}\right]=E[$ "on" time in a cycle $]=P_{i j}\left[\max \left\{\tau_{i j}-x, 0\right\}\right]$

Semi-Markov processes

Theorem: If the semi-Markov process is irreducible and not lattice, then
$\lim _{t \rightarrow \infty} P(Z(t)=i, Y(t)>x \mid Z(0)=k)=\frac{\int_{x}^{\infty} P\left(\tau_{i}>y\right) d y}{\mu_{i i}}$
τ_{i} : time that the process spends in state i before making a transition

$$
\sum_{j} \frac{P_{i j} \int_{x}^{\infty} \bar{F}_{i j}(y) d y}{\mu_{i i}}=\frac{\int_{x}^{\infty} \sum_{j} P_{i j} \bar{F}_{i j}(y) d y}{\mu_{i i}}
$$

Summary

- Markov chain
- Chapman-Kolmogorov equations and classification of states
- Stationary distribution
- Transitions and gambler's ruin problem
- Branching processes
- Time-reversible Markov chains and MCMC
- Semi-Markov processes

References: Chapter 4, Markov Chains, 2nd edition, 1995, by Sheldon M. Ross

