Last class

- Renewal process
- Elementary renewal theorem
- Key renewal theorem
- Alternating renewal process
- Delayed renewal process
- Renewal reward process
- Symmetric random walk

References: Chapter 3, Stochastic Processes, 2nd edition, 1995, *by Sheldon M. Ross*

SCHOOL OF ARTIFICIAL INTELLIGENCE, NANJING UNIVERSITY

Stochastic Processes Lecture 4: Markov Chains

Chao Qian (钱超)

Associate Professor, Nanjing University, China

Email: qianc@nju.edu.cn Homepage: http://www.lamda.nju.edu.cn/qianc/ A stochastic process { $X(t), t \in T$ } with state space S is said to be a **Markov chain** if $\forall t_1 < t_2 < \cdots < t_n < t, x, x_i \in S$

$$P(X(t) = x | X(t_1) = x_1, ..., X(t_n) = x_n)$$

=
$$P(X(t) = x | X(t_n) = x_n)$$

Markovian property

Here, we consider discrete-time discrete-state homogeneous Markov chains

{ X_n , n = 0, 1, 2, ...} $S = \{0, 1, 2, ...\}$, unless otherwise mentioned

$$\forall t_0 < t, x_0, x \in S: P(X(t) = x \mid X(t_0) = x_0)$$

is independent of t_0 , but depends only on $t - t_0$

If we let

Example [General Random Walk]: Let X_i , $i \ge 1$ be iid with

$$P(X_i = j) = a_j, \qquad j \in \{0, \pm 1, \pm 2, ...\}$$
$$S_0 = 0 \qquad S_n = \sum_{i=1}^n X_i$$

then $\{S_n, n \ge 0\}$ is a *Markov chain* for which

$$P_{ij} = a_{j-i}$$

One-step transition probability: $P_{ij} = P(S_{n+1} = j | S_n = i)$

Example [Simple Random Walk]: The random walk $\{S_n, n \ge 0\}$, where $S_n = \sum_{i=1}^n X_i$, is said to be a *simple random walk* if for some p, 0 ,

$$P(X_i = 1) = p$$
 $P(X_i = -1) = q = 1 - p$

The absolute value $\{|S_n|, n \ge 0\}$ of the simple random walk is a *Markov chain*.

$$P(|S_{n+1}| = i + 1 | |S_n| = i, |S_{n-1}| = i_{n-1}, \dots, |S_1| = i_1) ?$$

Lemma: If $\{S_n, n \ge 0\}$ is a simple random walk, then $\forall i > 0$ $\underline{P(S_n = i \mid |S_n| = i, |S_{n-1}| = i_{n-1}, \dots, |S_1| = i_1)} = \frac{p^i}{n^{i} + n^{i}}$ **Proof:** Let $i_0 = 0$, and define $j = \max\{k: i_k = 0, 0 \le k \le n\}$ $\Rightarrow P(S_n = i \mid |S_n| = i, |S_{n-1}| = i_{n-1}, \dots, |S_1| = i_1)$ $= P(S_n = i \mid |S_n| = i, |S_{n-1}| = i_{n-1}, \dots, |S_i| = 0)$ Now there are two possible cases for $|S_{i+1}| = i_{i+1}, \dots, |S_{n-1}| = i_{n-1}, |S_n| = i$ Case 1: $S_n = i$, then $S_{n-1} = i_{n-1}, \dots, S_{i+1} = i_{i+1}$ and has probability $p^{\frac{n-j}{2}+\frac{i}{2}} \cdot q^{\frac{n-j}{2}-\frac{i}{2}} \quad (\frac{n-j}{2}+\frac{i}{2} \text{ take the value of } 1, \frac{n-j}{2}-\frac{i}{2} \text{ take the value of } -1)$ Case 2: $S_n = -i$, then $S_{n-1} = -i_{n-1}$, ..., $S_{i+1} = -i_{i+1}$ and has probability $p^{\frac{n-j}{2}-\frac{i}{2}} \cdot q^{\frac{n-j}{2}+\frac{i}{2}} \quad (\frac{n-j}{2}-\frac{i}{2} \text{ take the value of } 1, \frac{n-j}{2}+\frac{i}{2} \text{ take the value of } -1)$ $\implies \star = \frac{p^{\frac{n-j}{2} + \frac{i}{2}} \cdot q^{\frac{n-j}{2} - \frac{i}{2}}}{\frac{n-j}{2} + \frac{i}{2} \cdot q^{\frac{n-j}{2} - \frac{i}{2}} + \frac{n-j}{2} - \frac{i}{2} \cdot q^{\frac{n-j}{2} + \frac{i}{2}}} = \frac{p^{i}}{p^{i} + q^{i}}$

Markov chain

$$P(|S_{n+1}| = i + 1 | |S_n| = i, |S_{n-1}| = i_{n-1}, ..., |S_1| = i_1)$$

$$= P(|S_{n+1}| = i + 1 | S_n = i) \cdot \frac{p^i}{p^i + q^i}$$
Law of total $+P(|S_{n+1}| = i + 1 | S_n = -i) \cdot \frac{q^i}{p^i + q^i}$
probability $= \frac{p^{i+1} + q^{i+1}}{p^i + q^i}$

Hence, { $|S_n|, n \ge 0$ } is a Markov chain with transition probabilities $P_{i,i+1} = \frac{p^{i+1}+q^{i+1}}{p^i+q^i} = 1 - P_{i,i-1}, \quad i > 0$ $P_{01} = 1$

Chapman-Kolmogorov equations

For a Markov chain $\{X_n, n = 0, 1, 2, ...\}$,

- one-step transition probability: $P_{ij} = P(X_{m+1} = j | X_m = i)$
- *n*-step transition probabilities:

$$P_{ij}^n = P(X_{m+n} = j \mid X_m = i)$$
 How to compute it?

Chapman-Kolmogorov equations:

$$P_{ij}^{n+m} = \sum_{k=0}^{\infty} P_{ik}^{n} P_{kj}^{m} \quad \text{for all } n, m \ge 0, i, j$$

Chapman-Kolmogorov equations

Chapman-Kolmogorov equations:

$$P_{ij}^{n+m} = \sum_{k=0}^{\infty} P_{ik}^n P_{kj}^m \quad \text{for all } n, m \ge 0, i, j$$

Proof:
$$P_{ij}^{n+m} = P(X_{n+m} = j \mid X_0 = i)$$
 (Homogeneous by default)
Law of total $= \sum_{k=0}^{\infty} P(X_{n+m} = j, X_n = k \mid X_0 = i)$
 $= \sum_{k=0}^{\infty} P(X_{n+m} = j \mid X_n = k, X_0 = i) P(X_n = k \mid X_0 = i)$
 $= \sum_{k=0}^{\infty} P_{kj}^m P_{ik}^n$

Chapman-Kolmogorov equations

• *n*-step transition probabilities:

 $P_{ij}^n = P(X_{m+n} = j | X_m = i)$ How to compute it?

Chapman-Kolmogorov equations:

$$P_{ij}^{n+m} = \sum_{k=0}^{\infty} P_{ik}^{n} P_{kj}^{m} \quad \text{for all } n, m \ge 0, i, j$$

Solution: Let $P^{(n)}$ denote the matrix of *n*-step transition probability P_{ij}^n , then by Chapman-Kolmogorov equations:

$$P^{(m+n)} = P^{(n)} \cdot P^{(m)}$$

Hence,

$$P^{(n)} = P \cdot P^{(n-1)} = P \cdot P \cdot P^{(n-2)} = \dots = P^n$$

Communication

- State *j* is said to be **accessible** from state *i* if for some $n \ge 0, P_{ij}^n > 0$
- Two states *i* and *j* accessible to each other are said to communicate, denoted as *i* ↔ *j*

Proposition: Communication is an equivalence relation, i.e.,

- ✓ $i \leftrightarrow i$ (Follows trivially from definition)
- ✓ If $i \leftrightarrow j$, then $j \leftrightarrow i$ (Follows trivially from definition)

✓ If $i \leftrightarrow j$ and $j \leftrightarrow k$, then $i \leftrightarrow k$ Similarly, we can show $k \rightarrow i$ ↓ ↓ ↓ ∃m, s.t. $P_{ij}^m > 0$, $\exists n$, s.t. $P_{jk}^n > 0$, $P_{ik}^{m+n} = \sum_{r=0}^{\infty} P_{ir}^m P_{rk}^n \ge P_{ij}^m P_{jk}^n > 0 \implies i \rightarrow k$

Irreducible

Two states that communicate are said to be in the same class

the equivalence relation of communication

any two classes are either disjoint or identical

A Markov chain is irreducible if there is only one class

All states communicate with each other

Period

• A state *j* has **period** *d* if *d* is the greatest common divisor of the number of transitions by which *j* can be reached, starting from *j*

$$d(j) = \gcd\{n > 0: P_{jj}^n > 0\}$$

period of j

- If $P_{jj}^n = 0$ for all n > 0, then $d(j) = \infty$
- A state with period 1 is said to be **aperiodic**

Period

Proposition: If $i \leftrightarrow j$, then d(i) = d(j)

Proof:
$$i \leftrightarrow j \Rightarrow P_{ij}^m P_{ji}^n > 0$$
 for some m and n
Suppose $P_{ii}^s > 0$, then
 $P_{jj}^{n+m} \ge P_{ji}^n P_{ij}^m > 0$
 $P_{jj}^{n+s+m} \ge P_{ji}^n P_{ii}^s P_{ij}^m > 0$
 \downarrow and $n + s + m$
 \downarrow
 $d(j)$ divides s

So, if $P_{ii}^s > 0$, then d(j) divides s. $P_{ii}^{d(i)} > 0$ is obvious, so d(j) divides d(i). A similar argument yields that d(i) divides d(j). $\implies d(i) = d(j)$

Recurrent

For any states *i* and *j*, define f_{ij}^n to be the probability that, starting in *i*, the first transition into *j* occurs at time *n*

$$f_{ij}^{0} = 0$$

$$f_{ij}^{n} = P(X_{n} = j, X_{k} \neq j, k = 1, 2, ..., n - 1 \mid X_{0} = i)$$

Let f_{ij} denote the probability of ever making a transition into state *j*, given that the process starts in *i*

$$f_{ij} = \sum_{n=1}^{\infty} f_{ij}^n$$

State *j* is said to be **recurrent** if $f_{jj} = 1$, and **transient** otherwise

Recurrent

Proposition: State *j* is recurrent if and only if $\sum_{n=1}^{n} P_{jj}^n = \infty$

Proof: *j* is recurrent \Rightarrow with probability 1, return to *j* Markov property \Rightarrow once returning to *j*, the process restarts So, with probability 1, the number of visits to *j* is ∞ \Rightarrow *E*[*number of visits to j* | *X*₀ = *j*] = ∞ *j* is transient \Rightarrow the number of visits to *j* is geometric with mean $\frac{1}{1-f_{ij}}$ Thus, *j* is recurrent if and only if $E[number \ of \ visits \ to \ j \mid X_0 = j] = \infty$ Let $I_n = \begin{cases} 1 & \text{if } X_n = j \\ 0 & \text{otherwise} \end{cases}$ \implies $E[number of visits to j | X_0 = j] = E[\sum_{n=0}^{\infty} I_n | X_0 = j]$ $=\sum_{n=0}^{\infty} E[I_n | X_0 = j] = \sum_{n=0}^{\infty} P_{ii}^n$

Recurrent

Corollary: If *i* is recurrent and $i \leftrightarrow j$, then *j* is recurrent

Proof: $i \leftrightarrow j \Rightarrow \exists m, n \text{ such that } P_{ij}^n > 0, P_{ji}^m > 0$ $\forall s > 0, P_{jj}^{m+n+s} \ge P_{ji}^m P_{ii}^s P_{ij}^n$ $\Rightarrow \sum_{s=1}^{\infty} P_{jj}^{m+n+s} \ge P_{ji}^m P_{ij}^n \sum_{s=1}^{\infty} P_{ii}^s = \infty$ $\Rightarrow \sum_{s=1}^{\infty} P_{jj}^s = \infty \Rightarrow j \text{ is recurrent}$ By Proposition on the previous page

Example [Simple Random Walk]: The random walk $\{S_n, n \ge 0\}$, where $S_n = \sum_{i=1}^n X_i$, is said to be a *simple random walk* if for some p, 0 ,

$$P(X_i = 1) = p$$
 $P(X_i = -1) = q = 1 - p$

Which states are transient? Which are recurrent?

Solution:

All states communicates \Rightarrow they are either all transient or all recurrent Only need to consider state 0 i.e., if $\sum_{n=1}^{\infty} P_{00}^n$ is finite or not $P_{00}^{2n+1} = 0, n = 0, 1, 2, ...$ $P_{00}^{2n} = C_{2n}^n p^n (1-p)^n = \frac{(2n)!}{(n!)^2} p^n (1-p)^n, n = 1, 2, ...$ Stirling's approximation: $n! \sim n^{n+1/2} e^{-n} \sqrt{2\pi} \Rightarrow P_{00}^{2n} \sim \frac{(4p(1-p))^n}{\sqrt{\pi n}}$ $\sum_{n=1}^{\infty} \frac{(4p(1-p))^n}{\sqrt{\pi n}} \left[p = \frac{1}{2}, 4p(1-p) = 1 \Rightarrow \sum_{n=1}^{\infty} P_{00}^n = \infty \Rightarrow \text{ recurrent} \right]$ $p \in \left(0, \frac{1}{2}\right) \cup \left(\frac{1}{2}, 1\right), 4p(1-p) < 1 \Rightarrow \sum_{n=1}^{\infty} P_{00}^n < \infty \Rightarrow \text{ transient}$

Corollary: If *j* is recurrent and $i \leftrightarrow j$, then $f_{ij} = 1$

Proof: $i \leftrightarrow j \Rightarrow \exists n, P_{ij}^n > 0$ $i \leftrightarrow j, j$ is recurrent $\Rightarrow i$ is recurrent Suppose $X_0 = i$, let T_1 denote the next time we enter i (T_1 is finite by Corollary) $X_0 \qquad X_n \qquad X_{T_1}$

 $X_n = j$ with probability P_{ij}^n

The number of above process needed to access state *j* is a geometric random variable with mean $1/P_{ij}^n$, and is thus finite with probability 1

i is recurrent \Rightarrow the number of above process is infinite $\implies f_{ij} = 1$ Let μ_{jj} denote the expected number of transitions needed to return to state *j*

$$\mu_{jj} = \begin{cases} \infty & \text{if } j \text{ is transient} \\ \sum_{n=1}^{\infty} nf_{jj}^n & \text{if } j \text{ is recurrent} \end{cases}$$

If state *j* is recurrent, then we say that it is **positive recurrent** if $\mu_{jj} < \infty$ and **null recurrent** if $\mu_{jj} = \infty$

Let $N_j(t)$ denote the number of transitions into *j* by time *t*

By interpreting transitions into state *j* as being renewals,

Theorem: If $i \leftrightarrow j$, then

$$\checkmark P\left(\lim_{t \to \infty} \frac{N_j(t)}{t} = \frac{1}{\mu_{jj}} \mid X_0 = i\right) = 1 \quad \text{(With probability } 1, \frac{N_D(t)}{t} \to \frac{1}{\mu} \text{ as } t \to \infty)$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{cases}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{array}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{array}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{array}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{array}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{array}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{array}$$
$$I_k = \begin{cases} 1 & \text{otherwise} \end{array}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{array}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{array}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\ 0 & \text{otherwise} \end{array}$$
$$I_k = \begin{cases} 1 & \text{if } X_k = j \\$$

Delayed renewal process

Properties of delayed renewal process:

- With probability 1, $\frac{N_D(t)}{t} \rightarrow \frac{1}{\mu}$ as $t \rightarrow \infty$
- $\frac{m_D(t)}{t} \rightarrow \frac{1}{\mu}$ as $t \rightarrow \infty$ Elementary Renewal Theorem
- If F is not lattice, then $m_D(t+a) m_D(t) \rightarrow a/\mu$ as $t \rightarrow \infty$
- If *F* and *G* are lattice with period *d*, then Blackwell's Theorem E[#renewals at nd] $\rightarrow d/\mu$ as $n \rightarrow \infty$
- If F is not lattice, $\mu < \infty$ and h(t) is directly Riemann integrable, $\int_{0}^{\infty} h(t-x)dm_{D}(x) = \frac{1}{\mu} \int_{0}^{\infty} h(t)dt \qquad \text{Key Renewal Theorem}$

http://www.lamda.nju.edu.cn/qianc/

 $\mu = \int_{-\infty}^{\infty} x dF(x)$

If state *j* is recurrent, then we say that it is **positive recurrent** if $\mu_{jj} < \infty$ and **null recurrent** if $\mu_{jj} = \infty$

$$\prod_{n \to \infty} \pi_j = \lim_{n \to \infty} P_{jj}^{nd(j)} = \frac{d(j)}{\mu_{jj}}$$

If state *j* is recurrent, then we say that it is **positive recurrent** if $\pi_j > 0$ and **null recurrent** if $\pi_j = 0$

Proposition: If *i* is positive (null) recurrent and $i \leftrightarrow j$, then *j* is positive (null) recurrent

Proof: Case 1: positive recurrent $i \leftrightarrow j \Rightarrow d(i) = d(j) = d \ge 1$ $\pi_i = \lim_{n \to \infty} P_{ii}^{nd} = \frac{d}{\mu_{ii}} > 0$ $i \leftrightarrow j \Rightarrow \exists s, t \ge 0, P_{ii}^s > 0, P_{ii}^t > 0$ $P_{ii}^{t+s+md} \geq P_{ii}^{t}P_{ii}^{md}P_{ii}^{s}$ $\lim_{m \to \infty} P_{jj}^{t+s+md} \ge P_{ji}^t P_{ij}^s \cdot \lim_{m \to \infty} P_{ii}^{md} = \frac{d}{\mu_{ii}} \cdot P_{ji}^t P_{ij}^s > 0$ $P_{ii}^{t+s} \ge P_{ii}^{t}P_{ii}^{s} > 0 \Rightarrow d \text{ divides } t+s$ $\pi_j = \lim_{m \to \infty} P_{jj}^{t+s+md} > 0 \Rightarrow j$ is positive recurrent For the null recurrent case, leave as the exercise **Definition:** A probability distribution $\{\pi_j, j \ge 0\}$ is said to be **stationary** for the Markov chain if

$$\forall j \colon \pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}$$

If the initial distribution, i.e., the distribution of X_0 , is a stationary distribution, X_n will have the same distribution for all n.

Proof:

$$P(X_{1} = j) = \sum_{\substack{i=0 \\ \infty}}^{\infty} P(X_{1} = j \mid X_{0} = i) P(X_{0} = i) = \sum_{\substack{i=0 \\ i=0}}^{\infty} P_{ij} \pi_{i} = \pi_{j}$$
Definition of stationary
$$P(X_{n} = j) = \sum_{\substack{i=0 \\ i=0}}^{\infty} P(X_{n} = j \mid X_{n-1} = i) P(X_{n-1} = i) = \sum_{\substack{i=0 \\ i=0}}^{\infty} P_{ij} \pi_{i} = \pi_{j}$$

Theorem: An irreducible aperiodic Markov chain belongs to one of the following two classes

- Either the states are all transient or all null recurrent. In this case, $P_{ij}^n \rightarrow 0$ as $n \rightarrow \infty$ for all *i*, *j* and there exists no stationary distribution
- Or else, all states are positive recurrent, that is,

$$\pi_j = \lim_{n \to \infty} P_{ij}^n > 0$$

In this case, $\{\pi_j, j = 0, 1, 2, ..., \}$ is a stationary distribution and there exists no other stationary distribution

Proof:

Proof for the first class:

transient or null recurrent $\Rightarrow \mu_{jj} = \infty$. By Limit Theorem, $\lim_{n \to \infty} P_{ij}^n = \frac{1}{\mu_{ij}} = 0$

Stationary distribution

Suppose there exists a stationary distribution P_j , then $P_j = P(X_n = j) = \sum_{i=0}^{\infty} P(X_n = j | X_0 = i) P(X_0 = i) = \sum_{i=0}^{\infty} P_{ij}^n P_i$ $= \sum_{i=0}^{M} P_{ij}^n P_i + \sum_{i=M+1}^{\infty} P_{ij}^n P_i \le \sum_{i=0}^{M} P_{ij}^n P_i + \sum_{i=M+1}^{\infty} P_i$

Let $n \to \infty$, we have $P_j \leq \sum_{i=M+1}^{\infty} P_i$. Then, let $M \to \infty$, we have $P_j \leq 0$, which leads to a contradiction

Proof for the second class:

Note that $P_{ij}^{n+1} = \sum_{k=0}^{\infty} P_{ik}^{n} P_{kj} \ge \sum_{k=0}^{M} P_{ik}^{n} P_{kj}$ for all MLet $n \to \infty$, we have $\pi_j \ge \sum_{k=0}^{M} \pi_k P_{kj}$, then let $M \to \infty$, we have $\pi_j \ge \sum_{k=0}^{\infty} \pi_k P_{kj}$ Suppose $\exists j$, such that $\pi_j > \sum_{k=0}^{\infty} \pi_k P_{kj}$, then $\sum_{j=0}^{\infty} \pi_j > \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \pi_k P_{kj} = \sum_{k=0}^{\infty} \pi_k \sum_{j=0}^{\infty} P_{kj} = \sum_{k=0}^{\infty} \pi_k$, which leads to a contradiction. Thus, $\forall j : \pi_j = \sum_{k=0}^{\infty} \pi_k P_{kj}$

Stationary distribution

Suppose P_i is a stationary distribution, then

 $P_{j} = P(X_{n} = j) = \sum_{i=0}^{\infty} P(X_{n} = j \mid X_{0} = i) P(X_{0} = i) = \sum_{i=0}^{\infty} P_{ij}^{n} P_{i}$

• $P_j \ge \sum_{i=0}^{M} P_{ij}^n P_i$ for all MLet $n \to \infty$, we have $P_j \ge \sum_{i=0}^{M} \pi_j P_i$, then let $M \to \infty$, we have $P_j \ge \sum_{i=0}^{\infty} \pi_j P_i = \pi_j$ • $P_j \le \sum_{i=0}^{M} P_{ij}^n P_i + \sum_{i=M+1}^{\infty} P_i$ for all MLet $n \to \infty$, we have $P_j \le \sum_{i=0}^{M} \pi_j P_i + \sum_{i=M+1}^{\infty} P_i$, then let $M \to \infty$, we have $P_j \le \sum_{i=0}^{\infty} \pi_j P_i = \pi_j$ Thus, $\forall j: P_j = \pi_j$

Stationary distribution

• For an irreducible, positive recurrent and aperiodic Markov chain, $\{\pi_j, j = 0, 1, 2, ..., \}$ is the unique stationary distribution, where

$$\pi_j = \lim_{n \to \infty} P_{ij}^n = \frac{1}{\mu_{jj}}$$

• For an irreducible, positive recurrent and periodic Markov chain (where the period is *d*), $\{\pi_j = \frac{1}{\mu_{jj}}, j = 0, 1, 2, ...,\}$ is still the unique stationary distribution

$$\lim_{n\to\infty} P_{jj}^{nd} = \frac{d}{\mu_{jj}} = d\pi_j$$

Proposition: Let *R* be a recurrent class of states. If $i \in R$, $j \notin R$, then $P_{ij} = 0$.

Proof: Suppose $P_{ij} > 0$

Then, as *i* and *j* do not communicate (since $j \notin R$)

$$\Rightarrow P_{ji}^n = 0, \forall n$$

Hence, if the process starts in state *i*, there is a positive probability of at least P_{ij} that the process will never return to *i* \Rightarrow contradicts the fact that *i* is recurrent So $P_{ij} = 0$ **Proposition:** If *j* is recurrent, then the set of probabilities $\{f_{ij}, i \in T\}$ satisfies

$$\forall i \in T: f_{ij} = \sum_{k \in T} P_{ik} f_{kj} + \sum_{k \in R} P_{ik}$$

where *T* denotes the set of all transient states, and *R* denotes the set of states communicating with *j*

Proof:

$$f_{ij} = P(N_j(\infty) > 0 | X_0 = i)$$

= $\sum_k P(N_j(\infty) > 0 | X_0 = i, X_1 = k) P(X_1 = k | X_0 = i)$
= $\sum_{k \in T} f_{kj} P_{ik} + \sum_{k \in R} f_{kj} P_{ik} + \sum_{k \notin R, k \notin T} f_{kj} P_{ik}$
= $\sum_{k \in T} f_{kj} P_{ik} + \sum_{k \in R} P_{ik}$
k belongs to a recurrent class that is different from *R*, thus $f_{k,i} = 0$

Gambler's ruin problem: Consider a gambler who at each play of the game has probability p of winning 1 unit and probability q = 1 - p of losing 1 unit. Assuming successive plays of the game are independent.

What is the probability that, starting with *i* units, the gambler's fortune will reach *N* before reaching 0?

Solution: X_n : the player's fortune at time *n*

{ X_n , n = 0,1,2,...}: a Markov chain with transition probabilities

$$P_{00} = P_{NN} = 1$$
 $P_{i,i+1} = p = 1 - P_{i,i-1}$ $i = 1, 2, ..., N - 1$

 $\{0\}$ $\{1,2, ..., N-1\}$ $\{N\}$ recurrent classtransient classrecurrent class

Let $f_i = f_{i,N}$ denote the probability that, starting with $i, 1 \le i \le N$, the fortune will eventually reach N just the desired probability

$$\begin{split} f_{i} &= pf_{i+1} + qf_{i-1} \quad i = 1, 2, \dots, N-1 \implies f_{i+1} - f_{i} = \frac{q}{p}(f_{i} - f_{i-1}) \\ \text{Then,} \quad f_{2} - f_{1} &= \frac{q}{p}(f_{1} - f_{0}) = \frac{q}{p}f_{1}, f_{3} - f_{2} = \frac{q}{p}(f_{2} - f_{1}) = \left(\frac{q}{p}\right)^{2}f_{1}, \dots, \\ f_{i} - f_{i-1} &= \frac{q}{p}(f_{i-1} - f_{i-2}) = \left(\frac{q}{p}\right)^{i-1}f_{1} \\ \text{Thus,} \quad f_{i} &= f_{1} + f_{1}\left[\left(\frac{q}{p}\right) + \left(\frac{q}{p}\right)^{2} + \dots + \left(\frac{q}{p}\right)^{i-1}\right] = \begin{cases} \frac{1 - (q/p)^{i}}{1 - (q/p)}f_{1} & \text{if } \frac{q}{p} \neq 1 \\ if_{1} & \text{if } \frac{q}{p} = 1 \end{cases} \\ \text{By } f_{N} &= 1, f_{i} = \begin{cases} \frac{1 - (q/p)^{i}}{1 - (q/p)^{N}} & \text{if } p \neq \frac{1}{2} \\ \frac{i}{N} & \text{if } p = \frac{1}{2} \end{cases} \quad M \to \infty \\ f_{i} \to \begin{cases} 1 - (q/p)^{i} & \text{if } p > \frac{1}{2} \\ 0 & \text{if } p < \frac{1}{2} \end{cases} \end{split}$$

What is the expected number of bets that the gambler, starting at *i*, makes before reaching either 0 or *n*?

Solution: X_j : the winnings on the *j*th bet

B: the number of bets until the fortune reaches either 0 or *n*

$$B = \min\left\{m: \sum_{j=1}^{m} X_j = -i \text{ or } \sum_{j=1}^{m} X_j = n-i\right\}$$

B is a stopping time for X_j , then by Wald's equation,

$$E\left[\sum_{j=1}^{B} X_{j}\right] = E\left[X_{j}\right]E\left[B\right] = (2p-1)E\left[B\right]$$

By $\sum_{j=1}^{B} X_{j} = \begin{cases} n-i & \text{with prob.} \frac{1-(q/p)^{i}}{1-(q/p)^{N}} & \Longrightarrow & E\left[B\right] = \frac{1}{2p-1}\left\{\frac{n\left[1-(q/p)^{i}\right]}{1-(q/p)^{n}} - i\right\}$
otherwise (here we consider $p \neq 1/2$)

Transitions among transient states

 $T = \{1, 2, ..., t\}$: the set of transient states

How about the probability $f_{i,j}$ where both *i* and *j* are transient? i.e., $i, j \in T$

the probability of ever making a transition into state *j* given that the chain starts in state *i*

For $i, j \in T$, $m_{i,j}$: the expected total number of time periods spent in state *j* given that the chain starts in state *i*

How to compute $m_{i,j}$?

Transitions among transient states

$$m_{i,j} = \underbrace{\delta(i,j)}_{k} + \sum_{k} P_{i,k} m_{k,j} = \delta(i,j) + \underbrace{\sum_{k=1}^{t}}_{k=1} P_{i,k} m_{k,j}$$

$$\begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases} \qquad m_{k,j} = 0 \text{ for } k \notin T$$

transition probabilities among transient states $Q = \begin{bmatrix} P_{11} & \cdots & P_{1t} \\ \vdots & \ddots & \vdots \\ P_{t1} & \cdots & P_{tt} \end{bmatrix} \qquad M = \begin{bmatrix} m_{11} & \cdots & m_{1t} \\ \vdots & \ddots & \vdots \\ m_{t1} & \cdots & m_{tt} \end{bmatrix}$

$$M = I + QM$$
 \longrightarrow $M = (I - Q)^{-1}$

Transitions among transient states

Example: Consider the gambler's ruin problem with p = 0.4 and N = 6. Starting in state 3, determine

- the expected amount of time spent in state 3 $m_{3,3}$
- the expected number of visits to state 2
- the probability of ever visiting state 4

Leave as the exercise

Equivalent to f_3 under N = 4

 $m_{3,2}$

Branching processes

Branching processes: Consider a population consisting of individuals able to produce offspring of the same kind. Suppose that each individual will, by the end of its lifetime, **have produced** *j* **new offspring with probability** P_j , $j \ge 0$, independently of the number produced by any other individual. Let X_n denote the size of the *n*th generation. The Markov chain { X_n , $n \ge 0$ } is called a branching process

Suppose that
$$X_0 = 1$$
 $\pi_0 = \lim_{n \to \infty} P(X_n = 0)$

Let π_0 denote the probability that the population ever dies out

$$\pi_0 = P(\text{population dies out})$$
$$= \sum_{j=0}^{\infty} P(\text{population dies out} \mid X_1 = j) P_j = \sum_{j=0}^{\infty} \pi_0^j P_j$$

Theorem: Suppose that $P_0 > 0$ and $P_0 + P_1 < 1$. Then,

- π_0 is the smallest positive number satisfying $\pi_0 = \sum_{i=0}^{\infty} \pi_0^j P_j$
- $\pi_0 = 1$ if and only if $\mu \le 1$, where $\mu = \sum_{i=0}^{\infty} jP_i$ is the mean number of offspring produced by each individual **Proof:** Let $\pi \ge 0$ satisfy $\pi = \sum_{i=0}^{\infty} \pi^{j} P_{i}$, prove $\pi \ge P(X_n = 0)$ for all n $\pi = \sum_{i=0}^{\infty} \pi^{j} P_{i} \ge \pi^{0} P_{0} = P_{0} = P(X_{1} = 0)$ Assume that $\pi \ge P(X_n = 0)$, then $P(X_{n+1} = 0) = \sum_{i=0}^{\infty} P(X_{n+1} = 0 \mid X_1 = j)P_j$ $=\sum_{i=0}^{\infty} (P(X_n = 0))^j P_i \le \sum_{i=0}^{\infty} \pi^j P_i = \pi$ Hence, $\pi \ge P(X_n = 0)$ for all nLet $n \to \infty \Rightarrow \pi \ge \lim_{n \to \infty} P(X_n = 0) = \pi_0$ The proof of the second point is left as the exercise

Stationary Markov chain: An irreducible positive recurrent Markov chain is **stationary** if the initial state is chosen according to the stationary probabilities

The **reversed process** of a stationary Markov chain is also a Markov chain with transition probabilities given by

$$P_{ij}^{*} = \frac{\pi_{j}P_{ji}}{\pi_{i}}$$
Proof: $P(X_{m} = j \mid X_{m+1} = i, X_{m+2} = i_{2}, ..., X_{m+k} = i_{k})$
 $= \frac{P(X_{m}=j, X_{m+1}=i, X_{m+2}=i_{2}, ..., X_{m+k}=i_{k})}{P(X_{m+1}=i, X_{m+2}=i_{2}, ..., X_{m+k}=i_{k})}$
 $= \frac{P(X_{m+2}=i_{2}, ..., X_{m+k}=i_{k} \mid X_{m}=j, X_{m+1}=i)P(X_{m}=j, X_{m+1}=i)}{P(X_{m+2}=i_{2}, ..., X_{m+k}=i_{k} \mid X_{m+1}=i)P(X_{m+1}=i)}$
 $= \frac{P(X_{m}=j, X_{m+1}=i)}{P(X_{m+1}=i)} = \frac{P(X_{m+1}=i \mid X_{m}=j)P(X_{m}=j)}{P(X_{m+1}=i)} = \frac{\pi_{j}P_{ji}}{\pi_{i}}$ Stationary

[Definition] Time-reversible Markov chain: A stationary Markov chain is **time-reversible** if *∀i*, *j*

[Necessary and Sufficient Condition]: A stationary Markov chain is *time-reversible* if and only if, starting in state *i*, any path back to *i* has the same probability as the reversed path for all *i*. That is, $\forall i, i_1, ..., i_k$:

$$P_{ii_1}P_{i_1i_2}\cdots P_{i_{k-1}i_k}P_{i_ki} = P_{ii_k}P_{i_ki_{k-1}}\cdots P_{i_2i_1}P_{i_1i}$$

[Necessary Condition] **Proof: Time-reversible:** $\pi_i P_{ii} = \pi_i P_{ii}$ 4 + $P_{ii_1}P_{i_1i_2}\cdots P_{i_{k-1}i_k}P_{i_ki} = P_{ii_k}P_{i_ki_{k-1}}\cdots P_{i_2i_1}P_{i_1i_k}$ $\pi_i P_{ii_1} P_{i_1i_2} \cdots P_{i_{k-1}i_k} P_{i_ki_k}$ $= P_{i_1i}\pi_{i_1}P_{i_1i_2}\cdots P_{i_{k-1}i_k}P_{i_ki_k}$ $= P_{i_{1}i}P_{i_{2}i_{1}}\pi_{i_{2}}\cdots P_{i_{\nu-1}i_{\nu}}P_{i_{\nu}i}$ $= P_{i_{1}i}P_{i_{2}i_{1}}\cdots P_{i_{k}i_{k-1}}\pi_{i_{k}}P_{i_{k}i_{k}}$ $= P_{i_1i}P_{i_2i_1}\cdots P_{i_ki_{k-1}}P_{ii_k}\pi_i$

Eliminate π_i on both sides, finish the proof

[Sufficient Condition] **Proof:** $P_{ii_1}P_{i_1i_2}\cdots P_{i_{\nu-1}i_{\nu}}P_{i_{\nu}i} = P_{ii_{\nu}}P_{i_{\nu}i_{\nu-1}}\cdots P_{i_{2}i_{1}}P_{i_{1}i}$ **Time-reversible:** $\pi_i P_{ii} = \pi_i P_{ii}$ $P_{ii_1}P_{i_1i_2}\cdots P_{i_{k-1}i_k}P_{i_ki_j}P_{ji_j} = P_{ij}P_{ji_k}P_{i_ki_{k-1}}\cdots P_{i_2i_1}P_{i_1i_j}$ Usual Summing over all states $i_1, i_2, ..., i_k$ $P_{ij}^{k+1} P_{ji} = P_{ij} P_{ji}^{k+1}$ Let $n \to \infty$ $\pi_i P_{ii} = \pi_i P_{ij}$

Theorem: Consider an irreducible Markov chain with transition probabilities P_{ij} . If one can find nonnegative numbers π_i , $i \ge 0$, summing to unity, and a transition probability matrix $P^* = [P_{ij}^*]$ such that

$$\pi_i P_{ij} = \pi_j P_{ji}^*$$

then π_i , $i \ge 0$ are the stationary probabilities of the original chain, and P_{ij}^* are the transition probabilities of the reverse chain

Proof: $\sum_{i} \pi_{i} P_{ij} = \sum_{i} \pi_{j} P_{ji}^{*} = \pi_{j} \sum_{i} P_{ji}^{*} = \pi_{j}$ $\Rightarrow \pi_{i}, i \ge 0$ are the stationary probabilities of the original chain $P_{ji}^{*} = \frac{\pi_{i} P_{ij}}{\pi_{j}}$ are the transition probabilities of the reverse chain Leave as the exercise $\pi_{i}, i \ge 0$ are also the stationary probabilities of the reverse chain Suppose $X \in \{x_i, i \ge 1\}$ is a discrete random variable with probability distribution $\pi_i = P(X = x_i)$, and *h* is a function

Problem: How to calculate $E[h(X)] = \sum_i h(x_i)\pi_i$?

Monte Carlo Method: draw samples $X_1, X_2, ..., X_n$ from the probability distribution of *X*, use $\frac{1}{n} \sum_{i=1}^n h(X_i)$ to estimate E[h(X)]

Practical situations: π_i can be calculated, but hard to be sampled

Problem: How to generate a set of independent samples of *X*?

Theorem: If $\{X_n, n \ge 0\}$ is an irreducible Markov chain with stationary distribution π_i , and h is a bounded function over the state space $\{x_i, i \ge 1\}$, then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} h(X_i) = E[h(X)] = \sum_i h(x_i) \pi_i$$

Now we only need to construct an irreducible Markov chain with stationary distribution being the desired probability distribution

Proof: Let $a_{i(n)}$ denote the number of transitions into x_i by time n $\frac{1}{n}\sum_{i=1}^{n}h(X_i) = \sum_i \frac{a_{i(n)}}{n}h(x_i)$ With probability $1, \frac{a_{i(n)}}{n} \to \frac{1}{\mu_{ii}} = \pi_i$ as $n \to \infty$ $\Rightarrow \lim_{n \to \infty} \frac{1}{n}\sum_{i=1}^{n}h(X_i) = \sum_i h(x_i)\pi_i$ Since there is already a stationary distribution, the MC must be positive recurrent

Theorem: Suppose $\{\pi_i, i \in S\}$ is a probability distribution, there exists a time-reversible Markov chain $\{X_n, n \ge 0\}$ with state space *S* and stationary distribution π_i

Proof:

Target: construct *P* such that $\pi_i P_{ij} = \pi_j P_{ji}$

W.l.o.g., we assume $S = \{0, 1, ...\}$, let Q be the transition probability matrix of an irreducible Markov chain such that

$$\forall i \neq j, Q_{ij} = 0 \Leftrightarrow Q_{ji} = 0$$

Now we construct *P* as follows:

Markov chain Monte Carlo

$$Q_{ij} = 0 \implies \alpha_{ij} = 1$$

$$P_{ij} = Q_{ij}\alpha_{ij}$$

$$Q_{ij} > 0 \implies \alpha_{ij} = \min\left\{\frac{\pi_j Q_{ji}}{\pi_i Q_{ij}}, 1\right\}$$

$$P_{ii} = Q_{ii} + \sum_{j \neq i} Q_{ij}(1 - \alpha_{ij})$$

P is a transition probability matrix such that $\forall i \neq j, P_{ij} = 0 \Leftrightarrow P_{ji} = 0$, and the MC w.r.t. *P* is irreducible

Now we examine \swarrow for $j \neq i$ (the case j = i is trivial) case 1: $\alpha_{ij} < 1$, then $\alpha_{ji} = 1$ by the definition of α_{ij} , thus $\pi_i P_{ij} = \pi_i Q_{ij} \alpha_{ij} = \pi_j Q_{ji} = \pi_j Q_{ji} \alpha_{ji} = \pi_j P_{ji}$ case 2: $\alpha_{ij} = 1$, then $\pi_j Q_{ji} \ge \pi_i Q_{ij}$ and $\alpha_{ji} \le 1$, thus

$$\pi_i P_{ij} = \pi_i Q_{ij} = \pi_j Q_{ji} \alpha_{ji} = \pi_j P_{ji}$$

Thus, \cancel{T} holds, which implies

- π_i is the stationary distribution of the MC w.r.t. to P (sum over *i*)
- the MC w.r.t. to *P* is time-reverse

Metropolis sampling

$$Q_{ij} = 0 \implies \alpha_{ij} = 1$$

$$Q_{ij} > 0 \implies \alpha_{ij} = \min\left\{\frac{\pi_j Q_{ji}}{\pi_i Q_{ij}}, 1\right\}$$

Metropolis Sampling:

1. X_0 is initialized with any value

We need to set a transition probability matrix **Q**

 $P_{ij} = Q_{ij} \alpha_{ij}$ $P_{ii} = Q_{ii} + \sum_{j \neq i} Q_{ij} (1 - \alpha_{ij})$

- 2. Suppose the current state $X_k = i$
- 3. Sample a random number *j* from the probability distribution $\{Q_{ij}, j \ge 0\}$

4. If
$$\frac{\pi_j Q_{ji}}{\pi_i Q_{ij}} \ge 1$$
, then $X_{k+1} = j$ and go to step 2

5. Otherwise, sample a random number r from the uniform distribution U(0,1). If $r \leq \frac{\pi_j Q_{ji}}{\pi_i Q_{ij}}$, then $X_{k+1} = j$, otherwise $X_{k+1} = i$. Go to step 2

Suppose $\mathbf{Z} = (Z_1, ..., Z_n)$ is a discrete random variable, and *S* is the set of all possible values of \mathbf{Z}

Assumption 1: for all $z \in S$,

$$\pi_{\mathbf{z}} = P(\mathbf{Z} = \mathbf{z}) = c \cdot g(\mathbf{z})$$

where c > 0

Assumption 2: for all $1 \le i \le n$, and z_j , $1 \le j \le n$, $j \ne i$, the conditional probability distribution

$$P(Z_i = \cdot | Z_j = z_j \forall j \neq i)$$

exists and is known

Set a specific transition probability matrix **Q**

- If **x** and **y** are different on at least two dimensions, $Q_{xy} = 0$
- If **x** and **y** are different on only one dimension, denoted as *i*,

$$Q_{xy} = \frac{1}{n} P(Z_i = y_i \mid Z_j = x_j \;\forall j \neq i) = \frac{cg(y)}{nP(Z_j = x_j \;\forall j \neq i)}$$

• If x = y, then

$$Q_{xx} = 1 - \sum_{y \neq x} Q_{xy} = 1 - \frac{1}{n} \sum_{i=1}^{n} \left(1 - P(Z_i = x_i \mid Z_j = x_j \forall j \neq i) \right)$$
$$= \frac{cg(x)}{n} \sum_{i=1}^{n} \frac{1}{P(Z_j = x_j \forall j \neq i)} \qquad \checkmark \forall x \neq y : Q_{xy} = 0 \text{ iff } Q_{yx} = 0$$
$$\checkmark \text{ The Markov chain w.r.t.}$$
$$Q \text{ is irreducible}$$

Gibbs sampling

$$Q_{ij} = 0 \implies \alpha_{ij} = 1$$

$$P_{ij} = Q_{ij}\alpha_{ij}$$

$$P_{ii} = Q_{ii} + \sum_{j \neq i} Q_{ij}(1 - \alpha_{ij})$$

$$Q_{xy} > 0 \implies \alpha_{xy} = \min\left\{\frac{\pi_y Q_{yx}}{\pi_x Q_{xy}}, 1\right\} = \min\left\{\frac{cg(y) \cdot cg(x)}{cg(x) \cdot cg(y)}, 1\right\} = 1$$

$$\forall x \neq y : P_{xy} = Q_{xy} \alpha_{xy} = Q_{xy}$$

$$P_{xx} = Q_{xx} + \sum_{y \neq x} Q_{xy} (1 - \alpha_{xy}) = Q_{xx}$$

$$P = Q_{xx}$$

Gibbs Sampling:

- 1. X_0 is initialized with any $x_0 \in S$
- 2. Suppose the current state $X_k = \mathbf{x} = (x_1, ..., x_n) \in S$
- 3. Sample a random number i uniformly from $\{1, 2, ..., n\}$
- 4. *Sample a random value x from the conditional probability distribution*

$$P(Z_i = \cdot | Z_j = x_j \forall j \neq i)$$

5. $X_{k+1} = (x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n)$. Go to step 2

Thus, Gibbs sampling is actually Metropolis sampling with a specific matrix *Q*, under some assumptions about the desired probability distribution

Consider a stochastic process with states 0,1, ..., which is such that, whenever it enters state $i, i \ge 0$:

- The next state it will enter is state *j* with probability P_{ij} , $i, j \ge 0$
- Given that the next state to be entered is state *j*, the time until the transition from *i* to *j* occurs has distribution *F*_{*ij*}

If we let Z(t) denote the state at time t, then $\{Z(t), t \ge 0\}$ is called a **semi-Markov process**

- ✓ A semi-Markov process does not possess the Markovian property
- ✓ A Markov chain is a semi-Markov process in which

$$F_{ij}(t) = \begin{cases} 0 & t < 1\\ 1 & t \ge 1 \end{cases}$$

Semi-Markov processes

Let X_n denote the *n*th state visited, then $\{X_n, n \ge 0\}$ with transition probabilities P_{ij} is called the embedded Markov chain of the semi-Markov process

Proposition: If the semi-Markov process is irreducible and if T_{ii} has a nonlattice distribution with finite mean, then

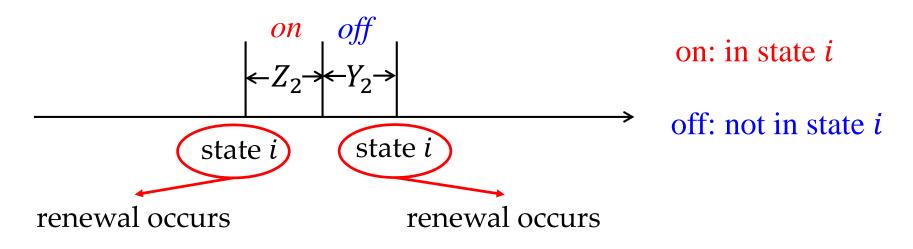
$$P_i = \lim_{t \to \infty} P(Z(t) = i \mid Z(0) = j) = \underbrace{\mu_i}_{\mu_{ij}}, \quad \forall i, j$$

- τ_i : time that the process spends in state *i* before making a transition $\mu_i = E[\tau_i]$ $P(\tau_i \le t) = \sum_i P_{ij}F_{ij}(t)$
- T_{ii} : time between successive transitions into state $i \quad \mu_{ii} = E[T_{ii}]$

Proposition: If the semi-Markov process is irreducible and if T_{ii} has a nonlattice distribution with finite mean, then

$$P_i = \lim_{t \to \infty} P(Z(t) = i \mid Z(0) = j) = \frac{\mu_i}{\mu_{ii}}, \quad \forall i, j$$

Proof: A delayed alternating renewal process



Proposition: If the semi-Markov process is irreducible and if T_{ii} has a nonlattice distribution with finite mean, then

Theorem: If $E[Z_n + Y_n] < \infty$ and *F* is nonlattice, then

$$\lim_{t \to \infty} P(t) = P(\text{system is on at time } t) = \frac{E[Z_n]}{E[Z_n] + E[Y_n]}$$

from the part of alternating renewal process in lecture 3

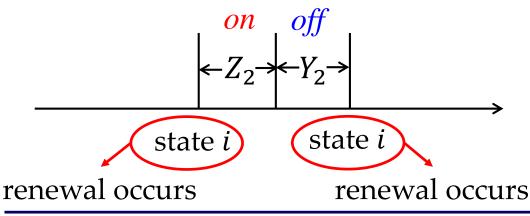
Theorem: If the semi-Markov process is irreducible and not lattice, then

$$\lim_{t \to \infty} P(Z(t) = i, Y(t) > x, S(t) = j | Z(0) = k) = \frac{P_{ij} \int_x^{\infty} \overline{F}_{ij}(y) dy}{\mu_{ii}}$$

time from *t* until the next transition

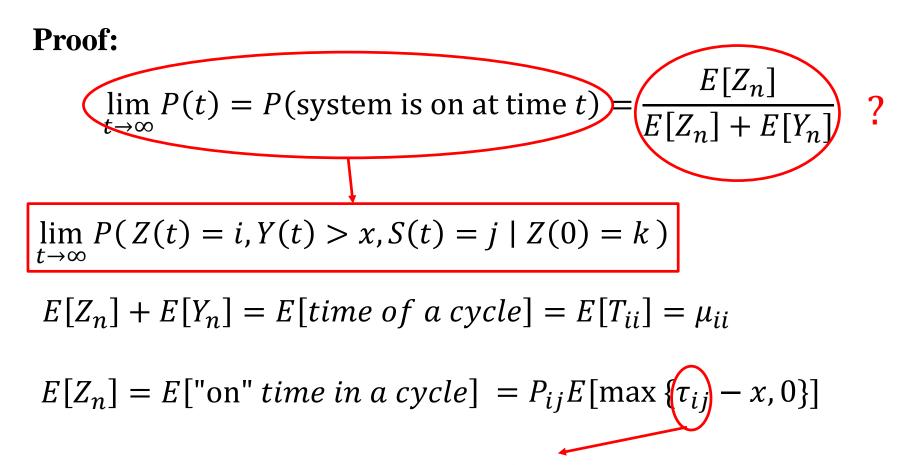
state entered at the first transition after *t*

Proof: A delayed alternating renewal process



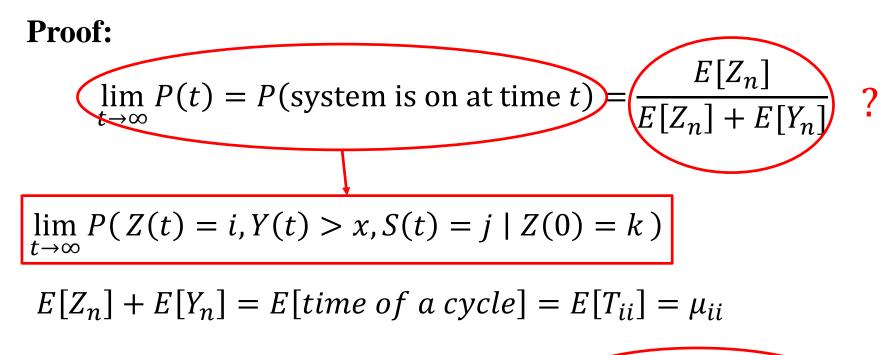
on: the state is *i*, and will remain *i* for at least the next *x* time units; the next state is *j* off: otherwise

Semi-Markov processes



time to make a transition from *i* to *j*, i.e., a random variable having distribution F_{ij}

Semi-Markov processes



 $E[Z_n] = E["on" time in a cycle] = P_{ij}E[\max\{\tau_{ij} - x, 0\}]$

Theorem: If the semi-Markov process is irreducible and not lattice, then

$$\lim_{t \to \infty} P(Z(t) = i, Y(t) > x \mid Z(0) = k) = \frac{\int_x^{\infty} P(\tau_i > y) dy}{\mu_{ii}}$$

 τ_i : time that the process spends in state *i* before making a transition

$$\sum_{j} \frac{P_{ij} \int_{x}^{\infty} \overline{F}_{ij}(y) dy}{\mu_{ii}} = \frac{\int_{x}^{\infty} \sum_{j} P_{ij} \overline{F}_{ij}(y) dy}{\mu_{ii}}$$

Summary

- Markov chain
- Chapman-Kolmogorov equations and classification of states
- Stationary distribution
- Transitions and gambler's ruin problem
- Branching processes
- Time-reversible Markov chains and MCMC
- Semi-Markov processes

References: Chapter 4, Markov Chains, 2nd edition, 1995, *by Sheldon M. Ross*