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Markov chain

A stochastic process {𝑋(𝑡), 𝑡 ∈ 𝑇} with state space 𝑆 is said to 
be a Markov chain if ∀𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 < 𝑡, 𝑥, 𝑥𝑖 ∈ 𝑆

𝑃 𝑋 𝑡 = 𝑥 𝑋 𝑡1 = 𝑥1, … , 𝑋 𝑡𝑛 = 𝑥𝑛
= 𝑃(𝑋 𝑡 = 𝑥 ∣ 𝑋 𝑡𝑛 = 𝑥𝑛) Markovian property

Here, we consider discrete-time discrete-state homogeneous 
Markov chains 

{𝑋𝑛, 𝑛 = 0,1,2,… } 𝑆 = {0,1,2,… }, unless otherwise mentioned  

∀𝑡0 < 𝑡, 𝑥0, 𝑥 ∈ 𝑆: 𝑃 𝑋 𝑡 = 𝑥 𝑋 𝑡0 = 𝑥0

is independent of 𝑡0, but depends only on 𝑡 − 𝑡0
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Markov chain

Example [General Random Walk]: Let 𝑋𝑖 , 𝑖 ≥ 1 be iid with 

𝑆𝑛 =෍

𝑖=1

𝑛

𝑋𝑖

𝑃 𝑋𝑖 = 𝑗 = 𝑎𝑗 , 𝑗 ∈ {0, ±1,±2,… }

If we let 

𝑆0 = 0

One-step transition probability: 𝑃𝑖𝑗 = 𝑃(𝑆𝑛+1 = 𝑗 ∣ 𝑆𝑛 = 𝑖)

𝑃𝑖𝑗 = 𝑎𝑗−𝑖

then {𝑆𝑛, 𝑛 ≥ 0} is a Markov chain for which
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Markov chain

Example [Simple Random Walk]: The random walk {𝑆𝑛, 𝑛 ≥
0}, where 𝑆𝑛 = σ𝑖=1

𝑛 𝑋𝑖, is said to be a simple random walk if for 
some 𝑝, 0 < 𝑝 < 1,

𝑃(𝑋𝑖 = −1) = 𝑞 = 1 − 𝑝𝑃(𝑋𝑖 = 1) = 𝑝

The absolute value {|𝑆𝑛|, 𝑛 ≥ 0} of the simple random walk is 
a Markov chain.

𝑃(|𝑆𝑛+1| = 𝑖 + 1 ∣ 𝑆𝑛 = 𝑖, 𝑆𝑛−1 = 𝑖𝑛−1, … , 𝑆1 = 𝑖1) ?
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Markov chain

Lemma: If {𝑆𝑛, 𝑛 ≥ 0} is a simple random walk, then ∀𝑖 > 0

𝑃 𝑆𝑛 = 𝑖 𝑆𝑛 = 𝑖, 𝑆𝑛−1 = 𝑖𝑛−1, … , 𝑆1 = 𝑖1 =
𝑝𝑖

𝑝𝑖+𝑞𝑖

Proof: Let 𝑖0 = 0, and define 𝑗 = max 𝑘: 𝑖𝑘 = 0, 0 ≤ 𝑘 ≤ 𝑛

Now there are two possible cases for  𝑆𝑗+1 = 𝑖𝑗+1, … , 𝑆𝑛−1 = 𝑖𝑛−1, 𝑆𝑛 = 𝑖

Case 1: 𝑆𝑛 = 𝑖, then 𝑆𝑛−1 = 𝑖𝑛−1, … , 𝑆𝑗+1 = 𝑖𝑗+1 and has probability

𝑝
𝑛−𝑗

2
+
𝑖

2 ∙ 𝑞
𝑛−𝑗

2
−
𝑖

2

Case 2: 𝑆𝑛 = −𝑖, then 𝑆𝑛−1 = −𝑖𝑛−1, … , 𝑆𝑗+1 = −𝑖𝑗+1 and has probability

𝑝
𝑛−𝑗

2
−
𝑖

2 ∙ 𝑞
𝑛−𝑗

2
+
𝑖

2

𝑃 𝑆𝑛 = 𝑖 𝑆𝑛 = 𝑖, 𝑆𝑛−1 = 𝑖𝑛−1, … , 𝑆1 = 𝑖1
= 𝑃 𝑆𝑛 = 𝑖 𝑆𝑛 = 𝑖, 𝑆𝑛−1 = 𝑖𝑛−1, … , 𝑆𝑗 = 0

a=
𝑝
𝑛−𝑗
2 +

𝑖
2∙𝑞

𝑛−𝑗
2 −

𝑖
2

𝑝
𝑛−𝑗
2 +

𝑖
2∙𝑞

𝑛−𝑗
2 −

𝑖
2+𝑝

𝑛−𝑗
2 −

𝑖
2∙𝑞

𝑛−𝑗
2 +

𝑖
2

=
𝑝𝑖

𝑝𝑖+𝑞𝑖

(
𝑛−𝑗

2
+

𝑖

2
take the value of 1, 

𝑛−𝑗

2
−

𝑖

2
take the value of -1)

(
𝑛−𝑗

2
−

𝑖

2
take the value of 1, 

𝑛−𝑗

2
+

𝑖

2
take the value of -1)
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Markov chain

𝑃(|𝑆𝑛+1| = 𝑖 + 1 ∣ 𝑆𝑛 = 𝑖, 𝑆𝑛−1 = 𝑖𝑛−1, … , 𝑆1 = 𝑖1)

= 𝑃(|𝑆𝑛+1| = 𝑖 + 1 ∣ 𝑆𝑛 = 𝑖) ∙
𝑝𝑖

𝑝𝑖+𝑞𝑖

+𝑃(|𝑆𝑛+1| = 𝑖 + 1 ∣ 𝑆𝑛 = −𝑖) ∙
𝑞𝑖

𝑝𝑖+𝑞𝑖

=
𝑝𝑖+1+𝑞𝑖+1

𝑝𝑖+𝑞𝑖

Law of total 
probability

Hence, {|𝑆𝑛|, 𝑛 ≥ 0} is a Markov chain with transition probabilities
a

a𝑃𝑖,𝑖+1 =
𝑝𝑖+1+𝑞𝑖+1

𝑝𝑖+𝑞𝑖
= 1 − 𝑃𝑖,𝑖−1, 𝑖 > 0

𝑃01 = 1
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Chapman-Kolmogorov equations

• one-step transition probability: 𝑃𝑖𝑗 = 𝑃(𝑋𝑚+1 = 𝑗 ∣ 𝑋𝑚 = 𝑖)

• 𝑛-step transition probabilities:

𝑃𝑖𝑗
𝑛 = 𝑃(𝑋𝑚+𝑛 = 𝑗 ∣ 𝑋𝑚 = 𝑖)

For a Markov chain {𝑋𝑛, 𝑛 = 0,1,2,… },

How to compute it?

Chapman-Kolmogorov equations:

𝑃𝑖𝑗
𝑛+𝑚 = ෍

𝑘=0

∞

𝑃𝑖𝑘
𝑛𝑃𝑘𝑗

𝑚 for all 𝑛,𝑚 ≥ 0, 𝑖, 𝑗
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Chapman-Kolmogorov equations

Chapman-Kolmogorov equations:

𝑃𝑖𝑗
𝑛+𝑚 = ෍

𝑘=0

∞

𝑃𝑖𝑘
𝑛𝑃𝑘𝑗

𝑚 for all 𝑛,𝑚 ≥ 0, 𝑖, 𝑗

Proof: 𝑃𝑖𝑗
𝑛+𝑚 = 𝑃 𝑋𝑛+𝑚 = 𝑗 𝑋0 = 𝑖

= ෍

𝑘=0

∞

𝑃 𝑋𝑛+𝑚 = 𝑗, 𝑋𝑛 = 𝑘 𝑋0 = 𝑖

= ෍

𝑘=0

∞

𝑃 𝑋𝑛+𝑚 = 𝑗 𝑋𝑛 = 𝑘, 𝑋0 = 𝑖 𝑃 𝑋𝑛 = 𝑘 𝑋0 = 𝑖

= ෍

𝑘=0

∞

𝑃𝑘𝑗
𝑚𝑃𝑖𝑘

𝑛

(Homogeneous by default)

Law of total 
probability
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Chapman-Kolmogorov equations

Chapman-Kolmogorov equations:

𝑃𝑖𝑗
𝑛+𝑚 = ෍

𝑘=0

∞

𝑃𝑖𝑘
𝑛𝑃𝑘𝑗

𝑚 for all 𝑛,𝑚 ≥ 0, 𝑖, 𝑗

• 𝑛-step transition probabilities:

𝑃𝑖𝑗
𝑛 = 𝑃(𝑋𝑚+𝑛 = 𝑗 ∣ 𝑋𝑚 = 𝑖) How to compute it?

Let 𝑃(𝑛) denote the matrix of 𝑛-step transition probability 𝑃𝑖𝑗
𝑛,

then by Chapman-Kolmogorov equations:

Hence, 

𝑃(𝑚+𝑛) = 𝑃(𝑛) ∙ 𝑃(𝑚)

𝑃(𝑛) = 𝑃 ∙ 𝑃 𝑛−1 = 𝑃 ∙ 𝑃 ∙ 𝑃 𝑛−2 = ⋯ = 𝑃𝑛

Solution: 
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Communication

• State 𝑗 is said to be accessible from state 𝑖 if for some 
𝑛 ≥ 0, 𝑃𝑖𝑗

𝑛 > 0

• Two states 𝑖 and 𝑗 accessible to each other are said to 
communicate, denoted as 𝑖 ↔ 𝑗

Proposition: Communication is an equivalence relation, i.e.,

✓ 𝑖 ↔ 𝑖

✓ If 𝑖 ↔ 𝑗, then 𝑗 ↔ 𝑖

✓ If 𝑖 ↔ 𝑗 and 𝑗 ↔ 𝑘, then 𝑖 ↔ 𝑘

(Follows trivially from definition)

(Follows trivially from definition)

∃𝑚, s.t. 𝑃𝑖𝑗
𝑚 > 0, ∃𝑛, s.t. 𝑃𝑗𝑘

𝑛 > 0, 𝑃𝑖𝑘
𝑚+𝑛 = σ𝑟=0

∞ 𝑃𝑖𝑟
𝑚𝑃𝑟𝑘

𝑛 ≥ 𝑃𝑖𝑗
𝑚𝑃𝑗𝑘

𝑛 > 0 𝑖 → 𝑘

Similarly,  we can show 𝑘 → 𝑖
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Irreducible

• Two states that communicate are said to be in the 
same class

• A Markov chain is irreducible if there is only one 
class

All states communicate with each other

any two classes are either 
disjoint or identical

the equivalence relation 
of communication 
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Period

• A state 𝑗 has period 𝑑 if 𝑑 is the greatest common divisor 
of the number of transitions by which 𝑗 can be reached, 
starting from 𝑗

𝑑 𝑗 = gcd{𝑛 > 0: 𝑃𝑗𝑗
𝑛 > 0}

period of 𝑗

• If 𝑃𝑗𝑗
𝑛 = 0 for all 𝑛 > 0, then 𝑑 𝑗 = ∞

• A state with period 1 is said to be aperiodic
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Period

Proposition: If 𝑖 ↔ 𝑗, then 𝑑 𝑖 = 𝑑(𝑗)

Proof: 𝑖 ↔ 𝑗 ⇒ 𝑃𝑖𝑗
𝑚𝑃𝑗𝑖

𝑛 > 0 for some 𝑚 and 𝑛

Suppose 𝑃𝑖𝑖
𝑠 > 0, then

𝑃𝑗𝑗
𝑛+𝑚 ≥ 𝑃𝑗𝑖

𝑛𝑃𝑖𝑗
𝑚 > 0

𝑃𝑗𝑗
𝑛+𝑠+𝑚 ≥ 𝑃𝑗𝑖

𝑛𝑃𝑖𝑖
𝑠𝑃𝑖𝑗

𝑚 > 0

𝑑(𝑗) divides both 𝑛 +𝑚
and 𝑛 + 𝑠 +𝑚

𝑑(𝑗) divides 𝑠

So, if 𝑃𝑖𝑖
𝑠 > 0, then 𝑑(𝑗) divides 𝑠.

𝑃𝑖𝑖
𝑑(𝑖)

> 0 is obvious, so 𝑑(𝑗) divides 𝑑(𝑖).
A similar argument yields that 𝑑(𝑖) divides 𝑑 𝑗 .

𝑑 𝑖 = 𝑑(𝑗)
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Recurrent

State 𝑗 is said to be recurrent if 𝑓𝑗𝑗 = 1, and transient otherwise

For any states 𝑖 and 𝑗, define 𝑓𝑖𝑗
𝑛 to be the probability that, 

starting in 𝑖, the first transition into 𝑗 occurs at time 𝑛

𝑓𝑖𝑗
𝑛 = 𝑃(𝑋𝑛 = 𝑗, 𝑋𝑘 ≠ 𝑗, 𝑘 = 1,2,… , 𝑛 − 1 ∣ 𝑋0 = 𝑖)

𝑓𝑖𝑗
0 = 0

Let 𝑓𝑖𝑗 denote the probability of ever making a transition into 

state 𝑗, given that the process starts in 𝑖

𝑓𝑖𝑗 = ෍

𝑛=1

∞

𝑓𝑖𝑗
𝑛
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Recurrent

Proposition: State 𝑗 is recurrent if and only if ෍

𝑛=1

∞

𝑃𝑗𝑗
𝑛 = ∞

Proof: 𝑗 is recurrent ⇒ with probability 1, return to 𝑗
Markov property ⇒ once returning to 𝑗, the process restarts
So, with probability 1, the number of visits to 𝑗 is ∞

⇒ 𝐸 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑠𝑖𝑡𝑠 𝑡𝑜 𝑗 𝑋0 = 𝑗] = ∞

Thus, 𝑗 is recurrent if and only if 
𝐸 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑠𝑖𝑡𝑠 𝑡𝑜 𝑗 𝑋0 = 𝑗] = ∞

Let 𝐼𝑛 = ቊ
1 if 𝑋𝑛 = 𝑗
0 otherwise

a𝐸 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑠𝑖𝑡𝑠 𝑡𝑜 𝑗 𝑋0 = 𝑗] = 𝐸 σ𝑛=0
∞ 𝐼𝑛 𝑋0 = 𝑗]

A = σ𝑛=0
∞ 𝐸 𝐼𝑛 𝑋0 = 𝑗] = σ𝑛=0

∞ 𝑃𝑗𝑗
𝑛

the number of visits to 𝑗 is geometric 

with mean 
1

1−𝑓𝑗𝑗

𝑗 is transient ⇒
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Recurrent

Corollary: If 𝑖 is recurrent and 𝑖 ↔ 𝑗, then 𝑗 is recurrent

Proof: 𝑖 ↔ 𝑗 ⇒ ∃𝑚, 𝑛 such that 𝑃𝑖𝑗
𝑛 > 0, 𝑃𝑗𝑖

𝑚 > 0

∀𝑠 > 0, 𝑃𝑗𝑗
𝑚+𝑛+𝑠 ≥ 𝑃𝑗𝑖

𝑚𝑃𝑖𝑖
𝑠𝑃𝑖𝑗

𝑛

⇒෍

𝑠=1

∞

𝑃𝑗𝑗
𝑚+𝑛+𝑠 ≥ 𝑃𝑗𝑖

𝑚𝑃𝑖𝑗
𝑛෍

𝑠=1

∞

𝑃𝑖𝑖
𝑠 = ∞

⇒ ෍

𝑠=1

∞

𝑃𝑗𝑗
𝑠 = ∞ ⇒ 𝑗 is recurrent 

By Proposition on 

the previous page 
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Recurrent

Example [Simple Random Walk]: The random walk {𝑆𝑛, 𝑛 ≥
0}, where 𝑆𝑛 = σ𝑖=1

𝑛 𝑋𝑖, is said to be a simple random walk if for 
some 𝑝, 0 < 𝑝 < 1,

𝑃(𝑋𝑖 = −1) = 𝑞 = 1 − 𝑝𝑃(𝑋𝑖 = 1) = 𝑝

Which states are transient? Which are recurrent?
Solution: 
All states communicates ⇒ they are either all transient or all recurrent 
Only need to consider state 0 i.e., if σ𝑛=1

∞ 𝑃00
𝑛 is finite or not

𝑃00
2𝑛+1 = 0, 𝑛 = 0,1,2, …

𝑃00
2𝑛 = 𝐶2𝑛

𝑛 𝑝𝑛 1 − 𝑝 𝑛 =
2𝑛 !

𝑛! 2
𝑝𝑛 1 − 𝑝 𝑛, 𝑛 = 1,2, …A

a
𝑝 =

1

2
, 4𝑝 1 − 𝑝 = 1 ⇒ σ𝑛=1

∞ 𝑃00
𝑛 = ∞ ⇒ recurrent

𝑝 ∈ 0,
1

2
∪

1

2
, 1 , 4𝑝 1 − 𝑝 < 1 ⇒ σ𝑛=1

∞ 𝑃00
𝑛 < ∞ ⇒ transient

Stirling’s approximation: 𝑛!~𝑛𝑛+1/2𝑒−𝑛 2𝜋 ⇒ 𝑃00
2𝑛~

4𝑝 1−𝑝
𝑛

𝜋𝑛

aσ𝑛=1
∞ 4𝑝 1−𝑝

𝑛

𝜋𝑛

Note that
𝑎𝑛~𝑏𝑛 when 

lim
𝑛→∞

𝑎𝑛

𝑏𝑛
= 1
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Recurrent

Corollary: If 𝑗 is recurrent and 𝑖 ↔ 𝑗, then 𝑓𝑖𝑗 = 1

Proof: 𝑖 ↔ 𝑗 ⇒ ∃𝑛, 𝑃𝑖𝑗
𝑛 > 0

𝑖 ↔ 𝑗, 𝑗 is recurrent ⇒ 𝑖 is recurrent
Suppose 𝑋0 = 𝑖, let 𝑇1 denote the next time we enter 𝑖 (𝑇1 is finite 
by Corollary)

The number of above process needed to access state 𝑗 is a 
geometric random variable with mean 1/𝑃𝑖𝑗

𝑛, and is thus finite 

with probability 1

𝑖 is recurrent ⇒ the number of above process is infinite
𝑓𝑖𝑗 = 1

𝑋0 𝑋𝑛 𝑋𝑇1

𝑋𝑛 = 𝑗 with probability 𝑃𝑖𝑗
𝑛
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Positive and Null Recurrent

Let 𝜇𝑗𝑗 denote the expected number of transitions needed to 

return to state 𝑗

𝜇𝑗𝑗 =

∞ if 𝑗 is transient

෍

𝑛=1

∞

𝑛𝑓𝑗𝑗
𝑛 if 𝑗 is recurrent

If state 𝑗 is recurrent, then we say that it is positive recurrent 
if 𝜇𝑗𝑗 < ∞ and null recurrent if 𝜇𝑗𝑗 = ∞
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Limit theorems

Let 𝑁𝑗(𝑡) denote the number of transitions into 𝑗 by time 𝑡

By interpreting transitions into state 𝑗 as being renewals, 

Theorem: If 𝑖 ↔ 𝑗, then

✓ 𝑃 lim
𝑡→∞

𝑁𝑗(𝑡)

𝑡
=

1

𝜇𝑗𝑗
∣ 𝑋0 = 𝑖 = 1

✓ lim
𝑛→∞

σ𝑘=1
𝑛 𝑃𝑖𝑗

𝑘

𝑛
=

1

𝜇𝑗𝑗

✓ If 𝑗 is aperiodic, then lim
𝑛→∞

𝑃𝑖𝑗
𝑛 =

1

𝜇𝑗𝑗

✓ If 𝑗 has period 𝑑, then lim
𝑛→∞

𝑃𝑗𝑗
𝑛𝑑 =

𝑑

𝜇𝑗𝑗

(Blackwell's Theorem)

(Blackwell's Theorem) 

(With probability 1,
𝑁𝐷 𝑡

𝑡
→

1

𝜇
as 𝑡 → ∞)

(
𝑚𝐷 𝑡

𝑡
→

1

𝜇
as 𝑡 → ∞,𝑚𝐷 𝑡 = 𝐸 σ𝑘=1

𝑡 𝐼𝑘 = σ𝑘=1
𝑡 𝑃𝑖𝑗

𝑘)

𝐼𝑘 = ቊ
1 if 𝑋𝑘 = 𝑗
0 otherwise
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Delayed renewal process

Properties of delayed renewal process:

• With probability 1,
𝑁𝐷 𝑡

𝑡
→

1

𝜇
as 𝑡 → ∞

•
𝑚𝐷 𝑡

𝑡
→

1

𝜇
as 𝑡 → ∞ Elementary Renewal Theorem

Blackwell's Theorem 

• If 𝐹 is not lattice, then 𝑚𝐷 𝑡 + 𝑎 −𝑚𝐷 𝑡 → 𝑎/𝜇

as 𝑛 → ∞

• If 𝐹 and 𝐺 are lattice with period 𝑑, then

𝐸[#renewals at 𝑛𝑑] → 𝑑/𝜇

as 𝑡 → ∞

Key Renewal Theorem

• If 𝐹 is not lattice, 𝜇 < ∞ and ℎ(𝑡) is directly Riemann integrable,

න
0

∞

ℎ 𝑡 − 𝑥 𝑑𝑚𝐷 𝑥 =
1

𝜇
න
0

∞

ℎ 𝑡 𝑑𝑡

𝜇 = න
0

∞

𝑥𝑑𝐹(𝑥)
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Positive and Null Recurrent

If state 𝑗 is recurrent, then we say that it is positive recurrent 
if 𝜇𝑗𝑗 < ∞ and null recurrent if 𝜇𝑗𝑗 = ∞

If state 𝑗 is recurrent, then we say that it is positive recurrent 
if 𝜋𝑗 > 0 and null recurrent if 𝜋𝑗 = 0

𝜋𝑗 = lim
𝑛→∞

𝑃𝑗𝑗
𝑛𝑑(𝑗)

=
𝑑(𝑗)

𝜇𝑗𝑗
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Positive and Null Recurrent

Proposition: If 𝑖 is positive (null) recurrent and 𝑖 ↔ 𝑗, then 𝑗 is 
positive (null) recurrent 

Proof: 

For the null recurrent case, leave as the exercise

Case 1: positive recurrent
𝑖 ↔ 𝑗 ⇒ 𝑑 𝑖 = 𝑑 𝑗 = 𝑑 ≥ 1

𝜋𝑖 = lim
𝑛→∞

𝑃𝑖𝑖
𝑛𝑑 =

𝑑

𝜇𝑖𝑖
> 0

𝑖 ↔ 𝑗 ⇒ ∃𝑠, 𝑡 ≥ 0, 𝑃𝑖𝑗
𝑠 > 0, 𝑃𝑗𝑖

𝑡 > 0

𝑃𝑗𝑗
𝑡+𝑠+𝑚𝑑 ≥ 𝑃𝑗𝑖

𝑡𝑃𝑖𝑖
𝑚𝑑𝑃𝑖𝑗

𝑠

lim
𝑚→∞

𝑃𝑗𝑗
𝑡+𝑠+𝑚𝑑 ≥ 𝑃𝑗𝑖

𝑡𝑃𝑖𝑗
𝑠 ∙ lim

𝑚→∞
𝑃𝑖𝑖
𝑚𝑑 =

𝑑

𝜇𝑖𝑖
∙ 𝑃𝑗𝑖

𝑡𝑃𝑖𝑗
𝑠 > 0

𝑃𝑗𝑗
𝑡+𝑠 ≥ 𝑃𝑗𝑖

𝑡𝑃𝑖𝑗
𝑠 > 0 ⇒ 𝑑 divides 𝑡 + 𝑠

𝜋𝑗 = lim
𝑚→∞

𝑃𝑗𝑗
𝑡+𝑠+𝑚𝑑 > 0 ⇒ 𝑗 is positive recurrent 
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Stationary distribution

Definition: A probability distribution {𝜋𝑗 , 𝑗 ≥ 0} is said to be 

stationary for the Markov chain if

∀𝑗: 𝜋𝑗 =෍

𝑖=0

∞

𝜋𝑖𝑃𝑖𝑗

If the initial distribution, i.e., the distribution of 𝑋0, is a stationary 
distribution, 𝑋𝑛 will have the same distribution for all 𝑛. 

Proof: 

𝑃 𝑋1 = 𝑗 =෍

𝑖=0

∞

𝑃 𝑋1 = 𝑗 𝑋0= 𝑖) 𝑃 𝑋0 = 𝑖 =෍

𝑖=0

∞

𝑃𝑖𝑗 𝜋𝑖 = 𝜋𝑗

𝑃 𝑋𝑛 = 𝑗 =෍

𝑖=0

∞

𝑃 𝑋𝑛 = 𝑗 𝑋𝑛−1= 𝑖) 𝑃 𝑋𝑛−1 = 𝑖 =෍

𝑖=0

∞

𝑃𝑖𝑗 𝜋𝑖 = 𝜋𝑗

Definition of stationary 
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Stationary distribution

Theorem: An irreducible aperiodic Markov chain belongs to 
one of the following two classes

• Either the states are all transient or all null recurrent. In this case, 
𝑃𝑖𝑗
𝑛 → 0 as 𝑛 → ∞ for all 𝑖, 𝑗 and there exists no stationary distribution

• Or else, all states are positive recurrent, that is,

𝜋𝑗 = lim
𝑛→∞

𝑃𝑖𝑗
𝑛 > 0

In this case, {𝜋𝑗 , 𝑗 = 0,1,2,… , } is a stationary distribution and there 

exists no other stationary distribution

Proof: 

transient or null recurrent ⇒ 𝜇𝑗𝑗 = ∞. By Limit Theorem, lim
𝑛→∞

𝑃𝑖𝑗
𝑛 =

1

𝜇𝑗𝑗
= 0

Proof for the first class:
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Stationary distribution

Note that 𝑃𝑖𝑗
𝑛+1 = σ𝑘=0

∞ 𝑃𝑖𝑘
𝑛𝑃𝑘𝑗 ≥ σ𝑘=0

𝑀 𝑃𝑖𝑘
𝑛𝑃𝑘𝑗 for all 𝑀

Let 𝑛 → ∞, we have 𝜋𝑗 ≥ σ𝑘=0
𝑀 𝜋𝑘𝑃𝑘𝑗 ,

then let 𝑀 → ∞, we have 𝜋𝑗 ≥ σ𝑘=0
∞ 𝜋𝑘𝑃𝑘𝑗

Suppose there exists a stationary distribution 𝑃𝑗, then 

𝑃𝑗 = 𝑃 𝑋𝑛 = 𝑗 = σ𝑖=0
∞ 𝑃 𝑋𝑛 = 𝑗 𝑋0 = 𝑖 𝑃 𝑋0 = 𝑖 = σ𝑖=0

∞ 𝑃𝑖𝑗
𝑛𝑃𝑖

= σ𝑖=0
𝑀 𝑃𝑖𝑗

𝑛𝑃𝑖 + σ𝑖=𝑀+1
∞ 𝑃𝑖𝑗

𝑛𝑃𝑖 ≤ σ𝑖=0
𝑀 𝑃𝑖𝑗

𝑛𝑃𝑖 + σ𝑖=𝑀+1
∞ 𝑃𝑖

Let 𝑛 → ∞, we have 𝑃𝑗 ≤ σ𝑖=𝑀+1
∞ 𝑃𝑖. Then, let 𝑀 → ∞, we have 𝑃𝑗 ≤ 0, 

which leads to a contradiction

Proof for the second class:

Suppose ∃𝑗, such that 𝜋𝑗 > σ𝑘=0
∞ 𝜋𝑘𝑃𝑘𝑗, then

σ𝑗=0
∞ 𝜋𝑗 > σ𝑗=0

∞ σ𝑘=0
∞ 𝜋𝑘𝑃𝑘𝑗 = σ𝑘=0

∞ 𝜋𝑘 σ𝑗=0
∞ 𝑃𝑘𝑗 = σ𝑘=0

∞ 𝜋𝑘 ,

which leads to a contradiction. Thus, ∀𝑗: 𝜋𝑗 = σ𝑘=0
∞ 𝜋𝑘𝑃𝑘𝑗
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Stationary distribution

• 𝑃𝑗 ≥ σ𝑖=0
𝑀 𝑃𝑖𝑗

𝑛𝑃𝑖 for all 𝑀

Let 𝑛 → ∞, we have 𝑃𝑗 ≥ σ𝑖=0
𝑀 𝜋𝑗𝑃𝑖 ,

then let 𝑀 → ∞, we have 𝑃𝑗 ≥ σ𝑖=0
∞ 𝜋𝑗𝑃𝑖 = 𝜋𝑗

• 𝑃𝑗 ≤ σ𝑖=0
𝑀 𝑃𝑖𝑗

𝑛𝑃𝑖 + σ𝑖=𝑀+1
∞ 𝑃𝑖 for all 𝑀

Let 𝑛 → ∞, we have 𝑃𝑗 ≤ σ𝑖=0
𝑀 𝜋𝑗𝑃𝑖 + σ𝑖=𝑀+1

∞ 𝑃𝑖 ,

then let 𝑀 → ∞, we have 𝑃𝑗 ≤ σ𝑖=0
∞ 𝜋𝑗𝑃𝑖 = 𝜋𝑗

Thus, ∀𝑗: 𝑃𝑗 = 𝜋𝑗

Suppose 𝑃𝑗 is a stationary distribution, then

𝑃𝑗 = 𝑃 𝑋𝑛 = 𝑗 = σ𝑖=0
∞ 𝑃 𝑋𝑛 = 𝑗 𝑋0 = 𝑖 𝑃 𝑋0 = 𝑖 = σ𝑖=0

∞ 𝑃𝑖𝑗
𝑛𝑃𝑖
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Stationary distribution

• For an irreducible, positive recurrent and aperiodic 
Markov chain, {𝜋𝑗 , 𝑗 = 0,1,2,… , } is the unique stationary 

distribution, where

𝜋𝑗 = lim
𝑛→∞

𝑃𝑖𝑗
𝑛 =

1

𝜇𝑗𝑗

• For an irreducible, positive recurrent and periodic Markov 

chain (where the period is 𝑑), {𝜋𝑗 =
1

𝜇𝑗𝑗
, 𝑗 = 0,1,2,… , } is still 

the unique stationary distribution 

lim
𝑛→∞

𝑃𝑗𝑗
𝑛𝑑 =

𝑑

𝜇𝑗𝑗
= 𝑑𝜋𝑗
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Transitions among classes

Proposition: Let 𝑅 be a recurrent class of states. If 𝑖 ∈ 𝑅, 𝑗 ∉ 𝑅, 
then 𝑃𝑖𝑗 = 0.

Proof: Suppose 𝑃𝑖𝑗 > 0

Then, as 𝑖 and 𝑗 do not communicate (since 𝑗 ∉ 𝑅) 

⇒ 𝑃𝑗𝑖
𝑛 = 0, ∀𝑛

Hence, if the process starts in state 𝑖, there is a positive 

probability of at least 𝑃𝑖𝑗 that the process will never return to 𝑖

⇒ contradicts the fact that 𝑖 is recurrent

So 𝑃𝑖𝑗 = 0
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Transitions among classes

Proposition: If 𝑗 is recurrent, then the set of probabilities 
{𝑓𝑖𝑗 , 𝑖 ∈ 𝑇} satisfies

Proof: 

∀𝑖 ∈ 𝑇: 𝑓𝑖𝑗 = ෍

𝑘∈𝑇

𝑃𝑖𝑘𝑓𝑘𝑗 +෍

𝑘∈𝑅

𝑃𝑖𝑘

where 𝑇 denotes the set of all transient states, and 𝑅 denotes 
the set of states communicating with 𝑗

𝑓𝑖𝑗 = 𝑃 𝑁𝑗(∞) > 0 ∣ 𝑋0 = 𝑖

= σ𝑘 𝑃 𝑁𝑗(∞) > 0 ∣ 𝑋0 = 𝑖, 𝑋1 = 𝑘 𝑃 𝑋1 = 𝑘 ∣ 𝑋0 = 𝑖

= σ𝑘∈𝑇 𝑓𝑘𝑗𝑃𝑖𝑘 + σ𝑘∈𝑅 𝑓𝑘𝑗𝑃𝑖𝑘 + σ𝑘∉𝑅,𝑘∉𝑇 𝑓𝑘𝑗𝑃𝑖𝑘

= σ𝑘∈𝑇 𝑓𝑘𝑗𝑃𝑖𝑘 + σ𝑘∈𝑅 𝑃𝑖𝑘
𝑘 belongs to a recurrent 
class that is different 
from 𝑅, thus 𝑓𝑘𝑗 = 0
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Gambler's ruin problem

Gambler's ruin problem: Consider a gambler who at each 
play of the game has probability 𝑝 of winning 1 unit and 
probability 𝑞 = 1 − 𝑝 of losing 1 unit. Assuming successive
plays of the game are independent. 

Solution: 

What is the probability that, starting with 𝑖 units, the 
gambler's fortune will reach 𝑁 before reaching 0?

𝑋𝑛: the player's fortune at time 𝑛

{𝑋𝑛, 𝑛 = 0,1,2,… }: a Markov chain with transition probabilities

𝑃00 = 𝑃𝑁𝑁 = 1 𝑃𝑖,𝑖+1 = 𝑝 = 1 − 𝑃𝑖,𝑖−1 𝑖 = 1,2,… ,𝑁 − 1

{0} {1,2,… ,𝑁 − 1} {𝑁}
recurrent class recurrent classtransient class
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Gambler's ruin problem

Let 𝑓𝑖 = 𝑓𝑖,𝑁 denote the probability that, starting with 𝑖, 1 ≤ 𝑖 ≤ 𝑁, 
the fortune will eventually reach 𝑁

just the desired probability

𝑓𝑖 = 𝑝𝑓𝑖+1 + 𝑞𝑓𝑖−1 𝑖 = 1,2,… ,𝑁 − 1 𝑓𝑖+1 − 𝑓𝑖 =
𝑞

𝑝
𝑓𝑖 − 𝑓𝑖−1

Then,

Thus, 𝑓𝑖 = 𝑓1 + 𝑓1
𝑞

𝑝
+

𝑞

𝑝

2

+⋯+
𝑞

𝑝

𝑖−1

= ൞

1−( Τ𝑞 𝑝)
𝑖

)1−( Τ𝑞 𝑝
𝑓1 if

𝑞

𝑝
≠ 1

𝑖𝑓1 if
𝑞

𝑝
= 1

By 𝑓𝑁 = 1, 𝑓𝑖 = ൞

1−(𝑞/𝑝)𝑖

1−(𝑞/𝑝)𝑁
if 𝑝 ≠

1

2

𝑖

𝑁
if 𝑝 =

1

2

𝑓2 − 𝑓1 =
𝑞

𝑝
𝑓1 − 𝑓0 =

𝑞

𝑝
𝑓1, 𝑓3 − 𝑓2 =

𝑞

𝑝
𝑓2 − 𝑓1 =

𝑞

𝑝

2

𝑓1, … ,

𝑓𝑖 − 𝑓𝑖−1 =
𝑞

𝑝
𝑓𝑖−1 − 𝑓𝑖−2 =

𝑞

𝑝

𝑖−1

𝑓1

𝑓𝑖 → ቐ
1 − (𝑞/𝑝)𝑖 if 𝑝 >

1

2

0 if 𝑝 ⩽
1

2

𝑁 → ∞
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Gambler's ruin problem

Solution: 

What is the expected number of bets that the gambler, 
starting at 𝑖, makes before reaching either 0 or 𝑛?

𝑋𝑗: the winnings on the 𝑗th bet

𝐵: the number of bets until the fortune reaches either 0 or 𝑛

𝐵 = min 𝑚:෍

𝑗=1

𝑚

𝑋𝑗 = −𝑖 or ෍

𝑗=1

𝑚

𝑋𝑗 = 𝑛 − 𝑖

൧𝐸 σ𝑗=1
𝐵 𝑋𝑗 = 𝐸 𝑋𝑗 𝐸[𝐵] = (2𝑝 − 1)𝐸[𝐵

By σ𝑗=1
𝐵 𝑋𝑗 = ቐ𝑛 − 𝑖 with prob.

1−(𝑞/𝑝)𝑖

1−(𝑞/𝑝)𝑁

−𝑖 otherwise

𝐸[𝐵] =
1

2𝑝−1

𝑛 1−( Τ𝑞 𝑝)
𝑖

1−( Τ𝑞 𝑝)
𝑛 − 𝑖

𝐵 is a stopping time for 𝑋𝑗, then by Wald's equation,

(here we consider 𝑝 ≠ 1/2)
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Transitions among transient states

𝑇 = {1,2,… , 𝑡}: the set of transient states

How about the probability 𝑓𝑖,𝑗, where both 𝑖 and 𝑗 are transient?

the probability of ever making a transition into state 𝑗 given that 
the chain starts in state 𝑖

i.e., 𝑖, 𝑗 ∈ 𝑇

For 𝑖, 𝑗 ∈ 𝑇, 𝑚𝑖,𝑗: the expected total number of time periods 

spent in state 𝑗 given that the chain starts in state 𝑖

𝑚𝑖,𝑗 = 𝑚𝑗,𝑗 ⋅ 𝑓𝑖,𝑗 𝑓𝑖,𝑗 = 𝑚𝑖,𝑗/𝑚𝑗,𝑗

How to compute 𝑚𝑖,𝑗? 



http://www.lamda.nju.edu.cn/qianc/

Transitions among transient states

𝑄 =
𝑃11 ⋯ 𝑃1𝑡
⋮ ⋱ ⋮
𝑃𝑡1 ⋯ 𝑃𝑡𝑡

𝑀 =

𝑚11 ⋯ 𝑚1𝑡

⋮ ⋱ ⋮
𝑚𝑡1 ⋯ 𝑚𝑡𝑡

transition 
probabilities 

among 
transient states

𝑚𝑖,𝑗 = 𝛿 𝑖, 𝑗 +෍

𝑘

𝑃𝑖,𝑘𝑚𝑘,𝑗 = 𝛿 𝑖, 𝑗 +෍

𝑘=1

𝑡

𝑃𝑖,𝑘𝑚𝑘,𝑗

ቊ
1 if 𝑖 = 𝑗
0 otherwise 𝑚𝑘,𝑗 = 0 for 𝑘 ∉ 𝑇

𝑀 = 𝐼 + 𝑄𝑀 𝑀 = 𝐼 − 𝑄 −1
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Transitions among transient states

Example: Consider the gambler's ruin problem with 𝑝 = 0.4
and 𝑁 = 6. Starting in state 3, determine

• the expected amount of time spent in state 3

• the expected number of visits to state 2

• the probability of ever visiting state 4

Leave as the exercise

𝑚3,3

𝑚3,2

𝑓3,4

Equivalent to 𝑓3 under 𝑁 = 4
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Branching processes

Branching processes: Consider a population consisting of 
individuals able to produce offspring of the same kind. Suppose that 
each individual will, by the end of its lifetime, have produced 𝒋 new 
offspring with probability 𝑷𝒋, 𝒋 ≥ 𝟎, independently of the number 

produced by any other individual. Let 𝑿𝒏 denote the size of the 𝒏th
generation. The Markov chain {𝑋𝑛, 𝑛 ≥ 0} is called a branching process

Suppose that 𝑋0 = 1

Let 𝜋0 denote the probability that the population ever dies out

𝜋0 = lim
𝑛→∞

𝑃(𝑋𝑛 = 0)

𝜋0 = 𝑃(population dies out)

=෍

𝑗=0

∞

𝑃 population dies out 𝑋1 = 𝑗 𝑃𝑗 =෍

𝑗=0

∞

𝜋0
𝑗
𝑃𝑗
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Branching processes

Theorem: Suppose that 𝑃0 > 0 and 𝑃0 + 𝑃1 < 1. Then,  

• 𝜋0 is the smallest positive number satisfying

• 𝜋0 = 1 if and only if 𝜇 ≤ 1, where 𝜇 = σ𝑗=0
∞ 𝑗𝑃𝑗 is the mean 

number of offspring produced by each individual

𝜋0 =෍

𝑗=0

∞

𝜋0
𝑗
𝑃𝑗

Proof: 

The proof of the second point is left as the exercise

Let 𝜋 ≥ 0 satisfy 𝜋 = σ𝑗=0
∞ 𝜋𝑗𝑃𝑗, prove 𝜋 ≥ 𝑃(𝑋𝑛 = 0) for all 𝑛

𝜋 = σ𝑗=0
∞ 𝜋𝑗𝑃𝑗 ≥ 𝜋0𝑃0 = 𝑃0 = 𝑃(𝑋1 = 0)a在此处键入公式。

Assume that 𝜋 ≥ 𝑃(𝑋𝑛 = 0), then 
𝑃 𝑋𝑛+1 = 0 = σ𝑗=0

∞ 𝑃 𝑋𝑛+1 = 0 | 𝑋1= 𝑗 𝑃𝑗a

= σ𝑗=0
∞ 𝑃 𝑋𝑛 = 0

𝑗
𝑃𝑗 ≤ σ𝑗=0

∞ 𝜋𝑗𝑃𝑗 = 𝜋

Hence, 𝜋 ≥ 𝑃(𝑋𝑛 = 0) for all 𝑛
Let 𝑛 → ∞ ⇒ 𝜋 ≥ lim

𝑛→∞
𝑃 𝑋𝑛 = 0 = 𝜋0
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Time-reversible Markov chains

Stationary Markov chain: An irreducible positive recurrent 
Markov chain is stationary if the initial state is chosen 
according to the stationary probabilities

The reversed process of a stationary Markov chain is also a 
Markov chain with transition probabilities given by

𝑃𝑖𝑗
∗ =

𝜋𝑗𝑃𝑗𝑖
𝜋𝑖

Proof: 𝑃(𝑋𝑚 = 𝑗 ∣ 𝑋𝑚+1 = 𝑖, 𝑋𝑚+2 = 𝑖2, … , 𝑋𝑚+𝑘 = 𝑖𝑘)

=
𝑃(𝑋𝑚=𝑗,𝑋𝑚+1=𝑖,𝑋𝑚+2=𝑖2,…,𝑋𝑚+𝑘=𝑖𝑘)

𝑃(𝑋𝑚+1=𝑖,𝑋𝑚+2=𝑖2,…,𝑋𝑚+𝑘=𝑖𝑘)

=
𝑃 𝑋𝑚+2=𝑖2,…,𝑋𝑚+𝑘=𝑖𝑘 𝑋𝑚=𝑗,𝑋𝑚+1=𝑖)𝑃(𝑋𝑚=𝑗,𝑋𝑚+1=𝑖)

𝑃 𝑋𝑚+2=𝑖2,…,𝑋𝑚+𝑘=𝑖𝑘 𝑋𝑚+1=𝑖)𝑃(𝑋𝑚+1=𝑖)

=
𝑃(𝑋𝑚=𝑗,𝑋𝑚+1=𝑖)

𝑃(𝑋𝑚+1=𝑖)
=

𝑃 𝑋𝑚+1=𝑖 𝑋𝑚=𝑗)𝑃(𝑋𝑚=𝑗)

𝑃(𝑋𝑚+1=𝑖)
=

𝜋𝑗𝑃𝑗𝑖

𝜋𝑖
Stationary
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Time-reversible Markov chains

[Definition] Time-reversible Markov chain: A stationary 
Markov chain is time-reversible if ∀𝑖, 𝑗

𝑃𝑖𝑗
∗ = 𝑃𝑖𝑗 𝜋𝑖𝑃𝑖𝑗 = 𝜋𝑗𝑃𝑗𝑖

[Necessary and Sufficient Condition]: A stationary Markov 
chain is time-reversible if and only if, starting in state 𝑖, any path
back to 𝑖 has the same probability as the reversed path for all 𝑖. 
That is, ∀𝑖, 𝑖1, … , 𝑖𝑘:

𝑃𝑖𝑖1𝑃𝑖1𝑖2 ⋯𝑃𝑖𝑘−1𝑖𝑘𝑃𝑖𝑘𝑖 = 𝑃𝑖𝑖𝑘𝑃𝑖𝑘𝑖𝑘−1 ⋯𝑃𝑖2𝑖1𝑃𝑖1𝑖

𝑃𝑖𝑗
∗ =

𝜋𝑗𝑃𝑗𝑖
𝜋𝑖
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Time-reversible Markov chains

Proof: [Necessary Condition]

𝑃𝑖𝑖1𝑃𝑖1𝑖2 ⋯𝑃𝑖𝑘−1𝑖𝑘𝑃𝑖𝑘𝑖 = 𝑃𝑖𝑖𝑘𝑃𝑖𝑘𝑖𝑘−1 ⋯𝑃𝑖2𝑖1𝑃𝑖1𝑖

Time-reversible: 𝜋𝑖𝑃𝑖𝑗 = 𝜋𝑗𝑃𝑗𝑖

𝜋𝑖 𝑃𝑖𝑖1𝑃𝑖1𝑖2 ⋯𝑃𝑖𝑘−1𝑖𝑘𝑃𝑖𝑘𝑖

= 𝑃𝑖1𝑖𝜋𝑖1𝑃𝑖1𝑖2 ⋯𝑃𝑖𝑘−1𝑖𝑘𝑃𝑖𝑘𝑖

= 𝑃𝑖1𝑖𝑃𝑖2𝑖1𝜋𝑖2 ⋯𝑃𝑖𝑘−1𝑖𝑘𝑃𝑖𝑘𝑖

= 𝑃𝑖1𝑖𝑃𝑖2𝑖1 ⋯𝑃𝑖𝑘𝑖𝑘−1𝜋𝑖𝑘𝑃𝑖𝑘𝑖

= 𝑃𝑖1𝑖𝑃𝑖2𝑖1 ⋯𝑃𝑖𝑘𝑖𝑘−1𝑃𝑖𝑖𝑘 𝜋𝑖

Eliminate 𝜋𝑖 on both sides, finish the proof
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Time-reversible Markov chains

Proof: [Sufficient Condition]

𝑃𝑖𝑖1𝑃𝑖1𝑖2 ⋯𝑃𝑖𝑘−1𝑖𝑘𝑃𝑖𝑘𝑖 = 𝑃𝑖𝑖𝑘𝑃𝑖𝑘𝑖𝑘−1 ⋯𝑃𝑖2𝑖1𝑃𝑖1𝑖

Time-reversible: 𝜋𝑖𝑃𝑖𝑗 = 𝜋𝑗𝑃𝑗𝑖

𝑃𝑖𝑖1𝑃𝑖1𝑖2 ⋯𝑃𝑖𝑘−1𝑖𝑘𝑃𝑖𝑘𝑗𝑃𝑗𝑖 = 𝑃𝑖𝑗𝑃𝑗𝑖𝑘𝑃𝑖𝑘𝑖𝑘−1 ⋯𝑃𝑖2𝑖1𝑃𝑖1𝑖

Summing over all states 𝑖1, 𝑖2, … , 𝑖𝑘

𝑃𝑖𝑗
𝑘+1 𝑃𝑗𝑖 = 𝑃𝑖𝑗𝑃𝑗𝑖

𝑘+1

1

𝑛
σ𝑘=1
𝑛 𝑃𝑖𝑗

𝑘+1 𝑃𝑗𝑖 =
1

𝑛
σ𝑘=1
𝑛 𝑃𝑗𝑖

𝑘+1 𝑃𝑖𝑗

Let 𝑛 → ∞ 𝜋𝑗𝑃𝑗𝑖 = 𝜋𝑖𝑃𝑖𝑗

Note that 
lim
𝑛→∞

𝑎𝑛 = 𝑎 ⇒

lim
𝑛→∞

1

𝑛
σ𝑘=1
𝑛 𝑎𝑘 = 𝑎

a
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Time-reversible Markov chains

Theorem: Consider an irreducible Markov chain with transition 
probabilities 𝑃𝑖𝑗. If one can find nonnegative numbers 𝜋𝑖, 𝑖 ≥ 0, 

summing to unity, and a transition probability matrix 𝑷∗ = [𝑃𝑖𝑗
∗ ]

such that
𝜋𝑖𝑃𝑖𝑗 = 𝜋𝑗𝑃𝑗𝑖

∗

then 𝜋𝑖, 𝑖 ≥ 0 are the stationary probabilities of the original chain, and 
𝑃𝑖𝑗
∗ are the transition probabilities of the reverse chain

Proof: 

𝜋𝑖, 𝑖 ≥ 0 are also the stationary probabilities of the reverse chain
Leave as the exercise

σ𝑖 𝜋𝑖𝑃𝑖𝑗 = σ𝑖 𝜋𝑗𝑃𝑗𝑖
∗ = 𝜋𝑗 σ𝑖 𝑃𝑗𝑖

∗ = 𝜋𝑗a

⇒ 𝜋𝑖, 𝑖 ≥ 0 are the stationary probabilities of the original chain

𝑃𝑗𝑖
∗ =

𝜋𝑖𝑃𝑖𝑗

𝜋𝑗
are the transition probabilities of the reverse chain
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Markov chain Monte Carlo

Suppose 𝑋 ∈ {𝑥𝑖 , 𝑖 ≥ 1} is a discrete random variable with 
probability distribution 𝜋𝑖 = 𝑃(𝑋 = 𝑥𝑖), and ℎ is a function

How to calculate 𝐸 ℎ 𝑋 = σ𝑖 ℎ 𝑥𝑖 𝜋𝑖?

Monte Carlo Method: draw samples 𝑋1, 𝑋2, … , 𝑋𝑛 from the 

probability distribution of 𝑋, use 
1

𝑛
σ𝑖=1
𝑛 ℎ 𝑋𝑖 to estimate 𝐸 ℎ 𝑋

Problem:

Practical situations: 𝜋𝑖 can be calculated, but hard to be sampled 

Problem: How to generate a set of independent samples of 𝑋?
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Markov chain Monte Carlo

Theorem: If {𝑋𝑛, 𝑛 ≥ 0} is an irreducible Markov chain 
with stationary distribution 𝜋𝑖, and ℎ is a bounded 
function over the state space {𝑥𝑖 , 𝑖 ≥ 1}, then 

lim
𝑛→∞

1

𝑛
෍

𝑖=1

𝑛

ℎ 𝑋𝑖 = 𝐸 ℎ 𝑋 =෍

𝑖

ℎ 𝑥𝑖 𝜋𝑖

Proof: 

Now we only need to construct an irreducible Markov chain with 
stationary distribution being the desired probability distribution

Let 𝑎𝑖(𝑛) denote the number of transitions into 𝑥𝑖 by time 𝑛
1

𝑛
σ𝑖=1
𝑛 ℎ 𝑋𝑖 =σ𝑖

𝑎𝑖(𝑛)

𝑛
ℎ 𝑥𝑖 a

With probability 1,
𝑎𝑖(𝑛)

𝑛
→

1

𝜇𝑖𝑖
= 𝜋𝑖 as 𝑛 → ∞

lim
𝑛→∞

1

𝑛
σ𝑖=1
𝑛 ℎ 𝑋𝑖 = σ𝑖 ℎ 𝑥𝑖 𝜋𝑖a

Since there is already a 
stationary distribution, 
the MC must be 
positive recurrent
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Markov chain Monte Carlo

Theorem: Suppose {𝜋𝑖 , 𝑖 ∈ 𝑆} is a probability distribution, 
there exists a time-reversible Markov chain {𝑋𝑛, 𝑛 ≥ 0}
with state space 𝑆 and stationary distribution 𝜋𝑖

Proof: 

W.l.o.g., we assume 𝑆 = {0,1, … }, let 𝑄 be the transition probability 
matrix of an irreducible Markov chain such that 

∀𝑖 ≠ 𝑗, 𝑄𝑖𝑗 = 0 ⇔ 𝑄𝑗𝑖 = 0

Target: construct 𝑃 such that 𝜋𝑖𝑃𝑖𝑗 = 𝜋𝑗𝑃𝑗𝑖

Now we construct 𝑃 as follows:
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Markov chain Monte Carlo

𝛼𝑖𝑗 = 1 𝑃𝑖𝑗 = 𝑄𝑖𝑗𝛼𝑖𝑗

𝑄𝑖𝑗 > 0 𝛼𝑖𝑗 = min
𝜋𝑗𝑄𝑗𝑖
𝜋𝑖𝑄𝑖𝑗

, 1

𝑄𝑖𝑗 = 0

𝑃𝑖𝑖 = 𝑄𝑖𝑖 +෍
𝑗≠𝑖

𝑄𝑖𝑗(1 − 𝛼𝑖𝑗)

Now we examine for 𝑗 ≠ 𝑖 (the case 𝑗 = 𝑖 is trivial)

case 1: 𝛼𝑖𝑗 < 1, then 𝛼𝑗𝑖 = 1 by the definition of 𝛼𝑖𝑗, thus

𝜋𝑖𝑃𝑖𝑗 = 𝜋𝑖𝑄𝑖𝑗𝛼𝑖𝑗 = 𝜋𝑗𝑄𝑗𝑖 = 𝜋𝑗𝑄𝑗𝑖𝛼𝑗𝑖 = 𝜋𝑗𝑃𝑗𝑖
case 2: 𝛼𝑖𝑗 = 1, then 𝜋𝑗𝑄𝑗𝑖 ≥ 𝜋𝑖𝑄𝑖𝑗 and 𝛼𝑗𝑖 ≤ 1, thus

𝜋𝑖𝑃𝑖𝑗 = 𝜋𝑖𝑄𝑖𝑗 = 𝜋𝑗𝑄𝑗𝑖𝛼𝑗𝑖 = 𝜋𝑗𝑃𝑗𝑖

Thus,       holds, which implies
• 𝜋𝑖 is the stationary distribution of the MC w.r.t. to 𝑃 (sum over 𝑖)
• the MC w.r.t. to 𝑃 is time-reverse

𝑃 is a transition probability matrix such that ∀𝑖 ≠ 𝑗, 𝑃𝑖𝑗 = 0 ⇔ 𝑃𝑗𝑖 = 0, and 

the MC w.r.t. 𝑃 is irreducible
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Metropolis sampling

Metropolis Sampling:

1. 𝑋0 is initialized with any value

2. Suppose the current state 𝑋𝑘 = 𝑖

3. Sample a random number 𝑗 from the probability distribution {𝑄𝑖𝑗 , 𝑗 ≥ 0}

4. If  
𝜋𝑗𝑄𝑗𝑖

𝜋𝑖𝑄𝑖𝑗
≥ 1, then 𝑋𝑘+1 = 𝑗 and go to step 2

5. Otherwise, sample a random number 𝑟 from the uniform distribution 

𝑈(0,1). If 𝑟 ≤
𝜋𝑗𝑄𝑗𝑖

𝜋𝑖𝑄𝑖𝑗
, then 𝑋𝑘+1 = 𝑗, otherwise 𝑋𝑘+1 = 𝑖. Go to step 2

𝛼𝑖𝑗 = 1 𝑃𝑖𝑗 = 𝑄𝑖𝑗𝛼𝑖𝑗

𝑄𝑖𝑗 > 0 𝛼𝑖𝑗 = min
𝜋𝑗𝑄𝑗𝑖
𝜋𝑖𝑄𝑖𝑗

, 1

𝑄𝑖𝑗 = 0

𝑃𝑖𝑖 = 𝑄𝑖𝑖 +෍
𝑗≠𝑖

𝑄𝑖𝑗(1 − 𝛼𝑖𝑗)

We need to set a transition 
probability matrix 𝑸
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Gibbs sampling

Suppose 𝒁 = (𝑍1, … , 𝑍𝑛) is a discrete random variable, and 𝑆 is 
the set of all possible values of 𝒁

Assumption 1: for all 𝒛 ∈ 𝑆, 

𝜋𝒛 = 𝑃 𝒁 = 𝒛 = 𝑐 ⋅ 𝑔(𝒛)

where 𝑐 > 0

Assumption 2: for all 1 ≤ 𝑖 ≤ 𝑛, and 𝑧𝑗, 1 ≤ 𝑗 ≤ 𝑛, 𝑗 ≠ 𝑖, the 

conditional probability distribution

𝑃 𝑍𝑖 =⋅∣ 𝑍𝑗 = 𝑧𝑗 ∀𝑗 ≠ 𝑖

exists and is known  
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Gibbs sampling

Set a specific transition probability matrix 𝑸

𝑄𝒙𝒚 = 0

𝑄𝒙𝒙 = 1 −෍

𝒚≠𝒙

𝑄𝒙𝒚 = 1 −
1

𝑛
෍

𝑖=1

𝑛

1 − 𝑃 𝑍𝑖 = 𝑥𝑖 𝑍𝑗 = 𝑥𝑗 ∀𝑗 ≠ 𝑖

• If 𝒙 and 𝒚 are different on only one dimension, denoted as 𝑖, 

• If 𝒙 and 𝒚 are different on at least two dimensions,

𝑄𝒙𝒚 =
1

𝑛
𝑃 𝑍𝑖 = 𝑦𝑖 𝑍𝑗 = 𝑥𝑗 ∀𝑗 ≠ 𝑖 =

𝑐𝑔(𝒚)

𝑛𝑃(𝑍𝑗 = 𝑥𝑗 ∀𝑗 ≠ 𝑖)

• If 𝒙 = 𝒚, then

=
𝑐𝑔(𝒙)

𝑛
෍

𝑖=1

𝑛
1

𝑃(𝑍𝑗 = 𝑥𝑗 ∀𝑗 ≠ 𝑖)

✓ ∀𝒙 ≠ 𝒚:𝑄𝒙𝒚 = 0 iff 𝑄𝒚𝒙 = 0

✓ The Markov chain w.r.t. 
𝑸 is irreducible
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Gibbs sampling

𝛼𝑖𝑗 = 1 𝑃𝑖𝑗 = 𝑄𝑖𝑗𝛼𝑖𝑗

𝑄𝑖𝑗 > 0 𝛼𝑖𝑗 = min
𝜋𝑗𝑄𝑗𝑖
𝜋𝑖𝑄𝑖𝑗

, 1

𝑄𝑖𝑗 = 0

𝑃𝑖𝑖 = 𝑄𝑖𝑖 +෍
𝑗≠𝑖

𝑄𝑖𝑗(1 − 𝛼𝑖𝑗)

𝛼𝒙𝒚 = min
𝜋𝒚𝑄𝒚𝒙

𝜋𝒙𝑄𝒙𝒚
, 1𝑄𝒙𝒚 > 0 = min

𝑐𝑔 𝒚 ⋅ 𝑐𝑔(𝒙)

𝑐𝑔(𝒙) ⋅ 𝑐𝑔(𝒚)
, 1 = 1

∀𝒙 ≠ 𝒚: 𝑃𝒙𝒚 = 𝑄𝒙𝒚𝛼𝒙𝒚 = 𝑄𝒙𝒚

𝑃𝒙𝒙 = 𝑄𝒙𝒙 +෍
𝒚≠𝒙

𝑄𝒙𝒚(1 − 𝛼𝒙𝒚) = 𝑄𝒙𝒙

𝑷 = 𝑸
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Gibbs sampling

1. 𝑋0 is initialized with any 𝒙0 ∈ 𝑆

2. Suppose the current state 𝑋𝑘 = 𝒙 = 𝑥1, … , 𝑥𝑛 ∈ 𝑆

3. Sample a random number 𝑖 uniformly from {1,2, … , 𝑛}

4. Sample a random value 𝑥 from the conditional probability distribution

5. 𝑋𝑘+1 = 𝑥1, … , 𝑥𝑖−1, 𝑥, 𝑥𝑖+1, … , 𝑥𝑛 . Go to step 2

Gibbs Sampling:

𝑃 𝑍𝑖 =⋅∣ 𝑍𝑗 = 𝑥𝑗 ∀𝑗 ≠ 𝑖

Thus, Gibbs sampling is actually Metropolis sampling with 
a specific matrix 𝑄, under some assumptions about the 
desired probability distribution 
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Semi-Markov processes

Consider a stochastic process with states 0,1,…, which is such 
that, whenever it enters state 𝑖, 𝑖 ≥ 0:

• The next state it will enter is state 𝑗 with probability 𝑃𝑖𝑗 , 𝑖, 𝑗 ≥ 0

• Given that the next state to be entered is state 𝑗, the time until the 
transition from 𝑖 to 𝑗 occurs has distribution 𝐹𝑖𝑗

If we let 𝑍(𝑡) denote the state at time 𝑡, then {𝑍(𝑡), 𝑡 ≥ 0} is 
called a semi-Markov process

✓ A semi-Markov process does not possess the Markovian property

✓ A Markov chain is a semi-Markov process in which

𝐹𝑖𝑗 𝑡 = ቊ
0 𝑡 < 1
1 𝑡 ≥ 1
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Semi-Markov processes

Proposition: If the semi-Markov process is irreducible and if 
𝑇𝑖𝑖 has a nonlattice distribution with finite mean, then

𝑃𝑖 = lim
𝑡→∞

𝑃 𝑍 𝑡 = 𝑖 𝑍 0 = 𝑗 =
𝜇𝑖
𝜇𝑖𝑖

, ∀𝑖, 𝑗

Let 𝑋𝑛 denote the 𝑛th state visited, then {𝑋𝑛, 𝑛 ≥ 0} with transition 
probabilities 𝑃𝑖𝑗 is called the embedded Markov chain of the semi-

Markov process

• 𝜏𝑖: time that the process spends in state 𝑖 before making a transition

• 𝑇𝑖𝑖: time between successive transitions into state 𝑖

𝜇𝑖 = 𝐸[𝜏𝑖]

𝜇𝑖𝑖 = 𝐸[𝑇𝑖𝑖]

𝑃 𝜏𝑖 ≤ 𝑡 =෍

𝑗

𝑃𝑖𝑗𝐹𝑖𝑗(𝑡)
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Semi-Markov processes

Proposition: If the semi-Markov process is irreducible and if 
𝑇𝑖𝑖 has a nonlattice distribution with finite mean, then

𝑃𝑖 = lim
𝑡→∞

𝑃 𝑍 𝑡 = 𝑖 𝑍 0 = 𝑗 =
𝜇𝑖
𝜇𝑖𝑖

, ∀𝑖, 𝑗

Proof: 

𝑍2 𝑌2

on off

state 𝑖 state 𝑖

A delayed alternating renewal process

renewal occursrenewal occurs

on: in state 𝑖

off: not in state 𝑖
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Semi-Markov processes

Proposition: If the semi-Markov process is irreducible and if 
𝑇𝑖𝑖 has a nonlattice distribution with finite mean, then

𝑃𝑖 = lim
𝑡→∞

𝑃 𝑍 𝑡 = 𝑖 𝑍 0 = 𝑗 =
𝜇𝑖
𝜇𝑖𝑖

, ∀𝑖, 𝑗

Theorem: If 𝐸[𝑍𝑛 + 𝑌𝑛] < ∞ and 𝐹 is nonlattice, then  

lim
𝑡→∞

𝑃 𝑡 = 𝑃 system is on at time 𝑡 =
𝐸[𝑍𝑛]

𝐸 𝑍𝑛 + 𝐸[𝑌𝑛]

𝐸 𝑍𝑛 = 𝐸[𝜏𝑖] = 𝜇𝑖

𝐸 𝑍𝑛 + 𝐸 𝑌𝑛 = 𝐸 𝑇𝑖𝑖 = 𝜇𝑖𝑖
lim
𝑡→∞

𝑃 𝑡 = 𝑃𝑖

from the part of alternating renewal process in lecture 3
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Semi-Markov processes

Theorem: If the semi-Markov process is irreducible and not 
lattice, then

lim
𝑡→∞

𝑃 𝑍 𝑡 = 𝑖, 𝑌 𝑡 > 𝑥, 𝑆 𝑡 = 𝑗 𝑍 0 = 𝑘 =
𝑃𝑖𝑗 𝑥׬

∞ ത𝐹𝑖𝑗 𝑦 𝑑𝑦

𝜇𝑖𝑖

Proof: 

time from 𝑡 until 
the next transition

state entered at the 
first transition after 𝑡

𝑍2 𝑌2

on off

state 𝑖 state 𝑖

A delayed alternating renewal process

renewal occursrenewal occurs

on: the state is 𝑖, and will 

remain 𝑖 for at least the next 𝑥
time units; the next state is 𝑗

off: otherwise



http://www.lamda.nju.edu.cn/qianc/

Semi-Markov processes

Proof: 

lim
𝑡→∞

𝑃 𝑍 𝑡 = 𝑖, 𝑌 𝑡 > 𝑥, 𝑆 𝑡 = 𝑗 𝑍 0 = 𝑘

lim
𝑡→∞

𝑃 𝑡 = 𝑃 system is on at time 𝑡 =
𝐸[𝑍𝑛]

𝐸 𝑍𝑛 + 𝐸[𝑌𝑛]
?

𝐸 𝑍𝑛 + 𝐸 𝑌𝑛 = 𝐸 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎 𝑐𝑦𝑐𝑙𝑒 = 𝐸 𝑇𝑖𝑖 = 𝜇𝑖𝑖

𝐸 𝑍𝑛 = 𝐸 "on" 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑎 𝑐𝑦𝑐𝑙𝑒 = 𝑃𝑖𝑗𝐸[max {𝜏𝑖𝑗 − 𝑥, 0}]

time to make a transition from 𝑖 to 𝑗, 
i.e., a random variable having distribution 𝐹𝑖𝑗
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Semi-Markov processes

Proof: 

lim
𝑡→∞

𝑃 𝑍 𝑡 = 𝑖, 𝑌 𝑡 > 𝑥, 𝑆 𝑡 = 𝑗 𝑍 0 = 𝑘

lim
𝑡→∞

𝑃 𝑡 = 𝑃 system is on at time 𝑡 =
𝐸[𝑍𝑛]

𝐸 𝑍𝑛 + 𝐸[𝑌𝑛]
?

𝐸 𝑍𝑛 + 𝐸 𝑌𝑛 = 𝐸 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎 𝑐𝑦𝑐𝑙𝑒 = 𝐸 𝑇𝑖𝑖 = 𝜇𝑖𝑖

𝐸 𝑍𝑛 = 𝐸 "on" 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑎 𝑐𝑦𝑐𝑙𝑒 = 𝑃𝑖𝑗𝐸[max {𝜏𝑖𝑗 − 𝑥, 0}]
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Semi-Markov processes

Theorem: If the semi-Markov process is irreducible and not 
lattice, then

lim
𝑡→∞

𝑃 𝑍 𝑡 = 𝑖, 𝑌 𝑡 > 𝑥 𝑍 0 = 𝑘 =
𝑥׬
∞
𝑃 𝜏𝑖 > 𝑦 𝑑𝑦

𝜇𝑖𝑖

𝜏𝑖: time that the process spends in state 𝑖 before making 
a transition

෍

𝑗

𝑃𝑖𝑗 𝑥׬
∞ ത𝐹𝑖𝑗 𝑦 𝑑𝑦

𝜇𝑖𝑖
=
𝑥׬
∞
σ𝑗 𝑃𝑖𝑗 ത𝐹𝑖𝑗 𝑦 𝑑𝑦

𝜇𝑖𝑖
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Summary

• Markov chain

• Chapman-Kolmogorov equations and classification of states

• Stationary distribution

• Transitions and gambler's ruin problem

• Branching processes

• Time-reversible Markov chains and MCMC

• Semi-Markov processes

References: Chapter 4, Markov Chains, 2nd edition, 

1995, by Sheldon M. Ross


