Last class

- Markov chain
- Chapman-Kolmogorov equations and classification of states
- Stationary distribution
- Transitions and gambler's ruin problem
- Branching processes
- Time-reversible Markov chains and MCMC
- Semi-Markov processes

References: Chapter 4, Markov Chains, 2nd edition, 1995, by Sheldon M. Ross Schatl af Artificial Intelligence，Nanding University

Stochastic Processes Lecture 5：Martingales

Chao Qian（钱超）

Associate Professor，Nanjing University，China

Email：qianc＠nju．edu．cn Homepage：http：／／www．lamda．nju．edu．cn／qianc／

Martingales

A stochastic process $\left\{Z_{n}, n \geq 1\right\}$ is said to be a martingale process if $\forall n: E\left[\left|Z_{n}\right|\right]<\infty$ and

$$
E\left[Z_{n+1} \mid Z_{1}, Z_{2}, \ldots, Z_{n}\right]=Z_{n}
$$

$\Rightarrow \quad E\left[Z_{n+1}\right]=E\left[Z_{n}\right]=\cdots=E\left[Z_{1}\right]$
Example 1: Let X_{1}, X_{2}, \ldots be independent random variables with mean 0 ; and let $Z_{n}=\sum_{i=1}^{n} X_{i}$. Then $\left\{Z_{n}, n \geq 1\right\}$ is a martingale.
Proof: $E\left[Z_{n+1} \mid Z_{1}, Z_{2}, \ldots, Z_{n}\right]$

$$
\begin{aligned}
&=E\left[Z_{n}+X_{n+1} \mid Z_{1}, Z_{2}, \ldots, Z_{n}\right] \\
&=E\left[Z_{n} \mid Z_{1}, Z_{2}, \ldots, Z_{n}\right]+E\left[X_{n+1} \mid Z_{1}, Z_{2}, \ldots, Z_{n}\right] \\
&=Z_{n}+E\left[X_{n+1}\right]=Z_{n} \\
& X_{i} \text { is independent } \quad E\left[X_{i}\right]=0 \\
& \hline
\end{aligned}
$$

Martingales

Example 2: Let X_{1}, X_{2}, \ldots be independent random variables with $E\left[X_{i}\right]=1$; and let $Z_{n}=\prod_{i=1}^{n} X_{i}$. Then $\left\{Z_{n}, n \geq 1\right\}$ is a martingale.
Proof: $E\left[Z_{n+1} \mid Z_{1}, Z_{2}, \ldots, Z_{n}\right]$

$$
\begin{aligned}
& =E\left[Z_{n} \cdot X_{n+1} \mid Z_{1}, Z_{2}, \ldots, Z_{n}\right] \\
& =Z_{n} \cdot E\left[X_{n+1} \mid Z_{1}, Z_{2}, \ldots, Z_{n}\right] \\
& =Z_{n} \cdot E\left[X_{n+1}\right]=Z_{n} \\
& \downarrow
\end{aligned}
$$

X_{i} is independent
Example 3: Consider a branching process, and let X_{n} denote the size of the nth generation. If m is the mean number of offspring per individual, then $\left\{Z_{n}, n \geq 1\right\}$ is a martingale when

$$
Z_{n}=X_{n} / m^{n}
$$

Leave as the exercise

Martingales

Another way to prove martingale

$$
\left.E\left[Z_{n+1} \mid Z_{1}, Z_{2}, \ldots, Z_{n}, Y\right)\right]=Z_{n} \quad \square \quad \text { Martingale }
$$

Why?

$$
\begin{aligned}
& E\left[Z_{n+1} \mid Z_{1}, Z_{2}, \ldots, Z_{n}\right] \\
& =E\left[E\left[Z_{n+1} \mid Z_{1}, Z_{2}, \ldots, Z_{n}, \boldsymbol{Y}\right] \mid Z_{1}, Z_{2}, \ldots, Z_{n}\right] \\
& =E\left[Z_{n} \mid Z_{1}, Z_{2}, \ldots, Z_{n}\right] \\
& =Z_{n}
\end{aligned}
$$

Martingales

Example 4: Let X, Y_{1}, Y_{2}, \ldots be arbitrary random variables such that $E[|X|]<\infty$; and let $Z_{n}=E\left[X \mid Y_{1}, \ldots, Y_{n}\right]$. Then $\left\{Z_{n}, n \geq 1\right\}$ is a martingale.
Proof:

$$
\left.\begin{array}{ll}
E\left[Z_{n+1} \mid Z_{1}, \ldots, Z_{n}, Y_{1}, \ldots, Y_{n}\right] \\
=E\left[Z_{n+1} \mid Y_{1}, \ldots, Y_{n}\right] & Z_{1}, \ldots, Z_{n} \text { are determined } \\
\text { by } Y_{1}, \ldots, Y_{n}
\end{array}\right] \begin{array}{ll}
=E\left[E\left[X \mid Y_{1}, \ldots, Y_{n}, Y_{n+1}\right] \mid Y_{1}, \ldots, Y_{n}\right] \quad \text { Definition of } Z_{n+1} \\
=E\left[X \mid Y_{1}, \ldots, Y_{n}\right]=Z_{n} \quad \text { Conditional expectation }
\end{array}
$$

Martingales

Example 5: For any random variables X_{1}, X_{2}, \ldots, let

$$
Z_{n}=\sum_{i=1}^{n}\left(X_{i}-E\left[X_{i} \mid X_{1}, \ldots, X_{i-1}\right]\right)
$$

If $E\left[\left|Z_{n}\right|<\infty\right]$, then $\left\{Z_{n}, n \geq 1\right\}$ is a martingale.
Proof:

$$
\begin{aligned}
& Z_{n+1}=Z_{n}+X_{n+1}-E\left[X_{n+1} \mid X_{1}, \ldots, X_{n}\right] \\
& E\left[Z_{n+1} \mid Z_{1}, \ldots, Z_{n}, X_{1}, \ldots, X_{n}\right] \\
& =E\left[Z_{n+1} \mid X_{1}, \ldots, X_{n}\right] \\
& =Z_{n}, \ldots, Z_{n} \text { are determined by } X_{1}, \ldots, X_{n} \\
& \left.=Z_{n+1} \mid X_{1}, \ldots, X_{n}\right]-E\left[X_{n+1} \mid X_{1}, \ldots, X_{n}\right]
\end{aligned}
$$

Stopping times

Random time: The positive integer-valued, possibly infinite, random variable N is said to be a random time for the process $\left\{Z_{n}, n \geq 1\right\}$ if the event $\{N=n\}$ is determined by the random variables Z_{1}, \ldots, Z_{n}.

Stopping time: If $P(N<\infty)=1$, then the random time N is said to be a stopping time

Stopping time: An integer-valued random variable N is said to be a stopping time for the sequence of independent random variables X_{1}, X_{2}, \ldots, if the event $\{N=n\}$ is independent of X_{n+1}, X_{n+2}, \ldots, for all $n=1,2, \ldots$

From Lecture 3

Stopped process

Let N be a random time for the process $\left\{Z_{n}, n \geq 1\right\}$ and let

$$
\bar{Z}_{n}= \begin{cases}Z_{n} & \text { if } n \leq N \\ Z_{N} & \text { if } n>N\end{cases}
$$

$\left\{\bar{Z}_{n}, n \geq 1\right\}$ is called the stopped process
Proposition: If N is a random time for the martingale $\left\{Z_{n}, n \geq 1\right\}$, then the stopped process $\left\{\bar{Z}_{n}, n \geq 1\right\}$ is also a martingale
Proof: \quad Let $I_{n}=\left\{\begin{array}{ll}1 & \text { if } N \geq n \\ 0 & \text { if } N<n\end{array}\right.$ (i. e., not stopped after observing Z_{1}, \ldots, Z_{n-1})

$$
\Rightarrow \bar{Z}_{n}=\bar{Z}_{n-1}+I_{n}\left(Z_{n}-Z_{n-1}\right)
$$

Stopped process

$$
\bar{Z}_{n}=\bar{Z}_{n-1}+I_{n}\left(Z_{n}-Z_{n-1}\right)
$$

Verify the above equation:

1. $N \geq n: \bar{Z}_{n}=Z_{n}, \bar{Z}_{n-1}=Z_{n-1}, I_{n}=1$, the equation holds
2. $N<n: \bar{Z}_{n}=Z_{N}, \bar{Z}_{n-1}=Z_{N}, I_{n}=0$, the equation holds
$E\left[\bar{Z}_{n} \mid Z_{1}, Z_{2}, \ldots, Z_{n-1}\right]=E\left[\bar{Z}_{n-1}+I_{n}\left(Z_{n}-Z_{n-1}\right) \mid Z_{1}, Z_{2}, \ldots, Z_{n-1}\right]$
$\begin{array}{ll}\bar{Z}_{n-1} \text { and } I_{n} \text { can be } & =\bar{Z}_{n-1}+I_{n} \cdot \frac{E\left[Z_{n}-Z_{n-1} \mid Z_{1}, Z_{2}, \ldots, Z_{n-1}\right]}{\downarrow} \\ & =\bar{Z}_{n-1}\end{array}$
$Z_{1}, \ldots, Z_{n-1} \quad=0$ because $\left\{Z_{n}, n \geq 1\right\}$ is a martingale
$E\left[\bar{Z}_{n} \mid \bar{Z}_{1}, \ldots, \bar{Z}_{n-1}, Z_{1}, \ldots, Z_{n-1}\right]=E\left[\bar{Z}_{n} \mid Z_{1}, Z_{2}, \ldots, Z_{n-1}\right]$
$\bar{Z}_{1}, \ldots, \bar{Z}_{n-1}$ are determined $=\bar{Z}_{n-1}$
by Z_{1}, \ldots, Z_{n-1}

Martingale stopping theorem

Martingale stopping theorem: If either
$\checkmark \bar{Z}_{n}$ are uniformly bounded, or
\checkmark (A) is bounded, or stopping time
$\checkmark E[N]<\infty$, and there is an $M<\infty$ such that

$$
E\left[\left|Z_{n+1}-Z_{n}\right| \mid Z_{1}, \ldots, Z_{n}\right]<M
$$

then

$$
E\left[Z_{N}\right]=E\left[Z_{1}\right]
$$

Proof:

$$
\begin{gathered}
E\left[\bar{Z}_{n}\right]=E\left[\bar{Z}_{1}\right]=E\left[Z_{1}\right] \\
\bar{Z}_{n} \rightarrow Z_{N} \text { as } n \rightarrow \infty \text { with probability } 1
\end{gathered}
$$

Martingale stopping theorem

Martingale stopping theorem: If either
$\checkmark \bar{Z}_{n}$ are uniformly bounded, or
\checkmark (A) is bounded, or stopping time
$\checkmark E[N]<\infty$, and there is an $M<\infty$ such that

$$
E\left[\left|Z_{n+1}-Z_{n}\right| \mid Z_{1}, \ldots, Z_{n}\right]<M
$$

then

$$
E\left[Z_{N}\right]=E\left[Z_{1}\right]
$$

Proof:

$$
E\left[\bar{Z}_{n}\right]=E\left[\bar{Z}_{1}\right]=E\left[Z_{1}\right]
$$

$E\left[\bar{Z}_{n}\right] \rightarrow E\left[Z_{N}\right]$ as $n \rightarrow \infty$

Martingale stopping theorem

Wald's Equation: If X_{1}, X_{2}, \ldots are iid random variables having
finite expectations, and if N is a stopping time for X_{1}, X_{2}, \ldots such that $E[N]<\infty$, then

$$
E\left[\sum_{n=1}^{N} X_{n}\right]=E[N] E[X]
$$

Another Proof using martingale stopping theorem:
Let $E[X]=\mu$

$$
Z_{n}=\sum_{i=1}^{n}\left(X_{i}-\mu\right) \quad \square \text { a martingale }
$$

Martingale stopping theorem

$$
Z_{n}=\sum_{i=1}^{n}\left(X_{i}-\mu\right) \quad \square \text { a martingale }
$$

Verify the third condition of martingale stopping theorem:

$$
\begin{aligned}
& E[N]<\infty \\
& \begin{aligned}
E\left[\left|Z_{n+1}-Z_{n}\right| \mid Z_{1}, \ldots, Z_{n}\right] & =E\left[\left|X_{n+1}-\mu\right| \mid Z_{1}, \ldots, Z_{n}\right] \\
& =E\left[\left|X_{n+1}-\mu\right|\right] \\
& \leq E\left[\left|X_{n+1}\right|\right]+|\mu|<\infty
\end{aligned}
\end{aligned}
$$

Apply martingale stopping theorem:

$$
\begin{aligned}
& E\left[Z_{N}\right]=E\left[Z_{1}\right]=0 \\
& =E\left[\sum_{i=1}^{N}\left(X_{i}-\mu\right)\right]=E\left[\sum_{i=1}^{N} X_{i}-N \mu\right]=E\left[\sum_{i=1}^{N} X_{i}\right]-E[N] \mu
\end{aligned}
$$

Martingale stopping theorem

Example: At a party, n people put their hats in the center of a room where the hats are mixed together. Each person then randomly selects one. Those choosing their own hats depart, while the others (those without a match) put their selected hats in the center of the room, mix them up, and then reselect. Let R denote the number of rounds until all people have a match. What is $E[R]$?

Solution:

Let X_{i} denote the number of matches on the i th round
Note that $X_{i}=1$ for $i>R$

$$
Z_{k}=\sum_{i=1}^{k}\left(X_{i}-E\left[X_{i} \mid X_{1}, \ldots, X_{i-1}\right]\right) \quad \text { a martingale }
$$

Martingale stopping theorem

$$
\text { Note: } X_{i}=1 \text { for } i>R
$$

Let X_{i} denote the number of matches on the i th round
a martingale $\quad Z_{k}=\sum_{i=1}^{k}\left(X_{i}-E\left[X_{i} \mid X_{1}, \ldots, X_{i-1}\right]\right)=\sum_{i=1}^{k}\left(X_{i}-1\right)$
R is the stopping time of $\left\{Z_{k}, k \geq 1\right\}$
$E\left[\left|Z_{k+1}-Z_{k}\right| \mid Z_{1}, \ldots, Z_{k}\right]=E\left[\left|X_{k+1}-1\right| \mid Z_{1}, \ldots, Z_{k}\right] \leq 2$
Applying martingale stopping theorem:

$$
0=E\left[Z_{1}\right]=E\left[Z_{R}\right]=E\left[\sum_{i=1}^{R}\left(X_{i}-1\right)\right]=E\left[\sum_{i=1}^{R} X_{i}\right]-E[R]=n-E[R]
$$

Martingale stopping theorem

Example: Suppose that a sequence of iid discrete random variables is observed sequentially, one at each day. What is the expected number N that must be observed until some given sequence appears?

In Lecture 3, we have used delayed renewal process to compute it
Now, we will show how to use the martingale stopping theorem to compute it?

Example: More specifically, suppose that each outcome is either 0,1 , or 2 with respective probabilities $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{6}$, and we desire the expected time until the run 020 occurs

Martingale stopping theorem

Construct a fair gambling model for the pattern " 020 "

A gambler begins

If 0 , get 2 units If 2 , get 12 units If 0 , get 24 units and leave

The gambler will lose 1 unit if any of her bets fails and will win 23 if all three of her bets succeed

Martingale stopping theorem

0 with probability $1 / 2$
1 with probability $1 / 3$
2 with probability $1 / 6$
A gambler begins

Why fair?
If 0 , get 2 units If 2 , get 12 units
If 0 , get 24 units and leave
Suppose $P(Z=1)=p, P(Z=0)=1-p$
Bet a units for 1: $\left\{\begin{array}{l}\text { if } 1 \text { get } x \text { units } \\ \text { if } 0 \text { lose } a \text { units }\end{array}\right.$
Fair $\Leftrightarrow E[$ winning $]=0$
$\Leftrightarrow p(x-a)+(1-p)(-a)=0 \Leftrightarrow x=\frac{a}{p}{ }^{\frac{1}{2} \times(24-12)+\frac{1}{2} \times(-12)=0}$
The expected winning of the gambler at each time is 0

Martingale stopping theorem

fair gambling casino

begins

gambler 2 gambler 3
begins begins
gambler n
begins

Let X_{n} denote the total winnings of the casino after the nth day
\downarrow all bets are fair

$$
\left\{X_{n}, n \geq 1\right\} \text { is a martingale }
$$

Martingale stopping theorem

The required number N for " 020 " is a stopping time for $\left\{X_{n}, n \geq 1\right\}$

Each of the first $N-3 \quad$ Gambler $N-2$ Gambler $N-1$ Gambler N gamblers loses 1 unit wins 23 units loses 1 unit wins 1 unit

$$
\begin{gathered}
X_{N}=(N-3)-23+1-1=N-26 \\
N=\min \left\{n: X_{n}=n-26\right\}
\end{gathered}
$$

Martingale stopping theorem

$$
\left\{X_{n}, n \geq 1\right\} \text { is a martingale }
$$

The required number N for " 020 " is a stopping time for $\left\{X_{n}, n \geq 1\right\}$

$$
\left|X_{n+1}-X_{n}\right| \leq 3 * 23
$$

Applying martingale stopping theorem:

$$
\begin{gathered}
E\left[X_{N}\right]=E\left[X_{1}\right]=0 \\
X_{N}=N-26 \\
E[N]=26
\end{gathered}
$$

Martingale stopping theorem

Example: More specifically, suppose that each outcome is either H or T with respective probabilities p and $q=1-p$, and we desire the expected time until HHTTHH occurs

leave as the exercise

Azuma's inequality

Azuma's inequality: Let $Z_{n}, n \geq 1$ be a martingale with mean $\mu=E\left[Z_{n}\right]$. Let $Z_{0}=\mu$ and suppose that for nonnegative constants $\alpha_{i}, \beta_{i}, i \geq 1$,

$$
-\alpha_{i} \leq Z_{i}-Z_{i-1} \leq \beta_{i}
$$

Then for any $n \geq 0, a>0$

$$
\begin{aligned}
& P\left(Z_{n}-\mu \geq a\right) \leq \exp \left\{-2 a^{2} / \sum_{i=1}^{n}\left(\alpha_{i}+\beta_{i}\right)^{2}\right\} \\
& P\left(Z_{n}-\mu \leq-a\right) \leq \exp \left\{-2 a^{2} / \sum_{i=1}^{n}\left(\alpha_{i}+\beta_{i}\right)^{2}\right\}
\end{aligned}
$$

Azuma's inequality

Lemma 1: Let X be such that $E[X]=0$ and $P\{-\alpha \leq X \leq \beta\}=1$. Then for any convex function f

$$
E[f(X)] \leq \frac{\beta}{\alpha+\beta} f(-\alpha)+\frac{\alpha}{\alpha+\beta} f(\beta)
$$

Proof:

$$
\begin{gathered}
\forall-\alpha \leq x \leq \beta, f(x) \leq g(x) \\
E[f(X)] \leq \frac{\beta f(-\alpha)}{\alpha+\beta}+\frac{\alpha f(\beta)}{\alpha+\beta} \\
\quad(\text { by } E[X]=0)
\end{gathered}
$$

Azuma's inequality

Lemma 1: Let X be such that $E[X]=0$ and $P\{-\alpha \leq X \leq \beta\}=1$. Then for any convex function f

$$
E[f(X)] \leq \frac{\beta}{\alpha+\beta} f(-\alpha)+\frac{\alpha}{\alpha+\beta} f(\beta)
$$

Lemma 2: For $0 \leq \theta \leq 1$,

$$
\theta e^{(1-\theta) x}+(1-\theta) e^{-\theta x} \leq e^{x^{2} / 8}
$$

Azuma's inequality

Proof of Azuma's inequality: Suppose first that $\mu=E\left[Z_{n}\right]=0$
For any $c>0$
Markov inequality

$$
P\left(Z_{n} \geq a\right)=P\left(e^{c Z_{n}} \geq e^{c a}\right) \leq E\left[e^{\left.c Z_{n}\right]}\right) e^{-c a}
$$

Let $W_{n}=e^{c Z_{n}}$, then $W_{0}=1$ and for $n>0$

$$
\begin{gathered}
W_{n}=e^{c Z_{n-1}} \cdot e^{c\left(Z_{n}-Z_{n-1}\right)} \\
\left.E\left[W_{n} \mid Z_{n-1}\right]=e^{c Z_{n-1}} \cdot e^{c\left[e^{c\left(Z_{n}-Z_{n-1}\right)}\right.} \mid Z_{n-1}\right]
\end{gathered}
$$

Azuma's inequality

$$
\begin{aligned}
& E\left[W_{n} \mid Z_{n-1}\right]=e^{c Z_{n-1}} \cdot \underset{\left.e^{c\left(Z_{n}-Z_{n-1}\right)} \mid Z_{n-1}\right]}{\longrightarrow} \leq W_{n-1} \cdot\left(\beta_{n} e^{-c \alpha_{n}}+\alpha_{n} e^{c \beta_{n}}\right) /\left(\alpha_{n}+\beta_{n}\right) \\
& \quad \text { by Lemma } 1 \\
& \text { check conditions } \bullet f(x)=e^{c x} \text { is convex } \\
& \text { of Lemma 1: } \cdot-\alpha_{n} \leq Z_{n}-Z_{n-1} \leq \beta_{n} \\
& \cdot E\left[Z_{n}-Z_{n-1} \mid Z_{n-1}\right]=E\left[Z_{n} \mid Z_{n-1}\right]-Z_{n-1}=0
\end{aligned}
$$

Lemma 1: Let X be such that $E[X]=0$ and $P\{-\alpha \leq X \leq \beta\}=1$. Then for any convex function f

$$
E[f(X)] \leq \frac{\beta}{\alpha+\beta} f(-\alpha)+\frac{\alpha}{\alpha+\beta} f(\beta)
$$

Azuma's inequality

$$
\begin{aligned}
& E\left[W_{n} \mid Z_{n-1}\right]=e^{c Z_{n-1}} \cdot\left(e^{c\left(Z_{n}-Z_{n-1}\right)} \mid Z_{n-1}\right] \\
& \leq W_{n-1} \cdot\left(\beta_{n} e^{-c \alpha_{n}}+\alpha_{n} e^{c \beta_{n}}\right) /\left(\alpha_{n}+\beta_{n}\right) \\
& E\left[W_{n}\right] \leq E\left[W_{n-1}\right] \cdot\left(\beta_{n} e^{-c \alpha_{n}}+\alpha_{n} e^{c \beta_{n}}\right) /\left(\alpha_{n}+\beta_{n}\right) \\
& E\left[W_{n}\right] \leq \prod_{i=1}^{n}\left(\beta_{i} e^{-c \alpha_{i}}+\alpha_{i} e^{c \beta_{i}}\right) /\left(\alpha_{i}+\beta_{i}\right)
\end{aligned}
$$

Azuma's inequality

$$
\begin{gathered}
E\left[W_{n}\right] \leq \prod_{i=1}^{n}\left(\beta_{i} e^{-c \alpha_{i}}+\alpha_{i} e^{c \beta_{i}}\right) /\left(\alpha_{i}+\beta_{i}\right) \\
\leq
\end{gathered}
$$

Lemma 2: For $0 \leq \theta \leq 1$,

$$
\theta e^{(1-\theta) x}+(1-\theta) e^{-\theta x} \leq e^{x^{2} / 8}
$$

Azuma's inequality

Proof of Azuma's inequality: Suppose first that $\mu=E\left[Z_{n}\right]=0$ For any $c>0$

$$
\begin{aligned}
& P\left(Z_{n} \geq a\right)=P\left(e^{c Z_{n}} \geq e^{c a}\right) \leq E\left[e^{\left.c Z_{n}\right]}\right] e^{-c a} \\
& \leq e^{-c a} \prod_{i=1}^{n} e^{c^{2}\left(\alpha_{i}+\beta_{i}\right)^{2} / 8}=e^{-c a+c^{2} \sum_{i=1}^{n}\left(\alpha_{i}+\beta_{i}\right)^{2} / 8} \\
& \quad\left\{c=4 a / \sum_{i=1}^{n}\left(\alpha_{i}+\beta_{i}\right)^{2}\right. \\
& \leq e^{-2 a^{2} / \sum_{i=1}^{n}\left(\alpha_{i}+\beta_{i}\right)^{2}}
\end{aligned}
$$

Azuma's inequality

Suppose that $\mu=E\left[Z_{n}\right]=0$, then $P\left(Z_{n} \geq a\right) \leq e^{-2 a^{2} / \sum_{i=1}^{n}\left(\alpha_{i}+\beta_{i}\right)^{2}}$
ఇ. zero-mean martingale $\left\{Z_{n}-\mu\right\}$
Azuma's inequality: Let $Z_{n}, n \geq 1$ be a martingale with mean $\mu=E\left[Z_{n}\right]$. Let $Z_{0}=\mu$ and suppose that for nonnegative constants $\alpha_{i}, \beta_{i}, i \geq 1$,

$$
-\alpha_{i} \leq Z_{i}-Z_{i-1} \leq \beta_{i}
$$

Then for any $n \geq 0, a>0$

$$
P\left(Z_{n}-\mu \geq a\right) \leq \exp \left\{-2 a^{2} / \sum_{i=1}^{n}\left(\alpha_{i}+\beta_{i}\right)^{2}\right\}
$$

Azuma's inequality

Suppose that $\mu=E\left[Z_{n}\right]=0$, then $P\left(Z_{n} \geq a\right) \leq e^{-2 a^{2} / \sum_{i=1}^{n}\left(\alpha_{i}+\beta_{i}\right)^{2}}$
亿 zero-mean martingale $\left\{\mu-Z_{n}\right\}$
Azuma's inequality: Let $Z_{n}, n \geq 1$ be a martingale with mean $\mu=E\left[Z_{n}\right]$. Let $Z_{0}=\mu$ and suppose that for nonnegative constants $\alpha_{i}, \beta_{i}, i \geq 1$,

$$
-\alpha_{i} \leq Z_{i}-Z_{i-1} \leq \beta_{i}
$$

Then for any $n \geq 0, a>0$

$$
P\left(Z_{n}-\mu \leq-a\right) \leq \exp \left\{-2 a^{2} / \sum_{i=1}^{n}\left(\alpha_{i}+\beta_{i}\right)^{2}\right\}
$$

Azuma's inequality

Example: Let X_{1}, \ldots, X_{n} be random variables such that $E\left[X_{1}\right]=0$ and $E\left[X_{i} \mid X_{1}, \ldots, X_{i-1}\right]=0, i>1$. If $-\alpha_{i} \leq X_{i} \leq \beta_{i}$,

$$
P\left(\sum_{i=1}^{n} X_{i} \geq a\right) \leq \exp \left\{-2 a^{2} / \sum_{i=1}^{n}\left(\alpha_{i}+\beta_{i}\right)^{2}\right\}
$$

Solution:

$$
\begin{aligned}
& \quad=\sum_{i=1}^{j}\left(X_{i}-E\left[X_{i} \mid X_{1}, \ldots, X_{i-1}\right]\right) \quad \text { Azuma's inequality } \\
& \sum_{i=1}^{j} X_{i}: \text { a zero-mean martingale } \\
& -\alpha_{j} \leq \sum_{i=1}^{j} X_{i}-\sum_{i=1}^{j-1} X_{i}=X_{j} \leq \beta_{j}
\end{aligned}
$$

Azuma's inequality

Example: Suppose that n balls are put in m urns in such a manner that each ball, independently, is equally likely to go into any of the urns.

Let X the number of empty urns, then $X=\sum_{i=1}^{m} I$ (urn i is empty)

$$
\begin{gathered}
\mu=E[X]=m P(\text { urn } i \text { is empty })=m\left(1-\frac{1}{m}\right)^{n} \\
P(X-\mu \geq a) \leq ? \quad P(X-\mu \leq-a) \leq ?
\end{gathered}
$$

Solution: Let X_{j} denote the urn in which the j th ball is placed

$$
Z_{0}=E[X]
$$

$$
Z_{n}=E\left[X \mid X_{1}, \ldots, X_{n}\right]=X
$$

$Z_{i}=E\left[X \mid X_{1}, \ldots, X_{i}\right]:$ a martingale

Azuma's inequality

To analyze

$$
-\alpha_{i} \leq Z_{i}-Z_{i-1} \leq \beta_{i}
$$

$Z_{i}=E\left[X \mid X_{1}, \cdots, X_{i}\right], Z_{i-1}=E\left[X \mid X_{1}, \cdots, X_{i-1}\right], Z_{1}-Z_{0}=E\left[X \mid X_{1}\right]-E[X]=0$
When $i \geq 2$, let D denote the number of different values taken by
X_{1}, \ldots, X_{i-1}, i.e., the number of non-empty urns
$E\left[X \mid X_{1}, \cdots, X_{i-1}\right]=(m-D)\left(1-\frac{1}{m}\right)^{n-i+1}$
$E\left[X \mid X_{1}, \cdots, X_{i}\right]=\left\{\begin{array}{l}\text { if } X_{i} \in\left\{X_{1}, \ldots, X_{i-1}\right\},(m-D)\left(1-\frac{1}{m}\right)^{n-i} \\ \text { if } X_{i} \notin\left\{X_{1}, \ldots, X_{i-1}\right\},(m-D-1)\left(1-\frac{1}{m}\right)^{n-i}\end{array}\right.$
$Z_{i}-Z_{i-1}=\frac{m-D}{m}\left(1-\frac{1}{m}\right)^{n-i}$ or $-\frac{D}{m}\left(1-\frac{1}{m}\right)^{n-i}$
By $1 \leq D \leq \min \{i-1, m\}$, we get $-\min \left\{\frac{i-1}{m}, 1\right\}\left(1-\frac{1}{m}\right)^{n-i} \leq Z_{i}-Z_{i-1} \leq\left(1-\frac{1}{m}\right)^{n-i+1}$

Azuma's inequality

Example: Suppose that n balls are put in m urns in such a manner that each ball, independently, is equally likely to go into any of the urns.

Let X the number of empty urns, then $X=\sum_{i=1}^{m} I$ (urn i is empty)

$$
\mu=E[X]=m P(\text { urn } i \text { is empty })=m\left(1-\frac{1}{m}\right)^{n}
$$

Apply Azuma's inequality:

$$
\begin{gathered}
P(X-\mu \geq a) \leq \exp \left\{-2 a^{2} / \sum_{i=2}^{n}\left(\alpha_{i}+\beta_{i}\right)^{2}\right\} \\
\sum_{i=2}^{n}\left(\alpha_{i}+\beta_{i}\right)^{2}=\sum_{i=2}^{m}\left(\frac{m+i-2}{m}\right)^{2}\left(1-\frac{1}{m}\right)^{2(n-i)}+\sum_{i=m+1}^{n}\left(2-\frac{1}{m}\right)^{2}\left(1-\frac{1}{m}\right)^{2(n-i)}
\end{gathered}
$$

Azuma's inequality

Corollary: Let h be a function such that if the vectors $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ differ in at most one coordinate (i.e., for some $k, x_{i}=y_{i}$ for all $i \neq k$) then $|h(\boldsymbol{x})-h(\boldsymbol{y})| \leq 1$. Let X_{1}, \ldots, X_{n} be independent random variables. Then, with $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$, we have for $a>0$ that

$$
\begin{aligned}
P(h(\boldsymbol{X})-E[h(\boldsymbol{X})] \geq a) & \leq \exp \left\{-a^{2} /(2 n)\right\} \\
P(h(\boldsymbol{X})-E[h(\boldsymbol{X})] \leq-a) & \leq \exp \left\{-a^{2} /(2 n)\right\}
\end{aligned}
$$

Proof: $\quad Z_{i}=E\left[h(X) \mid X_{1}, \ldots, X_{i}\right]$

Azuma's inequality

Example: Suppose that n balls are to be placed in m urns, with each ball independently going into urn j with probability $p_{j}, j=1, \ldots, m$. Let Y_{k} denote the number of urns with exactly k balls, $0 \leq k<n$, and use the preceding corollary to obtain a bound on its tail probabilities.

Solution:

$$
E\left[Y_{k}\right]=E\left[\sum_{i=1}^{m} I(\text { urn } i \text { has exactly } k \text { balls })\right]=\sum_{i=1}^{m}\binom{n}{k} p_{i}^{k}\left(1-p_{i}\right)^{n-k}
$$

Let X_{j} denote the urn in which the j th ball is placed

$$
Y_{k}=h_{k}\left(X_{1}, \ldots, X_{n}\right)
$$

Azuma's inequality

For $k=0$
If the vectors $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ differ in at most one coordinate, then

$$
\left|h_{0}(\boldsymbol{x})-h_{0}(\boldsymbol{y})\right| \leq 1
$$

\curvearrowleft Apply Corollary

$$
\begin{gathered}
P\left(Y_{0}-\sum_{i=1}^{m}\left(1-p_{i}\right)^{n} \geq a\right) \leq \exp \left\{-a^{2} /(2 n)\right\} \\
P\left(Y_{0}-\sum_{i=1}^{m}\left(1-p_{i}\right)^{n} \leq-a\right) \leq \exp \left\{-a^{2} /(2 n)\right\}
\end{gathered}
$$

Azuma's inequality

For $0<k<n$
If the vectors $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ differ in at most one coordinate, then

$$
\left|h_{k}(\boldsymbol{x})-h_{k}(\boldsymbol{y})\right| \leq 2
$$

Azuma's inequality

For $0<k<n$
If the vectors $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ differ in at most one coordinate, then

$$
\left|\frac{h_{k}(\boldsymbol{x})}{2}-\frac{h_{k}(\boldsymbol{y})}{2}\right| \leq 1
$$

\downarrow Apply Corollary

$$
\begin{aligned}
& P\left(Y_{k}-\sum_{i=1}^{m}\binom{n}{k} p_{i}^{k}\left(1-p_{i}\right)^{n-k} \geq 2 a\right) \leq \exp \left\{-a^{2} /(2 n)\right\} \\
& P\left(Y_{k}-\sum_{i=1}^{m}\binom{n}{k} p_{i}^{k}\left(1-p_{i}\right)^{n-k} \leq-2 a\right) \leq \exp \left\{-a^{2} /(2 n)\right\} \\
& \text { http://www.lamda.nju.edu.cn/qianc/ }
\end{aligned}
$$

Azuma's inequality

Example: Consider a set of n components that are to be used in performing certain experiments. Let X_{i} equal 1 if component i is in functioning condition and let it equal 0 otherwise, and suppose that the X_{i} are independent with $E\left[X_{i}\right]=p_{i}$.

Suppose that in order to perform experiment $j, j=1, \ldots, m$, all of the components in the set A_{j} must be functioning.

If any component is needed in at most three experiments, show that

$$
\begin{array}{l}\text { for } a>0 \\ \text { \#experiments that } \\ \text { can be performed }\end{array} \quad \begin{array}{l}\left.\text { (} X=\sum_{j=1}^{m} \prod_{i \in A_{j}} p_{i} \geq 3 a\right) \leq \exp \left\{-a^{2} /(2 n)\right\} \\ \quad \text { leave as the exercise }\end{array}
$$

$P\left(X-\sum_{j=1}^{m} \prod_{i \in A_{j}} p_{i} \leq-3 a\right) \leq \exp \left\{-a^{2} /(2 n)\right\}$

Submartingales and supermartingales

A stochastic process $\left\{Z_{n}, n \geq 1\right\}$ is said to be a submartingale process if $\forall n: E\left[\left|Z_{n}\right|\right]<\infty$ and

$$
E\left[Z_{n+1} \mid Z_{1}, Z_{2}, \ldots, Z_{n}\right] \geq Z_{n}
$$

$$
E\left[Z_{n+1}\right] \geq E\left[Z_{n}\right] \geq \cdots \geq E\left[Z_{1}\right]
$$

A stochastic process $\left\{Z_{n}, n \geq 1\right\}$ is said to be a supermartingale process if $\forall n: E\left[\left|Z_{n}\right|\right]<\infty$ and

$$
E\left[Z_{n+1} \mid Z_{1}, Z_{2}, \ldots, Z_{n}\right] \leq Z_{n}
$$

$$
E\left[Z_{n+1}\right] \leq E\left[Z_{n}\right] \leq \cdots \leq E\left[Z_{1}\right]
$$

Martingale stopping theorem

Martingale stopping theorem: If either

$\checkmark \bar{Z}_{n}$ are uniformly bounded, or
\checkmark (A) is bounded, or stopping time
$\checkmark E[N]<\infty$, and there is an $M<\infty$ such that

$$
E\left[\left|Z_{n+1}-Z_{n}\right| \mid Z_{1}, \ldots, Z_{n}\right]<M
$$

then

$$
\begin{array}{ll}
E\left[Z_{N}\right] \geq E\left[Z_{1}\right] & \text { for a submartingale } \\
E\left[Z_{N}\right] \leq E\left[Z_{1}\right] & \text { for a supermartingale }
\end{array}
$$

Martingale convergence theorem

Martingale convergence theorem: If $\left\{Z_{n}, n \geq 1\right\}$ is a martingale such that for some $M<\infty$

$$
E\left[\left|Z_{n}\right|\right] \leq M, \text { for all } n
$$

then, with probability $1, \lim _{n \rightarrow \infty} Z_{n}$ exists and is finite

Martingale convergence theorem

Lemma: If $\left\{Z_{n}, n \geq 1\right\}$ is a martingale and f is a convex function, then $\left\{f\left(Z_{n}\right), n \geq 1\right\}$ is a submartingale

Proof:

Martingale convergence theorem

Kolmogorov's Inequality for Submartingales: If $\left\{Z_{n}, n \geq 1\right\}$ is a nonnegative submartingale, then for $a>0$

$$
P\left(\max \left\{Z_{1}, \ldots, Z_{n}\right\}>a\right) \leq \frac{E\left[Z_{n}\right]}{a}
$$

Proof:

Martingale convergence theorem

Kolmogorov's Inequality for Submartingales: If $\left\{Z_{n}, n \geq 1\right\}$ is a nonnegative submartingale, then for $a>0$

$$
P\left(\max \left\{Z_{1}, \ldots, Z_{n}\right\}>a\right) \leq \frac{E\left[Z_{n}\right]}{a}
$$

$|x|$ and x^{2} are convex $\sqrt{\left\{\left|Z_{n}\right|, n \geq 1\right\} \text { and }\left\{Z_{n}^{2}, n \geq 1\right\}} \begin{aligned} & \text { nonnegative submartingale }\end{aligned}$
Corollary: Let $\left\{Z_{n}, n \geq 1\right\}$ be a martingale, then for $a>0$

$$
\begin{aligned}
& P\left(\max \left\{\left|Z_{1}\right|, \ldots,\left|Z_{n}\right|\right\}>a\right) \leq \frac{E\left[\left|Z_{n}\right|\right]}{a} \\
& P\left(\max \left\{\left|Z_{1}\right|, \ldots,\left|Z_{n}\right|\right\}>a\right) \leq \frac{E\left[Z_{n}^{2}\right]}{a^{2}}
\end{aligned}
$$

Martingale convergence theorem

Martingale convergence theorem: If $\left\{Z_{n}, n \geq 1\right\}$ is a martingale such that for some $M<\infty$

$$
E\left[\left|Z_{n}\right|\right] \leq M, \text { for all } n
$$

then, with probability $1, \lim _{n \rightarrow \infty} Z_{n}$ exists and is finite
Proof: Under the stronger assumption that $E\left[Z_{n}^{2}\right]$ is bounded
To show that $\left\{Z_{n}, n \geq 1\right\}$ is, with probability 1 , a Cauchy sequence, i.e., with probability 1 , for any $k \geq 1$

$$
\left|Z_{m+k}-Z_{m}\right| \rightarrow 0, \text { as } m \rightarrow \infty
$$

Note that $\left\{Z_{m+k}-Z_{m}, k \geq 1\right\}$ is a martingale

Martingale convergence theorem

$$
P\left(\max _{1 \leq k \leq n}\left|Z_{m+k}-Z_{m}\right|>\epsilon\right) \fallingdotseq \frac{E\left[\left(Z_{m+k}-Z_{m}\right)^{2}\right]}{\epsilon^{2}}
$$

$$
P\left(\max _{k \geq 1}\left|Z_{m+k}-Z_{m}\right|>\epsilon\right) \rightarrow 0 \text { as } m \rightarrow \infty
$$

Martingale convergence theorem

Martingale convergence theorem: If $\left\{Z_{n}, n \geq 1\right\}$ is a martingale such that for some $M<\infty$

$$
E\left[\left|Z_{n}\right|\right] \leq M, \text { for all } n
$$

then, with probability $1, \lim _{n \rightarrow \infty} Z_{n}$ exists and is finite

$$
\sqrt{\Omega} E\left[\left|Z_{n}\right|\right]=E\left[Z_{n}\right]=E\left[Z_{1}\right]
$$

Corollary: If $\left\{Z_{n}, n \geq 1\right\}$ is a nonnegative martingale, then, with probability $1, \lim _{n \rightarrow \infty} Z_{n}$ exists and is finite

Martingale convergence theorem

Strong Law of Large Numbers: If X_{1}, X_{2}, \ldots are independent and identically distributed with mean μ, then

$$
P\left(\lim _{n \rightarrow \infty}\left(X_{1}+\cdots+X_{n}\right) / n=\mu\right)=1
$$

Proof: Let $S_{n}=X_{1}+\cdots+X_{n}$
To show that for a given $\epsilon>0, P\left(\lim _{n \rightarrow \infty} \frac{S_{n}}{n} \geq \mu+\epsilon\right)=0$

$$
\psi(t)=E\left[e^{t X}\right] \quad g(t)=e^{t(\mu+\epsilon)} / \psi(t)
$$

Martingale convergence theorem

there exists $t_{0}>0$ such that $g\left(t_{0}\right)>1$

$$
\frac{S_{n}}{n} \geq \mu+\epsilon \quad \Rightarrow \quad \frac{e^{t_{0} S_{n}}}{\psi^{n}\left(t_{0}\right)} \geq\left(\frac{e^{t_{0}(\mu+\epsilon)}}{\psi\left(t_{0}\right)}\right)^{n}=g^{n}\left(t_{0}\right)
$$

By martingale convergence theorem:
With prob. 1, $\lim _{n \rightarrow \infty} \frac{e^{t_{0} s_{n}}}{\psi^{n}\left(t_{0}\right)}$ exists and is finite

$$
\lim _{n \rightarrow \infty} g^{n}\left(t_{0}\right) \rightarrow \infty
$$

$$
P\left(\lim _{n \rightarrow \infty} \frac{S_{n}}{n} \geq \mu+\epsilon\right)=0
$$

Martingale convergence theorem

To show that for a given $\epsilon>0, P\left(\lim _{n \rightarrow \infty} \frac{S_{n}}{n} \leq \mu-\epsilon\right)=0$
Leave as the exercise

$$
\begin{gathered}
\forall \epsilon>0: P\left(\mu-\epsilon \leq \lim _{n \rightarrow \infty} \frac{S_{n}}{n} \leq \mu+\epsilon\right)=1 \\
P\left(\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=\mu\right)=1
\end{gathered}
$$

Summary

- Martingales
- Martingale stopping theorem
- Azuma's inequality for martingales
- Submartingales, supermartingales and the martingale convergence theorem

References: Chapter 6, Martingales, 2nd edition, 1995, by Sheldon M. Ross

