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Martingales

A stochastic process {𝑍𝑛, 𝑛 ≥ 1} is said to be a martingale 
process if ∀𝑛: 𝐸 𝑍𝑛 < ∞ and

𝐸 𝑍𝑛+1 𝑍1, 𝑍2, … , 𝑍𝑛 = 𝑍𝑛

Example 1: Let 𝑋1, 𝑋2, … be independent random variables with 
mean 0; and let 𝑍𝑛 = σ𝑖=1

𝑛 𝑋𝑖 . Then {𝑍𝑛, 𝑛 ≥ 1} is a martingale.

Proof: 

𝐸[𝑍𝑛+1] = 𝐸[𝑍𝑛] = ⋯ = 𝐸[𝑍1]

𝐸 𝑍𝑛+1 𝑍1, 𝑍2, … , 𝑍𝑛
= 𝐸 𝑍𝑛 + 𝑋𝑛+1 𝑍1, 𝑍2, … , 𝑍𝑛
= 𝐸 𝑍𝑛 𝑍1, 𝑍2, … , 𝑍𝑛 + 𝐸 𝑋𝑛+1 𝑍1, 𝑍2, … , 𝑍𝑛
= 𝑍𝑛 + 𝐸 𝑋𝑛+1 = 𝑍𝑛

𝑋𝑖 is independent 𝐸 𝑋𝑖 = 0
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Martingales

Example 2: Let 𝑋1, 𝑋2, … be independent random variables with 
𝐸 𝑋𝑖 = 1; and let 𝑍𝑛 = ς𝑖=1

𝑛 𝑋𝑖. Then {𝑍𝑛 , 𝑛 ≥ 1} is a martingale.

Proof: 

Leave as the exercise

Example 3: Consider a branching process, and let 𝑋𝑛 denote the 
size of the 𝑛th generation. If 𝑚 is the mean number of offspring 
per individual, then {𝑍𝑛, 𝑛 ≥ 1} is a martingale when

𝑍𝑛 = 𝑋𝑛/𝑚
𝑛

𝐸 𝑍𝑛+1 𝑍1, 𝑍2, … , 𝑍𝑛
= 𝐸 𝑍𝑛 ∙ 𝑋𝑛+1 𝑍1, 𝑍2, … , 𝑍𝑛
= 𝑍𝑛 ∙ 𝐸 𝑋𝑛+1 𝑍1, 𝑍2, … , 𝑍𝑛
= 𝑍𝑛 ∙ 𝐸 𝑋𝑛+1 = 𝑍𝑛

𝑋𝑖 is independent
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Martingales

𝐸 𝑍𝑛+1 𝑍1, 𝑍2, … , 𝑍𝑛

𝐸 𝑍𝑛+1 𝑍1, 𝑍2, … , 𝑍𝑛, 𝒀 = 𝑍𝑛 Martingale

some other random vector

Another way to prove martingale 

= 𝐸 𝐸 𝑍𝑛+1 𝑍1, 𝑍2, … , 𝑍𝑛, 𝒀 ∣ 𝑍1, 𝑍2, … , 𝑍𝑛

= 𝐸 𝑍𝑛 ∣ 𝑍1, 𝑍2, … , 𝑍𝑛

= 𝑍𝑛

Why?
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Martingales

Example 4: Let 𝑋, 𝑌1, 𝑌2, … be arbitrary random variables such 
that 𝐸 |𝑋| < ∞; and let 𝑍𝑛 = 𝐸[𝑋 ∣ 𝑌1, … , 𝑌𝑛]. Then {𝑍𝑛, 𝑛 ≥ 1} is 
a martingale.

Proof: 𝐸 𝑍𝑛+1 𝑍1, … , 𝑍𝑛, 𝑌1, … , 𝑌𝑛

= 𝐸 𝑍𝑛+1 𝑌1, … , 𝑌𝑛

= 𝐸 𝐸[𝑋 ∣ 𝑌1, … , 𝑌𝑛, 𝑌𝑛+1] 𝑌1, … , 𝑌𝑛

= 𝐸 𝑋 𝑌1, … , 𝑌𝑛 = 𝑍𝑛

𝑍1, … , 𝑍𝑛 are determined 
by 𝑌1, … , 𝑌𝑛

Definition of  𝑍𝑛+1

Conditional expectation
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Martingales

Example 5: For any random variables 𝑋1, 𝑋2, … , let

Proof: 

If 𝐸[ 𝑍𝑛 < ∞], then {𝑍𝑛, 𝑛 ≥ 1} is a martingale.

𝑍𝑛 =

𝑖=1

𝑛

𝑋𝑖 − 𝐸[𝑋𝑖 ∣ 𝑋1, … , 𝑋𝑖−1]

𝑍𝑛+1 = 𝑍𝑛 + 𝑋𝑛+1 − 𝐸 𝑋𝑛+1 𝑋1, … , 𝑋𝑛

𝐸 𝑍𝑛+1 𝑍1, … , 𝑍𝑛, 𝑋1, … , 𝑋𝑛

= 𝐸 𝑍𝑛+1 𝑋1, … , 𝑋𝑛 𝑍1, … , 𝑍𝑛 are determined by 𝑋1, … , 𝑋𝑛

= 𝑍𝑛 + 𝐸 𝑋𝑛+1 𝑋1, … , 𝑋𝑛 − 𝐸 𝑋𝑛+1 𝑋1, … , 𝑋𝑛

= 𝑍𝑛
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Stopping times

Random time: The positive integer-valued, possibly infinite, random 

variable 𝑁 is said to be a random time for the process {𝑍𝑛, 𝑛 ≥ 1} if 

the event {𝑁 = 𝑛} is determined by the random variables 𝑍1, … , 𝑍𝑛. 

Stopping time: If 𝑃 𝑁 < ∞ = 1, then the random time 𝑁 is said 

to be a stopping time

Stopping time: An integer-valued random variable 𝑁 is said to be a 

stopping time for the sequence of independent random variables 

𝑋1, 𝑋2, … , if the event {𝑁 = 𝑛} is independent of 𝑋𝑛+1, 𝑋𝑛+2, … , 

for all 𝑛 = 1, 2, …

From Lecture 3
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Stopped process

Let 𝑁 be a random time for the process {𝑍𝑛, 𝑛 ≥ 1} and let

ҧ𝑍𝑛 = ቊ
𝑍𝑛 if 𝑛 ≤ 𝑁
𝑍𝑁 if 𝑛 > 𝑁

{ ҧ𝑍𝑛, 𝑛 ≥ 1} is called the stopped process

Proposition: If 𝑁 is a random time for the martingale {𝑍𝑛, 𝑛 ≥ 1}, 
then the stopped process { ҧ𝑍𝑛, 𝑛 ≥ 1} is also a martingale

Proof: 
Let  𝐼𝑛 = ቊ

1 if 𝑁 ≥ 𝑛
0 if 𝑁 < 𝑛

(i. e. , not stopped after observing 𝑍1, … , 𝑍𝑛−1)

⇒ ҧ𝑍𝑛 = ҧ𝑍𝑛−1 + 𝐼𝑛(𝑍𝑛 − 𝑍𝑛−1)
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Stopped process

ҧ𝑍𝑛 = ҧ𝑍𝑛−1 + 𝐼𝑛(𝑍𝑛 − 𝑍𝑛−1)

Verify the above equation:

1. 𝑁 ≥ 𝑛: ҧ𝑍𝑛 = 𝑍𝑛, ҧ𝑍𝑛−1 = 𝑍𝑛−1, 𝐼𝑛 = 1, the equation holds

2. 𝑁 < 𝑛: ҧ𝑍𝑛 = 𝑍𝑁, ҧ𝑍𝑛−1 = 𝑍𝑁, 𝐼𝑛 = 0, the equation holds

𝐸 ҧ𝑍𝑛 𝑍1, 𝑍2, … , 𝑍𝑛−1 = 𝐸 ҧ𝑍𝑛−1 + 𝐼𝑛(𝑍𝑛 − 𝑍𝑛−1) 𝑍1, 𝑍2, … , 𝑍𝑛−1

= ҧ𝑍𝑛−1 + 𝐼𝑛 ∙ 𝐸 𝑍𝑛 − 𝑍𝑛−1 𝑍1, 𝑍2, … , 𝑍𝑛−1

= ҧ𝑍𝑛−1

𝐸 ҧ𝑍𝑛 ҧ𝑍1, … , ҧ𝑍𝑛−1, 𝑍1, … , 𝑍𝑛−1 = 𝐸 ҧ𝑍𝑛 𝑍1, 𝑍2, … , 𝑍𝑛−1

= ҧ𝑍𝑛−1

ҧ𝑍𝑛−1 and 𝐼𝑛 can be 

determined by

𝑍1, … , 𝑍𝑛−1 = 0 because 𝑍𝑛, 𝑛 ≥ 1 is a martingale 

ҧ𝑍1, … , ҧ𝑍𝑛−1 are determined 
by 𝑍1, … , 𝑍𝑛−1
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Martingale stopping theorem

Martingale stopping theorem: If either

✓ ҧ𝑍𝑛 are uniformly bounded, or

✓ 𝑁 is bounded, or

✓ 𝐸 𝑁 < ∞, and there is an 𝑀 < ∞ such that 

𝐸 |𝑍𝑛+1 − 𝑍𝑛| 𝑍1, … , 𝑍𝑛 < 𝑀

then 
𝐸[𝑍𝑁] = 𝐸[𝑍1]

Proof: 

stopping time 

𝐸 ҧ𝑍𝑛 = 𝐸 ҧ𝑍1 = 𝐸[𝑍1]

ҧ𝑍𝑛 → 𝑍𝑁 as 𝑛 → ∞ with probability 1
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Martingale stopping theorem

Martingale stopping theorem: If either

✓ ҧ𝑍𝑛 are uniformly bounded, or

✓ 𝑁 is bounded, or

✓ 𝐸 𝑁 < ∞, and there is an 𝑀 < ∞ such that 

𝐸 |𝑍𝑛+1 − 𝑍𝑛| 𝑍1, … , 𝑍𝑛 < 𝑀

then 

Proof: 

stopping time 

𝐸 ҧ𝑍𝑛 = 𝐸 ҧ𝑍1

𝐸[ ҧ𝑍𝑛] → 𝐸[𝑍𝑁] as 𝑛 → ∞

𝐸[𝑍𝑁] = 𝐸[𝑍1]

= 𝐸[𝑍1]
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Martingale stopping theorem

Wald's Equation: If 𝑋1, 𝑋2, … are iid random variables having 

finite expectations, and if 𝑁 is a stopping time for 𝑋1, 𝑋2, … such 

that 𝐸[𝑁] < ∞, then

𝐸 

𝑛=1

𝑁

𝑋𝑛 = 𝐸 𝑁 𝐸[𝑋]

Another Proof using martingale stopping theorem: 

𝑍𝑛 =

𝑖=1

𝑛

(𝑋𝑖−𝜇) a martingale

Let 𝐸 𝑋 = 𝜇
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Martingale stopping theorem

𝑍𝑛 =

𝑖=1

𝑛

(𝑋𝑖−𝜇) a martingale

Verify the third condition of martingale stopping theorem:

𝐸 𝑁 < ∞

𝐸 |𝑍𝑛+1 − 𝑍𝑛| 𝑍1, … , 𝑍𝑛 = 𝐸 |𝑋𝑛+1 − 𝜇| 𝑍1, … , 𝑍𝑛

= 𝐸[|𝑋𝑛+1 − 𝜇|]

≤ 𝐸 𝑋𝑛+1 + 𝜇 < ∞

Apply martingale stopping theorem:

𝐸 𝑍𝑁 = 𝐸 𝑍1 = 0

= 𝐸 σ𝑖=1
𝑁 (𝑋𝑖−𝜇) = 𝐸 σ𝑖=1

𝑁 𝑋𝑖 − 𝑁𝜇 = 𝐸 σ𝑖=1
𝑁 𝑋𝑖 − 𝐸[𝑁]𝜇a
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Martingale stopping theorem

Example: At a party, 𝑛 people put their hats in the center of a room 

where the hats are mixed together. Each person then randomly selects 

one. Those choosing their own hats depart, while the others (those

without a match) put their selected hats in the center of the room,

mix them up, and then reselect. Let 𝑅 denote the number of rounds 

until all people have a match. What is 𝐸 𝑅 ?

Solution: 

Let 𝑋𝑖 denote the number of matches on the 𝑖th round

Note that 𝑋𝑖 = 1 for 𝑖 > 𝑅

𝑍𝑘 =

𝑖=1

𝑘

𝑋𝑖 − 𝐸[𝑋𝑖 ∣ 𝑋1, … , 𝑋𝑖−1] a martingale
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Martingale stopping theorem

Let 𝑋𝑖 denote the number of matches on the 𝑖th round

Note: 𝑋𝑖 = 1 for 𝑖 > 𝑅

𝑍𝑘 =

𝑖=1

𝑘

𝑋𝑖 − 𝐸[𝑋𝑖 ∣ 𝑋1, … , 𝑋𝑖−1] =

𝑖=1

𝑘

𝑋𝑖 − 1

Applying martingale stopping theorem: 

a martingale

𝑅 is the stopping time of {𝑍𝑘 , 𝑘 ≥ 1}

𝐸 |𝑍𝑘+1 − 𝑍𝑘| 𝑍1, … , 𝑍𝑘 = 𝐸 |𝑋𝑘+1 − 1| 𝑍1, … , 𝑍𝑘 ≤ 2

𝐸 𝑍1 = 𝐸[𝑍𝑅]0 = = 𝐸 

𝑖=1

𝑅

𝑋𝑖 − 1 = 𝐸 

𝑖=1

𝑅

𝑋𝑖 − 𝐸[𝑅] = 𝑛 − 𝐸[𝑅]
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Martingale stopping theorem

Example: Suppose that a sequence of iid discrete random variables is 

observed sequentially, one at each day. What is the expected number 

𝑁 that must be observed until some given sequence appears?

In Lecture 3, we have used delayed renewal process to compute it

Now, we will show how to use the martingale stopping theorem to 

compute it? 

Example: More specifically, suppose that each outcome is either 

0, 1, or 2 with respective probabilities 
1

2
, 
1

3
and 

1

6
, and we desire 

the expected time until the run 020 occurs
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Martingale stopping theorem

If 0, get 2 units If 2, get 12 units 

A gambler begins

If 0, get 24 units 

and leave

The gambler will lose 1 unit if any of her bets fails and will 

win 23 if all three of her bets succeed

Construct a fair gambling model for the pattern “020”
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Martingale stopping theorem

If 0, get 2 units If 2, get 12 units 

A gambler begins

If 0, get 24 units 

and leave

Why fair?

The expected winning of the gambler at each time is 0 

0 with probability 1/2

1 with probability 1/3

2 with probability 1/6

Suppose 𝑃 𝑍 = 1 = 𝑝, 𝑃 𝑍 = 0 = 1 − 𝑝

Bet 𝑎 units for 1: ቊ
if 1 get 𝑥 units
if 0 lose 𝑎 units

Fair ⇔ 𝐸 𝑤𝑖𝑛𝑛𝑖𝑛𝑔 = 0

⇔ 𝑝 𝑥 − 𝑎 + 1 − 𝑝 −𝑎 = 0 ⇔ 𝑥 =
𝑎

𝑝

1

2
× 2 − 1 +

1

2
× −1 = 0a

1

6
× 12 − 2 +

5

6
× −2 = 0a

1

2
× 24 − 12 +

1

2
× −12 = 0a
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Martingale stopping theorem

gambler 1 

begins

gambler 2 

begins

gambler 3 

begins

gambler 𝑛
begins

Let 𝑋𝑛 denote the total winnings of the casino after the 𝑛th day

fair gambling casino

{𝑋𝑛, 𝑛 ≥ 1} is a martingale

all bets are fair
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Martingale stopping theorem

𝑁 − 2 𝑁 − 1 𝑁

“0” “2” “0”

Gambler 𝑁 − 2
wins 23 units 

Gambler 𝑁 − 1
loses 1 unit 

Gambler 𝑁
wins 1 unit 

Each of the first 𝑁 − 3
gamblers loses 1 unit 

𝑋𝑁 = 𝑁 − 3 − 23 + 1 − 1 = 𝑁 − 26

The required number 𝑁 for “020” is a stopping time for {𝑋𝑛, 𝑛 ≥ 1}

𝑁 = min{𝑛: 𝑋𝑛 = 𝑛 − 26}
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Applying martingale stopping theorem: 

𝐸 𝑋𝑁 = 𝐸[𝑋1] = 0

Martingale stopping theorem

𝑋𝑁 = 𝑁 − 26

{𝑋𝑛, 𝑛 ≥ 1} is a martingale

The required number 𝑁 for “020” is a stopping time for {𝑋𝑛, 𝑛 ≥ 1}

|𝑋𝑛+1 − 𝑋𝑛| ≤ 3 ∗ 23

𝐸 𝑁 = 26
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Martingale stopping theorem

Example: More specifically, suppose that each outcome is either 

H or T with respective probabilities 𝑝 and 𝑞 = 1 − 𝑝, and we 

desire the expected time until HHTTHH occurs

leave as the exercise
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Azuma's inequality

Azuma’s inequality: Let 𝑍𝑛, 𝑛 ≥ 1 be a martingale with mean 
𝜇 = 𝐸[𝑍𝑛]. Let 𝑍0 = 𝜇 and suppose that for nonnegative 
constants 𝛼𝑖 , 𝛽𝑖 , 𝑖 ≥ 1,

−𝛼𝑖 ≤ 𝑍𝑖 − 𝑍𝑖−1 ≤ 𝛽𝑖

Then for any 𝑛 ≥ 0, 𝑎 > 0

𝑃(𝑍𝑛 − 𝜇 ≥ 𝑎) ≤ exp −2𝑎2/

𝑖=1

𝑛

(𝛼𝑖 + 𝛽𝑖)
2

𝑃(𝑍𝑛 − 𝜇 ≤ −𝑎) ≤ exp −2𝑎2/

𝑖=1

𝑛

(𝛼𝑖 + 𝛽𝑖)
2
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Azuma's inequality

Lemma 1: Let 𝑋 be such that 𝐸[𝑋] = 0 and 𝑃{ −𝛼 ≤ 𝑋 ≤ 𝛽} = 1. 
Then for any convex function 𝑓

𝐸 𝑓 𝑋 ≤
𝛽

𝛼 + 𝛽
𝑓 −𝛼 +

𝛼

𝛼 + 𝛽
𝑓(𝛽)

Proof: 

−𝛼 𝛽

𝑓 −𝛼

𝑓 𝛽

∀ − 𝛼 ≤ 𝑥 ≤ 𝛽, 𝑓 𝑥 ≤ 𝑔(𝑥)

𝐸 𝑓 𝑋 ≤
)𝛽𝑓(−𝛼

𝛼+𝛽
+

)𝛼𝑓(𝛽

𝛼+𝛽

（by 𝐸 𝑋 = 0)
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Azuma's inequality

Lemma 1: Let 𝑋 be such that 𝐸[𝑋] = 0 and 𝑃{ −𝛼 ≤ 𝑋 ≤ 𝛽} = 1. 
Then for any convex function 𝑓

𝐸 𝑓 𝑋 ≤
𝛽

𝛼 + 𝛽
𝑓 −𝛼 +

𝛼

𝛼 + 𝛽
𝑓(𝛽)

Lemma 2: For 0 ≤ 𝜃 ≤ 1,

𝜃𝑒 1−𝜃 𝑥 + 1 − 𝜃 𝑒−𝜃𝑥 ≤ 𝑒𝑥
2/8
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Azuma's inequality

Proof of Azuma’s inequality: Suppose first that 𝜇 = 𝐸 𝑍𝑛 = 0

𝑃 𝑍𝑛 ≥ 𝑎 = 𝑃(𝑒𝑐𝑍𝑛 ≥ 𝑒𝑐𝑎) ≤ 𝐸[𝑒𝑐𝑍𝑛] ⋅ 𝑒−𝑐𝑎

For any 𝑐 > 0

Let 𝑊𝑛 = 𝑒𝑐𝑍𝑛, then 𝑊0 = 1 and for 𝑛 > 0

𝑊𝑛 = 𝑒𝑐𝑍𝑛−1 ⋅ 𝑒𝑐(𝑍𝑛−𝑍𝑛−1)

𝐸[𝑊𝑛 ∣ 𝑍𝑛−1] = 𝑒𝑐𝑍𝑛−1 ⋅ 𝐸[𝑒𝑐(𝑍𝑛−𝑍𝑛−1) ∣ 𝑍𝑛−1]

Markov inequality
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𝐸[𝑊𝑛 ∣ 𝑍𝑛−1] = 𝑒𝑐𝑍𝑛−1 ⋅ 𝐸[𝑒𝑐(𝑍𝑛−𝑍𝑛−1) ∣ 𝑍𝑛−1]

≤ 𝑊𝑛−1 ⋅ 𝛽𝑛𝑒
−𝑐𝛼𝑛 + 𝛼𝑛𝑒

𝑐𝛽𝑛 /(𝛼𝑛 + 𝛽𝑛)

Lemma 1: Let 𝑋 be such that 𝐸[𝑋] = 0 and 𝑃{ −𝛼 ≤ 𝑋 ≤ 𝛽} = 1. 
Then for any convex function 𝑓

𝐸 𝑓 𝑋 ≤
𝛽

𝛼 + 𝛽
𝑓 −𝛼 +

𝛼

𝛼 + 𝛽
𝑓(𝛽)

• 𝑓 𝑥 = 𝑒𝑐𝑥 is convex
• −𝛼𝑛 ≤ 𝑍𝑛 − 𝑍𝑛−1 ≤ 𝛽𝑛
• 𝐸[𝑍𝑛 − 𝑍𝑛−1|𝑍𝑛−1] = 𝐸[𝑍𝑛|𝑍𝑛−1] − 𝑍𝑛−1 = 0

check conditions 
of Lemma 1: 

𝛼𝑛

by Lemma 1

𝛽𝑛
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𝐸[𝑊𝑛 ∣ 𝑍𝑛−1] = 𝑒𝑐𝑍𝑛−1 ⋅ 𝐸[𝑒𝑐(𝑍𝑛−𝑍𝑛−1) ∣ 𝑍𝑛−1]

≤ 𝑊𝑛−1 ⋅ 𝛽𝑛𝑒
−𝑐𝛼𝑛 + 𝛼𝑛𝑒

𝑐𝛽𝑛 /(𝛼𝑛 + 𝛽𝑛)

𝐸[𝑊𝑛] ≤ 𝐸[𝑊𝑛−1] ⋅ 𝛽𝑛𝑒
−𝑐𝛼𝑛 + 𝛼𝑛𝑒

𝑐𝛽𝑛 /(𝛼𝑛 + 𝛽𝑛)

𝐸[𝑊𝑛] ≤ෑ

𝑖=1

𝑛

𝛽𝑖𝑒
−𝑐𝛼𝑖 + 𝛼𝑖𝑒

𝑐𝛽𝑖 /(𝛼𝑖 + 𝛽𝑖)
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𝐸[𝑊𝑛] ≤ෑ

𝑖=1

𝑛

𝛽𝑖𝑒
−𝑐𝛼𝑖 + 𝛼𝑖𝑒

𝑐𝛽𝑖 /(𝛼𝑖 + 𝛽𝑖)

Lemma 2: For 0 ≤ 𝜃 ≤ 1,

𝜃𝑒 1−𝜃 𝑥 + 1 − 𝜃 𝑒−𝜃𝑥 ≤ 𝑒𝑥
2/8

𝜃 = 𝛼𝑖/(𝛼𝑖 + 𝛽𝑖)

𝑥 = 𝑐(𝛼𝑖 + 𝛽𝑖)

≤ෑ

𝑖=1

𝑛

𝑒𝑐
2 𝛼𝑖+𝛽𝑖

2/8
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Proof of Azuma’s inequality: Suppose first that 𝜇 = 𝐸 𝑍𝑛 = 0

𝑃 𝑍𝑛 ≥ 𝑎 = 𝑃(𝑒𝑐𝑍𝑛 ≥ 𝑒𝑐𝑎) ≤ 𝐸[𝑒𝑐𝑍𝑛] ⋅ 𝑒−𝑐𝑎

For any 𝑐 > 0

≤ 𝑒−𝑐𝑎ෑ

𝑖=1

𝑛

𝑒𝑐
2 𝛼𝑖+𝛽𝑖

2/8 = 𝑒−𝑐𝑎+𝑐
2 σ𝑖=1

𝑛 𝛼𝑖+𝛽𝑖
2/8

𝑐 = 4𝑎/
𝑖=1

𝑛

𝛼𝑖 + 𝛽𝑖
2

≤ 𝑒−2𝑎
2/ σ𝑖=1

𝑛 𝛼𝑖+𝛽𝑖
2
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Suppose that 𝜇 = 𝐸 𝑍𝑛 = 0, then 𝑃 𝑍𝑛 ≥ 𝑎 ≤ 𝑒−2𝑎
2/ σ𝑖=1

𝑛 𝛼𝑖+𝛽𝑖
2

Azuma’s inequality: Let 𝑍𝑛, 𝑛 ≥ 1 be a martingale with mean 
𝜇 = 𝐸[𝑍𝑛]. Let 𝑍0 = 𝜇 and suppose that for nonnegative 
constants 𝛼𝑖 , 𝛽𝑖 , 𝑖 ≥ 1,

−𝛼𝑖 ≤ 𝑍𝑖 − 𝑍𝑖−1 ≤ 𝛽𝑖

Then for any 𝑛 ≥ 0, 𝑎 > 0

𝑃(𝑍𝑛 − 𝜇 ≥ 𝑎) ≤ exp −2𝑎2/

𝑖=1

𝑛

(𝛼𝑖 + 𝛽𝑖)
2

zero-mean martingale {𝑍𝑛 − 𝜇}
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Suppose that 𝜇 = 𝐸 𝑍𝑛 = 0, then 𝑃 𝑍𝑛 ≥ 𝑎 ≤ 𝑒−2𝑎
2/ σ𝑖=1

𝑛 𝛼𝑖+𝛽𝑖
2

Azuma’s inequality: Let 𝑍𝑛, 𝑛 ≥ 1 be a martingale with mean 
𝜇 = 𝐸[𝑍𝑛]. Let 𝑍0 = 𝜇 and suppose that for nonnegative 
constants 𝛼𝑖 , 𝛽𝑖 , 𝑖 ≥ 1,

−𝛼𝑖 ≤ 𝑍𝑖 − 𝑍𝑖−1 ≤ 𝛽𝑖

Then for any 𝑛 ≥ 0, 𝑎 > 0

zero-mean martingale {𝜇 − 𝑍𝑛}

𝑃(𝑍𝑛 − 𝜇 ≤ −𝑎) ≤ exp −2𝑎2/

𝑖=1

𝑛

(𝛼𝑖 + 𝛽𝑖)
2
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Example: Let 𝑋1, … , 𝑋𝑛 be random variables such that 𝐸 𝑋1 = 0
and 𝐸 𝑋𝑖 ∣ 𝑋1, … , 𝑋𝑖−1 = 0, 𝑖 > 1. If −𝛼𝑖 ≤ 𝑋𝑖 ≤ 𝛽𝑖,

𝑃 

𝑖=1

𝑛

𝑋𝑖 ≥ 𝑎 ≤ exp −2𝑎2/

𝑖=1

𝑛

(𝛼𝑖 + 𝛽𝑖)
2

Solution: 

σ𝑖=1
𝑗

𝑋𝑖: a zero-mean martingale

−𝛼𝑗 ≤

𝑖=1

𝑗

𝑋𝑖 −

𝑖=1

𝑗−1

𝑋𝑖 = 𝑋𝑗 ≤ 𝛽𝑗

Azuma’s inequality=σ𝑖=1
𝑗

(𝑋𝑖−𝐸 𝑋𝑖 ∣ 𝑋1, … , 𝑋𝑖−1 )



http://www.lamda.nju.edu.cn/qianc/

Azuma's inequality

Example: Suppose that 𝑛 balls are put in 𝑚 urns in such a manner that 

each ball, independently, is equally likely to go into any of the urns.

Let 𝑋 the number of empty urns, then 𝑋 = σ𝑖=1
𝑚 𝐼(urn 𝑖 is empty)

𝜇 = 𝐸 𝑋 = 𝑚𝑃 urn 𝑖 is empty = 𝑚 1 −
1

𝑚

𝑛

𝑃 𝑋 − 𝜇 ≥ 𝑎 ≤? 𝑃 𝑋 − 𝜇 ≤ −𝑎 ≤?

Solution: Let 𝑋𝑗 denote the urn in which the 𝑗th ball is placed

𝑍0 = 𝐸[𝑋]

𝑍𝑖 = 𝐸[𝑋 ∣ 𝑋1, … , 𝑋𝑖]: a martingale

𝑍𝑛 = 𝐸[𝑋 ∣ 𝑋1, … , 𝑋𝑛] = 𝑋



http://www.lamda.nju.edu.cn/qianc/

Azuma's inequality

−𝛼𝑖 ≤ 𝑍𝑖 − 𝑍𝑖−1 ≤ 𝛽𝑖To analyze

𝑍𝑖 = 𝐸 𝑋 ∣ 𝑋1, ⋯ , 𝑋𝑖 , 𝑍𝑖−1 = 𝐸 𝑋 ∣ 𝑋1, ⋯ , 𝑋𝑖−1 , 𝑍1 − 𝑍0 = 𝐸 𝑋 ∣ 𝑋1 − 𝐸[𝑋] = 0

When 𝑖 ≥ 2, let 𝐷 denote the number of different values taken by 
𝑋1, … , 𝑋𝑖−1, i.e., the number of non-empty urns

𝑍𝑖 − 𝑍𝑖−1 =
𝑚−𝐷

𝑚
1 −

1

𝑚

𝑛−𝑖
or −

𝐷

𝑚
1 −

1

𝑚

𝑛−𝑖

𝐸 𝑋 ∣ 𝑋1, ⋯ , 𝑋𝑖 =
if 𝑋𝑖 ∈ 𝑋1, … , 𝑋𝑖−1 , 𝑚 − 𝐷 1 −

1

𝑚

𝑛−𝑖

if 𝑋𝑖 ∉ 𝑋1, … , 𝑋𝑖−1 , (𝑚 − 𝐷 − 1) 1 −
1

𝑚

𝑛−𝑖

𝐸 𝑋 ∣ 𝑋1, ⋯ , 𝑋𝑖−1 = (𝑚 − 𝐷) 1 −
1

𝑚

𝑛−𝑖+1

By 1 ≤ 𝐷 ≤ min 𝑖 − 1,𝑚 , we get −min
𝑖−1

𝑚
, 1 1 −

1

𝑚

𝑛−𝑖
≤ 𝑍𝑖 − 𝑍𝑖−1 ≤ 1 −

1

𝑚

𝑛−𝑖+1
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Example: Suppose that 𝑛 balls are put in 𝑚 urns in such a manner that 

each ball, independently, is equally likely to go into any of the urns.

Let 𝑋 the number of empty urns, then 𝑋 = σ𝑖=1
𝑚 𝐼(urn 𝑖 is empty)

𝜇 = 𝐸 𝑋 = 𝑚𝑃 urn 𝑖 is empty = 𝑚 1 −
1

𝑚

𝑛

𝑃 𝑋 − 𝜇 ≥ 𝑎 ≤ exp −2𝑎2/

𝑖=2

𝑛

(𝛼𝑖 + 𝛽𝑖)
2



𝑖=2

𝑛

(𝛼𝑖 + 𝛽𝑖)
2=

𝑖=2

𝑚
𝑚 + 𝑖 − 2

𝑚

2

1 −
1

𝑚

2(𝑛−𝑖)

+ 

𝑖=𝑚+1

𝑛

2 −
1

𝑚

2

1 −
1

𝑚

2(𝑛−𝑖)

Apply Azuma’s inequality:
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Corollary: Let ℎ be a function such that if the vectors 𝒙 = (𝑥1, … , 𝑥𝑛) and 

𝒚 = (𝑦1, … , 𝑦𝑛) differ in at most one coordinate (i.e., for some 𝑘, 𝑥𝑖 = 𝑦𝑖
for all 𝑖 ≠ 𝑘) then ℎ 𝒙 − ℎ 𝒚 ≤ 1. Let 𝑋1, … , 𝑋𝑛 be independent 

random variables. Then, with 𝑿 = 𝑋1, … , 𝑋𝑛 , we have for 𝑎 > 0 that

𝑃 ℎ(𝑿) − 𝐸[ℎ 𝑿 ] ≥ 𝑎 ≤ exp −𝑎2/(2𝑛)

𝑃 ℎ 𝑿 − 𝐸[ℎ(𝑿)] ≤ −𝑎 ≤ exp −𝑎2/(2𝑛)

Proof: 𝑍𝑖 = 𝐸[ℎ 𝑿 ∣ 𝑋1, … , 𝑋𝑖]
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Example: Suppose that 𝑛 balls are to be placed in 𝑚 urns, with each ball 

independently going into urn 𝑗 with probability 𝑝𝑗 , 𝑗 = 1,… ,𝑚. Let 𝑌𝑘
denote the number of urns with exactly 𝑘 balls, 0 ≤ 𝑘 < 𝑛, and use the 

preceding corollary to obtain a bound on its tail probabilities.

Solution: 

Let 𝑋𝑗 denote the urn in which the 𝑗th ball is placed

𝐸 𝑌𝑘 = 𝐸 

𝑖=1

𝑚

𝐼(urn 𝑖 has exactly 𝑘 balls) =

𝑖=1

𝑚
𝑛

𝑘
𝑝𝑖
𝑘 1 − 𝑝𝑖

𝑛−𝑘

𝑌𝑘 = ℎ𝑘(𝑋1, … , 𝑋𝑛)
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For 𝑘 = 0

If the vectors 𝒙 = (𝑥1, … , 𝑥𝑛) and 𝒚 = (𝑦1, … , 𝑦𝑛) differ in at most one 

coordinate, then

ℎ0 𝒙 − ℎ0 𝒚 ≤ 1

𝑃 𝑌0 −
𝑖=1

𝑚

1 − 𝑝𝑖
𝑛 ≥ 𝑎 ≤ exp −𝑎2/(2𝑛)

𝑃 𝑌0 −
𝑖=1

𝑚

1 − 𝑝𝑖
𝑛 ≤ −𝑎 ≤ exp −𝑎2/(2𝑛)

Apply Corollary
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For 0 < 𝑘 < 𝑛

If the vectors 𝒙 = (𝑥1, … , 𝑥𝑛) and 𝒚 = (𝑦1, … , 𝑦𝑛) differ in at most one 

coordinate, then

ℎ𝑘 𝒙 − ℎ𝑘 𝒚 ≤ 2
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For 0 < 𝑘 < 𝑛

If the vectors 𝒙 = (𝑥1, … , 𝑥𝑛) and 𝒚 = (𝑦1, … , 𝑦𝑛) differ in at most one 

coordinate, then

ℎ𝑘 𝒙

2
−

ℎ𝑘 𝒚

2
≤ 1

𝑃 𝑌𝑘 −

𝑖=1

𝑚
𝑛

𝑘
𝑝𝑖
𝑘 1 − 𝑝𝑖

𝑛−𝑘 ≥ 2𝑎 ≤ exp −𝑎2/(2𝑛)

𝑃 𝑌𝑘 −

𝑖=1

𝑚
𝑛

𝑘
𝑝𝑖
𝑘 1 − 𝑝𝑖

𝑛−𝑘 ≤ −2𝑎 ≤ exp −𝑎2/(2𝑛)

Apply Corollary
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Example: Consider a set of 𝑛 components that are to be used in

performing certain experiments. Let 𝑋𝑖 equal 1 if component 𝑖 is in

functioning condition and let it equal 0 otherwise, and suppose that the

𝑋𝑖 are independent with 𝐸 𝑋𝑖 = 𝑝𝑖.

leave as the exercise

Suppose that in order to perform experiment 𝑗, 𝑗 = 1,… ,𝑚, all of the 

components in the set 𝐴𝑗 must be functioning.

If any component is needed in at most three experiments, show that

𝑃 𝑋 −

𝑗=1

𝑚

ෑ

𝑖∈𝐴𝑗

𝑝𝑖 ≥ 3𝑎 ≤ exp −𝑎2/(2𝑛)

𝑃 𝑋 −

𝑗=1

𝑚

ෑ

𝑖∈𝐴𝑗

𝑝𝑖 ≤ −3𝑎 ≤ exp −𝑎2/(2𝑛)

for 𝑎 > 0

#experiments that 
can be performed
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Submartingales and supermartingales

A stochastic process {𝑍𝑛, 𝑛 ≥ 1} is said to be a submartingale
process if ∀𝑛: 𝐸 𝑍𝑛 < ∞ and

𝐸 𝑍𝑛+1 𝑍1, 𝑍2, … , 𝑍𝑛 ≥ 𝑍𝑛

𝐸 𝑍𝑛+1 ≥ 𝐸[𝑍𝑛] ≥ ⋯ ≥ 𝐸[𝑍1]

A stochastic process {𝑍𝑛, 𝑛 ≥ 1} is said to be a supermartingale
process if ∀𝑛: 𝐸 𝑍𝑛 < ∞ and

𝐸 𝑍𝑛+1 𝑍1, 𝑍2, … , 𝑍𝑛 ≤ 𝑍𝑛

𝐸 𝑍𝑛+1 ≤ 𝐸[𝑍𝑛] ≤ ⋯ ≤ 𝐸[𝑍1]
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Martingale stopping theorem

Martingale stopping theorem: If either

✓ ҧ𝑍𝑛 are uniformly bounded, or

✓ 𝑁 is bounded, or

✓ 𝐸 𝑁 < ∞, and there is an 𝑀 < ∞ such that 

𝐸 |𝑍𝑛+1 − 𝑍𝑛| 𝑍1, … , 𝑍𝑛 < 𝑀

then 

𝐸 𝑍𝑁 ≥ 𝐸[𝑍1]

stopping time 

for a submartingale

𝐸 𝑍𝑁 ≤ 𝐸[𝑍1] for a supermartingale
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Martingale convergence theorem

Martingale convergence theorem: If {𝑍𝑛, 𝑛 ≥ 1} is a martingale 

such that for some 𝑀 < ∞

𝐸[|𝑍𝑛|] ≤ 𝑀, for all 𝑛

then, with probability 1, lim
𝑛→∞

𝑍𝑛 exists and is finite
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Martingale convergence theorem

Lemma: If {𝑍𝑛, 𝑛 ≥ 1} is a martingale and 𝑓 is a convex function, 

then {𝑓(𝑍𝑛), 𝑛 ≥ 1} is a submartingale

Proof: 
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Kolmogorov's Inequality for Submartingales: If {𝑍𝑛, 𝑛 ≥ 1} is a 

nonnegative submartingale, then for 𝑎 > 0

Proof: 

𝑃(max 𝑍1, … , 𝑍𝑛 > 𝑎) ≤
𝐸 𝑍𝑛
𝑎
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Martingale convergence theorem

Kolmogorov's Inequality for Submartingales: If {𝑍𝑛, 𝑛 ≥ 1} is a 

nonnegative submartingale, then for 𝑎 > 0

𝑃(max 𝑍1, … , 𝑍𝑛 > 𝑎) ≤
𝐸 𝑍𝑛
𝑎

Corollary: Let {𝑍𝑛, 𝑛 ≥ 1} be a martingale, then for 𝑎 > 0

𝑃(max |𝑍1|, … , |𝑍𝑛| > 𝑎) ≤
𝐸 |𝑍𝑛|

𝑎

𝑃(max |𝑍1|, … , |𝑍𝑛| > 𝑎) ≤
𝐸 𝑍𝑛

2

𝑎2

|𝑥| and 𝑥2 are convex 
{|𝑍𝑛|, 𝑛 ≥ 1} and {𝑍𝑛

2, 𝑛 ≥ 1}

nonnegative submartingale
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Martingale convergence theorem: If {𝑍𝑛, 𝑛 ≥ 1} is a martingale 

such that for some 𝑀 < ∞

then, with probability 1, lim
𝑛→∞

𝑍𝑛 exists and is finite

𝐸[|𝑍𝑛|] ≤ 𝑀, for all 𝑛

Proof: Under the stronger assumption that 𝐸[𝑍𝑛
2] is bounded

To show that {𝑍𝑛, 𝑛 ≥ 1} is, with probability 1, a Cauchy sequence, 

i.e., with probability 1, for any 𝑘 ≥ 1

|𝑍𝑚+𝑘 − 𝑍𝑚| → 0, as 𝑚 → ∞

Note that {𝑍𝑚+𝑘 − 𝑍𝑚, 𝑘 ≥ 1} is a martingale 
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Martingale convergence theorem

𝑃 max
1≤𝑘≤𝑛

|𝑍𝑚+𝑘 − 𝑍𝑚| > 𝜖 ≤
𝐸 𝑍𝑚+𝑘 − 𝑍𝑚

2

𝜖2

𝑃 max
𝑘≥1

|𝑍𝑚+𝑘 − 𝑍𝑚| > 𝜖 → 0 as 𝑚 → ∞
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Martingale convergence theorem

Martingale convergence theorem: If {𝑍𝑛, 𝑛 ≥ 1} is a martingale 

such that for some 𝑀 < ∞

then, with probability 1, lim
𝑛→∞

𝑍𝑛 exists and is finite

𝐸[|𝑍𝑛|] ≤ 𝑀, for all 𝑛

Corollary: If {𝑍𝑛, 𝑛 ≥ 1} is a nonnegative martingale, then, with 

probability 1, lim
𝑛→∞

𝑍𝑛 exists and is finite

𝐸 |𝑍𝑛| = 𝐸 𝑍𝑛 = 𝐸 𝑍1
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Martingale convergence theorem

Strong Law of Large Numbers: If 𝑋1, 𝑋2, … are independent 
and identically distributed with mean 𝜇, then

𝑃 lim
𝑛→∞

(𝑋1 +⋯+ 𝑋𝑛)/𝑛 = 𝜇 = 1

Proof: 

To show that for a given 𝜖 > 0, 𝑃 lim
𝑛→∞

𝑆𝑛

𝑛
≥ 𝜇 + 𝜖 = 0

Let 𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛

𝜓(𝑡) = 𝐸[𝑒𝑡𝑋] 𝑔(𝑡) = 𝑒𝑡 𝜇+𝜖 /𝜓(𝑡)



http://www.lamda.nju.edu.cn/qianc/

Martingale convergence theorem

𝑆𝑛
𝑛
≥ 𝜇 + 𝜖

𝑒𝑡0𝑆𝑛

𝜓𝑛(𝑡0)
≥

𝑒𝑡0 𝜇+𝜖

𝜓 𝑡0

𝑛

= 𝑔𝑛(𝑡0)

there exists 𝑡0 > 0 such that 𝑔(𝑡0) > 1

With prob. 1, lim
𝑛→∞

𝑒𝑡0𝑆𝑛

𝜓𝑛(𝑡0)
exists and is finite

By martingale convergence theorem:

𝑃 lim
𝑛→∞

𝑆𝑛
𝑛
≥ 𝜇 + 𝜖 = 0

lim
𝑛→∞

𝑔𝑛 𝑡0 → ∞
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Martingale convergence theorem

Leave as the exercise

To show that for a given 𝜖 > 0, 𝑃 lim
𝑛→∞

𝑆𝑛

𝑛
≤ 𝜇 − 𝜖 = 0

𝑃 lim
𝑛→∞

𝑆𝑛
𝑛
= 𝜇 = 1

∀𝜖 > 0: 𝑃 𝜇 − 𝜖 ≤ lim
𝑛→∞

𝑆𝑛
𝑛
≤ 𝜇 + 𝜖 = 1
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Summary

• Martingales

• Martingale stopping theorem

• Azuma's inequality for martingales

• Submartingales, supermartingales and 

the martingale convergence theorem 

References: Chapter 6, Martingales, 2nd edition, 1995, 

by Sheldon M. Ross


