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Stochastic process

A stochastic process is a collection 𝑋 𝑡 𝑡 ∈ 𝑇} of 
random variables

• 𝑋(𝑡) is a random variable

• 𝑡 is often interpreted as time, and 𝑋(𝑡) is called the state 
of the process at time 𝑡

➢ Discrete-time stochastic process:

➢ Continuous-time stochastic process:

The index set 𝑇 is a countable set

The index set 𝑇 is a continuum



http://www.lamda.nju.edu.cn/qianc/

Random variable

A random variable 𝑋: 𝑆 → 𝑅 is a function that assigns a 
real value to each outcome in the sample space 𝑆

For example,

random experiment 

sample 
space

𝑋 is the outcome
1

2

3

4

5

6
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Random variable

For example,

random experiment 

sample 
space

𝑋 indicates the oddness

1

0

𝑃(𝑋 ∈ 𝐴)𝑃(𝑋−1(𝐴)) =
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Example of stochastic process 

Example: Consider a particle that moves along a set of 𝑚 + 1
nodes, labelled 0, 1, . . , 𝑚, that are arranged around a circle.
At each step the particle is equally likely to move one position 
in either the clockwise or counterclockwise direction. 

𝑋𝑛: position of the particle after 𝑛 steps
0

1

2

3

𝑚

𝑚

−1

𝑃 𝑋𝑛+1 = 𝑖 + 1 𝑋𝑛 = 𝑖)
= 𝑃 𝑋𝑛+1 = 𝑖 − 1 𝑋𝑛 = 𝑖)
= 1/2

𝑋𝑛 𝑛 = 0,1,2,… } is a stochastic process
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Example of stochastic process 

𝑋𝑛: position of the particle after 𝑛 steps
0

1

2

3

𝑚

𝑚

−1

𝑃 𝑋𝑛+1 = 𝑖 + 1 𝑋𝑛 = 𝑖)
= 𝑃 𝑋𝑛+1 = 𝑖 − 1 𝑋𝑛 = 𝑖)
= 1/2

𝑋𝑛 𝑛 = 0,1,2,… } is a stochastic process

Suppose that the particle starts at 0 and continues to move around
according to the above rules until all the nodes have been visited. 

What is the probability that node 𝑖 is the last one visited?

𝑋0 = 0
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Example of stochastic process 

Solution: 

Random variable 𝑻𝒌: the first time that the particle visits 𝑘

Target event 𝑬𝒊: 𝑖 is the last visited node until visiting all nodes

Event 𝑾𝒎: a gambler who starts with 1 unit, and wins 1 when a 
fair coin turns up heads and loses 1 when it turns up tails, will 
have his fortune go up by 𝑚− 1 before he goes broke

𝑃 𝐸𝑖 = 𝑃 𝐸𝑖 ∣ 𝑇𝑖−1 < 𝑇𝑖+1 𝑃 𝑇𝑖−1 < 𝑇𝑖+1
+ )𝑃 𝐸𝑖 ∣ 𝑇𝑖−1 > 𝑇𝑖+1 𝑃(𝑇𝑖−1 > 𝑇𝑖+1

= 𝑃(𝑊𝑚)𝑃 𝑇𝑖−1 < 𝑇𝑖+1 + 𝑃(𝑊𝑚)𝑃 𝑇𝑖−1 > 𝑇𝑖+1
= )𝑃(𝑊𝑚



𝑖=1

𝑚

𝑃 (𝐸𝑖) = 1 𝑃(𝐸𝑖) =
1

𝑚

before node 𝑖 is visited, 
node 𝑖 + 1 is visidted
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Example of stochastic process 

Example: Consider a particle moves along the vertices of the 
graph so that it is equally likely to move from whichever 
vertex it is presently at to any of the neighbors of that vertex

0

Ray 1

𝑋𝑛: position of the 
particle after 𝑛 steps

𝑛1

𝑛𝑖

𝑛𝑟

a star graph with 𝑟 rays

Ray 𝑖

Ray 𝑟

leaf

leafleaf

leaf

𝑋𝑛 𝑛 = 0,1,2,… } is 
a stochastic process

Starting at 0, what is the 
probability that the first 
visited leaf is on ray 𝑖? 
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Example of stochastic process 

Solution: 

Event 𝑪𝒌: the first visited ray is 𝑘

Target event 𝑬𝒊: the first visited leaf is on ray 𝑖

Event 𝑾𝒎: a gambler who starts with 1 unit, and wins 1 when a 
fair coin turns up heads and loses 1 when it turns up tails, will 
have his fortune go up by 𝑚− 1 before he goes broke

𝑃 𝐸𝑖 = σ𝑘=1
𝑟 𝑃 𝐸𝑖|𝐶𝑘

1

𝑟

𝑃 𝐸𝑖 ∣ 𝐶𝑖 = 𝑃 𝑊𝑛𝑖
+ 1 − 𝑃 𝑊𝑛𝑖

𝑃 𝐸𝑖 =
1

𝑛𝑖
+ 1 −

1

𝑛𝑖
𝑃 𝐸𝑖

𝑃 𝐸𝑖 𝑟 =
1

𝑛𝑖
+ σ𝑘=1

𝑟 1 −
1

𝑛𝑘
𝑃 𝐸𝑖

∀𝑗 ≠ 𝑖: 𝑃൫ ൯𝐸𝑖 ∣ 𝐶𝑗 = 0 + 1 − 𝑃 𝑊𝑛𝑗
𝑃 𝐸𝑖 = 1 −

1

𝑛𝑗
𝑃 𝐸𝑖

𝑃 𝐸𝑖 =

1

𝑛𝑖

σ𝑘=1
𝑟 1

𝑛𝑘
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Properties of stochastic process 

A stochastic process 𝑋 𝑡 𝑡 ∈ 𝑇} is said to have independent 
increments if ∀𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛, the random variables 

𝑋(𝑡1) − 𝑋(𝑡0), 𝑋(𝑡2) − X(𝑡1),… , 𝑋(𝑡𝑛) − 𝑋(𝑡𝑛−1)

are independent

A stochastic process 𝑋 𝑡 𝑡 ∈ 𝑇} is said to have stationary 
increments if ∀𝑠 > 0,

𝑋(𝑡 + 𝑠) − 𝑋(𝑡)

has the same distribution for all 𝑡
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Stochastic process in AI 

Markov decision process in reinforcement learning:

• State space 𝑆

• Action space 𝐴

• Transition function 𝑃 𝑠’ 𝑠, 𝑎) : the probability of 

transitioning into state 𝑠’ upon taking action 𝑎 in state 𝑠

• Reward function 𝑅(𝑠, 𝑎): the immediate reward associated 

with taking action 𝑎 in state 𝑠

Stochastic Process

from CS 285 at UC Berkeley from Wikipedia
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Stochastic process in AI 

Hidden Markov model:

hidden variables

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑖 𝑥𝑥𝑛

𝑥𝑦1 𝑥𝑦2 𝑥𝑦𝑖 𝑥𝑦𝑛

Machine Learning

observed variables

𝑃 𝑥1, 𝑦1,… , 𝑥𝑛 , 𝑦𝑛 = 𝑃 𝑥1 𝑃(𝑦1|𝑥1)ෑ

𝑖=2

𝑛

𝑃 𝑥𝑖|𝑥𝑖−1 𝑃(𝑦𝑖|𝑥𝑖)

𝑥𝑛 𝑛 ≥ 1} and 𝑦𝑛 𝑛 ≥ 1} are two stochastic processes

Pattern Recognition

Nature Language Processing
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Stochastic process in AI 

Gaussian process (GP) is a collection of random variables, 
such that every finite collection of those random variables 
has a multivariate normal distribution Stochastic Process

Bayesian optimization

arg max𝒔 𝑓(𝒔)

regards the 𝑓 value at each data point 
as a random variable, and assumes 
satisfying a joint Gaussian distribution
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Stochastic process in AI 

Evolutionary algorithms (EAs) are a kind of randomized 
heuristic optimization algorithms, inspired by nature 
evolution (reproduction with variation + nature selection)

reproduction reproduction reproduction reproduction

Charles Darwin
1809-1882

Nature Evolution
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Stochastic process in AI 

Evolutionary algorithms (EAs) are a kind of randomized 
heuristic optimization algorithms, inspired by nature 
evolution (reproduction with variation + nature selection)

arg max𝒔 𝑓(𝒔)

A typical evolutionary process

1 0 1 1 1 0
Selection

1 0 1 1 0 11 0 1 1 1 0

0 1 1 1 1 0

1 0 1 1 0 1

Mutation

Population Population

...

Recombination

1 01 0 1 1 1 0 1 1 1 11
...

...

...

0 0 1 0 0 1 0 0 1 0 1 00 0 1 0 1 00 0 0 0 1 10 1

Fitness

...

23

21

18

24

200 0 1 0 0 1 0 0 1 0 0 1

0 1 1 1 1 0

0 0 1 0 0 1

1 0 1 1 1 0

1 0 1 1 1 0

0 0 1 0 0 1

1 0 1 1 1 1

...
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Stochastic process in AI 

0 0 0 0 1 1

0 0 1 0 0 1

0 0 1 0 1 01 0 1 1 1 0

1 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 0

1 0 1 1 1 0

1 0 1 1 0 1 0 0 1 1 0 1

0 0 1 1 1 1

0 0 1 0 0 10 0 1 0 0 1

0 0 1 1 1 0

0 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 1

1 0 1 1 1 0

0 0 1 0 0 1

1 0 1 1 1 1

0 0 1 1 1 0

...

State 
𝜉0

State 
𝜉1

State 
𝜉2

...

Evolutionary algorithms
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Stochastic process in AI 

1 0 1 1 1 0

1 0 1 1 0 0

0 0 1 0 1 0

1 1 0 1 0 0

...

e.g., bit-wise mutation: flips each bit with prob. 1/𝑛

(1/𝑛)2(1 − 1/𝑛)𝑛−2

The process of generating new population is randomized

1 0 1 1 1 0

0 1 1 1 1 0

...
0 0 1 0 0 1

1 0 1 1 1 0

1 0 1 1 1 1

...

0 0 1 0 0 1
1 0 1 1 1 0

0 1 1 1 1 0

...

0 1 1 0 0 1
0 0 1 1 1 0

0 1 1 1 1 0

...

0 1 1 0 0 1

...
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Stochastic process in AI 

0 0 0 0 1 1

0 0 1 0 0 1

0 0 1 0 1 01 0 1 1 1 0

1 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 0

1 0 1 1 1 0

1 0 1 1 0 1 0 0 1 1 0 1

0 0 1 1 1 1

0 0 1 0 0 10 0 1 0 0 1

0 0 1 1 1 0

0 0 1 1 1 1

0 0 1 0 0 1

1 0 1 1 1 1

1 0 1 1 1 0

0 0 1 0 0 1

1 0 1 1 1 1

0 0 1 1 1 0

...

State 
𝜉0

State 
𝜉1

State 
𝜉2

...

Evolutionary algorithms

random variable random variable random variable

Stochastic Process

Markov Chain
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Outline of this course

❑Lecture 1: Preliminaries

❑Lecture 2: Poisson process

❑Lecture 3: Renewal process

❑Lecture 4: Markov chain

❑Lecture 5: Martingale

❑Lecture 6: Random walk

❑Lecture 7: Brownian motion
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相关教材

• An Introduction to Stochastic Modeling, 4th edition, 2010 
by Mark Pinsky and Samuel Karlin

• Basic Stochastic Processes, 1999
by Zdzislaw Brzezniak and Tomasz Zastawniak

• Stochastic Processes, 2nd edition, 1995 
by Sheldon M. Ross

• Introduction to Stochastic Processes, 2013 
by Erhan Cinlar

• Essentials of Stochastic Processes, 2nd edition, 2012 
by Richard Durrett
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课程相关信息

课程主页：

http://www.lamda.nju.edu.cn/SP22/

课程时间：周五下午14:00-16:00

课程讨论QQ群：569309099

助教：卞超、王雨桐

答疑时间：周五下午16:00-17:30、逸A-502

成绩计算：4次平时作业（15%）、期末考试（40%）

随机过程

随机过不



Stochastic Processes 

Chao Qian （钱超）
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Lecture 1: Preliminaries
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Independence of random variables

Two random variables 𝑋 and 𝑌 are said to be independent if

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑋 = 𝑥 ⋅ 𝑃(𝑌 = 𝑦)

for all 𝑥 and 𝑦

Random variables 𝑋1, 𝑋2, … , 𝑋𝑛 are said to be mutually
independent if for any subset 𝐼 ⊆ {1,2, … , 𝑛} and any 𝑥𝑖,

𝑃 ሥ
𝑖∈𝐼
(𝑋𝑖= 𝑥𝑖) =ෑ

𝑖∈𝐼
𝑃 𝑋𝑖 = 𝑥𝑖
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Expectation of random variables

The expectation of a discrete random variable 𝑋 is

𝐸 𝑋 =
𝑥
𝑥 ⋅ 𝑃(𝑋 = 𝑥)

where the sum is over all 𝑥 in the range of 𝑋

Two common ways of calculating 𝐸 𝑋 : 

• Let 𝑋 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛, then  𝐸 𝑋 =
𝑖=1

𝑛

𝐸[𝑋𝑖]

• 𝐸 𝑋 = 𝐸[𝐸[𝑋 ∣ 𝑌]]
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How to calculate the expectation

Let 𝑋 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛, then  𝐸 𝑋 =
𝑖=1

𝑛

𝐸[𝑋𝑖]

Proof: 

𝐸 𝑋1 +⋯+ 𝑋𝑛 = 𝐸[𝑋1 +⋯+ 𝑋𝑛−1] + 𝐸[𝑋𝑛] = ⋯ = 

𝑖=1

𝑛

𝐸 𝑋𝑖

]𝐸[𝑋 + 𝑌 = 

𝑥



𝑦

(𝑥 + 𝑦)𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

=

𝑥

𝑥

𝑦

𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦) +

𝑦

𝑦

𝑥

𝑃 (𝑥 = 𝑥, 𝑌 = 𝑦)

=

𝑥

𝑥 𝑃(𝑋 = 𝑥) +

𝑦

𝑦 𝑃(𝑌 = 𝑦)

]= 𝐸[𝑋] + 𝐸[𝑌



http://www.lamda.nju.edu.cn/qianc/

How to calculate the expectation

𝐸 𝑋 = 𝐸[𝐸[𝑋 ∣ 𝑌]]

Proof: 

]𝐸[𝐸[𝑋 ∣ 𝑌] = 

𝑦

𝐸 𝑋 𝑌 = 𝑦 𝑃 𝑌 = 𝑦

=

𝑦



𝑥

𝑥 𝑃 𝑋 = 𝑥 𝑌 = 𝑦 𝑃 𝑌 = 𝑦

=

𝑥

𝑥

𝑦

𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦)

=

𝑥

𝑥 𝑃 𝑋 = 𝑥

]= 𝐸[𝑋
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Example

Example: There are 𝑛 keys with the same shape, where only 
one can unlock the door. Each key is selected randomly 
without replacement. Let 𝑋 denote the number of selected 
keys until unlocking the door. Calculate 𝐸[𝑋].

Solution1: By the definition of expectation

𝐸[𝑋] = 

𝑘=1

𝑛

𝑘 ⋅ 𝑃(𝑋 = 𝑘)

= 

𝑘=1

𝑛

𝑘 ⋅
𝑛 − 1

𝑛
×
𝑛 − 2

𝑛 − 1
×⋯×

𝑛 − (𝑘 − 1)

𝑛 − (𝑘 − 2)
×

1

𝑛 − (𝑘 − 1)

= 

𝑘=1

𝑛

𝑘 ⋅
1

𝑛
=
𝑛 + 1

2



http://www.lamda.nju.edu.cn/qianc/

Example

Solution2: 

Let 𝑋 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛, then  𝐸 𝑋 =
𝑖=1

𝑛

𝐸[𝑋𝑖]

𝑋1 = 1

∀𝑖 ≥ 2, 𝐸[𝑋𝑖] = 𝑃(𝑋𝑖 = 1) =
𝑛 − 1

𝑛
×
𝑛 − 2

𝑛 − 1
×⋯×

𝑛 − (𝑖 − 1)

𝑛 − (𝑖 − 2)

=
𝑛 − (𝑖 − 1)

𝑛

𝐸[𝑋] = 1 +

𝑖=2

𝑛
𝑛 − (𝑖 − 1)

𝑛
=
𝑛 + 1

2

Let 𝑋𝑖 = ቊ
1 the first 𝑖 − 1 tries all fail
0 otherwise

Then,

Thus,
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Example

Solution3: 

𝐸 𝑋 = 𝐸[𝐸[𝑋 ∣ 𝑌]]

𝐸[𝑋𝑛] = 𝐸[𝐸[𝑋𝑛 ∣ 𝑌]]

=
1

𝑛
𝐸[𝑋𝑛 ∣ 𝑌 = 1] + (1 −

1

𝑛
)𝐸[𝑋𝑛 ∣ 𝑌 = 0]

=
1

𝑛
+ (1 −

1

𝑛
)(1 + 𝐸[𝑋𝑛−1]) = 1 + (1 −

1

𝑛
)𝐸[𝑋𝑛−1]

Let 𝑌 = ቊ
1 the first try succeeds

0 otherwise
,

and 𝑋𝑛 denote the random variable 𝑋 corresponding to 𝑛 keys

𝐸 𝑋𝑛 =
𝑛 + 1

2

Then,
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Poisson and binomial distribution

A discrete random variable 𝑋 is said to have a Poisson 
distribution with parameter 𝝀, 𝝀 > 𝟎, if

Expectation: 𝐸 𝑋 = 𝜆 Variance: 𝑉𝑎𝑟 𝑋 = 𝜆

𝑃 𝑋 = 𝑘 =
𝜆𝑘𝑒−𝜆

𝑘!
for 𝑘 = 0,1,2, …

A discrete random variable 𝑋 is said to have a Binomial 
distribution with parameters 𝒏 and 𝒑 ∈ [𝟎, 𝟏], if

Expectation: 𝐸 𝑋 = 𝑛𝑝 Variance: 𝑉𝑎𝑟 𝑋 = 𝑛𝑝(1 − 𝑝)

𝑃 𝑋 = 𝑘 =
𝑛

𝑘
𝑝𝑘 1 − 𝑝 𝑛−𝑘 for 𝑘 = 0,1,2, … , 𝑛
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Poisson and binomial distribution

Poisson distribution with parameter 𝜆 = 𝑛𝑝 can be used as an 
approximation to binomial distribution with parameters 𝑛 and 
𝑝 if 𝑛 is sufficiently large and 𝑝 is sufficiently small.

Brun's sieve: Let 𝑋 be a bounded nonnegative integer-valued 
random variable. If, for all 𝑖 ≥ 0,

𝐸
𝑋

𝑖
≈ 𝜆𝑖/𝑖!

then 

𝑃 𝑋 = 𝑗 ≈
𝜆𝑗𝑒−𝜆

𝑗!
for 𝑗 = 0,1,2, …

To show that a binomially distributed 
random variable 𝑋 satisfies this equation

Poisson distribution 
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Poisson and binomial distribution

Brun's sieve: Let 𝑋 be a bounded nonnegative integer-valued 
random variable. If, for all 𝑖 ≥ 0,

𝐸
𝑋

𝑖
≈ 𝜆𝑖/𝑖! 𝑃 𝑋 = 𝑗 ≈

𝜆𝑗𝑒−𝜆

𝑗!
for 𝑗 = 0,1,2, …

Proof: 

𝐼𝑗 =
𝑋
𝑗
(1 − 1)𝑋−𝑗= 𝑋

𝑗
σ𝑘=0
𝑋−𝑗 𝑋−𝑗

𝑘
−1 𝑘

= σ𝑘=0
∞ 𝑋

𝑗
𝑋−𝑗
𝑘

−1 𝑘 = σ𝑘=0
∞ 𝑋

𝑗+𝑘
𝑗+𝑘
𝑘

−1 𝑘

𝑃 𝑋 = 𝑗 = 𝐸 𝐼𝑗 = σ𝑘=0
∞ 𝐸 𝑋

𝑗+𝑘
𝑗+𝑘
𝑘

−1 𝑘

≈ σ𝑘=0
∞ 𝜆𝑗+𝑘

(𝑗+𝑘)!

𝑗+𝑘
𝑘

−1 𝑘 =
𝜆𝑗

𝑗!
σ𝑘=0
∞ −𝜆 𝑘

𝑘!
≈

𝜆𝑗𝑒−𝜆

𝑗!

Let 𝐼𝑗 = ቊ
1 if 𝑋 = 𝑗

0 otherwise
𝑗 ≥ 0

by Taylor series 

Then,

Thus,
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Poisson and binomial distribution

To prove that a binomial random variable 𝑋 with parameters 
𝑛 and 𝑝 satisfies

𝐸
𝑋

𝑖
≈ 𝜆𝑖/𝑖!

Proof: 

• 𝑋 can be viewed as the number of successes in 𝑛 independent 
trials where each is a success with probability 𝑝

• For each of the 𝑛
𝑖

sets of 𝑖 trials, define

∀𝑗 ∈ 1,2, … ,
𝑛

𝑖
: 𝑋𝑗 = ቊ

1 if all the 𝑖 trails are successes
0 otherwise
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Poisson and binomial distribution

To prove that a binomial random variable 𝑋 with parameters 
𝑛 and 𝑝 satisfies

𝐸
𝑋

𝑖
≈ 𝜆𝑖/𝑖!

Proof: 

𝐸 𝑋
𝑖

= 𝐸 σ𝑗=1
𝐶𝑛
𝑖

𝑋𝑗 = σ𝑗=1
𝐶𝑛
𝑖

𝐸 𝑋𝑗 = 𝐶𝑛
𝑖 ⋅ 𝑝𝑖 =

𝑛(𝑛−1)⋯(𝑛−𝑖+1)

𝑖!
⋅ 𝑝𝑖

Case 1: 𝑖 is small enough relative to 𝑛, e.g. 𝑖 ∈ 𝑜(𝑛)

𝐸 𝑋
𝑖

≈
𝑛𝑖

𝑖!
⋅ 𝑝𝑖 = 𝜆𝑖/𝑖!

Case 2: 𝑖 is not small relative to 𝑛, e.g. 𝑖 ∈ 𝛳(𝑛)

𝐸 𝑋
𝑖

≤
𝑛𝑖

𝑖!
⋅ 𝑝𝑖 → 0

holds when 𝑛 is large enough, 𝑝 is small enough 

and 𝑛𝑝 is not large

𝑋
𝑖
= σ𝑗=1

𝐶𝑛
𝑖

𝑋𝑗
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Poisson and binomial distribution

How to bound the approximation error for general 𝒏 and 𝒑?

Remark: 
𝑋𝑖 are not necessarily independent, and 𝑝𝑖 can be different 

Let 𝑋 = σ𝑖=1
𝑛 𝑋𝑖, where the 𝑋𝑖 are Bernoulli random variables 

with respective means 𝑝𝑖, 𝑖 = 1,… , 𝑛. Set 𝜆 = σ𝑖=1
𝑛 𝑝𝑖 and let 

𝐴 denote a set of nonnegative integers. To bound

𝑃 𝑋 ∈ 𝐴 −

𝑖∈𝐴

𝜆𝑖𝑒−𝜆

𝑖!

More general than binomial distribution
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Poisson and binomial distribution

𝑃 𝑋 ∈ 𝐴 −

𝑖∈𝐴

𝜆𝑖𝑒−𝜆

𝑖!
To bound

Proof: Define a function 𝑔 for which

𝑃 𝑋 ∈ 𝐴 −
𝑖∈𝐴

𝜆𝑖𝑒−𝜆

𝑖!
= 𝐸[𝜆𝑔 𝑋 + 1 − 𝑋𝑔(𝑋)]

𝑔(𝑗 + 1) =
1

𝜆
𝐼(𝑗 ∈ 𝐴) − σ𝑖∈𝐴

𝜆𝑖𝑒−𝜆

𝑖!
+ 𝑗𝑔(𝑗)Let 𝑔 0 = 0,   ∀𝑗 ≥ 0: 

𝜆𝑔(𝑗 + 1) − 𝑗𝑔(𝑗) = 𝐼(𝑗 ∈ 𝐴) − σ𝑖∈𝐴
𝜆𝑖𝑒−𝜆

𝑖!
Then,

𝐸 𝜆𝑔(𝑋 + 1) − 𝑋𝑔(𝑋) = 𝐸[𝐼(𝑋 ∈ 𝐴)] − σ𝑖∈𝐴
𝜆𝑖𝑒−𝜆

𝑖!

= 𝑃(𝑋 ∈ 𝐴) − σ𝑖∈𝐴
𝜆𝑖𝑒−𝜆

𝑖!
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Poisson and binomial distribution

𝑃 𝑋 ∈ 𝐴 −

𝑖∈𝐴

𝜆𝑖𝑒−𝜆

𝑖!
To bound

Proof: 

𝐸[𝜆𝑔(𝑋 + 1)] = 𝐸 σ𝑖=1
𝑛 𝑝𝑖 𝑔 𝑋 + 1 = σ𝑖=1

𝑛 𝑝𝑖 𝐸 𝑔(𝑋 + 1)

𝐸 )𝑋𝑔(𝑋 = σ𝑖=1
𝑛 𝑝𝑖 𝐸 𝑔(𝑋) ∣ 𝑋𝑖 = 1 = σ𝑖=1

𝑛 𝑝𝑖 𝐸 )𝑔(𝑉𝑖 + 1

|𝐸 𝜆𝑔 𝑋 + 1 − 𝐸 )𝑋𝑔(𝑋 | = σ𝑖=1
𝑛 𝑝𝑖 𝐸 𝑔 𝑋 + 1 − 𝐸 )𝑔(𝑉𝑖 + 1

≤ σ𝑖=1
𝑛 𝑝𝑖 𝐸 )𝑔(𝑋 + 1) − 𝑔(𝑉𝑖 + 1

following the lemma next page 𝑃 𝑉𝑖 = 𝑘 = 𝑃(σ𝑗≠𝑖𝑋𝑗 = 𝑘 ∣ 𝑋𝑖 = 1)

• Analyze 𝐸[𝜆𝑔 𝑋 + 1 − 𝑋𝑔(𝑋)]
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Poisson and binomial distribution

𝐸 𝑋𝑅 =

𝑖=1

𝑛

𝑝𝑖𝐸[𝑅 ∣ 𝑋𝑖 = 1]

Lemma: For any random variable 𝑅, 

Proof: 

𝐸[𝑋𝑅] = 𝐸 

𝑖=1

𝑛

𝑅𝑋𝑖 =

𝑖=1

𝑛

𝐸 [𝑅𝑋𝑖]

= 

𝑖=1

𝑛

𝐸 𝐸[𝑅𝑋𝑖 ∣ 𝑋𝑖]

=

𝑖=1

𝑛

𝑝𝑖 𝐸[𝑅 ∣ 𝑋𝑖 = 1]
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Poisson and binomial distribution

𝑃 𝑋 ∈ 𝐴 −

𝑖∈𝐴

𝜆𝑖𝑒−𝜆

𝑖!
≤

𝑖=1

𝑛

𝑝𝑖𝐸[|𝑔 𝑋 + 1 − 𝑔(𝑉𝑖 + 1)|]

|𝑔 𝑗 − 𝑔 𝑗 − 1 | ≤ min{1, 1/𝜆}

Lemma: For any 𝜆 and 𝐴, 

𝑔(𝑋 + 1) − 𝑔(𝑉𝑖 + 1) = )𝑔(𝑋 + 1) − 𝑔(𝑋) + ⋯+ 𝑔(𝑉𝑖 + 2) − 𝑔(𝑉𝑖 + 1

≤ )𝑔(𝑋 + 1) − 𝑔(𝑋)| + ⋯+ |𝑔(𝑉𝑖 + 2) − 𝑔(𝑉𝑖 + 1

= 𝑋 − 𝑉𝑖 ⋅min{1,1/𝜆}

𝑃(𝑋 ∈ 𝐴) − σ𝑖∈𝐴
𝜆𝑖𝑒−𝜆

𝑖!
≤ σ𝑖=1

𝑛 𝑝𝑖 𝐸 𝑔(𝑋 + 1) − 𝑔(𝑉𝑖 + 1)

≤ σ𝑖=1
𝑛 𝑝𝑖 ⋅ 𝐸 𝑋 − 𝑉𝑖 ⋅min{1,1/𝜆}
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Poisson and binomial distribution

How to bound the approximation error for general 𝒏 and 𝒑?

Let 𝑋 = σ𝑖=1
𝑛 𝑋𝑖, where the 𝑋𝑖 are Bernoulli random variables 

with respective means 𝑝𝑖, 𝑖 = 1,… , 𝑛. Set 𝜆 = σ𝑖=1
𝑛 𝑝𝑖 and let 

𝐴 denote a set of nonnegative integers.

𝑃 𝑋 ∈ 𝐴 −

𝑖∈𝐴

𝜆𝑖𝑒−𝜆

𝑖!
≤

𝑖=1

𝑛

𝑝𝑖 ⋅ min{1, 1/𝜆} ⋅ 𝐸[|𝑋 − 𝑉𝑖|]

where 𝑃 𝑉𝑖 = 𝑘 = 𝑃(σ𝑗≠𝑖𝑋𝑗 = 𝑘 ∣ 𝑋𝑖 = 1)

Remark: 
𝑋𝑖 are not necessarily independent, and 𝑝𝑖 can be different 
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Poisson and binomial distribution

How to bound the approximation error for general 𝒏 and 𝒑?

For binomial random variable 𝑋,  

𝑋𝑖 are independent, and 𝑝𝑖 are the same, denoted as 𝑝

𝑃 𝑋 ∈ 𝐴 −

𝑖∈𝐴

𝜆𝑖𝑒−𝜆

𝑖!
≤ 

𝑖=1

𝑛

𝑝𝑖 ⋅ min{1, 1/𝜆} ⋅ 𝐸[|𝑋 − 𝑉𝑖|]

= min{𝑛𝑝2, 𝑝} 𝐸[|𝑋𝑖|] = 𝑝𝑖

by independence
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Exponential distribution

A continuous random variable 𝑋 is said to have an exponential 
distribution with parameter 𝝀, 𝝀 > 𝟎, if its probability density 
function is given by

𝑓 𝑥 = ቊ𝜆𝑒
−𝜆𝑥 𝑥 ≥ 0

0 𝑥 < 0

Expectation:

𝐹 𝑥 = ቊ1 − 𝑒−𝜆𝑥 𝑥 ≥ 0
0 𝑥 < 0

𝐸 𝑋 = 1/𝜆

or, equivalently, if its cumulative distribution function is

Variance: 𝑉𝑎𝑟 𝑋 = 1/𝜆2
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Exponential distribution

An exponentially distributed random variable 𝑋 has the 
memoryless property:

∀𝑠, 𝑡 ≥ 0, 𝑃 𝑋 > 𝑠 + 𝑡 𝑋 > 𝑡 = 𝑃(𝑋 > 𝑠)

Proof: 

)𝑃(𝑋 > 𝑠 + 𝑡 ∣ 𝑋 > 𝑡 =
)𝑃(𝑋 > 𝑠 + 𝑡, 𝑋 > 𝑡

)𝑃(𝑋 > 𝑡
=

)𝑃(𝑋 > 𝑠 + 𝑡

)𝑃(𝑋 > 𝑡

=
𝑒 )−𝜆(𝑠+𝑡

𝑒−𝜆𝑡
= 𝑒−𝜆𝑠 = 𝑃(𝑋 > 𝑠)
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Exponential distribution

An exponentially distributed random variable 𝑋 has the 
memoryless property:

∀𝑠, 𝑡 ≥ 0, 𝑃 𝑋 > 𝑠 + 𝑡 𝑋 > 𝑡 = 𝑃(𝑋 > 𝑠)

Application: Consider a post office having two clerks, and suppose 
that when 𝐴 enters the system, 𝐵 and 𝐶 are being served by these two 
clerks, respectively. Suppose also that 𝐴 will begin to be served once 
either 𝐵 or 𝐶 leaves. If the amount of time a clerk spends with a 
customer is exponentially distributed with parameter 𝜆, what is the 
probability that 𝐴 is the last to leave the post office?

𝐴 𝐵

𝐶
1/2
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Failure (Hazard) rate function

Consider a non-negative, continuous random variable 𝑋 having 
distribution 𝐹 and density 𝑓, let ത𝐹 𝑥 = 𝑃 𝑋 > 𝑥 = 1 − 𝐹 𝑥 . 

𝜆 𝑡 =
𝑓(𝑡)
ത𝐹 𝑡

The failure (or hazard) rate function 𝝀(𝒕) is defined by

Intuitive explanation: Let 𝑋 denote the lifetime of some item

)𝑃(𝑋 ∈ (𝑡, 𝑡 + 𝑑𝑡) ∣ 𝑋 > 𝑡 =
)𝑃(𝑥 ∈ (𝑡, 𝑡 + 𝑑𝑡), 𝑋 > 𝑡

)𝑃(𝑋 > 𝑡

≈
𝑓 𝑡 ⋅ 𝑑𝑡

ത𝐹(𝑡)
= 𝜆 𝑡 ⋅ 𝑑𝑡
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Failure (Hazard) rate  function

The failure rate function 𝜆(𝑡) uniquely determines the
cumulative distribution 𝐹

Proof: 

Failure rate function 𝜆(𝑡) for the exponential distribution:   

𝜆 𝑡 =
𝑓(𝑡)
ത𝐹 𝑡

=
𝜆𝑒−𝜆𝑡

𝑒−𝜆𝑡
= 𝜆

𝜆(𝑡) =
)𝑓(𝑡

ത𝐹(𝑡)
=
−
𝑑 ത𝐹(𝑡)
𝑑𝑡

ത𝐹(𝑡)

න
0

𝑡

−𝜆(𝑡)𝑑𝑡 = ቚlog ത𝐹(𝑡)
0

𝑡
= log ത𝐹(𝑡) − log ത𝐹(0)

ത𝐹(𝑡) = 𝑒− 0
𝑡
𝜆(𝑡)𝑑𝑡

= 𝑃 𝑋 > 0 = 1

Then,

Thus,

By definition of 𝜆(𝑡),
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Probability inequalities

Proof: 

Markov inequality: If 𝑋 is a nonnegative random variable, 
then for any 𝑎 > 0,

𝑃 𝑋 ≥ 𝑎 ≤
𝐸[𝑋]

𝑎

𝑌 = ൜
1 if 𝑋 ≥ 𝑎
0 otherwise

,Let 𝑌 ≤
𝑋

𝑎
then

𝐸[𝑌] ≤
]𝐸[𝑋

𝑎
Thus,
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Probability inequalities

Proof: 

Chernoff bound: If 𝑋 is random variable, then for 𝑎 > 0,

𝑃 𝑋 ≥ 𝑎 ≤ 𝑒−𝑡𝑎𝐸[𝑒𝑡𝑋] for all 𝑡 > 0

𝑃 𝑋 ≤ 𝑎 ≤ 𝑒−𝑡𝑎𝐸[𝑒𝑡𝑋] for all 𝑡 < 0

)𝑃(𝑋 ≥ 𝑎 ൯= 𝑃(𝑡𝑋 ≥ 𝑡𝑎) = 𝑃(𝑒𝑡𝑋 ≥ 𝑒𝑡𝑎

≤
]𝐸[𝑒𝑡𝑋

𝑒𝑡𝑎

For all 𝑡 > 0:

)𝑃(𝑋 ≤ 𝑎 ൯= 𝑃(𝑡𝑋 ≥ 𝑡𝑎) = 𝑃(𝑒𝑡𝑋 ≥ 𝑒𝑡𝑎

≤
]𝐸[𝑒𝑡𝑋

𝑒𝑡𝑎

For all 𝑡 < 0:

by Markov inequality 
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Probability inequalities

Chernoff bound: If 𝑋 is random variable, then for 𝑎 > 0,

𝑃 𝑋 ≥ 𝑎 ≤ 𝑒−𝑡𝑎𝐸[𝑒𝑡𝑋] for all 𝑡 > 0

𝑃 𝑋 ≤ 𝑎 ≤ 𝑒−𝑡𝑎𝐸[𝑒𝑡𝑋] for all 𝑡 < 0

Application: If 𝑋 is Poisson with mean 𝜆, i.e.,

𝑃 𝑋 = 𝑘 =
𝜆𝑘𝑒−𝜆

𝑘!
for 𝑘 = 0,1,2, …

)𝑃(𝑋 ≥ 𝑗 ≤ 𝑒−𝑡𝑗𝐸[𝑒𝑡𝛼] = σ𝑘=0
∞ 𝑒𝑡𝑘 ⋅

𝑋𝑘𝑒−𝜆

𝑘!

= 𝑒−𝜆 σ𝑘=0
∞ 𝜆𝑒𝑡

𝑘

𝑘!
= 𝑒−𝜆 ⋅ 𝑒𝜆𝑒

𝑡
= 𝑒𝜆 𝑒𝑡−1 −𝑡𝑗

derivative

𝜆𝑒𝑡 − 𝑗 ⋅ 𝑒𝜆 𝑒𝑡−1 −𝑡𝑗

Let 𝑡 = ln
𝑗

𝜆
(assume 𝑗 > 𝜆), then 𝑃(𝑋 ≥ 𝑗) ≤ 𝑒𝑗−𝜆 ⋅

𝑗

𝜆

−𝑗
=

𝑒−𝜆 𝑒𝜆 𝑗

𝑗𝑗
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Probability inequalities

Proof: 

Jensen’s inequality: If 𝑓 is a convex function, then

𝐸[𝑓(𝑋)] ≥ 𝑓(𝐸[𝑋])

provided the expectations exist

Let 𝜇 = 𝐸[𝑋]

)𝑓(𝑋 = 𝑓(𝜇) + 𝑓′(𝜇)(𝑋 − 𝜇) +
)𝑓″(𝜉

2
𝑋 − 𝜉 2

)≥ 𝑓(𝜇) + 𝑓′(𝜇)(𝑋 − 𝑢

)𝐸(𝑓(𝑋)] ≥ 𝑓(𝜇) + 𝑓′(𝜇)(𝐸[𝑋] − 𝜇) = 𝑓(𝜇) = 𝑓(𝐸[𝑋]

≥ 0 because 𝑓 is convex

Then,

Thus,
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Limit theorems

Strong Law of Large Numbers: If 𝑋1, 𝑋2, … are independent 
and identically distributed with mean 𝜇, then

𝑃 lim
𝑛→∞

(𝑋1 +⋯+ 𝑋𝑛)/𝑛 = 𝜇 = 1

Central Limit Theorem: If 𝑋1, 𝑋2, … are independent and 
identically distributed with mean 𝜇 and variance 𝜎2, then

lim
𝑛→∞

𝑃
𝑋1 +⋯+ 𝑋𝑛 − 𝑛𝜇

𝜎 𝑛
≤ 𝑎 = න

−∞

𝑎 1

2𝜋
𝑒−𝑥

2/2 𝑑𝑥
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Summary

• What is stochastic process

• Stochastic process in AI

• Preliminaries

References: Chapter 1 & 10, Stochastic Processes, 
2nd edition, 1995, by Sheldon M. Ross


