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Stochastic process

A stochastic process is a collection {X(¢t) | t € T} of
random variables

* X(t) is a random variable

* tis often interpreted as time, and X (t) is called the state
of the process at time t

» Discrete-time stochastic process:

The index set T is a countable set

» Continuous-time stochastic process:

The index set T is a continuum
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Random variable

A random variable X:S — R is a function that assigns a
real value to each outcome in the sample space S

For example, — X is the outcome

random experiment
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Random variable

For example,

random experiment

X indicates the oddness

sample
space
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Example of stochastic process

Example: Consider a particle that moves along a set of m + 1
nodes, labelled 0, 1,..,m, that are arranged around a circle.

At each step the particle is equally likely to move one position
in either the clockwise or counterclockwise direction.

G Xn: position of the particle after n steps
P(Xpny1=i+1[X, =10

=P(Xy,,=i—1|X, =1
3 (2) T

‘ e {Xnln=0,1,2,...} is a stochastic process
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Example of stochastic process

P(Xpy1=1+1[X, =1)

=PXpy1=1—-1[X, =1)
g &
‘ 9 {X,In=0,1,2,..} is a stochastic process

XO:()

Xn: position of the particle after n steps

Suppose that|the particle starts at 0 |and continues to move around
according to the above rules until all the nodes have been visited.

What is the probability that node i is the last one visited?
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Example of stochastic process

Solution:
Target event E;: i is the last visited node until visiting all nodes

Random variable T: the first time that the particle visits k

P(E;) =|P(E; | Ti—q <Tiy1)P(Ti—1 <Tiyq1)
+P(E; | Ti—q > Tix1)P(Ti—1 > Tiy1)
before node i is visited, = P(W,,)P(T;_1 < Tj4+1) + P(W,,)P(T;_1 > Tj41)
node i + 1 is visidted =P(W,,)

D PE)=1 = P(Ei>=%
i=1

Event W,,,: a gambler who starts with 1 unit, and wins 1 when a
fair coin turns up heads and loses 1 when it turns up tails, will
have his fortune go up by m — 1 before he goes broke
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Example of stochastic process

Example: Consider a particle moves along the vertices of the
graph so that it is equally likely to move from whichever
vertex it is presently at to any of the neighbors of that vertex

nq Xy position of the
particle after n steps

leaf

Ray r {X,In=012,..}is
a stochastic process

n; Starting at 0, what is the
probability that the first
visited leaf is on ray i?

leaf

a star graph with r rays
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Example of stochastic process

Solution:
Target event E;: the first visited leaf is on ray i
Event Cj: the first visited ray is k
P(E;) = Yoy P (Ei|Ci)

P(E; | C) = P(Wn.) (1 — P(Wn.)) P(E) =—+ (1 — i) P(E))

<(( v];elp(zs |c)_o+(1—P(Wn,.))P(Ei>=<1—%>P(Ei)

P(E)r— e (1-2)PE) = P(E) = L

k=Tn,,
Event W .,: a gambler who starts with 1 unit, and wins 1 when a
fair coin turns up heads and loses 1 when it turns up tails, will
have his fortune go up by m — 1 before he goes broke
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Properties of stochastic process

A stochastic process {X(t) | t € T} is said to have independent
increments if Vi, < t; < t, < --- < t,, the random variables

X(t1) — X(to), X(t2) — X(t1), ., X (tn) — X (tn-1)

are independent

A stochastic process {X(t) | t € T} is said to have stationary
increments if Vs > 0,

X(t+5s) — X(t)

has the same distribution for all t

http://www.lamda.nju.edu.cn/qgianc/



Stochastic process in Al

Markov decision process in reinforcement learning:

State space 5 Stochastic Process
Action space A

Transition function P(s’ | s, a) : the probability of
transitioning into state s’ upon taking action a in state s
Reward function R(s, a): the immediate reward associated

with taking action a in state s

Environment

Action

\ 4

Consequence:
Observation

vt from CS 285 at UC Berkeley from Wikipedia
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Stochastic process in Al

Machine Learning
Hidden Markov model: \{

Pattern Recognition

hidden variables Nature Language Processing

xl xz e o o — xl e o o — x?’l

Y1 Y2 e\ Vi e\ In

observed variables

n
PCe, Y1, oo ) = PO)POl) | | PGl POl

i=2
{xpl n = 1} and {y,,| n = 1} are two stochastic processes
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Stochastic process in Al

Gaussian process (GP) is a collection of random variables,
such that every finite collection of those random variables
has a multivariate normal distribution Siochastic Process

Bayesian optimization

Algorithm 1 BO Framework

Input: iteration budget T°
Process:

1: let Dy = 0); arg maXS f(S) n=3
2: fort =1:Tdo

3: @y = arg maxgey acq(x);

4:  evaluate f at x; to obtain ;;

5: _augment the data D; = D;_, U {(x;, y;)} and update

the GP model |
: end for

regards the f value at each data point

F;E;;teriur mean (u(-))

aS a random Variable/ and assumes F&S_gtiﬂc;rJu;nc-:nauni;ﬂf v

satistying a joint Gaussian distribution
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Stochastic process in Al

Evolutionary algorithms (EAs) are a kind of randomized
heuristic optimization algorithms, inspired by nature
evolution (reproduction with variation + nature selection)

Charles Darwin

1809-1882 Nature Evolution
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Stochastic process in Al

Evolutionary algorithms (EAs) are a kind of randomized
heuristic optimization algorithms, inspired by nature
evolution (reproduction with variation + nature selection)

arg maxg f (s)

A typical evolutionary process \
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Stochastic process in Al

Evolutionary algorithms

0(0[1|1|1|0

0|1

1|0(1]1]1|1

0[0|1]|0(0f1

0(0f1|1|1|0

0]0]1|0(0f1

1(0f1]1]1|1

0]0]1|0(0f1

1{0|1]1)|1|0

. o%
&8
/@
5
— —
— —
—| o
—| [
elir=1ra
s =
c =[S
c ==
&mv = =
—
=)
A\/l
VA O,
.mv@.\xmc
023,

1{0|1]1(1(0

0/0{1{0]0|1

1{0f1{1{1|0

[ State

[ State

State

$2

$1

$o

http://www.lamda.nju.edu.cn/qgianc/



Stochastic process in Al

The process of generating new population is randomized

e.g., bit-wise mutation: flips each bit with prob. 1/n

(M 1]0]1 1E
1lo]1]1]1]o0 1/n)2(1—1/n)”_i.0 1.1 0
M

= 0
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Stochastic process in Al

Evolutionary algorithms Stochastic Process
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QOutline of this course

dLecture 1: Preliminaries
dLecture 2: Poisson process
JLecture 3: Renewal process
dLecture 4: Markov chain
JLecture 5: Martingale
dLecture 6: Random walk

JLecture 7: Brownian motion
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Independence of random variables

Two random variables X and Y are said to be independent if

PX=xY=y)=PX=x) -P(Y =v)

for all x and y

Random variables X1, X5, ..., X, are said to be mutually
independent if for any subset I € {1,2, ...,n} and any x;,

' (/\iEI(Xi: xi)) - l_LEIP(Xi = X;)
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Expectation of random variables

The expectation of a discrete random variable X is

E[X] = zxx P(X = x)

where the sum is over all x in the range of X
Two common ways of calculating E[X]:

n
e LetX=X;+X,+ - +X,, then E[X]=z E1X;]
=1

« E[X]=E[E[X Y]]
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How to calculate the expectation

n
=1
Proof:
E[X+Y]= Zz(x+y)P(X—xY y)

:ZxZP(sz,Y=y)+ZyZP(X:x»yzl)’)
y y x

X

:pr(xzx)+ZyP(Y=Y)
y

X

= E[X] + E[Y]
1

n
EX;+ -+ X,|=E[X;+ -+ X,_1] + E[X 2
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How to calculate the expectation

E|X] =E[E[X | Y]]
Proof:
E[E[X | Y]] ZE XY =y]P(Y =y)

y
ZZxP(X=xIY=y)P(Y=y)
y x

2x2P(X=x,Y=y)
y

X

=ZxP(X=x)

X

= E[X]
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Example

Example: There are n keys with the same shape, where only
one can unlock the door. Each key is selected randomly
without replacement. Let X denote the number of selected
keys until unlocking the door. Calculate E[X].

Solutionl: By the definition of expectation

E[X] = k-P(X =k)
_"kn—1 n—2 n—(k—1) 1
_; n ><n—1men—(k—Z)Xn—(k—l)

I
xl
Ngb
=~
S|
|
S
N+
—_
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Example

n
LetX:X]_ +X2++Xn/ then E[X] :2 E[Xl]
=1

Solution2:
Let X; = 1 the firsti — 1t1j1es all fail
0 otherwise
Then, X; =1
Vi=>2,EIX:|=P(X; =1 _n_lxn—ZX Xn_(i_l)
U iy oy G
n—=(@{-1)
B n
n
n—({—-1) n+1
Thus, E[X]:1_|_z _
i=2 n 2
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Example

ElX]=E[E[X Y]]

Solution3:

Let V = 1 the first try s.ucceeds
otherwise

)

and X,, denote the random variable X corresponding to n keys
Then, E[X,] = E[E[X,, | Y]]

1 1
=—E[X, Y =1]+ (1—E)E[Xn 1Y = 0]

—q 1 11 E[X =1+ (1 1EX
=+ (A=A +EXpq]) = 1+ (1 = E[Xn_1]
— E[Xn]zn-zl_l
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Poisson and binomial distribution

A discrete random variable X is said to have a Poisson
distribution with parameter 4, 4 > 0, it

ko2
k!
Expectation: E[X] = A Variance: Var|X] =2

P(X=k)= fork =0,1,2, ...

A discrete random variable X is said to have a Binomial
distribution with parameters n and p € [0, 1], if

P(X = k) = ("

k) pk(1 —p)nk fork =012, ..,n

Expectation: E[X]| = np Variance: Var[X] =np(1 —p)
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Poisson and binomial distribution

Poisson distribution with parameter A = np can be used as an
approximation to binomial distribution with parameters n and
p if n is sufficiently large and p is sufficiently small.

Brun's sieve: Let X be a bounded nonnegative integer-valued
random variable. If, for alli > 0,

E ~ AL /il To show that a binomially distributed
il 4 random variable X satisfies this equation

PX=))=~ for j = 0,1,2, ... | Poisson distribution
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Poisson and binomial distribution

Brun's sieve: Let X be a bounded nonnegative integer-valued
random variable. If, for all i > 0,

X . Me 4 .
E Kl>] ~ A /i! I:> P(X =j) ~ - forj =0,1,2, ...
j!

1 ifX=j
0 otherwise

j=0

Proof: Let [, = {
Then, I; = (¥) (1 = D¥ /= (M) T2 (%) (—1)*
=520 (%) () -0k = 22, () (49 (~ 1)
Thus, P(X = j) = E[I,] = 2,‘? o E [(]fk)] (f+’<)(_1)k /by Taylor series

k w (“DfFA e 2
~ Yk=0 (H )( D = Zk=0 P j!

(J +k)!

http://www.lamda.nju.edu.cn/qgianc/



Poisson and binomial distribution

To prove that a binomial random variable X with parameters

n and p satisfies "
{HEZ

* X can be viewed as the number of successes in n independent
trials where each is a success with probability p

Proof:

* For each of the (7:) sets of i trials, define

Vi €11,2, ...
J { ' ( 0 otherwise

Tl)} Y. — {1 if all the i trails are successes
] ] -
i
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Poisson and binomial distribution

To prove that a binomial random variable X with parameters

n and p satisfies v
R

E[()] E[ZC" X] E[X] =Cj-

Proof: (%) = ZC" X;

n(n 1)---(n—i+1) ;
L! pl

Case 1:i is small enough relative ton, e.g. i € o(n)
E[(D] =5 -p' =21

Case 2: i is not small relative ton, e.g. i € O(n)
X nt holds when n is large enough, p is small enough
) <—-
E[(l)] T 0 and np is not large
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Poisson and binomial distribution

How to bound the approximation error for general n and p?

Let X = Y[, X;, where the X; are Bernoulli random variables
with respective means p;, i = 1,... ,n.Set 1 = Y1 ;p; and let
A denote a set of nonnegative integers. To bound

I ,—A
p(xEA)—zM

i!
IEA

Remark:
X; are not necessarily independent, and p; can be different

More general than binomial distribution
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Poisson and binomial distribution

To bound

LEA

Proof: Define a function g for WhICh

P(X € A) — Z

Let g(0) =0, Vj=>0: gU+1)=%[I(j€A)_ZiEA

= E[AgX +1) — Xg(X)]

)ll -A

+Jg(/)]

i!

Ale—4
i!

Then, Ag(G+1)—jg() =1( € A) = Xiea——

—> E[g(X +1) - Xg(0)] = E[I(X € A)] — Ty, 2
)li -1

=P(XEA) — Y,

i!
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Poisson and binomial distribution

To bound

LEA

Proof:
e Analyze E[Ag(X + 1) — Xg(X)]

E[AglX+ D] =E[XLpigX + D] =X p E[gX + 1)]
E[Xg(X)] 7 =D ElgX) 1 X; =1] = 7i1=1piE[g(Vi + 1)]

following the lemma next page P(WV;=k) =P =X = k | X; = 1)

E[2g(X + 1] — E[Xg(X)]| = |Xi, p: (E[g(X + D] — E[g(V; + DD
<Y EllgX +1) — g(V; + 1)|]
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Poisson and binomial distribution

Lemma: For any random variable R,

E[XR] = Z:piE[R X, = 1]
=1

Proof:

E[XR] = E zn: RXL-- - Z E [RX;]
i=1 | i

n
=1
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Poisson and binomial distribution

[ ,—A
Paed)— Y “o| <Y piEllglr + 1) — g(Vi+ D]

!

FM ~
=

Lemma: For any 1 and 4,

19(G) —g( —1)] < min{1,1/1}
g X+ 1) —gVi+D|=lgX+1)—gX)+--+gV; +2)—gV; +1)]
gX+1D)—gX)|+-+]gVi+2)—gl; +1)]
X —V;| - min{1,1/4}

I IA

/1i -1
PX €A —Yiea—| < I i EllgX +1) — g(V; + 1]

(!

< Xr.p;-EllX = Vil] - min{1,1/2}
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Poisson and binomial distribution

How to bound the approximation error for general n and p?

Let X = Y[, X;, where the X; are Bernoulli random variables
with respective means p;, i = 1,... ,n.Set 1 = Y1 ;p; and let
A denote a set of nonnegative integers.

i
IEA

where P(V; = k) = P(}j»X; =k | X; = 1)

i -2 n
P(XEA)—er SZpi-min{l,l//l}-EﬂX—ViH
i=1

Remark:
X; are not necessarily independent, and p; can be different
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Poisson and binomial distribution

How to bound the approximation error for general n and p?

For binomial random variable X,

X; are independent, and p; are the same, denoted as p

P(XEA)—Z

Ae—4

!

n
< zpi -min{1, 1/2} - [E[IX = V;[]
= l by independence

— min{npz,p} E1|X;]] = p;
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Exponential distribution

A continuous random variable X is said to have an exponential
distribution with parameter 4, 4 > 0, if its probability density
function is given by

_Jre™ x>0
/() {0 x <0

or, equivalently, if its cumulative distribution function is

A
F(X)Z 1 e X x>0
0 x <0

Expectation: E[X] = 1/ Variance: Var[X] = 1/A?
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Exponential distribution

An exponentially distributed random variable X has the
memoryless property:

Vs,t >20,P(X>s+t|X>t)=PX>5)
Proof:

PX>s+t,X>t) PAX>s+t)

PX>s+tlX>t) =

P(X >t)  P(X>1t)
e—)t(s+t)
— — ,—AS _
=— T —¢ >=P(X >5s)
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Exponential distribution

An exponentially distributed random variable X has the
memoryless property:

Vs,t >20,P(X>s+t|X>t)=PX>5)

Application: Consider a post office having two clerks, and suppose
that when A enters the system, B and C are being served by these two
clerks, respectively. Suppose also that A will begin to be served once
either B or C leaves. If the amount of time a clerk spends with a
customer is exponentially distributed with parameter 4, what is the
probability that A is the last to leave the post office?

A _| LB : 1/2
C
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Failure (Hazard) rate function

Consider a non-negative, continuous random variable X having
distribution F and density f, let F(x) = P(X > x) = 1 — F(x).

The failure (or hazard) rate function A(t) is defined by

MO =F0

Intuitive explanation: Let X denote the lifetime of some item
P(x e (t,t+dt),X >t)
P(X>1t)
f(t)-dt
F(t)

PXE(t,t+dt) | X>1) =

= A(t) - dt
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Failure (Hazard) rate function

Failure rate function A(t) for the exponential distribution:

ft) e ™
ﬂ(t)=m= T = A

The failure rate function A(t) uniquely determines the
cumulative distribution F
Proof: dF (t)

By definition of A(t), A(t) = ]I; ((i)) = _F(CS

=P(X>0)=1

t
Then, j — A(t)dt = log F(¢t) Z = log F (t) — log|F (0)
0

— t
Thus, F(t)=e" Jo A®)at
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Probability inequalities

Markov inequality: If X is a nonnegative random variable,
then for any a > 0,
E[X]

a

P(X=>a)<
Proof:

- X
Letyz{1 if X >a then vy <2

0 otherwise’ a
E[X]
Thus, E|[Y] ST
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Probability inequalities

Chernoff bound: If X is random variable, then for a > 0,
P(X = a) < e t4E[e!*] forallt > 0
P(X <a) <e tE[et*] forallt <0

Proof:

Forallt>0: P(X = a)=P(tX = ta) = P(eX = et?)

E [ e tX ]
. Lo <
by Markov inequality eta

Forallt <0: P(X <a)=P(tX =ta) = P(e™ > e%)

E[etX]
eta

<
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Probability inequalities

Chernoff bound: If X is random variable, then for a > 0,
P(X = a) < e t4E[e!*] forallt > 0
P(X <a) <e tE[et*] forallt <0

Application: If X is Poisson with mean 4, i.e.,

Ake—2
P(X=k)= " fork =0,1,2, ...
: —ti gt o _tk Xe™t  (de' —)) ceAlef 1)t
PXz)) s e E[e™] = Lk=oe R derivative
—e Ay (lij)k _ oA phet _[oA(et-1)—t;
Lett = lnﬁ (assume j > 1), thenp(X >j) <el™*. G)_j — 6—21;]?,1)1'
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Probability inequalities

Jensen’s inequality: If f is a convex function, then

E[f(X)] = f(E[X])

provided the expectations exist

Proof:
Let U = E[X] > 0/1because f is convex
_ , () )
Then, f(X) =fW+f WX -p+=—=&=-9

> f() + f/ DX — )
Thus, E(FCO] = f(w) + F/WEX] - w) = F() = FEXD
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Limit theorems

Strong Law of Large Numbers: If X4, X,, ... are independent
and identically distributed with mean p, then

P(lim (X; + -+ X)/n=p) =1

n—0o

Central Limit Theorem: If X, X,, ... are independent and
identically distributed with mean u and variance a2, then

lim P

n—>00

X1 + +X _nl/l, f —XZ/Z dx
avn w2
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Summary

* What is stochastic process
* Stochastic process in Al

* Preliminaries

References: Chapter 1 & 10, Stochastic Processes,
2nd edition, 1995, by Sheldon M. Ross
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