Schaql af Artificial Intelligence，Nanding University

Stochastic Processes随机过程

Chao Qian（钱超）
Associate Professor，Nanjing University，China

Email：qianc＠nju．edu．cn Homepage：http：／／www．lamda．nju．edu．cn／qianc／

Stochastic process

A stochastic process is a collection $\{X(t) \mid t \in T\}$ of random variables

- $X(t)$ is a random variable
- t is often interpreted as time, and $X(t)$ is called the state of the process at time t
> Discrete-time stochastic process:
The index set T is a countable set
> Continuous-time stochastic process:
The index set T is a continuum

Random variable

A random variable $X: S \rightarrow R$ is a function that assigns a real value to each outcome in the sample space S

For example,
random experiment

Random variable

For example,
random experiment

Example of stochastic process

Example: Consider a particle that moves along a set of $m+1$ nodes, labelled $0,1, . ., m$, that are arranged around a circle. At each step the particle is equally likely to move one position in either the clockwise or counterclockwise direction.

X_{n} : position of the particle after n steps

$$
\begin{aligned}
& P\left(X_{n+1}=i+1 \mid X_{n}=i\right) \\
& =P\left(X_{n+1}=i-1 \mid X_{n}=i\right) \\
& =1 / 2 \\
\left\{X_{n} \mid n\right. & =0,1,2, \ldots\} \text { is a stochastic process }
\end{aligned}
$$

Example of stochastic process

Suppose that the particle starts at 0 and continues to move around according to the above rules until all the nodes have been visited.

What is the probability that node i is the last one visited?

Example of stochastic process

Solution:

Target event $E_{i}: i$ is the last visited node until visiting all nodes
Random variable $\boldsymbol{T}_{\boldsymbol{k}}$: the first time that the particle visits k

$$
\begin{aligned}
& \qquad \begin{aligned}
& P\left(E_{i}\right)= P\left(E_{i} \mid T_{i-1}<T_{i+1}\right) P\left(T_{i-1}<T_{i+1}\right) \\
&+P\left(E_{i} \mid T_{i-1}>T_{i+1}\right) P\left(T_{i-1}>T_{i+1}\right)
\end{aligned} \\
& \text { before node } i \text { is visited, }=P\left(W_{m}\right) P\left(T_{i-1}<T_{i+1}\right)+P\left(W_{m}\right) P\left(T_{i-1}>T_{i+1}\right) \\
& \text { node } i+1 \text { is visidted }=P\left(W_{m}\right) \\
& \qquad \sum_{i=1}^{m} P\left(E_{i}\right)=1 \rightleftharpoons P\left(E_{i}\right)=\frac{1}{m}
\end{aligned}
$$

Event $\boldsymbol{W}_{\boldsymbol{m}}$: a gambler who starts with 1 unit, and wins 1 when a fair coin turns up heads and loses 1 when it turns up tails, will have his fortune go up by $m-1$ before he goes broke

Example of stochastic process

Example: Consider a particle moves along the vertices of the graph so that it is equally likely to move from whichever vertex it is presently at to any of the neighbors of that vertex

Example of stochastic process

Solution:

Target event E_{i} : the first visited leaf is on ray i
Event $\boldsymbol{C}_{\boldsymbol{k}}$: the first visited ray is k

$$
\begin{aligned}
& P\left(E_{i}\right)=\sum_{k=1}^{r} P\left(E_{i} \mid C_{k}\right) \frac{1}{r} \\
& P\left(E_{i} \mid C_{i}\right)=P\left(W_{n_{i}}\right)+\left(1-P\left(W_{n_{i}}\right)\right) P\left(E_{i}\right)=\frac{1}{n_{i}}+\left(1-\frac{1}{n_{i}}\right) P\left(E_{i}\right) \\
& \forall j \neq i: P\left(\underline{E_{i}} \mid C_{j}\right)=0+\left(1-P\left(W_{n_{j}}\right)\right) P\left(E_{i}\right)=\left(1-\frac{1}{n_{j}}\right) P\left(E_{i}\right) \\
& P\left(E_{i}\right),{ }_{\prime}^{\prime} \frac{1}{n_{i}}+\sum_{k=1}^{r}\left(1-\frac{1}{n_{k}}\right) P\left(E_{i}\right) \Longrightarrow P\left(E_{i}\right)=\frac{\frac{1}{n_{i}}}{\sum_{k=1}^{n} \frac{1}{n_{k}}}
\end{aligned}
$$

Event $\boldsymbol{W}_{\boldsymbol{m}}$: a gambler who starts with 1 unit, and wins 1 when a fair coin turns up heads and loses 1 when it turns up tails, will have his fortune go up by $m-1$ before he goes broke

Properties of stochastic process

A stochastic process $\{X(t) \mid t \in T\}$ is said to have independent increments if $\forall t_{0}<t_{1}<t_{2}<\cdots<t_{n}$, the random variables

$$
X\left(t_{1}\right)-X\left(t_{0}\right), X\left(t_{2}\right)-\mathrm{X}\left(t_{1}\right), \ldots, X\left(t_{n}\right)-X\left(t_{n-1}\right)
$$

are independent

A stochastic process $\{X(t) \mid t \in T\}$ is said to have stationary increments if $\forall s>0$,

$$
X(t+s)-X(t)
$$

has the same distribution for all t

Stochastic process in AI

Markov decision process in reinforcement learning:

- State space S

Stochastic Process

- Action space A
- Transition function $P\left(s^{\prime} \mid s, a\right)$: the probability of transitioning into state s^{\prime} upon taking action a in state s
- Reward function $R(s, a)$: the immediate reward associated with taking action a in state s

Stochastic process in AI

Hidden Markov model: $\longrightarrow\left\{\begin{array}{l}\text { Machine Learning } \\ \text { Pattern Recognition } \\ \text { Nature Language Processing }\end{array}\right.$

observed variables
$P\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=P\left(x_{1}\right) P\left(y_{1} \mid x_{1}\right) \prod_{i=2}^{n} P\left(x_{i} \mid x_{i-1}\right) P\left(y_{i} \mid x_{i}\right)$
$\left\{x_{n} \mid n \geq 1\right\}$ and $\left\{y_{n} \mid n \geq 1\right\}$ are two stochastic processes

Stochastic process in AI

Gaussian process (GP) is a collection of random variables, such that every finite collection of those random variables has a multivariate normal distribution Stochastic Process

Bayesian optimization

```
Algorithm 1 BO Framework
Input: iteration budget T
Process:
    1: let D}\mp@subsup{D}{0}{}=\emptyset\mathrm{ ;
    arg max
    2: for }t=1:T\mathrm{ do
    3: }\quad\mp@subsup{\boldsymbol{x}}{t}{}=\operatorname{arg}\mp@subsup{\operatorname{max}}{\boldsymbol{x}\in\mathcal{X}}{}acq(\boldsymbol{x})
    4: evaluate f at }\mp@subsup{\boldsymbol{x}}{t}{}\mathrm{ to obtain }\mp@subsup{y}{t}{}\mathrm{ ;
    5: augment the data }\mp@subsup{D}{t}{}=\mp@subsup{D}{t-1}{}\cup{(\mp@subsup{\boldsymbol{x}}{t}{},\mp@subsup{y}{t}{})}\mathrm{ and update
        the GP model
    6: end for
regards the \(f\) value at each data point as a random variable, and assumes satisfying a joint Gaussian distribution
```


Stochastic process in AI

Evolutionary algorithms (EAs) are a kind of randomized heuristic optimization algorithms, inspired by nature evolution (reproduction with variation + nature selection)

Charles Darwin 1809-1882

Nature Evolution

Stochastic process in AI

Evolutionary algorithms (EAs) are a kind of randomized

 heuristic optimization algorithms, inspired by nature evolution (reproduction with variation + nature selection)$\arg \max _{s} f(\boldsymbol{s})$
A typical evolutionary process

Population

Stochastic process in AI

Evolutionary algorithms

Stochastic process in AI

The process of generating new population is randomized
e.g., bit-wise mutation: flips each bit with prob. $1 / n$

$$
\begin{aligned}
& (1 / n)^{3}(1-1 / n)^{n-3} \longrightarrow 1|1| 0|1| 0 \mid 0
\end{aligned}
$$

:

Stochastic process in AI

Evolutionary algorithms

Stochastic Process

Outline of this course

\square Lecture 1: Preliminaries
\square Lecture 2: Poisson process
\square Lecture 3: Renewal process
\square Lecture 4: Markov chain
\square Lecture 5: Martingale
\square Lecture 6: Random walk
\square Lecture 7: Brownian motion

相关教材

－An Introduction to Stochastic Modeling，4th edition， 2010 by Mark Pinsky and Samuel Karlin
－Basic Stochastic Processes， 1999 by Zdzislaw Brzezniak and Tomasz Zastawniak
－Stochastic Processes，2nd edition， 1995 by Sheldon M．Ross
－Introduction to Stochastic Processes， 2013 by Erhan Cinlar
－Essentials of Stochastic Processes，2nd edition， 2012 by Richard Durrett

课程相关信息

课程时间：周五下午14：00－16：00
课程主页：
http：／／www．lamda．nju．edu．cn／SP22／
课程讨论QQ群：569309099
助教：市超，王雨桐

随机过程
不随机过

答疑时间：周五下午16：00－17：30，逸A－502
成绩计算：4次平时作业（15\％），期末考试（40\％） Schaql af Artificial Intelligence，Nanding University

Stochastic Processes Lecture 1：Preliminaries

Chao Qian（钱超）

Associate Professor，Nanjing University，China

Email：qianc＠nju．edu．cn Homepage：http：／／www．lamda．nju．edu．cn／qianc／

Independence of random variables

Two random variables X and Y are said to be independent if

$$
P(X=x, Y=y)=P(X=x) \cdot P(Y=y)
$$

for all x and y

Random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to be mutually independent if for any subset $I \subseteq\{1,2, \ldots, n\}$ and any x_{i},

$$
P\left(\bigwedge_{i \in I}\left(X_{i}=x_{i}\right)\right)=\prod_{i \in I} P\left(X_{i}=x_{i}\right)
$$

Expectation of random variables

The expectation of a discrete random variable X is

$$
E[X]=\sum_{x} x \cdot P(X=x)
$$

where the sum is over all x in the range of X
Two common ways of calculating $E[X]$:

- Let $X=X_{1}+X_{2}+\cdots+X_{n}$, then $E[X]=\sum_{i=1}^{n} E\left[X_{i}\right]$
- $E[X]=E[E[X \mid Y]]$

How to calculate the expectation

Let $X=X_{1}+X_{2}+\cdots+X_{n}$, then $\quad E[X]=\sum_{i=1}^{n} E\left[X_{i}\right]$

Proof:

$$
\begin{aligned}
& E[X+Y]=\sum_{x} \sum_{y}(x+y) P(X=x, Y=y) \\
&=\sum_{x} x \sum_{y} P(X=x, Y=y)+\sum_{y} y \sum_{x} P(x=x, Y=y) \\
&=\sum_{x} x P(X=x)+\sum_{y} y P(Y=y) \\
&=E[X]+E[Y] \\
& \bigvee \\
& E\left[X_{1}+\cdots+X_{n}\right]=E\left[X_{1}+\cdots+X_{n-1}\right]+E\left[X_{n}\right]=\cdots=\sum_{i=1}^{n} E\left[X_{i}\right]
\end{aligned}
$$

How to calculate the expectation

$$
E[X]=E[E[X \mid Y]]
$$

Proof:

$$
\begin{aligned}
E[E[X \mid Y]] & =\sum_{y} E[X \mid Y=y] P(Y=y) \\
& =\sum_{y} \sum_{x} x P(X=x \mid Y=y) P(Y=y) \\
& =\sum_{x} x \sum_{y} P(X=x, Y=y) \\
& =\sum_{x} x P(X=x) \\
& =E[X]
\end{aligned}
$$

Example

Example: There are n keys with the same shape, where only one can unlock the door. Each key is selected randomly without replacement. Let X denote the number of selected keys until unlocking the door. Calculate $E[X]$.

Solution1: By the definition of expectation

$$
\begin{aligned}
E[X] & =\sum_{k=1}^{n} k \cdot P(X=k) \\
& =\sum_{k=1}^{n} k \cdot \frac{n-1}{n} \times \frac{n-2}{n-1} \times \cdots \times \frac{n-(k-1)}{n-(k-2)} \times \frac{1}{n-(k-1)} \\
& =\sum_{k=1}^{n} k \cdot \frac{1}{n}=\frac{n+1}{2}
\end{aligned}
$$

Example

$$
\text { Let } X=X_{1}+X_{2}+\cdots+X_{n} \text {, then } \quad E[X]=\sum_{i=1}^{n} E\left[X_{i}\right]
$$

Solution2:

Let $X_{i}=\left\{\begin{array}{lc}1 & \text { the first } i-1 \text { tries all fail } \\ 0 & \text { otherwise }\end{array}\right.$

Then, $X_{1}=1$

$$
\begin{aligned}
\forall i \geq 2, E\left[X_{i}\right]=P\left(X_{i}=1\right) & =\frac{n-1}{n} \times \frac{n-2}{n-1} \times \cdots \times \frac{n-(i-1)}{n-(i-2)} \\
& =\frac{n-(i-1)}{n}
\end{aligned}
$$

Thus, $E[X]=1+\sum_{i=2}^{n} \frac{n-(i-1)}{n}=\frac{n+1}{2}$

Example

$$
E[X]=E[E[X \mid Y]]
$$

Solution3:

Let $Y=\left\{\begin{array}{lc}1 & \text { the first try succeeds } \\ 0 & \text { otherwise }\end{array}\right.$, and X_{n} denote the random variable X corresponding to n keys

Then, $E\left[X_{n}\right]=E\left[E\left[X_{n} \mid Y\right]\right]$

$$
\begin{aligned}
& =\frac{1}{n} E\left[X_{n} \mid Y=1\right]+\left(1-\frac{1}{n}\right) E\left[X_{n} \mid Y=0\right] \\
& =\frac{1}{n}+\left(1-\frac{1}{n}\right)\left(1+E\left[X_{n-1}\right]\right)=1+\left(1-\frac{1}{n}\right) E\left[X_{n-1}\right] \\
\Longrightarrow E & {\left[X_{n}\right]=\frac{n+1}{2} }
\end{aligned}
$$

Poisson and binomial distribution

A discrete random variable X is said to have a Poisson distribution with parameter $\lambda, \lambda>0$, if

$$
P(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!} \quad \text { for } k=0,1,2, \ldots
$$

Expectation: $E[X]=\lambda \quad$ Variance: $\operatorname{Var}[X]=\lambda$
A discrete random variable X is said to have a Binomial distribution with parameters \boldsymbol{n} and $\boldsymbol{p} \in[0,1]$, if

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \text { for } k=0,1,2, \ldots, n
$$

Expectation: $E[X]=n p \quad$ Variance: $\operatorname{Var}[X]=n p(1-p)$

Poisson and binomial distribution

Poisson distribution with parameter $\lambda=n p$ can be used as an approximation to binomial distribution with parameters n and p if n is sufficiently large and p is sufficiently small.

Brun's sieve: Let X be a bounded nonnegative integer-valued random variable. If, for all $i \geq 0$,

$$
E\left[\binom{X}{i}\right] \approx \lambda^{i} / i!
$$

To show that a binomially distributed random variable X satisfies this equation
then

$$
P(X=j) \approx \frac{\lambda^{j} e^{-\lambda}}{j!} \quad \text { for } j=0,1,2, \ldots \quad \text { Poisson distribution }
$$

Poisson and binomial distribution

Brun's sieve: Let X be a bounded nonnegative integer-valued random variable. If, for all $i \geq 0$,

$$
P(X=j) \approx \frac{\lambda^{j} e^{-\lambda}}{j!} \quad \text { for } j=0,1,2, \ldots
$$

Proof: Let $I_{j}=\left\{\begin{array}{cc}1 & \text { if } X=j \\ 0 & \text { otherwise }\end{array} \quad j \geq 0\right.$
Then, $I_{j}=\binom{X}{j}(1-1)^{X-j}=\binom{X}{j} \sum_{k=0}^{X-j}\binom{X-j}{k}(-1)^{k}$

$$
=\sum_{k=0}^{\infty}\binom{X}{j}\binom{X-j}{k}(-1)^{k}=\sum_{k=0}^{\infty}\binom{X}{j+k}\binom{j+k}{k}(-1)^{k}
$$

Thus, $P(X=j)=E\left[I_{j}\right]=\sum_{k=0}^{\infty} E\left[\binom{X}{j+k}\right]\binom{j+k}{k}(-1)^{k} \quad$ by Taylor series

$$
\approx \sum_{k=0}^{\infty} \frac{\lambda^{j+k}}{(j+k)!}\binom{j+k}{k}(-1)^{k}=\frac{\lambda^{j}}{j!} \sum_{k=0}^{\infty} \frac{(-\lambda)^{k}}{k!} \approx \frac{\lambda^{j} e^{-\lambda}}{j!}
$$

Poisson and binomial distribution

To prove that a binomial random variable X with parameters n and p satisfies

$$
E\left[\binom{X}{i}\right] \approx \lambda^{i} / i!
$$

Proof:

- X can be viewed as the number of successes in n independent trials where each is a success with probability p
- For each of the $\binom{n}{i}$ sets of i trials, define

$$
\forall j \in\left\{1,2, \ldots,\binom{n}{i}\right\}: X_{j}= \begin{cases}1 & \text { if all the } i \text { trails are successes } \\ 0 & \text { otherwise }\end{cases}
$$

Poisson and binomial distribution

To prove that a binomial random variable X with parameters n and p satisfies

$$
E\left[\binom{X}{i}\right] \approx \lambda^{i} / i!
$$

Proof: $\binom{X}{i}=\sum_{j=1}^{c_{n}^{i}} X_{j}$

$$
E\left[\binom{X}{i}\right]=E\left[\sum_{j=1}^{C_{n}^{i}} X_{j}\right]=\sum_{j=1}^{C_{n}^{i}} E\left[X_{j}\right]=C_{n}^{i} \cdot p^{i}=\frac{n(n-1) \cdots(n-i+1)}{i!} \cdot p^{i}
$$

Case $1: i$ is small enough relative to n, e.g. $i \in o(n)$

$$
E\left[\binom{X}{i}\right] \approx \frac{n^{i}}{i!} \cdot p^{i}=\lambda^{i} / i!
$$

Case 2: i is not small relative to n, e.g. $i \in \theta(n)$

$$
E\left[\binom{X}{i}\right] \leq \frac{n^{i}}{i!} \cdot p^{i} \rightarrow 0 \quad \begin{aligned}
& \text { holds when } n \text { is large enough, } p \text { is small enough } \\
& \text { and } n p \text { is not large }
\end{aligned}
$$

Poisson and binomial distribution

How to bound the approximation error for general \boldsymbol{n} and \boldsymbol{p} ?
Let $X=\sum_{i=1}^{n} X_{i}$, where the X_{i} are Bernoulli random variables with respective means $p_{i}, i=1, \ldots, n$. Set $\lambda=\sum_{i=1}^{n} p_{i}$ and let A denote a set of nonnegative integers. To bound

$$
\left|P(X \in A)-\sum_{i \in A} \frac{\lambda^{i} e^{-\lambda}}{i!}\right|
$$

Remark:

X_{i} are not necessarily independent, and p_{i} can be different
More general than binomial distribution

Poisson and binomial distribution

To bound $\left|P(X \in A)-\sum_{i \in A} \frac{\lambda^{i} e^{-\lambda}}{i!}\right|$
Proof: Define a function g for which

$$
P(X \in A)-\sum_{i \in A} \frac{\lambda^{i} e^{-\lambda}}{i!}=E[\lambda g(X+1)-X g(X)]
$$

Let $g(0)=0, \quad \forall j \geq 0: \quad g(j+1)=\frac{1}{\lambda}\left[I(j \in A)-\sum_{i \in A} \frac{\lambda^{i} e^{-\lambda}}{i!}+j g(j)\right]$
Then, $\lambda g(j+1)-j g(j)=I(j \in A)-\sum_{i \in A} \frac{\lambda^{i} e^{-\lambda}}{i!}$
$\Longrightarrow E[\lambda g(X+1)-X g(X)]=E[I(X \in A)]-\sum_{i \in A} \frac{\lambda^{i} e^{-\lambda}}{i!}$
$=P(X \in A)-\sum_{i \in A} \frac{\lambda^{i} e^{-\lambda}}{i!}$

Poisson and binomial distribution

To bound $\left|P(X \in A)-\sum_{i \in A} \frac{\lambda^{i} e^{-\lambda}}{i!}\right|$

Proof:

- Analyze $E[\lambda g(X+1)-X g(X)]$

$$
\begin{aligned}
& E[\lambda g(X+1)]=E\left[\sum_{i=1}^{n} p_{i} g(X+1)\right]=\sum_{i=1}^{n} p_{i} E[g(X+1)] \\
& E[X g(X)]=\sum_{i=1}^{n} p_{i} E\left[g(X) \mid X_{i}=1\right]=\sum_{i=1}^{n} p_{i} E\left[g\left(V_{i}+1\right)\right] \\
& \text { following the lemma next page } \quad P\left(V_{i}=k\right)=P\left(\sum_{j \neq i} X_{j}=k \mid X_{i}=1\right)
\end{aligned}
$$

$$
\begin{aligned}
|E[\lambda g(X+1)]-E[X g(X)]| & =\left|\sum_{i=1}^{n} p_{i}\left(E[g(X+1)]-E\left[g\left(V_{i}+1\right)\right]\right)\right| \\
& \leq \sum_{i=1}^{n} p_{i} E\left[\left|g(X+1)-g\left(V_{i}+1\right)\right|\right]
\end{aligned}
$$

Poisson and binomial distribution

Lemma: For any random variable R,

Proof:

$$
E[X R]=\sum_{i=1}^{n} p_{i} E\left[R \mid X_{i}=1\right]
$$

$$
\begin{aligned}
E[X R] & =E\left[\sum_{i=1}^{n} R X_{i}\right]=\sum_{i=1}^{n} E\left[R X_{i}\right] \\
& =\sum_{i=1}^{n} E\left[E\left[R X_{i} \mid X_{i}\right]\right] \\
& =\sum_{i=1}^{n} p_{i} E\left[R \mid X_{i}=1\right]
\end{aligned}
$$

Poisson and binomial distribution

$$
\left|P(X \in A)-\sum_{i \in A} \frac{\lambda^{i} e^{-\lambda}}{i!}\right| \leq \sum_{i=1}^{n} p_{i} E\left[\left|g(X+1)-g\left(V_{i}+1\right)\right|\right]
$$

Lemma: For any λ and A,

$$
\begin{aligned}
&|g(j)-g(j-1)| \leq \min \{1,1 / \lambda\} \\
&\left|g(X+1)-g\left(V_{i}+1\right)\right|\left|g(X+1)-g(X)+\cdots+g\left(V_{i}+2\right)-g\left(V_{i}+1\right)\right| \\
& \leq|g(X+1)-g(X)|+\cdots+\left|g\left(V_{i}+2\right)-g\left(V_{i}+1\right)\right| \\
&=\left|X-V_{i}\right| \cdot \min \{1,1 / \lambda\} \\
&\left|P(X \in A)-\sum_{i \in A} \frac{\lambda^{i} e^{-\lambda}}{i!}\right| \leq \sum_{i=1}^{n} p_{i} E\left[\left|g(X+1)-g\left(V_{i}+1\right)\right|\right] \\
& \leq \sum_{i=1}^{n} p_{i} \cdot E\left[\left|X-V_{i}\right|\right] \cdot \min \{1,1 / \lambda\}
\end{aligned}
$$

Poisson and binomial distribution

How to bound the approximation error for general \boldsymbol{n} and \boldsymbol{p} ?
Let $X=\sum_{i=1}^{n} X_{i}$, where the X_{i} are Bernoulli random variables with respective means $p_{i}, i=1, \ldots, n$. Set $\lambda=\sum_{i=1}^{n} p_{i}$ and let A denote a set of nonnegative integers.

$$
\begin{array}{r}
\left|P(X \in A)-\sum_{i \in A} \frac{\lambda^{i} e^{-\lambda}}{i!}\right| \leq \sum_{i=1}^{n} p_{i} \cdot \min \{1,1 / \lambda\} \cdot E\left[\left|X-V_{i}\right|\right] \\
\text { where } P\left(V_{i}=k\right)=P\left(\sum_{j \neq i} X_{j}=k \mid X_{i}=1\right)
\end{array}
$$

Remark:

X_{i} are not necessarily independent, and p_{i} can be different

Poisson and binomial distribution

How to bound the approximation error for general n and p ?

For binomial random variable X,
X_{i} are independent, and p_{i} are the same, denoted as p

$$
\begin{aligned}
\left|P(X \in A)-\sum_{i \in A} \frac{\lambda^{i} e^{-\lambda}}{i!}\right| & \leq \sum_{i=1}^{n} p_{i} \cdot \min \{1,1 / \lambda\} \cdot \begin{array}{c}
E\left[\left|X-V_{i}\right|\right] \\
\lfloor\text { by independence } \\
\\
\\
\\
E\left[\left|X_{i}\right|\right]=p_{i}
\end{array}
\end{aligned}
$$

Exponential distribution

A continuous random variable X is said to have an exponential distribution with parameter $\lambda, \lambda>\mathbf{0}$, if its probability density function is given by

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

or, equivalently, if its cumulative distribution function is

$$
F(x)= \begin{cases}1-e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

Expectation: $E[X]=1 / \lambda \quad$ Variance: $\operatorname{Var}[X]=1 / \lambda^{2}$

Exponential distribution

An exponentially distributed random variable X has the memoryless property:

$$
\forall s, t \geq 0, P(X>s+t \mid X>t)=P(X>s)
$$

Proof:

$$
\begin{aligned}
P(X>s+t \mid X>t) & =\frac{P(X>s+t, X>t)}{P(X>t)}=\frac{P(X>s+t)}{P(X>t)} \\
& =\frac{e^{-\lambda(s+t)}}{e^{-\lambda t}}=e^{-\lambda s}=P(X>s)
\end{aligned}
$$

Exponential distribution

An exponentially distributed random variable X has the memoryless property:

$$
\forall s, t \geq 0, P(X>s+t \mid X>t)=P(X>s)
$$

Application: Consider a post office having two clerks, and suppose that when A enters the system, B and C are being served by these two clerks, respectively. Suppose also that A will begin to be served once either B or C leaves. If the amount of time a clerk spends with a customer is exponentially distributed with parameter λ, what is the probability that A is the last to leave the post office?

$1 / 2$

Failure (Hazard) rate function

Consider a non-negative, continuous random variable X having distribution F and density f, let $\bar{F}(x)=P(X>x)=1-F(x)$.

The failure (or hazard) rate function $\boldsymbol{\lambda}(\boldsymbol{t})$ is defined by

$$
\lambda(t)=\frac{f(t)}{\bar{F}(t)}
$$

Intuitive explanation: Let X denote the lifetime of some item

$$
\begin{aligned}
P(X \in(t, t+d t) \mid X>t) & =\frac{P(x \in(t, t+d t), X>t)}{P(X>t)} \\
& \approx \frac{f(t) \cdot d t}{\bar{F}(t)}=\lambda(t) \cdot d t
\end{aligned}
$$

Failure (Hazard) rate function

Failure rate function $\lambda(t)$ for the exponential distribution:

$$
\lambda(t)=\frac{f(t)}{\bar{F}(t)}=\frac{\lambda e^{-\lambda t}}{e^{-\lambda t}}=\lambda
$$

The failure rate function $\lambda(t)$ uniquely determines the cumulative distribution F

Proof:
By definition of $\lambda(t), \quad \lambda(t)=\frac{f(t)}{\bar{F}(t)}=\frac{-\frac{d \bar{F}(t)}{d t}}{\bar{F}(t)}$
Then, $\quad \int_{0}^{t}-\lambda(t) d t=\left.\log \bar{F}(t)\right|_{0} ^{t}=\log \bar{F}(t)-\log \overline{\bar{F}(0)}=P(X>0)=1$
Thus, $\quad \bar{F}(t)=e^{-\int_{0}^{t} \lambda(t) d t}$

Probability inequalities

Markov inequality: If X is a nonnegative random variable, then for any $a>0$,

$$
P(X \geq a) \leq \frac{E[X]}{a}
$$

Proof:
Let $Y=\left\{\begin{array}{cc}1 & \text { if } X \geq a \\ 0 & \text { otherwise }\end{array}, \quad\right.$ then $Y \leq \frac{X}{a}$
Thus, $E[Y] \leq \frac{E[X]}{a}$

Probability inequalities

Chernoff bound: If X is random variable, then for $a>0$,

$$
\begin{aligned}
& P(X \geq a) \leq e^{-t a} E\left[e^{t X}\right] \text { for all } t>0 \\
& P(X \leq a) \leq e^{-t a} E\left[e^{t X}\right] \text { for all } t<0
\end{aligned}
$$

Proof:

For all $t>0: \quad P(X \geq a)=P(t X \geq t a)=P\left(e^{t X} \geq e^{t a}\right)$

$$
\text { by Markov inequality }-\leq \frac{E\left[e^{t X}\right]}{e^{t a}}
$$

For all $t<0: \quad P(X \leq a)=P(t X \geq t a)=P\left(e^{t X} \geq e^{t a}\right)$

$$
\leq \frac{E\left[e^{t X}\right]}{e^{t a}}
$$

Probability inequalities

Chernoff bound: If X is random variable, then for $a>0$,

$$
\begin{aligned}
& P(X \geq a) \leq e^{-t a} E\left[e^{t X}\right] \text { for all } t>0 \\
& P(X \leq a) \leq e^{-t a} E\left[e^{t X}\right] \text { for all } t<0
\end{aligned}
$$

Application: If X is Poisson with mean λ, i.e.,

$$
\begin{gathered}
P(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!} \text { for } k=0,1,2, \ldots \\
P(X \geq j) \leq e^{-t j} E\left[e^{t \alpha}\right]=\sum_{k=0}^{\infty} e^{t k} \cdot \frac{X^{k} e^{-\lambda}}{k!} \quad\left(\lambda e^{t}-j\right) \cdot e^{\lambda\left(e^{t}-1\right)-t j} \\
=e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda t)^{k}}{k!}=e^{-\lambda} \cdot e^{\lambda e^{t}}=e^{\lambda\left(e^{t}-1\right)-t j}
\end{gathered}
$$

$$
\text { Let } t=\ln \frac{j}{\lambda}(\text { assume } j>\lambda) \text {, then } P(X \geq j) \leq e^{j-\lambda} \cdot\left(\frac{j}{\lambda}\right)^{-j}=\frac{\left.e^{-\lambda}(\lambda \lambda)\right)^{j}}{j j}
$$

Probability inequalities

Jensen's inequality: If f is a convex function, then

$$
E[f(X)] \geq f(E[X])
$$

provided the expectations exist

Proof:

Let $\mu=E[X]$

$$
\geq 0 \text { because } f \text { is convex }
$$

Then, $\quad f(X)=f(\mu)+f^{\prime}(\mu)(X-\mu)+\frac{f^{\prime \prime}(\xi)}{2}(X-\xi)^{2}$

$$
\geq f(\mu)+f^{\prime}(\mu)(X-u)
$$

Thus, $E(f(X)] \geq f(\mu)+f^{\prime}(\mu)(E[X]-\mu)=f(\mu)=f(E[X])$

Limit theorems

Strong Law of Large Numbers: If X_{1}, X_{2}, \ldots are independent and identically distributed with mean μ, then

$$
P\left(\lim _{n \rightarrow \infty}\left(X_{1}+\cdots+X_{n}\right) / n=\mu\right)=1
$$

Central Limit Theorem: If X_{1}, X_{2}, \ldots are independent and identically distributed with mean μ and variance σ^{2}, then

$$
\lim _{n \rightarrow \infty} P\left(\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \leq a\right)=\int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x
$$

Summary

- What is stochastic process
- Stochastic process in AI
- Preliminaries

References: Chapter $1 \&$ 10, Stochastic Processes,
2nd edition, 1995, by Sheldon M. Ross

