Last class

- Poisson process
- Properties of Poisson process
- Nonhomogeneous Poisson process
- Compound Poisson process
- Conditional Poisson process

References: Chapter 2, Stochastic Processes, 2nd edition, 1995, by Sheldon M. Ross Schaql af Artificial Intelligence，Nanding University

Stochastic Processes Lecture 3：Renewal Process

Chao Qian（钱超）
Associate Professor，Nanjing University，China

Email：qianc＠nju．edu．cn
Homepage：http：／／www．lamda．nju．edu．cn／qianc／

Poisson process

A stochastic process $\{N(t), t \geq 0\}$ is said to be a counting process if $N(t)$ represents the total number of 'events' that have occurred up to time t.

Definition 3 [from Lecture 2]: The counting process $\{N(t), t \geq$ $0\}$ is said to be a Poisson process having rate $\lambda, \lambda>0$, if

- Interarrival times $X_{n}, n=1,2, \ldots$ are independent identically distributed exponential random variables having mean $1 / \lambda$

Renewal process

Definition 1: The counting process $\{N(t), t \geq 0\}$ is said to be a renewal process, if

- Interarrival times $X_{n}, n=1,2, \ldots$ are independent identically distributed non-negative random variables with a common distribution F, where $F(0)=P\left(X_{n}=0\right)<1$.

Events \longleftrightarrow Renewals

$$
\begin{aligned}
& S_{n}=X_{1}+X_{2}+\cdots+X_{n} \text { : the time of the } n \text {th event/renewal } \\
& S_{n} \stackrel{\sim}{\sim} F_{n}
\end{aligned} \quad \begin{gathered}
\\
S_{n} \leq t(t) \geq n \\
\mu=E\left[X_{i}\right]=\int_{0}^{\infty} x d F(x) \text { : the expectation of } X_{i}
\end{gathered}
$$

Renewal process

$$
P(N(t)=n) ?
$$

Solution:

$$
\begin{aligned}
P(N(t)=n) & =P(N(t) \geq n)-P(N(t) \geq n+1) \\
& =P\left(S_{n} \leq t\right)-P\left(S_{n+1} \leq t\right) \\
& =F_{n}(t)-F_{n+1}(t)
\end{aligned}
$$

Renewal process

$N(\infty)=\lim _{t \rightarrow \infty} N(t) ? \quad=\infty$ with prob. 1
Solution:

$$
\begin{aligned}
P(N(\infty)<\infty) & =P\left(X_{n}=\infty \text { for some } n\right) \\
& =P\left(\bigcup_{n=1}^{\infty}\left\{X_{n}=\infty\right\}\right) \\
& \leq \sum_{n=1}^{\infty} P\left(X_{n}=\infty\right) \\
& =0
\end{aligned}
$$

Renewal process

$$
\lim _{t \rightarrow \infty} \frac{N(t)}{t} ? \quad \rightarrow \frac{1}{\mu} \text { with prob. } 1
$$

Solution:

$$
\begin{aligned}
& S_{N(t)} \leq t<S_{N(t)+1} \\
& \frac{S_{N(t)}}{N(t)} \leq \frac{t}{N(t)}<\frac{S_{N(t)+1}}{N(t)} \quad \begin{array}{l}
N(t) \rightarrow \infty \text { as } t \rightarrow \infty, \text { then apply } \\
\\
\frac{S_{N(t)}}{N(t)}=\frac{X_{1}+X_{2}+\cdots+X_{N(t)}}{N(t)} \rightarrow \mu \\
\frac{S_{N(t)+1}}{N(t)}=\frac{S_{N(t)+1}}{N(t)+1} \cdot \frac{N(t)+1}{N(t)} \rightarrow \mu
\end{array} . \quad l
\end{aligned}
$$

Renewal process

Example: A container contains an infinite collection of coins. Each coin has its own probability of landing heads, and these probabilities are independently uniformly distributed over $(0,1)$. Suppose we are to flip coins sequentially, at any time either flipping a new coin or one that had previously been used. If our objective is to maximize the long-run proportion of flips that lands on heads, how should we proceed?

Solution: $\quad N(t)$: the number of tails in the first t flips

$$
\text { The objective: } \lim _{t \rightarrow \infty} 1-\frac{N(t)}{t}
$$

The strategy: chooses a coin and continues to flip it until coming up tails; discards this coin and repeats this process

Renewal process

Solution: $\quad N(t)$: the number of tails in the first t flips

$$
\text { The objective: } \lim _{t \rightarrow \infty} 1-\frac{N(t)}{t}
$$

The strategy: chooses a coin and continues to flip it until coming up tails; discards this coin and repeats this process

The time intervals between two tails are iid random variables, thus $\{N(t), t \geq 0\}$ is a renewal process

Then we have $\lim _{t \rightarrow \infty} \frac{N(t)}{t}=\frac{1}{\mu}$, where $\mu=\int_{0}^{1} \frac{1}{1-p} d p=\infty$
Thus, $1-\lim _{t \rightarrow \infty} \frac{N(t)}{t}=1-\frac{1}{\mu}=1$
mean of geometric distribution with parameter $1-p$

Elementary renewal theorem

Renewal function: $m(t)=E[N(t)]=\sum_{n=1}^{\infty} F_{n}(t)$

Proof:

Way 1: $N(t)=\sum_{n=1}^{\infty} I_{n}, \quad I_{n}=\left\{\begin{array}{lc}1 & \text { if the } n-\text { th renewal occures in }[0, t] \\ 0 & \text { otherwise }\end{array}\right.$

$$
\begin{aligned}
E[N(t)] & =E\left[\sum_{n=1}^{\infty} I_{n}\right]=\sum_{n=1}^{\infty} E\left[I_{n}\right]=\sum_{n=1}^{\infty} P\left(I_{n}=1\right) \\
& =\sum_{n=1}^{\infty} P\left(S_{n} \leq t\right)=\sum_{n=1}^{\infty} F_{n}(t)
\end{aligned}
$$

Way 2:

$$
P(N(t) \geq n)=P\left(S_{n} \leq t\right)=F_{n}(t)
$$

$$
E[N(t)]=\sum_{n=1}^{\infty} n P(N(t)=n)=\sum_{n=1}^{\infty} P(N(t) \geq n)=\sum_{n=1}^{\infty} F_{n}(t)
$$

Elementary renewal theorem

Renewal function: $m(t)=E[N(t)]<\infty$ for all $0 \leq t<\infty$

Proof:

$P\left(X_{n}=0\right)<1 \Rightarrow \exists \alpha>0$, s.t. $P\left(X_{n} \geq \alpha\right)>0$
Define a related process:

$$
\bar{X}_{n}= \begin{cases}0 & \text { if } X_{n}<\alpha \\ \alpha & \text { if } X_{n} \geq \alpha\end{cases}
$$

Let $\bar{N}(t)=\sup \left\{n: \bar{X}_{1}+\ldots+\bar{X}_{n} \leq t\right\}, \bar{X}_{n} \leq X_{n} \Rightarrow \bar{N}(t) \geq N(t) \Rightarrow E[\bar{N}(t)] \geq m(t)$
For the related process, renewals can only take place at time $t=n \alpha, n=0,1,2, \ldots$ For $n \geq 1$, the number of renewals at time $n \alpha$ are independent geometric random variables with mean $1 / P\left(X_{n} \geq \alpha\right)$; \#\{renewals at time 0$\}+1$ is a geometric random variables with mean1/P($\left.X_{n} \geq \alpha\right)$

$$
E[\bar{N}(t)]=\left\lfloor\frac{t}{\alpha}\right\rfloor \cdot \frac{1}{P\left(X_{n} \geq \alpha\right)}+\frac{1}{P\left(X_{n} \geq \alpha\right)}-1 \leq \frac{t / \alpha+1}{P\left(X_{n} \geq \alpha\right)}<\infty
$$

Elementary renewal theorem

Elementary Renewal Theorem:

$$
\left.\begin{array}{r}
\frac{m(t)}{t} \rightarrow \frac{1}{\mu} \text { as } t \rightarrow \infty \\
\lim _{t \rightarrow \infty} \frac{N(t)}{t} \rightarrow \frac{1}{\mu} \text { with probability } 1
\end{array}\right\}^{\text {Trivial? }}
$$

Note that the result does hold for a general random variable:
Let U be a random variable that is uniformly distributed on $(0,1)$. Define $Y_{n}, n \geq 1$, by

$$
Y_{n}= \begin{cases}0 & \text { if } U>1 / n \\ n & \text { if } U \leq 1 / n\end{cases}
$$

Then, we have $Y_{n} \rightarrow 0$ as $n \rightarrow \infty$, but $E\left[Y_{n}\right]=n P(U \leq 1 / n)=1$

Elementary renewal theorem

Stopping time: An integer-valued random variable N is said to be a stopping time for the sequence of independent random variables X_{1}, X_{2}, \ldots, if the event $\{N=n\}$ is independent of X_{n+1}, X_{n+2}, \ldots, for all $n=1,2, \ldots$

Example: Let $X_{n}, n=1,2, \ldots$, be independent and such that

$$
P\left(X_{n}=0\right)=P\left(X_{n}=1\right)=\frac{1}{2}, \quad n=1,2, \ldots
$$

Then, $N=\min \left\{n \mid X_{1}+\cdots+X_{n}=10\right\}$ is a stopping time

Elementary renewal theorem

Stopping time: An integer-valued random variable N is said to be a stopping time for the sequence of independent random variables X_{1}, X_{2}, \ldots, if the event $\{N=n\}$ is independent of X_{n+1}, X_{n+2}, \ldots, for all $n=1,2, \ldots$

Example: Let $X_{n}, n=1,2, \ldots$, be independent and such that

$$
P\left(X_{n}=-1\right)=P\left(X_{n}=1\right)=\frac{1}{2}, \quad n=1,2, \ldots
$$

Then, $N=\min \left\{n \mid X_{1}+\cdots+X_{n}=1\right\}$ is a stopping time

Elementary renewal theorem

Wald's Equation: If X_{1}, X_{2}, \ldots are iid random variables having
finite expectations, and if N is a stopping time for X_{1}, X_{2}, \ldots such that $E[N]<\infty$, then

$$
E\left[\sum_{n=1}^{N} X_{n}\right]=E[N] E[X]
$$

Proof: Let $I_{n}=\left\{\begin{array}{ll}1 & \text { if } N \geq n \\ 0 & \text { if } N<n\end{array}\right.$, then $\sum_{n=1}^{N} X_{n}=\sum_{n=1}^{\infty} X_{n} I_{n}$

$$
I_{n}=1 \Leftrightarrow \text { we have not stopped after } X_{1}, \ldots, X_{n-1} \text {, thus }
$$

$$
I_{n} \text { is determined by } X_{1}, \ldots, X_{n-1} \text { and independent of } X_{n}
$$

$$
E\left[\sum_{n=1}^{N} X_{n}\right]=E\left[\sum_{n=1}^{\infty} X_{n} I_{n}\right]=\sum_{n=1}^{\infty} E\left[X_{n} I_{n}\right] \stackrel{\uparrow}{=} \sum_{n=1}^{\infty} E\left[X_{n}\right] E\left[I_{n}\right]
$$

$$
=E[X] \sum_{n=1}^{\infty} P(N \geq n)=E[X] E[N]
$$

Next, we will give some applications of Wald's equation

Elementary renewal theorem

Example: Let $X_{n}, n=1,2, \ldots$, be independent and such that

$$
P\left(X_{n}=0\right)=P\left(X_{n}=1\right)=\frac{1}{2}, \quad n=1,2, \ldots
$$

Then, $N=\min \left\{n \mid X_{1}+\cdots+X_{n}=10\right\}$ is a stopping time

$$
E[N]=? \quad 20
$$

Wald's Equation: $E\left[\sum_{n=1}^{N} X_{n}\right]=E[N] E[X]$
must be 10

Elementary renewal theorem

Example: Let $X_{n}, n=1,2, \ldots$, be independent and such that

$$
P\left(X_{n}=-1\right)=P\left(X_{n}=1\right)=\frac{1}{2}, \quad n=1,2, \ldots
$$

Then, $N=\min \left\{n \mid X_{1}+\cdots+X_{n}=1\right\}$ is a stopping time
$E[N]=? \quad \infty$
Wald's Equation: $E\left[\sum_{n=1}^{N} X_{n}\right]=E[N] E[X]$

Note that N is finite with probability 1

Elementary renewal theorem

Let X_{1}, X_{2}, \ldots denote the interarrival times of a renewal process
Corollary: If $\mu=E\left[X_{i}\right]<\infty$, then

$$
E\left[S_{N(t)+1}\right]=\mu(m(t)+1)
$$

Proof:

To show that $N(t)+1$ is a stopping time for the sequence of X_{i}
Wald's Equation: $E\left[\sum_{n=1}^{N} X_{n}\right]=E[N] E[X]$

Elementary renewal theorem

Let X_{1}, X_{2}, \ldots denote the interarrival times of a renewal process
Corollary: If $\mu=E\left[X_{i}\right]<\infty$, then

$$
E\left[S_{N(t)+1}\right]=\mu(m(t)+1)
$$

Proof:

To show that $N(t)+1$ is a stopping time for the sequence of X_{i}

$$
\begin{aligned}
N(t)+1=n & \Leftrightarrow N(t)=n-1 \\
& \Leftrightarrow X_{1}+\cdots+X_{n-1} \leq t, X_{1}+\cdots+X_{n}>t
\end{aligned}
$$

$$
\{N(t)+1=n\} \text { is independent of } X_{n+1}, X_{n+2}, \ldots
$$

$\Longrightarrow N(t)+1$ is a stopping time for the sequence of X_{i}
Now, we can prove the elementary renewal theorem

Elementary renewal theorem

Elementary Renewal Theorem:

$$
\frac{m(t)}{t} \rightarrow \frac{1}{\mu} \quad \text { as } \quad t \rightarrow \infty
$$

Proof:
(1) $\mu<\infty \quad \liminf _{t \rightarrow \infty} \frac{m(t)}{t} \geq \frac{1}{\mu}$

$$
\begin{aligned}
S_{N(t)+1}>t \Rightarrow & \mu(m(t)+1)>t \\
& \\
& \text { use the corollary on the previous page }
\end{aligned}
$$

$\rightleftarrows \liminf _{t \rightarrow \infty} \frac{m(t)}{t} \geq \frac{1}{\mu}$

Elementary renewal theorem

(1) $\mu<\infty$

$$
\liminf _{t \rightarrow \infty} \frac{m(t)}{t} \geq \frac{1}{\mu} \quad \limsup \frac{m(t)}{t} \leq \frac{1}{\mu}
$$

Fix a constant M, define a new renewal process $\bar{X}_{n}= \begin{cases}X_{n} & \text { if } X_{n} \leq M \\ M & \text { if } X_{n}>M\end{cases}$ Then, we have $\bar{X}_{n} \leq X_{n} \Rightarrow \bar{N}(t) \geq N(t) \Rightarrow \bar{m}(t) \geq m(t)$

$$
\begin{aligned}
\bar{S}_{\bar{N}(t)+1} \leq t+M & \Rightarrow(\bar{m}(t)+1) \cdot \mu_{M} \leq t+M, \text { where } \mu_{M}=E\left[\bar{X}_{n}\right] \\
& \Rightarrow \frac{\bar{m}(t)+1}{t+M} \leq \frac{1}{\mu_{M}} \Rightarrow \operatorname{lim~sup}_{t \rightarrow \infty} \frac{\bar{m}(t)}{t} \leq \frac{1}{\mu_{M}} \Rightarrow \limsup _{t \rightarrow \infty} \frac{m(t)}{t} \leq \frac{1}{\mu_{M}}
\end{aligned}
$$

Let $\mathrm{M} \rightarrow \infty \Rightarrow \mu_{M} \rightarrow \mu$, so $\limsup _{t \rightarrow \infty} \frac{m(t)}{t} \leq \frac{1}{\mu}$
(2) $\mu=\infty$
$\limsup _{t \rightarrow \infty} \frac{m(t)}{t} \leq \frac{1}{\mu_{M}}$, let $\mathrm{M} \rightarrow \infty \Rightarrow \mu_{M} \rightarrow \mu$, so $\limsup _{t \rightarrow \infty} \frac{m(t)}{t} \leq \frac{1}{\mu}=0$

Elementary renewal theorem

As $t \rightarrow \infty$, we have shown that
$\checkmark N(t)=\infty$ with prob. 1

$$
\checkmark \frac{m(t)}{t}=\frac{E[N(t)]}{t} \rightarrow \frac{1}{\mu}
$$

$\checkmark \frac{N(t)}{t} \rightarrow \frac{1}{\mu}$ with prob. 1
Theorem: Let μ and σ^{2}, assumed finite, represent the mean and variance of an interarrival time. Then, as $t \rightarrow \infty$,

$$
P\left(\frac{N(t)-t / \mu}{\sigma \sqrt{t / \mu^{3}}}<y\right) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-x^{2} / 2} d x
$$

Elementary renewal theorem

Theorem: Let μ and σ^{2}, assumed finite, represent the mean and variance of an interarrival time. Then, as $t \rightarrow \infty$,

$$
P\left(\frac{N(t)-t / \mu}{\sigma \sqrt{t / \mu^{3}}}<y\right) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-x^{2} / 2} d x
$$

Proof: Let $r_{1}=t / \mu+y \sigma \sqrt{t / \mu^{3}}$

$$
P\left(\frac{N(t)-t / \mu}{\sigma \sqrt{t / \mu^{3}}}<y\right)=P\left(N(t)<r_{1}\right)=P\left(S_{r_{1}}>t\right)
$$

$$
=P\left(\frac{s_{r_{1}}-r_{1} \mu}{\sigma \sqrt{r_{1}}}>\frac{t-r_{1} \mu}{\sigma \sqrt{r_{1}}}\right)=P\left(\frac{s_{r_{1}-r_{1} \mu}}{\sigma \sqrt{r_{1}}}>-y\left(1+\frac{y \sigma}{\sqrt{t \mu}}\right)^{-\frac{1}{2}}\right)
$$

$S_{r_{1}}=X_{1}+\cdots+X_{r_{1}}, r_{1} \rightarrow \infty$ as $t \rightarrow \infty$, then apply
Central Limit Theorem, we have $\frac{S_{r_{1}-r_{1} \mu}}{\sigma \sqrt{r_{1}}} \rightarrow \mathcal{N}(0,1)$

Key renewal theorem

Lattice: A nonnegative random variable $X \sim F$ is said to be lattice if there exists $d \geq 0$ such that $\sum_{n=0}^{\infty} P(X=n d)=1$. The largest d having this property is said to be the period of X.

Blackwell's Theorem:

- If F is not lattice, then for all $a \geq 0$

$$
m(t+a)-m(t) \rightarrow \frac{a}{\mu} \quad \text { as } t \rightarrow \infty
$$

- If F is lattice with period d, then

$$
E[\# \text { renewals at } n d] \rightarrow \frac{d}{\mu} \quad \text { as } n \rightarrow \infty
$$

Key renewal theorem

Directly Riemann Integrable: Let h be a function defined on $[0, \infty]$. For any $a>0$, let $\bar{m}_{n}(a)$ and $\underline{m}_{n}(a)$ be the supremum and infinum of $h(t)$ over the interval $(n-1) a \leq t \leq n a$. That is,

$$
\begin{aligned}
& \bar{m}_{n}(a)=\sup \{h(t) \mid(n-1) a \leq t \leq n a\} \\
& \underline{m}_{n}(a)=\inf \{h(t) \mid(n-1) a \leq t \leq n a\}
\end{aligned}
$$

We say that h is directly Riemann integrahle if $\sum_{n=1}^{\infty} \bar{m}_{n}(a)$ and $\sum_{n=1}^{\infty} \underline{m}_{n}(a)$ are finite for all $a>0$ and

$$
\lim _{a \rightarrow 0} a \sum_{n=1}^{\infty} \bar{m}_{n}(a)=\lim _{a \rightarrow 0} a \sum_{n=1}^{\infty} \underline{m}_{n}(a)
$$

Key renewal theorem

A sufficient condition for h to be directly Riemann integrable:

- $h(t) \geq 0$ for all $t \geq 0$
- $h(t)$ is non-increasing
- $\int_{0}^{\infty} h(t) d t<\infty$

Key Renewal Theorem:

If F is not lattice, and if $h(t)$ is directly Riemann integrable, then

$$
\int_{0}^{t} h(t-x) d m(x)=\frac{1}{\mu} \int_{0}^{t} h(t) d t \quad \text { as } t \rightarrow \infty
$$

Key renewal theorem

Blackwell's Theorem:

- If F is not lattice, then for all $a \geq 0$
$\sum \quad m(t+a)-m(t) \rightarrow \frac{a}{\mu} \quad$ as $t \rightarrow \infty$

Key Renewal Theorem:

If F is not lattice, and if $h(t)$ is directly Riemann integrable, then

$$
\int_{0}^{t} h(t-x) d m(x)=\frac{1}{\mu} \int_{0}^{t} h(t) d t \quad \text { as } t \rightarrow \infty
$$

Blackwell \Rightarrow Key: $\lim _{t \rightarrow \infty} \frac{m(t+a)-m(t)}{a}=\frac{1}{\mu} \Rightarrow \lim _{a \rightarrow 0} \lim _{t \rightarrow \infty} \frac{m(t+a)-m(t)}{a}=\frac{1}{\mu} \Rightarrow \lim _{t \rightarrow \infty} \frac{d m(t)}{d t}=\frac{1}{\mu}$
Key \Rightarrow Blackwell: let $h(x)=1_{[0, a)}(x)$,

$$
\text { then } \int_{0}^{t} h(t-x) d m(x)=\int_{0}^{t} 1_{(t-a, t]}(x) d m(x)=m(t)-m(t-a)
$$

Alternating renewal process

Consider a system that can be in one of two states: on or off

$$
X_{n}=Z_{n}+Y_{n}
$$

$\left\{\left(Z_{n}, Y_{n}\right), n \geq 1\right\}$ are iid, but Z_{n} and Y_{n} can be dependent

$$
Z_{n} \sim H \quad Y_{n} \sim G \quad X_{n}=Z_{n}+Y_{n} \sim F
$$

Alternating renewal process

Theorem: If $E\left[Z_{n}+Y_{n}\right]<\infty$ and F is nonlattice, then

$$
\lim _{t \rightarrow \infty} P(t)=P(\text { system is on at time } t)=\frac{E\left[Z_{n}\right]}{E\left[Z_{n}\right]+E\left[Y_{n}\right]}
$$

Alternating renewal process

Lemma: for $t \geq s \geq 0$

$$
P\left(S_{N(t)} \leq s\right)=\bar{F}(t)+\int_{0}^{s} \bar{F}(t-y) d m(y)
$$

Proof:

$$
\begin{aligned}
P\left(S_{N(t)} \leq s\right) & =\sum_{n=0}^{\infty} P\left(S_{n} \leq s, S_{n+1}>t\right) \\
& =\bar{F}(t)+\sum_{n=1}^{\infty} P\left(S_{n} \leq s, S_{n+1}>t\right) \\
\begin{aligned}
& 1-F(t)= S_{n} \leq s, N(t)=n \\
& P\left(X_{1}>t\right)
\end{aligned} & =\bar{F}(t)+\sum_{n=1}^{\infty} \int_{0}^{\infty} P\left(S_{n} \leq s, S_{n+1}>t \mid S_{n}=y\right) d F_{n}(y) \\
& =\bar{F}(t)+\sum_{n=1}^{\infty} \int_{0}^{s} \bar{F}(t-y) d F_{n}(y) \\
& =\bar{F}(t)+\int_{0}^{s} \bar{F}(t-y) d\left(\sum_{n=1}^{\infty} F_{n}(y)\right) \\
& =\bar{F}(t)+\int_{0}^{s} \bar{F}(t-y) d m(y)
\end{aligned}
$$

Alternating renewal process

Lemma: for $t \geq s \geq 0$

$$
P\left(S_{N(t)} \leq s\right)=\bar{F}(t)+\int_{0}^{s} \bar{F}(t-y) d m(y)
$$

Remark: $\left\{P\left(S_{N(t)}=0\right)=\bar{F}(t)\right.$

- $d F_{S_{N(t)}}(s)=\bar{F}(t-s) d m(s)$ for $0<s<\infty$

Intuitive explanation for remark 2 :

$$
\begin{aligned}
& d m(s)= \sum_{n=1}^{\infty} f_{n}(s) d s=\sum_{n=1}^{\infty} P(n \text {th renewal occurs in }(s, s+d s)) \\
&=P(\text { renewal occurs in }(s, s+d s)) \\
& d F_{S_{N(t)}}(s)=f_{S_{N(t)}}(s) d s=P(\text { renewal in }(s, s+d s), \text { next interval }>t-s) \\
&=\bar{F}(t-s) \cdot P(\text { renewal in }(s, s+d s))=\bar{F}(t-s) d m(s)
\end{aligned}
$$

Alternating renewal process

Theorem: If $E\left[Z_{n}+Y_{n}\right]<\infty$ and F is nonlattice, then

$$
\lim _{t \rightarrow \infty} P(t)=P(\text { system is on at time } t)=\frac{E\left[Z_{n}\right]}{E\left[Z_{n}\right]+E\left[Y_{n}\right]}
$$

Proof: $\quad P(t)=P\left(\right.$ system is on at time $\left.t \mid S_{N(t)}=0\right) P\left(S_{N(t)}=0\right)$ $+\int_{0}^{\infty} \underbrace{P\left(\text { system is on at time } t \mid S_{N(t)}=s\right)} d F_{S_{N(t)}}(s)$

$$
\Delta=P(Z>t \mid Z+Y>t)=\frac{\bar{H}(t)}{\bar{F}(t)}
$$

$$
\hat{\psi}=P(Z>t-s \mid Z+Y>t-s)=\frac{\bar{H}(t-s)}{\bar{F}(t-s)}
$$

$$
\Longleftrightarrow P(t)=\frac{\bar{H}(t)}{\bar{F}(t)} P\left(S_{N(t)}=0\right)+\int_{0}^{\infty} \frac{\bar{H}(t-s)}{\bar{F}(t-s)} d F_{S_{N(t)}}(s)
$$

$$
=\bar{H}(t)+\int_{0}^{\infty} \bar{H}(t-s) d m(s)
$$

Alternating renewal process

Key Renewal Theorem:

If F is not lattice, and if $h(t)$ is directly Riemann integrable, then

$$
\int_{0}^{t} h(t-x) d m(x)=\frac{1}{\mu} \int_{0}^{t} h(t) d t \quad \text { as } t \rightarrow \infty
$$

$$
P(t)=\bar{H}(t)+\int_{0}^{\infty} \bar{H}(t-s) d m(s)
$$

- $\bar{H}(t) \geq 0$ for all $t \geq 0$
- $\bar{H}(t)$ is non-increasing
- $\int_{0}^{\infty} \bar{H}(t) d t=E\left[Z_{n}\right]<\infty \xrightarrow{\rightarrow} \bar{H}(t) \rightarrow 0$ as $t \rightarrow 0$

Alternating renewal process

Example: Consider a renewal process,
$A(t)=t-S_{N(t)}$: time from t since the last renewal, called "age" at t
$Y(t)=S_{N(t)+1}-t$: time from t until the next renewal, called "residual life" at t

$$
\lim _{t \rightarrow \infty} P(A(t) \leq x) ?
$$

$A(t)$	$Y(t)$
$S_{N(t)}$	$\xrightarrow{\text { S }}$

Consider an alternating renewal process: $\begin{cases}\text { on } & \text { if } A(t) \leq x \\ \text { off } & \text { otherwise }\end{cases}$
$\lim P(A(t) \leq x) \quad \rightarrow \frac{E[Z]}{E[x]}$

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} P(A(t) \leq x) \\
& =E[\min (X, x)] / E[X] \\
& =\int_{0}^{\infty} P(\min (X, x)>y) d y / E[X] \\
& =\int_{0}^{x} P(X>y) d y / E[X] \\
& =\int_{0}^{x} \bar{F}(y) d y / \mu
\end{aligned}
$$

$$
\lim _{t \rightarrow \infty} P(Y(t) \leq x) ?
$$

Leave as the exercise

Alternating renewal process

Example: Suppose that customers arrive at a store, which sells a single type of commodity, in accordance with a renewal process having nonlattice interarrival distribution F. The amounts desired by the customers are assumed to be independent with a common distribution G.
The store uses the following (s, S) ordering policy: if the inventory level after serving a customer is below s, then an order is instantaneously placed to bring it up to S; otherwise no order is placed.

Let $X(t)$ denote the inventory level at time t, and suppose $X(0)=S$
$\lim _{t \rightarrow \infty} P(X(t) \geq x) ?$

Consider an alternating renewal process: $\begin{cases}\text { on } & \text { if } X(t) \geq x \\ \text { off } & \text { otherwise }\end{cases}$

Alternating renewal process

Let $X(t)$ denote the inventory level at time t, and suppose $X(0)=S$ $\lim _{t \rightarrow \infty} P(X(t) \geq x) ? \longrightarrow \frac{E[\text { amount of time the inventory } \geq x \text { in a cycle }]}{E[\text { time of a cycle }]}$

Let $Y_{i}, X_{i}, i \geq 1$, denote the demand and interarrival time of the i-th customer, and $N_{x}=\min \left\{n: Y_{1}+\cdots+Y_{n}>S-x\right\}$

Then, amount of "on" time in cycle $=\sum_{i=1}^{N_{x}} X_{i}$, time of a cycle $=\sum_{i=1}^{N_{s}} X_{i}$, thus

$$
\begin{gathered}
\lim _{t \rightarrow \infty} P(X(t) \geq x)=\frac{E\left[\sum_{i=1}^{N_{x}} X_{i}\right]}{E\left[\sum_{i=1}^{N_{S} X_{i}}\right]}=\frac{E\left[N_{x}\right]}{E\left[N_{s}\right]}=\frac{m_{G}(S-x)+1}{m_{G}(S-s)+1} \rightarrow m_{G}(t)=\sum_{n=1}^{\infty} G_{n}(t) \\
X_{i} \text { is independent of } N_{x}, N_{s}
\end{gathered} \begin{aligned}
& N_{x}-1 \text { can be interpreted as the } \\
& \text { number of renewals by time } S-x
\end{aligned}
$$

Finally, we have $\lim _{t \rightarrow \infty} P(X(t) \geq x)=\frac{m_{G}(S-x)+1}{m_{G}(S-s)+1}, \quad s \leq x \leq S$

Delayed renewal process

Definition: Let $\left\{X_{n}, n=1,2, \ldots\right\}$ be a sequence of independent nonnegative random variables with X_{1} having distribution G, and X_{n} having distribution $F, n>1$. Let $S_{0}=0, S_{n}=\sum_{i=1}^{n} X_{n}, n \geq$ 1 , and define

$$
N_{D}(t)=\sup \left\{n: S_{n} \leq t\right\}
$$

$\left\{N_{D}(t), t \geq 0\right\}$ is called a delayed renewal process
When $G=F,\left\{N_{D}(t), t \geq 0\right\}$ is an ordinary renewal process

$$
\begin{aligned}
P\left(N_{D}(t)=n\right) & =P\left(N_{D}(t) \geq n\right)-P\left(N_{D}(t) \geq n+1\right) \\
& =P\left(S_{n} \leq t\right)-P\left(S_{n+1} \leq t\right)=G * F_{n-} \\
m_{D}(t) & =E\left[N_{D}(t)\right]=\sum_{n=1}^{\infty} P\left(N_{D}(t) \geq n\right) \\
= & \sum_{n=1}^{\infty} P\left(S_{n} \leq t\right)=\sum_{n=1}^{\infty} G * F_{n-1}(t)
\end{aligned}
$$

$$
=P\left(S_{n} \leq t\right)-P\left(S_{n+1} \leq t\right)=G * F_{n-1}(t)-G * F_{n}(t)
$$

Delayed renewal process

Properties of delayed renewal process:

$$
\mu=\int_{0}^{\infty} x d F(x)
$$

- With probability $1, \frac{N_{D}(t)}{t} \rightarrow \frac{1}{\mu} \quad$ as $t \rightarrow \infty$
- $\frac{m_{D}(t)}{t} \rightarrow \frac{1}{\mu} \quad$ as $t \rightarrow \infty \quad$ Elementary Renewal Theorem
- If F is not lattice, then $m_{D}(t+a)-m_{D}(t) \rightarrow a / \mu \quad$ as $t \rightarrow \infty$
- If F and G are lattice with period d, then

Blackwell's Theorem

$$
E[\# \text { renewals at } n d] \rightarrow d / \mu \quad \text { as } n \rightarrow \infty
$$

- If F is not lattice, $\mu<\infty$ and $h(t)$ is directly Riemann integrable,

$$
\int_{0}^{\infty} h(t-x) d m_{D}(x)=\frac{1}{\mu} \int_{0}^{\infty} h(t) d t \quad \text { Key Renewal Theorem }
$$

Delayed renewal process

Example: Suppose that a sequence of iid discrete random variables X_{1}, X_{2}, \ldots is observed, and suppose that we keep track of the number of times that a given subsequence of outcomes, or pattern, occurs.

Suppose the pattern is $x_{1}, x_{2}, \ldots, x_{k}$ and say that it occurs at time n if $X_{n}=x_{k}, X_{n-1}=x_{k-1}, \ldots, X_{n-k+1}=x_{1}$.

Sequence: $(1,0,1,0,1,0,1,1,1,0,1,0,1, \ldots)$
Pattern 0,1,0,1 appears at time 5, 7, 13

If we let $N(t)$ denote the number of times the pattern occurs by time t, then $\{N(t), t \geq 1\}$ is a delayed renewal process

Delayed renewal process

N_{A} : time until pattern A occurs for the first time
$N_{A \mid B}$: additional time needed for pattern A to appear starting with pattern B
$P(A$ before $B)$: probability that pattern A occurs before pattern B
How to analyze them?
As G and F are lattice with period $d=1$, by Blackwell's theorem
1
$\frac{1}{\mu}=\lim _{n \rightarrow \infty} E[\#$ patterns at $n]$
$=\lim _{n \rightarrow \infty} P($ pattern occurs at time $n)=\prod_{i=1}^{k} P\left(X=x_{i}\right)$

Delayed renewal process

Expected time between patterns: $\mu=1 / \prod_{i=1}^{k} P\left(X=x_{i}\right)$
Case: each random variable is 1 with prob. p and 0 with prob. q
How to calculate N_{A} ?

- If the occurrence of a pattern does not influence the next occurrence of the pattern, then

$$
\begin{aligned}
& \mathrm{E}\left[N_{A}\right]=1 / \prod_{i=1}^{k} P\left(X=x_{i}\right) \\
& \text { e.g., } \mathrm{E}\left[N_{01}\right]=1 / p q
\end{aligned}
$$

Delayed renewal process

Expected time between patterns: $\mu=1 / \prod_{i=1}^{k} P\left(X=x_{i}\right)$
Case: each random variable is 1 with prob. p and 0 with prob. q
How to calculate N_{A} ?

- If the occurrence of a pattern will influence the next occurrence of the pattern, then

$$
\begin{aligned}
\mathrm{E}\left[N_{0101}\right] & =\mathrm{E}\left[N_{0101 \mid 01}\right]+\mathrm{E}\left[N_{01}\right] \\
& =\frac{1}{p^{2} q^{2}}+\frac{1}{p q}
\end{aligned}
$$

Delayed renewal process

Expected time between patterns: $\mu=1 / \prod_{i=1}^{k} P\left(X=x_{i}\right)$
Case: each random variable is 1 with prob. p and 0 with prob. q
How to calculate N_{A} ?

- If the occurrence of a pattern will influence the next occurrence of the pattern, then

$$
\begin{aligned}
\mathrm{E}\left[N_{1011011}\right] & =\mathrm{E}\left[N_{1011011 \mid 1011}\right]+\mathrm{E}\left[N_{1011}\right] \\
& =\frac{1}{p^{5} q^{2}}+\mathrm{E}\left[N_{1011 \mid 1}\right]+\mathrm{E}\left[N_{1}\right] \\
& =\frac{1}{p^{5} q^{2}}+\frac{1}{p^{3} q}+\frac{1}{p}
\end{aligned}
$$

Delayed renewal process

Expected time between patterns: $\mu=1 / \prod_{i=1}^{k} P\left(X=x_{i}\right)$
Case: each random variable is 1 with prob. p and 0 with prob. q
How to calculate N_{A} ?

- If the occurrence of a pattern will influence the next occurrence of the pattern, then

```
E[ N
```


k consecutive 1 s
Leave as the exercise

Delayed renewal process

Expected time between patterns: $\mu=1 / \prod_{i=1}^{k} P\left(X=x_{i}\right)$
How to calculate $P(A$ before $B)$?
Use the relationship between $\mathrm{E}\left[N_{A}\right], \mathrm{E}\left[N_{B}\right]$ and $P(A$ before $B)$
Let $M=\min \left\{N_{A}, N_{B}\right\}$

$$
\begin{aligned}
E\left[N_{A}\right] & =E[M]+E\left[N_{A}-M\right] \\
& =E[M]+E\left[N_{A}-M \mid B \text { before } A\right](1-P(A \text { before } B)) \\
& =E[M]+E\left[N_{A \mid B}\right](1-P(A \text { before } B))^{-\longrightarrow} N_{A}-N_{B} \\
\mathrm{E}\left[N_{B}\right] & =E[M]+E\left[N_{B \mid A}\right] P(A \text { before } B)
\end{aligned}
$$

Delayed renewal process

Expected time between patterns: $\mu=1 / \prod_{i=1}^{k} P\left(X=x_{i}\right)$
How to calculate $P(A$ before $B)$?

$$
P(A \text { before } B)=\frac{E\left[N_{B}\right]+E\left[N_{A \mid B}\right]-E\left[N_{A}\right]}{E\left[N_{B \mid A}\right]+E\left[N_{A \mid B}\right]}
$$

Case: each random variable is 1 with prob. p and 0 with prob. q
$A=1010 \quad B=0100$

Delayed renewal process

$$
P(A \text { before } B)=\frac{E\left[N_{B}\right]+E\left[N_{A \mid B}\right]-E\left[N_{A}\right]}{E\left[N_{B \mid A}\right]+E\left[N_{A \mid B}\right]}
$$

$$
A=1010 \quad B=0100
$$

Leave as the exercise

Renewal reward process

Definition: Consider a renewal process $\{N(t), t \geq 0\}$ having interarrival times $X_{n}, n \geq 1$ with distribution F, and suppose that each time a renewal occurs we receive a reward. We denote by R_{n} the reward earned at the time of the nth renewal. Assume that the $R_{n}, n \geq 1$ are iid.

$$
R(t)=\sum_{n=1}^{N(t)} R_{n}
$$

$\{R(t), t \geq 0\}$ is called a renewal reward process
Note that $\left\{\left(X_{n}, R_{n}\right), n \geq 1\right\}$ are iid, but R_{n} may depend on X_{n}

Renewal reward process

Theorem: If $E[R]<\infty$ and $E[X]<\infty$, then

- With probability $1, \frac{R(t)}{t} \rightarrow \frac{E[R]}{E[X]}$ as $t \rightarrow \infty$
- $\frac{E[R(t)]}{t} \rightarrow \frac{E[R]}{E[X]} \quad$ as $t \rightarrow \infty$

Proof:

$$
\frac{R(t)}{t}=\frac{\sum_{n=1}^{N(t)} R_{n}}{t}=\frac{\sum_{n=1}^{N(t)} R_{n}}{N(t)} \cdot \frac{N(t)}{t}
$$

$\lim _{t \rightarrow \infty} N(t)=\infty$ with prob. 1
$\lim _{t \rightarrow \infty} \frac{N(t)}{t}=\frac{1}{E[X]}$ with prob. 1

Renewal reward process

Theorem: If $E[R]<\infty$ and $E[X]<\infty$, then

- With probability $1, \frac{R(t)}{t} \rightarrow \frac{E[R]}{E[X]}$ as $t \rightarrow \infty$
- $\frac{E[R(t)]}{t} \rightarrow \frac{E[R]}{E[X]} \quad$ as $t \rightarrow \infty$

Proof:

$$
\text { oof: } E[R(t)]=E\left[\sum_{n=1}^{N(t)} R_{n}\right]=E\left[\sum_{n=1}^{N(t)+1} R_{n}\right]-E\left[R_{N(t)+1}\right]
$$

$N(t)+1$: a stopping time for the sequence of X_{i}, and thus a stopping time for the sequence of R_{i}

$$
\text { By Wald's equation } \quad=(m(t)+1) E[R]-E\left[R_{N(t)+1}\right]
$$

Renewal reward process

$$
\begin{aligned}
& \frac{E[R(t)]}{t}=\frac{(m(t)+1) E[R]}{t}-\frac{E\left[R_{N(t)+1}\right]}{t} \\
& t \rightarrow \infty \quad \text { By elementary renewal theorem } \\
& E[R] / E[X]
\end{aligned}
$$

We only need to show that $\lim _{t \rightarrow \infty} \frac{E\left[R_{N(t)+1}\right]}{t} \rightarrow 0$

$$
\begin{aligned}
g(t) & =E\left[R_{N(t)+1}\right] \\
& =E\left[R_{N(t)+1} \mid S_{N(t)}=0\right] \bar{F}(t)+\int_{0}^{t} E\left[R_{N(t)+1} \mid S_{N(t)}=s\right] \bar{F}(t-s) d m(s)
\end{aligned}
$$

Remark: $\begin{cases}\bullet & P\left(S_{N(t)}=0\right)=\bar{F}(t) \\ \bullet & d F_{S_{N(t)}}(s)=\bar{F}(t-s) d m(s) \quad \text { for } 0<s<\infty\end{cases}$

Renewal reward process

$$
\begin{aligned}
g(t) & =E\left[R_{N(t)+1}\right] \\
& =E\left[R_{N(t)+1} \mid S_{N(t)}=0\right] \bar{F}(t)+\int_{0}^{t} E\left[R_{N(t)+1} \mid S_{N(t)}=s\right] \bar{F}(t-s) d m(s) \\
& =E[R \mid X>t] \bar{F}(t)+\int_{0}^{t} E[R \mid X>t-s] \bar{F}(t-s) d m(s) \\
& =h(t)+\int_{0}^{t} h(t-s) d m(s) \quad \text { Let } h(t)=E[R \mid X>t] \bar{F}(t) \\
h(t) & =\int_{t}^{\infty} E[R \mid X=x] d F(x) \leq E[|R|]=\int_{0}^{\infty} E[|R| \mid X=x] d F(x)<\infty \\
h(t) & \rightarrow 0 \text { as } t \rightarrow \infty, \text { thus, } \forall \epsilon>0, \exists T>0, \text { such that } \forall t \geq T,|h(t)|<\epsilon
\end{aligned}
$$

Renewal reward process

$$
\begin{aligned}
g(t) & =h(t)+\int_{0}^{t} h(t-s) d m(s) \\
\frac{|g(t)|}{t} & \leq \frac{|h(t)|}{t}+\int_{0}^{t-T} \frac{|h(t-\mathrm{s})|}{t} d m(s)+\int_{t-T}^{t} \frac{|h(t-s)|}{t} d m(\mathrm{~s}) \\
& \leq \frac{\epsilon}{t}+\frac{\epsilon m(t-T)}{t}+E[|R|] \frac{m(t)-m(t-T)}{t} \\
& \rightarrow 0+\frac{\varepsilon}{\mathrm{E}[X]}+\frac{E[|R|]}{t} \frac{T}{\mathrm{E}[X]} \quad(\text { as } t \rightarrow \infty) \\
& =\frac{\varepsilon}{\mathrm{E}[X]}
\end{aligned}
$$

Elementary renewal theorem: $\quad \frac{m(t)}{t} \rightarrow \frac{1}{\mu}$ as $t \rightarrow \infty$
Blackwell's Theorem: $\quad m(t+a)-m(t) \rightarrow \frac{a}{\mu}$ as $t \rightarrow \infty$

Renewal reward process

We have assumed that the reward R_{n} is earned all at once at the end of the renewal cycle

Theorem: If $E[R]<\infty$ and $E[X]<\infty$, then

- With probability $1, \frac{R(t)}{t} \rightarrow \frac{E[R]}{E[X]} \quad$ as $t \rightarrow \infty$
- $\frac{E[R(t)]}{t} \rightarrow \frac{E[R]}{E[X]} \quad$ as $t \rightarrow \infty$

If the reward R_{n} is earned gradually during the renewal cycle, the above theorem still holds

$$
\frac{\sum_{n=1}^{N(t)} R_{n}}{t} \leq \frac{R(t)}{t} \leq \frac{\sum_{n=1}^{N(t)} R_{n}+R_{N(t)+1}}{t}
$$

Renewal reward process

Example: Suppose that travelers arrive at a train depot in accordance with a renewal process having a mean interarrival time μ. Whenever there are N travelers waiting in the depot, a train leaves.
If the depot incurs a cost at the rate of $n c$ dollars per unit time whenever there are n travelers waiting and an additional cost of K each time a train is dispatched, what is the average cost per unit time incurred by the depot?

Solution: $\begin{aligned} & \text { A cycle is completed } \\ & \text { whenever a train leaves }\end{aligned} \Rightarrow$ A renewal reward process

$$
\text { Average cost per unit time }=\frac{E[\text { cost of a cycle }]}{E[\text { length of a cycle }]}
$$

Renewal reward process

Average cost per unit time $=\frac{E[\text { cost of a cycle }]}{E[\text { length of a cycle }]}$
$E[$ length of cycle] $=N \mu$

Let X_{n} denote the time between the n-th and $(n+1)$-th arrival in a cycle, then

$$
\begin{aligned}
E[\text { cost of a cycle }] & =E\left[c X_{1}+2 c X_{2}+\cdots+(N-1) c X_{N-1}\right]+K \\
& =\frac{c \mu N(N-1)}{2}+K
\end{aligned}
$$

Thus, the average cost is

$$
\frac{c(N-1)}{2}+\frac{K}{N \mu}
$$

Renewal reward process

Example: Suppose that customers arrive at a single-server service station in accordance with a nonlattice renewal process. Upon arrival, a customer is immediately served if the server is idle, and he or she waits in line if the server is busy. The service times of customers are assumed to be iid, and are also assumed independent of the arrival stream.
X_{i} : Interarrival time $\quad Y_{i}$: Service time Assume $E\left[Y_{i}\right]<E\left[X_{i}\right]<\infty$
Suppose that the first customer arrives at time 0 and let $n(t)$ denote the number of customers in the system at time t
$L=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} n(s) d s$: long-run average \#customers in the system $n(s)$: the rate of a reward earned at time s
$L=\frac{E[\text { reward during a cycle }]}{E[\text { time of a cycle }]}=\frac{E\left[\int_{0}^{T} n(s) d s\right]}{E[T]}$

Renewal reward process

Example: Suppose that customers arrive at a single-server service station in accordance with a nonlattice renewal process. Upon arrival, a customer is immediately served if the server is idle, and he or she waits in line if the server is busy. The service times of customers are assumed to be iid, and are also assumed independent of the arrival stream.
X_{i} : Interarrival time $\quad Y_{i}$: Service time Assume $E\left[Y_{i}\right]<E\left[X_{i}\right]<\infty$
let W_{i} denote the amount of time the i th customer spends in the system $W=\lim _{n \rightarrow \infty} \frac{W_{1}+\cdots+W_{n}}{n}$: long-run average time a customer spends in the system

$$
\begin{aligned}
& W_{i}: \text { the reward earned at day } i \\
& W=\frac{E[\text { reward during a cycle }]}{E[\text { time of a cycle }]}=\frac{E\left[\sum_{i=1}^{N} W_{i}\right]}{E[N]}
\end{aligned}
$$

Renewal reward process

$$
\begin{array}{ll}
L=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} n(s) d s=\frac{E\left[\int_{0}^{T} n(s) d s\right]}{E[T]} & \begin{array}{c}
\text { long-run average \#customers } \\
\text { in the system }
\end{array} \\
W=\lim _{n \rightarrow \infty} \frac{W_{1}+\cdots+W_{n}}{n}=\frac{E\left[\sum_{i=1}^{N} W_{i}\right]}{E[N]} & \begin{array}{c}
\text { long-run average time a } \\
\text { customer spends in the system }
\end{array}
\end{array}
$$

T is the length of a cycle, N is the number of customers served in that cycle $\Rightarrow T=\sum_{i=1}^{N} X_{i}$ N is a stopping time for X_{1}, X_{2}, \ldots, because

$$
\begin{aligned}
N=n \Leftrightarrow & X_{1}+\cdots+X_{k}<Y_{1}+\cdots+Y_{k}, 1 \leq k \leq n-1, \\
& \text { and } X_{1}+\cdots+X_{n}>Y_{1}+\cdots+Y_{n}
\end{aligned}
$$

By Wald's equation: $E[T]=E[N] E[X]=E[N] / \lambda, \quad$ thus $L=\lambda W \frac{E\left[\int_{0}^{T} n(s) d s\right]}{E\left[\sum_{i=1}^{N} W_{t}\right]}$

$$
\int_{0}^{T} n(s) d s=\sum_{i=1}^{N} W_{t}
$$

$=$ total paid during a cycle

$$
L=\lambda \cdot W \quad \lambda=1 / E\left[X_{i}\right]
$$

Symmetric random walk

Definition: Let Y_{1}, Y_{2}, \ldots be iid with

$$
P\left(Y_{i}=1\right)=P\left(Y_{i}=-1\right)=\frac{1}{2}
$$

and define

$$
Z_{0}=0, Z_{n}=\sum_{i=1}^{n} Y_{i}
$$

$\left\{Z_{n}, n \geq 0\right\}$ is called the symmetric random walk process
We want to know

$$
\lim _{n \rightarrow \infty} \frac{\text { amount of time in }[0,2 n] \text { that } Z_{n} \text { is positive }}{2 n}
$$

Symmetric random walk

$$
u_{n}=P\left(Z_{2 n}=0\right)=\binom{2 n}{n} \frac{1}{2^{2 n}}
$$

Lemma: $P\left(Z_{1} \neq 0, Z_{2} \neq 0, \ldots, Z_{2 n} \neq 0\right)=u_{n}$

Leave as the exercise

Theorem: Let $E_{k, n}$ denote the event that by time $2 n$ the symmetric random walk will be positive for $2 k$ time units and negative for $2 n-2 k$ time units, and let $b_{k, n}=P\left(E_{k, n}\right)$ Then

Symmetric random walk

Theorem: Let $E_{k, n}$ denote the event that by time $2 n$ the symmetric random walk will be positive for $2 k$ time units and negative for $2 n-2 k$ time units, and let $b_{k, n}=P\left(E_{k, n}\right)$ Then

$$
b_{k, n}=u_{k} u_{n-k}
$$

Proof:

For $n=1: b_{0,1}=b_{1,1}=\frac{1}{2}, u_{0}=1, u_{1}=\frac{1}{2}$
Assume $b_{k, m}=u_{k} u_{m-k}$ for all values of m such that $m<n$, we need to show that the equation holds for n

Symmetric random walk

$$
\begin{aligned}
& b_{n, n}=\sum_{r=1}^{n} P\left(E_{n, n} \mid T T=2 r\right) P(T=2 r)+P\left(E_{n, n} \mid T>2 n\right) P(T>2 n) \\
& P\left(E_{n, n} \mid T=2 r\right)=b_{n-r, n-r} / 2, P\left(E_{n, n} \mid T>2 n\right)=\frac{1}{2}
\end{aligned}
$$

Then, $b_{n, n}=\frac{1}{2} \sum_{r=1}^{n} b_{n-r, n-r} P(T=2 r)+\frac{1}{2} P(T>2 n)$ $\begin{aligned} & \text { inductive } \\ & \text { hypothesis } \cdots\end{aligned}=\frac{1}{2} \sum_{r=1}^{n} u_{n-r} u_{0} P(T=2 r)+\frac{1}{2} P(T>2 n)$

Note that $\sum_{r=1}^{n} u_{n-r} P(T=2 r)=\sum_{r=1}^{n} P\left(Z_{2 n-2 r}=0\right) P(T=2 r)$

$$
\begin{aligned}
& =\sum_{r=1}^{n} P\left(Z_{2 n}=0 \mid T=2 r\right) P(T=2 r) \\
& =P\left(Z_{2 n}=0\right)=u_{n}
\end{aligned}
$$

Thus, $b_{n, n}=\frac{1}{2} u_{n}+\frac{1}{2} P(T>2 n)=\frac{1}{2} u_{n}+\frac{1}{2} u_{n}=u_{n}$

Symmetric random walk

$$
\begin{aligned}
& \text { for } 0<k<n: \quad b_{k, n}=\sum_{r=1}^{n} \frac{P\left(E_{k, n} \mid T=2 r\right)}{\vdots} P(T=2 r) \\
& \frac{1}{2} b_{k-r, n-r}+\frac{1}{2} b_{k, n-r} \\
& b_{k, n}=\frac{1}{2} \sum_{r=1}^{k} b_{k-r, n-r} P(T=2 r)+\frac{1}{2} \sum_{r=1}^{n-k} b_{k, n-r} P(T=2 r) \\
& \text { inductive } \ldots=\frac{1}{2} u_{n-k} \sum_{r=1}^{k} u_{k-r} P(T=2 r)+\frac{1}{2} u_{k} \sum_{r=1}^{n-k} u_{n-r-k} P(T=2 r) \\
& \text { hypothesis } \quad=\frac{1}{2} u_{n-k} u_{k}+\frac{1}{2} u_{k} u_{n-k} \\
& =u_{n-k} u_{k}
\end{aligned}
$$

Symmetric random walk

Theorem: Let $E_{k, n}$ denote the event that by time $2 n$ the symmetric random walk will be positive for $2 k$ time units and negative for $2 n-2 k$ time units, and let $b_{k, n}=P\left(E_{k, n}\right)$ Then

$$
\left.\begin{array}{l}
\quad b_{k, n}=u_{k} u_{n-k} \sim 1 /(\pi \sqrt{k(n-k)}) \\
u_{n}=P\left(Z_{2 n}=0\right)=\binom{2 n}{n} \frac{1}{2^{2 n}} \sim 1 / \sqrt{\pi n} \\
\text { Stirling's approximation: } n!\sim \sqrt{2 \pi n} \cdot(n / e)^{n}
\end{array}\right)
$$

Now we can analyze

$$
\lim _{n \rightarrow \infty} \frac{\text { amount of time in }[0,2 n] \text { that } Z_{n} \text { is positive }}{2 n}=\xi
$$

Symmetric random walk

$$
b_{k, n}=u_{k} u_{n-k} \sim 1 /(\pi \sqrt{k(n-k)})
$$

$\lim _{n \rightarrow \infty} \frac{\text { amount of time in }[0,2 n] \text { that } Z_{n} \text { is positive }}{2 n}=\xi$

For $x \in[0,1], \longrightarrow$ Random variable

$$
\begin{aligned}
& P(\xi \leq x) \\
& =\sum_{k=0}^{n x} b_{k, n} \approx \frac{1}{\pi} \int_{0}^{n x} \frac{1}{\sqrt{y(n-y)}} d y=\frac{1}{\pi} \int_{0}^{x} \frac{1}{\sqrt{w(1-w)}} d w=\frac{2}{\pi} \arcsin \sqrt{x} \\
& w^{\prime}=\frac{y}{n} \quad(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Summary

- Renewal process
- Elementary renewal theorem
- Key renewal theorem
- Alternating renewal process
- Delayed renewal process
- Renewal reward process
- Symmetric random walk

References: Chapter 3, Stochastic Processes, 2nd edition, 1995, by Sheldon M. Ross

