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Abstract
While traditional distributionally robust optimiza-
tion (DRO) aims to minimize the maximal risk
over a set of distributions, Agarwal & Zhang
(2022) recently proposed a variant that replaces
risk with excess risk. Compared to DRO, the
new formulation—minimax excess risk optimiza-
tion (MERO) has the advantage of suppressing
the effect of heterogeneous noise in different dis-
tributions. However, the choice of excess risk
leads to a very challenging minimax optimization
problem, and currently there exists only an ineffi-
cient algorithm for empirical MERO. In this pa-
per, we develop efficient stochastic approximation
approaches which directly target MERO. Specifi-
cally, we leverage techniques from stochastic con-
vex optimization to estimate the minimal risk of
every distribution, and solve MERO as a stochas-
tic convex-concave optimization (SCCO) problem
with biased gradients. The presence of bias makes
existing theoretical guarantees of SCCO inappli-
cable, and fortunately, we demonstrate that the
bias, caused by the estimation error of the mini-
mal risk, is under-control. Thus, MERO can still
be optimized with a nearly optimal convergence
rate. Moreover, we investigate a practical scenario
where the quantity of samples drawn from each
distribution may differ, and propose a stochas-
tic approach that delivers distribution-dependent
convergence rates.

1. Introduction
With the widespread application of machine learning, it is
common to encounter situations where the test distribution
differs from the training distribution (Sugiyama et al., 2007;
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Zhang et al., 2013a; Gama et al., 2014). When faced with
distribution shifts, learning models trained by conventional
techniques (e.g., empirical risk minimization) tend to suffer
significant performance degradation (Koh et al., 2021). Dis-
tributionally robust optimization (DRO) seeks a model with
minimax risk over a set of potential distributions, offering a
principled approach for generalization across distributions
(Duchi & Namkoong, 2021). In general, DRO can be for-
mulated as the following minimax optimization problem

min
w∈W

sup
P∈S

{
Ez∼P

[
ℓ(w; z)

]}
(1)

where S is a set of distributions, z ∈ Z denotes a ran-
dom sample drawn from P , W is a hypothesis class, and
ℓ(·; ·) denotes a loss function that measures the performance.
When S contains a finite number of distributions, (1) is re-
ferred to as Group DRO (GDRO) (Sagawa et al., 2020). One
motivating example involves deploying a common classi-
fier across multiple hospitals, each serving populations with
varied demographics, to predict disease occurrences (Blum
et al., 2017).

Although the minimax formulation enhances the model’s
robustness to distribution shifts, it carries the potential of
being sensitive to heterogeneous noise, especially in GDRO
where the candidate distributions might exhibit substantial
differences. The rationale is evident: a single distribution
with high levels of noise could easily dominate the max-
imum in (1), causing other distributions to be essentially
overlooked. To overcome this limitation, Agarwal & Zhang
(2022) recently proposed a variant of DRO, namely mini-
max regret optimization (MRO), that replaces the raw risk
Ez∼P [ℓ(w; z)] in (1) with excess risk (or regret). In particu-
lar, they consider the setting of GDRO, and seek to minimize
the worst-case excess risk over m distributions P1, . . . ,Pm:

min
w∈W

max
i∈[m]

{
Ri(w)−R∗

i

}
. (2)

where Ri(w) = Ez∼Pi

[
ℓ(w; z)

]
and R∗

i =

minw∈W Ez∼Pi

[
ℓ(w; z)

]
. To avoid confusion with

the term “regret” commonly used in online learning
(Cesa-Bianchi & Lugosi, 2006), in this paper, we refer to
MRO as minimax excess risk optimization (MERO).

MERO can be understood as subtracting the intrinsic diffi-
culty of each distribution (i.e., the minimal risk R∗

i ) from
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the risk, making the remaining quantities more comparable.
However, since the value of R∗

i is typically unknown, the
optimization problem in (2) poses a significant challenge. In
the previous work, Agarwal & Zhang (2022) choose to opti-
mize the empirical counterpart of MERO, but the resulting
algorithm requires solving an empirical risk minimization
problem in each iteration, which is computationally pro-
hibitive when the number of samples is large. Along this
line of research, this paper aims to develop efficient stochas-
tic approximation approaches that optimize (2) directly. It
is worth mentioning that by doing so, we also eliminate
the need to analyze the discrepancy between the empirical
MERO and the population MERO. To exploit techniques
from stochastic approximation (Nemirovski et al., 2009),
we cast (2) as a stochastic convex-concave saddle-point
problem:

min
w∈W

max
q∈∆m

{
ϕ(w,q) =

m∑
i=1

qi
[
Ri(w)−R∗

i

]}
(3)

where ∆m = {q ∈ Rm : q ≥ 0,
∑m

i=1 qi = 1} is the
(m−1)-dimensional simplex.

If the value of R∗
i is known, we can readily employ stochas-

tic mirror descent (SMD) to optimize (3), mirroring the ap-
plication of SMD to GDRO (Zhang et al., 2023, Algorithm
1). An intuitive approach thus emerges, which first esti-
mates the value of R∗

i , denoted by R̂i, replaces the function
ϕ(w,q) in (3) with

∑m
i=1 qi[Ri(w)−R̂i], and subsequently

applies SMD to the revised problem. As elaborated later,
this multi-stage approach is indeed feasible, but it needs
to fix the total number of iterations (or the total number
of random samples), and cannot return a solution upon de-
mand. To possess the anytime ability, i.e., the capability
to deliver a solution at any round, we propose a stochastic
approximation approach that alternates between estimating
R∗

i and optimizing (3) in an iterative manner. Specifically,
we execute m instances of SMD, each designed to minimize
the risk of an individual distribution. In this way, at each
round t, we have a model w̄i

t that attains a low risk for
each distribution Pi. Leveraging these w̄i

ts, we are able to
construct biased stochastic gradients for (3), and proceed
to optimize the problem by SMD. Our theoretical analysis
demonstrates that the bias is under-control, and the opti-
mization error reduces at an Õ(

√
(logm)/t) rate,1 which

is optimal up to a polylogarithmic factor.

Furthermore, we investigate MERO under the imbalanced
setting where the number of samples drawn from each distri-
bution is different. To this end, we develop a stochastic ap-
proximation approach for a weighted formulation of MERO,
which yields a convergence rate for each distribution de-
pending on the budget of that particular distribution. Under

1We use the Õ notation to hide constant factors as well as
polylogarithmic factors in t.

appropriate conditions, we demonstrate that for smooth risk
functions, the excess risk of the i-th distribution decreases
at an O((logm)/

√
ni) rate, where ni is the sample budget.

Finally, we conduct experiments to validate the efficiency
and effectiveness of our algorithms.

2. Related Work
There is an extensive body of literature on DRO, with vari-
ous problem formulations and research focuses (Rahimian
& Mehrotra, 2022). Below, we offer a concise overview of
the literature related to GDRO and MERO. Further works
are detailed in Appendix A.

When the number of distributions in S is finite, (1) becomes
GDRO (Sagawa et al., 2020), which can be formulated as
the following stochastic convex-concave problem:

min
w∈W

max
q∈∆m

{
m∑
i=1

qiRi(w)

}
. (4)

By drawing 1 random sample in each round, Sagawa
et al. (2020) have applied SMD to (4), and established an
O(m

√
(logm)/T ) convergence rate. As a result, their algo-

rithm achieves an O(m2(logm)/ϵ2) sample complexity for
finding an ϵ-optimal solution, which is suboptimal according
to the Ω(m/ϵ2) lower bound (Soma et al., 2022, Theorem
5). In the literature, there exist 3 different ways to obtain a
(nearly) optimal O(m(logm)/ϵ2) sample complexity.

1. In each round, we draw m random samples, one from
each distribution, and then update w and q in (4) by
SMD. In this way, the optimization error reduces at an
O(
√

(logm)/T ) rate (Nemirovski et al., 2009, §3.2),
implying an O(m(logm)/ϵ2) sample complexity.

2. In each round, we only draw 1 sample from one
specific distribution, update w by SMD, and update
q by an online algorithm for non-oblivious multi-
armed bandits (Lattimore & Szepesvári, 2020). It
can be shown that the optimization error reduces at
an O(

√
m(logm)/T ) rate (Soma et al., 2022; Zhang

et al., 2023), keeping the same sample complexity.
3. The third approach is similar to the second one, but it

updates q by integrating SMD with gradient clipping
(Carmon & Hausler, 2022, §A.1).

Recently, Zhang et al. (2023) have considered a practical
scenario where the number of samples that can be drawn
from each distribution is different. To this end, they intro-
duce a weighted formulation of GDRO:

min
w∈W

max
q∈∆m

{
m∑
i=1

qipiRi(w)

}
(5)

where pi > 0 is a weight assigned to distribution Pi. Then,
they develop two stochastic algorithms to solve (5), and
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establish distribution-wise convergence rates. In this way,
the rate is not dominated by the distribution with the smallest
budget. Inspired by Zhang et al. (2023), we will investigate
MERO with varying sample sizes across distributions in
Section 4. The technique of introducing scale factors has
been previously presented in the study of MERO under
heterogeneous distributions (Agarwal & Zhang, 2022, §5),
where all distributions have the same number of samples,
but with different complexities.

To optimize MERO, Agarwal & Zhang (2022) consider the
empirical version:

min
w∈W

max
i∈[m]

{
1

n

n∑
j=1

ℓ(w; z(i,j))−min
w∈W

1

n

n∑
j=1

ℓ(w; z(i,j))

}

where {z(i,j) : j = 1, . . . , n} are random samples drawn
from distribution Pi, and analyze the generalization perfor-
mance using classical tools from learning theory. They have
developed an iterative method for solving the above prob-
lem, which needs to address an empirical risk minimization
problem in each iteration, rendering the process inefficient.
It’s worth noting that the principle of minimizing the worst-
case excess risk has surfaced in various other fields (Eldar
et al., 2004; Alaiz-Rodrı́guez et al., 2007; Jiang et al., 2013;
Abusorrah et al., 2019).

3. Stochastic Approximation of MERO
We first describe preliminaries of stochastic approximation,
including the setup and assumptions, then develop a multi-
stage approach, and finally propose an anytime approach.
Due to space limitations, we defer all proofs to appendices.

3.1. Preliminaries

We first present the standard setup of mirror descent (Ne-
mirovski et al., 2009). We endow the domain W with a
distance-generating function νw(·), which is 1-strongly con-
vex w.r.t. a specific norm ∥ · ∥w. We define the Bregman
distance corresponding to νw(·) as

Bw(u,v) = νw(u)−
[
νw(v) + ⟨∇νw(v),u− v⟩

]
.

For the simplex ∆m, we select the entropy function
νq(q) =

∑m
i=1 qi ln qi, which demonstrates 1-strong con-

vexity w.r.t. the vector ℓ1-norm ∥ · ∥1, as the distance-
generating function. In a similar manner, Bq(·, ·) represents
the Bregman distance associated with νq(·), which is the
Kullback–Leibler divergence between distributions.

Next, we introduce standard assumptions.

Assumption 3.1. All the risk functions R1(·), · · · , Rm(·)
and the domain W are convex.

Assumption 3.2. The domain W is bounded in the sense

that

max
w∈W

Bw(w,ow) ≤ D2. (6)

where ow = argminw∈W νw(w).

For the simplex ∆m, we have maxq∈∆m Bq(q,oq) ≤ lnm
where oq = 1

m1m ∈ Rm and 1m is the m-dimensional
vector of all ones (Beck & Teboulle, 2003, Proposition 5.1).

We assume that the gradient is bounded, and the loss belongs
to [0, 1].

Assumption 3.3. For all i ∈ [m], we have

∥∇ℓ(w; z)∥w,∗ ≤ G, ∀w ∈ W, z ∼ Pi (7)

where ∥ · ∥w,∗ is the dual norm of ∥ · ∥w.

Assumption 3.4. For all i ∈ [m], we have

0 ≤ ℓ(w; z) ≤ 1, ∀w ∈ W, z ∼ Pi. (8)

Given an solution (w̄, q̄) to (3), the optimization error is
defined as

ϵϕ(w̄, q̄) = max
q∈∆m

ϕ(w̄,q)− min
w∈W

ϕ(w, q̄). (9)

3.2. A Multi-Stage Stochastic Approximation Approach
for MERO

As mentioned in the introduction, we can design a multi-
stage stochastic approach for MERO. Notably, analogous
methodologies have found their application in the empirical
research conducted on language modeling (Oren et al., 2019;
Xie et al., 2023).

Stage 1: Minimizing the risk For each distribution Pi,
we run an instance of SMD to minimize the risk Ri(·), and
obtain an approximate solution w̄(i). We execute each SMD
for T iterations, and thus consume mT samples. From the
theoretical guarantee of SMD (Nemirovski et al., 2009),
with probability at least 1− δ, we have Ri(w̄

(i))− R∗
i =

O(
√
log(1/δ)/T ), for each i ∈ [m]. By the union bound,

with high probability, we have maxi∈[m][Ri(w̄
(i))−R∗

i ] =

O(
√
(logm)/T ).

Stage 2: Estimating the minimal risk To estimate
the value of Ri(w̄

(i)), we draw T samples z
(i)
1 , . . . , z

(i)
T

from each distribution Pi, and calculate R̂i(w̄
(i)) =

1
T

∑T
j=1 ℓ(w̄

(i); z
(i)
j ). From standard concentration in-

equalities (Lugosi, 2009) and the union bound, with high
probability, we have maxi∈[m] |R̂i(w̄

(i)) − Ri(w̄
(i))| =

O(
√
(logm)/T ). In this step, we also use mT samples.
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Stage 3: Applying SMD to an approximate problem
From the above two steps, with high probability, we have

max
i∈[m]

|R̂i(w̄
(i))−R∗

i | = O(
√
(logm)/T ). (10)

Then, we formulate the following problem

min
w∈W

max
q∈∆m

ϕ̂(w,q) =

m∑
i=1

qi
[
Ri(w)− R̂i(w̄

(i))
]

(11)

which serves as an approximation to (3). Since R̂i(w̄
(i))

is a constant, we can directly apply SMD to (11). After
T iterations, we obtain solutions w̄ and q̄ such that, with
high probability maxq∈∆m

ϕ̂(w̄,q)−minw∈W ϕ̂(w, q̄) =

O(
√
(logm)/T ) (Zhang et al., 2023). From (10), it is easy

to prove that maxq∈∆m
ϕ(w̄,q) − minw∈W ϕ(w, q̄) =

O(
√
(logm)/T ). This step also requires mT samples.

In summary, the above approach reduces the optimization
error to O(

√
(logm)/T ), at the cost of 3mT samples. In

other words, it attains an O(m(logm)/ϵ2) sample complex-
ity, which is nearly optimal according to the lower bound of
GDRO (Soma et al., 2022). We would like to highlight that
the 2nd stage is not essential, and is included to facilitate
understanding. In fact, we can omit the 2nd stage, and de-
fine ϕ̂(w,q) =

∑m
i=1 qi[Ri(w) − Ri(w̄

(i))] in (11). The
resulting optimization problem can still be solved by SMD,
and the sample complexity remains in the same order. An
illustrative example of this two-stage approach can be found
in Section 4.

Remark 3.5. While the multi-stage approach achieves a
nearly optimal sample complexity, it suffers two limitations:
(i) the total number of iterations must be predetermined; (ii)
a solution is available only when the algorithm enters the
final stage. To circumvent these drawbacks, we put forth
a stochastic approximation approach that interleaves the
aforementioned three stages together, being able to return a
solution at any time.

3.3. An Anytime Stochastic Approximation Approach
for MERO

We maintain m instances of SMD to minimize all the risk
functions R1(·), · · · , Rm(·), and meanwhile utilize their
solutions to optimize (3) according to SMD.

For the purpose of minimizing Ri(·), we denote by w
(i)
t

the solution in the t-th iteration. We first draw 1 sample
z
(i)
t from each distribution Pi, and calculate the stochastic

gradient ∇ℓ(w
(i)
t ; z

(i)
t ) which is an unbiased estimator of

∇Ri(w
(i)
t ). According to SMD (Nemirovski et al., 2009),

we update w
(i)
t by

w
(i)
t+1 = argmin

w∈W

{
η
(i)
t ⟨∇ℓ(w

(i)
t ; z

(i)
t ),w −w

(i)
t ⟩

+Bw(w,w
(i)
t )
}
, ∀i ∈ [m]

(12)

where η
(i)
t > 0 is the step size. Due to technical reasons,

we will use the weighted average of iterates

w̄
(i)
t =

t∑
j=1

η
(i)
j w

(i)
j∑t

k=1 η
(i)
k

=
(
∑t−1

j=1 η
(i)
j )w̄

(i)
t−1 + η

(i)
t w

(i)
t∑t

k=1 η
(i)
k

(13)
as an approximate solution to minw∈W Ri(w). While se-
lecting the last iterate w

(i)
t is also an option (Shamir &

Zhang, 2013; Harvey et al., 2019; Jain et al., 2019), this
choice leads to a more complex analysis. Therefore, we
prefer to employ w̄

(i)
t .

We proceed to minimize (3) by SMD. Let wt and qt be the
solutions in the t-th round. Based on the random samples
z
(1)
t , . . . , z

(m)
t , we define the stochastic gradient of ϕ(·, ·)

at (wt,qt) w.r.t. w as

gw(wt,qt) =

m∑
i=1

qt,i∇ℓ(wt; z
(i)
t ), (14)

which is an unbiased estimator of the true gradient
∇wϕ(wt,qt) =

∑m
i=1 qt,i∇Ri(wt). The challenge lies

in the construction of the stochastic gradient w.r.t. q. To this
end, we define

gq(wt,qt) =
[
ℓ(wt; z

(1)
t )− ℓ(w̄

(1)
t ; z

(1)
t ), . . . ,

ℓ(wt; z
(m)
t )− ℓ(w̄

(m)
t ; z

(m)
t )

]⊤ (15)

which is a biased estimator of the true gradient
∇qϕ(wt,qt) = [R1(wt) − R∗

1, . . . , Rm(wt) − R∗
m]⊤,

since

Et−1 [gq(wt,qt)]

=
[
R1(wt)−R1(w̄

(1)
t ), . . . , Rm(wt)−Rm(w̄

(m)
t )

]⊤
̸=∇qϕ(wt,qt)

where Et−1[·] represents the expectation conditioned on
the randomness until round t − 1. Thanks to the SMD
update in (12), we know that Ri(w̄

(i)
t ) is close to R∗

i , for all
i ∈ [m]. As a result, the bias in gq(wt,qt), determined by
Ri(w̄

(i)
t )−R∗

i , is effectively managed, making it possible
to maintain a (nearly) optimal convergence rate.

Equipped with the stochastic gradients in (14) and (15), we
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Algorithm 1 An Anytime Stochastic Approximation Ap-
proach for MERO

1: Initialize w1 = w
(1)
1 = · · · = w

(m)
1 =

argminw∈W νw(w), and q1 = 1
m1m ∈ Rm

2: for t = 1 to T do
3: For each i ∈ [m], draw a sample z

(i)
t from distribu-

tion Pi

4: For each i ∈ [m], calculate ∇ℓ(w
(i)
t ; z

(i)
t ) and up-

date w
(i)
t according to (12)

5: For each i ∈ [m], calculate the weighted average
w̄

(i)
t in (13)

6: Construct the stochastic gradients in (14) and (15)
7: Update wt and qt according to (16) and (17), respec-

tively
8: Calculate the the weighted averages w̄t and q̄t in

(18)
9: end for

update wt and qt by SMD:

wt+1 = argmin
w∈W

{
ηwt ⟨gw(wt,qt),w −wt⟩

+Bw(w,wt)
}
,

(16)

qt+1 = argmin
q∈∆m

{
ηqt ⟨−gq(wt,qt),q− qt⟩

+Bq(q,qt)
} (17)

where ηwt > 0 and ηqt > 0 are step sizes. We will maintain
the weighted averages of iterates:

w̄t =

t∑
j=1

ηwj wj∑t
k=1 η

w
k

, and q̄t =

t∑
j=1

ηqjqj∑t
k=1 η

q
k

(18)

which can be returned as solutions if necessary. The com-
pleted procedure is given in Algorithm 1.

Next, we discuss the theoretical guarantee of Algorithm 1.
To this end, we first present the optimization error of w̄(i)

t in
(13) for each risk function (Nemirovski et al., 2009, §2.3).

Theorem 3.6. Under Assumptions 3.1, 3.2, and 3.3, by
setting η

(i)
t = D

G
√
t

in Algorithm 1, with probability at least
1− δ, we have

Ri(w̄
(i)
t )−R∗

i

≤
DG

[
3 + ln t+ 16

√
(1 + ln t) ln(2mt2/δ)

]
4(
√
t+ 1− 1)

(19)

for all i ∈ [m], and t ∈ Z+.

Finally, we examine the optimization error of w̄t and q̄t

for (3). Because of the biased stochastic gradient in (15),
we cannot apply existing guarantees of SMD for stochas-
tic convex-concave optimization (Nemirovski et al., 2009,

§3.1). Therefore, we provide a novel analysis of SMD with
biased gradients, and utilize Theorem 3.6 to demonstrate
that the bias does not significantly affect the convergence
behavior.

Theorem 3.7. Under Assumptions 3.1, 3.2, 3.3, and 3.4,
and setting appropriate parameters η(i)t , ηwt , and ηqt in Al-
gorithm 1, with high probability, we have

ϵϕ(w̄t, q̄t) = O

(
log2 t+ log1/2 m log3/2 t√

t

)
for all t ∈ Z+.

Remark 3.8. The above theorem demonstrates that Algo-
rithm 1 converges at a (nearly) optimal rate of O([log2 t+

log1/2 m log3/2 t]/
√
t). Given a fixed number of iterations

T , this rate is slightly slower than the O(
√
(logm)/T )

rate achieved by the multi-stage approach in Section 3.2.
Nonetheless, a considerable advantage of Algorithm 1 is its
anytime characteristic, indicating it is capable of returning a
solution at any round.
Remark 3.9. Compared to stochastic algorithms for GDRO
(Nemirovski et al., 2009; Zhang et al., 2023), our method
requires the maintenance and updating of m additional mod-
els, resulting in a higher computational complexity. When
m is very large and the computational cost becomes pro-
hibitive, we may opt for a simplified version of MERO (Xie
et al., 2023):

min
w∈W

max
q∈∆m

{
m∑
i=1

qi [Ri(w)−Ri(wr)]

}
(20)

where wr is a reference model shared by all distributions.
In (20), we use the risk of wr on each distribution to replace
the minimal risk of that distribution, and thus only need to
estimate one additional model, namely wr. A possible way
for selecting wr is to choose the model that minimizes the
average risk across all distributions. To efficiently solve
(20), we could develop a multi-stage stochastic method,
akin to the approach in Section 3.2, or an anytime stochastic
method, similar to Algorithm 1.

4. Stochastic Approximation of Weighted
MERO

In practice, the costs associated with gathering samples can
differ among distributions, and thus we may allocate diverse
budgets for different distributions.

4.1. Preliminaries

Let ni represent the sample budget of distribution Pi. For
the sake of simplicity, we assume an order of n1 ≥ n2 ≥
· · · ≥ nm. To satisfy the budget, we can simply run
the multi-stage approach in Section 3.2 with T = nm/3,
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or Algorithm 1 for nm iterations. However, the opti-
mization error decreases only at an O(

√
(logm)/nm) or

Õ(
√
(logm)/nm) rate, which is determined by the small-

est budget nm. In other words, for a distribution Pi with
ni > nm, the extra ni − nm samples are wasted.

Analogous to the weighted GDRO in (5), we also formulate
a weighted version of MERO:

min
w∈W

max
q∈∆m

φ(w,q) =

m∑
i=1

qipi
[
Ri(w)−R∗

i

]
(21)

where the value of the weight pi will be determined later.
As demonstrated by Agarwal & Zhang (2022), the hetero-
geneous scaling in (21) allows us to establish distribution-
specific bounds for the excess risk. In our paper, the goal
is to make the excess risk of distribution Pi reducing at an
O(
√
(logm)/ni) rate. Again, the optimization problem in

(21) is more challenging than the counterpart in (5), due to
the existence of R∗

i s. We notice that because the budgets are
fixed and known, there is no need to pursue the anytime abil-
ity. In the following, we will develop a two-stage stochastic
approach for weighted MERO.

4.2. A Two-Stage Stochastic Approximation Approach
for Weighted MERO

Our approach consists of two stages: minimizing each risk
and minimizing an approximate problem. The complete
procedure is shown in Algorithm 2, where Steps 1-8 belong
to the 1st stage, and others correspond to the 2nd stage.

Stage 1: Minimizing the risk Similar to the first stage in
Section 3.2, we will deploy an instance of SMD to minimize
each individual risk Ri(·). The difference is that the number
of iterations is set to be ni/2 for distribution Pi. Conse-
quently, a larger budget yields a smaller error. Because the
total number of iterations is fixed, we will use a fixed step
size for each SMD. Specifically, the update rule for the i-th
distribution at the t-th round is given by

w
(i)
t+1 = argmin

w∈W

{
η(i)⟨∇ℓ(w

(i)
t ; z

(i)
t ),w −w

(i)
t ⟩

+Bw(w,w
(i)
t )
} (22)

where w
(i)
t is the current solution, z(i)t is a random sam-

ple drawn from Pi, and η(i) > 0 is the step size. Af-
ter ni/2 iterations, we will use the average of iterates
w̄(i) = 1

ni/2

∑ni/2
t=1 w

(i)
t as an approximate solution to

minw∈W Ri(w).

Similar to Theorem 3.6, we have the following guarantee
for the excess risk of each w̄(i).

Theorem 4.1. Under Assumptions 3.1, 3.2, and 3.3, by
setting η(i) = 2D

G
√
ni

in Algorithm 2, with probability at

least 1− δ, we have

Ri(w̄
(i))−R∗

i ≤ 2DG
√
ni

(
1 + 4

√
2 ln

m

δ

)
, (23)

for all i ∈ [m].

Stage 2: Minimizing an approximate problem Based
on the solutions from the 1st stage, we construct the problem

min
w∈W

max
q∈∆m

φ̂(w,q) =

m∑
i=1

qipi
[
Ri(w)−Ri(w̄

(i))
]

(24)

to approximate (21). The following lemma shows that, the
optimization error of any (w̄, q̄) for (21) is close to that for
(24), provided Ri(w̄

(i))−R∗
i is small, for all i ∈ [m]. As

a result, we can focus on optimizing (24), which is more
manageable, as the stochastic gradient of φ̂(w,q) can be
easily constructed.
Lemma 4.2. For any (w̄, q̄), we have

ϵφ(w̄, q̄) ≤ ϵφ̂(w̄, q̄) + 2 max
i∈[m]

{
pi
[
Ri(w̄

(i))−R∗
i

]}
.

From Theorem 4.1, we know that a larger ni leads to
a smaller Ri(w̄

(i)) − R∗
i . Therefore, when the bud-

get ni is large, we can set a large pi without influenc-
ing maxi∈[m]

{
pi[Ri(w̄

(i))−R∗
i ]
}

, which is crucial for
achieving faster rates in distributions with larger budgets.

Inspired by Zhang et al. (2023, Algorithm 4), we solve
(24) by stochastic mirror-prox algorithm (SMPA) (Juditsky
et al., 2011). One notable merit of SMPA is that its opti-
mization error depends on the variance of the gradient. For
a distribution Pi with a larger ni, we can leverage mini-
batches (Roux et al., 2008; Zhang et al., 2013c) to estimate
Ri(w) − Ri(w̄

(i)) in (24) more accurately, (i.e., with a
smaller variance), which again makes it possible to use a
larger pi.

Within the framework of SMPA, we keep two sets of solu-
tions: (wt,qt) and (w′

t,q
′
t). In the t-th iteration, we first

draw ni/nm samples from every distribution Pi, denoted
by z

(i,1)
t , . . . , z

(i,ni/nm)
t . Then, we use them to construct

stochastic gradients of φ̂(w,q) at (w′
t,q

′
t):

gw(w
′
t,q

′
t)

=

m∑
i=1

q′t,ipi

nm

ni

ni/nm∑
j=1

∇ℓ(w′
t; z

(i,j)
t )

 ,

gq(w
′
t,q

′
t)

=

p1nm

n1

n1/nm∑
j=1

[
ℓ(w′

t; z
(1,j)
t )− ℓ(w̄(1); z

(1,j)
t )

]
,

. . . , pm
[
ℓ(w′

t; z
(m)
t )− ℓ(w̄(m); z

(m)
t )

]]⊤
.

(25)
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It is easy to verify that Et−1[gw(w
′
t,q

′
t)] = ∇wφ̂(w′

t,q
′
t)

and Et−1[gq(w
′
t,q

′
t)] = ∇qφ̂(w

′
t,q

′
t). Based on (25), we

use SMD to update (w′
t,q

′
t), and obtain (wt+1,qt+1):

wt+1 = argmin
w∈W

{
ηw⟨gw(w

′
t,q

′
t),w −w′

t⟩

+Bw(w,w′
t)
}
,

(26)

qt+1 = argmin
q∈∆m

{
ηq⟨−gq(w

′
t,q

′
t),q− q′

t⟩

+Bq(q,q
′
t)
} (27)

where ηw > 0 and ηq > 0 are step sizes. Next, we draw an-
other ni/nm samples from every distribution Pi to construct
stochastic gradients at (wt+1,qt+1):

gw(wt+1,qt+1)

=

m∑
i=1

qt+1,ipi

nm

ni

ni/nm∑
j=1

∇ℓ(wt+1; ẑ
(i,j)
t )

 ,

gq(wt+1,qt+1)

=

p1nm

n1

n1/nm∑
j=1

[
ℓ(wt+1; ẑ

(1,j)
t )− ℓ(w̄(1); ẑ

(1,j)
t )

]
,

. . . , pm
[
ℓ(wt+1; ẑ

(m)
t )− ℓ(w̄(m); ẑ

(m)
t )

]]⊤
.

(28)

where ẑ
(i,1)
t , . . . , ẑ

(i,ni/nm)
t are random samples from dis-

tribution Pi. Then, we use them to update (w′
t,q

′
t), and

obtain (w′
t+1,q

′
t+1):

w′
t+1 = argmin

w∈W

{
ηw⟨gw(wt+1,qt+1),w −w′

t⟩

+Bw(w,w′
t)
}
,

(29)

q′
t+1 = argmin

q∈∆m

{
ηq⟨−gq(wt+1,qt+1),q− q′

t⟩

+Bq(q,q
′
t)
} (30)

Recall that after the first stage, we have ni/2 samples left
for each distribution Pi. So, we repeat the above process for
nm/4 iterations to meet the budget constraints. Finally, we
return w̄ = 4

nm

∑1+nm/4
t=2 wt and q̄ = 4

nm

∑1+nm/4
t=2 qt as

solutions.

To analyze the performance of Algorithm 2, we introduce
two additional assumptions.

Assumption 4.3. All the risk functions are L-smooth, i.e.,

∥∇Ri(w)−∇Ri(w
′)∥w,∗ ≤ L∥w −w′∥w (31)

for all w,w′ ∈ W , and i ∈ [m].

The assumption of smoothness is essential for achieving a
convergence rate that depends on the variance (Lan, 2012).

Assumption 4.4. The dual norm ∥ · ∥w,∗ is κ-regular for
some small constant κ ≥ 1.

Algorithm 2 A Two-Stage Stochastic Approximation Ap-
proach for Weighted MERO

Input: Step sizes: η(1), . . ., η(m), ηw and
ηq

1: Initialize w
(1)
1 = · · · = w

(m)
1 = argminw∈W νw(w)

2: for i = 1 to m do
3: for t = 1 to ni/2 do
4: Draw a sample z

(i)
t from distribution Pi

5: Calculate ∇ℓ(w
(i)
t ; z

(i)
t ) and update w

(i)
t accord-

ing to (22)
6: end for
7: Calculate the average of iterates w̄(i) =

1
ni/2

∑ni/2
t=1 w

(i)
t+1

8: end for
9: Initialize w′

1 = argminw∈W νw(w), and q′
1 =

1
m1m ∈ Rm

10: for t = 1 to nm/4 do
11: For each i ∈ [m], draw ni/nm samples {z(i,j)t : j =

1, . . . , ni/nm} from distribution Pi

12: Construct the stochastic gradients defined in (25)
13: Calculate wt+1 and qt+1 according to (26) and (27),

respectively
14: For each i ∈ [m], draw ni/nm samples {ẑ(i,j)t : j =

1, . . . , ni/nm} from distribution Pi

15: Construct the stochastic gradients defined in (28)
16: Calculate w′

t+1 and q′
t+1 according to (29) and (30),

respectively
17: end for
18: return w̄ = 4

nm

∑1+nm/4
t=2 wt and q̄ =

4
nm

∑1+nm/4
t=2 qt

The condition of regularity plays a role when examining the
impact of mini-batches on stochastic gradients. For a com-
prehensive definition, please consult the work of Juditsky &
Nemirovski (2008).

Following Zhang et al. (2023), we set the weight pi in (21)
as

pi =
1/
√
nm + 1

1/
√
nm +

√
nm/ni

. (32)

Then, we have the following theorem regarding the excess
risk of w̄ on every distribution.

Theorem 4.5. Under Assumptions 3.1, 3.2, 3.3, 3.4, 4.3,
and 4.4, and setting appropriate parameters in Algorithm 2,
with high probability, we have

Ri(w̄)−R∗
i =

1

pi
p∗φ +O

((
1

nm
+

1
√
ni

)
lnm

)
.

Remark 4.6. We observe that for a distribution Pi with ni ≤
n2
m, the excess risk diminishes at a rate of O((logm)/

√
ni),
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Figure 1. The maximal excess risk (MER) versus the running time.

a significant improvement over the Õ(
√
(logm)/nm) rate

outlined in Section 4.1, until it approaches p∗φ/pi. For any
Pi with a very large budget, i.e., ni > n2

m, it attains an
O((logm)/nm) rate, which almost matches the conver-
gence rate of deterministic convex-concave saddle-point
optimization (Nemirovski, 2004).

Although the exact value of p∗φ is generally unknown, we
can expect it to be relatively small when there exists a single
model that performs well on all distributions. In particular,
if all the distributions are aligned, we can prove that p∗φ =
0 (Agarwal & Zhang, 2022, Corollary 9), leading to the
following corollary.

Corollary 4.7. Suppose there exists a model w∗ ∈ W such
that Ri(w∗) = R∗

i for all i ∈ [m]. Under the condition of
Theorem 4.5, with high probability, we have

Ri(w̄)−R∗
i = O

((
1

nm
+

1
√
ni

)
lnm

)
.

Remark 4.8. When all distributions are aligned, the above
corollary offers upper bounds for the standard excess risk,
making it more interpretable than the theoretical guarantee
provided by Zhang et al. (2023, Theorem 4).

5. Experiments
In the experiments, we investigate both the balanced and
imbalanced scenarios, employing synthetic and real-world
datasets. Due to limited space, we only present a subset of
the experimental outcomes, with the comprehensive set of
results accessible in Appendix C.

First, we demonstrate the efficiency of our anytime stochas-
tic approximation approach in Algorithm 1, referred to as
MERO, through a comparative analysis with the optimiza-
tion procedure of Agarwal & Zhang (2022) for empirical
MERO, denominated as E-MERO. Recall that Algorithm 1
runs for T rounds, making use of a cumulative total of
mT samples. For a fair comparison, we set the number
of samples from each distribution in E-MERO to be T .
We assign the value of T as 105 for the synthetic dataset
and 104 for the Adult dataset. In Fig. 1, we depict the re-
lationship between the maximal excess risk (MER), i.e.,

0 20000 50000 100000
# of iterations

0.05

0.10

0.15

0.20

M
ER

MERO
MS-MERO

(a) The synthetic dataset

0 2000 5000 10000
# of iterations

0.025

0.050

0.075

0.100

M
ER

MERO
MS-MERO

(b) The Adult dataset

Figure 2. The maximal excess risk (MER) versus the number of
iterations.

Table 1. Running times of MERO and E-MERO.

DATASET ALGORITHM MER VALUE TIMES (S)

SYNTHETIC
MERO 0.05 255.0

E-MERO 0.05 1470.5

ADULT
MERO 0.03 20.4

E-MERO 0.03 141.6

maxi∈[m][Ri(w) − R∗
i ], and the running time. The lack

of the E-MERO curve at the beginning is attributed to its
initialization phase, a period focused on minimizing the
empirical risk for each distribution. It’s evident that MERO
achieves convergence significantly quicker than E-MERO
for both datasets, highlighting the computational efficiency
of stochastic approximation. To be more clear, we present in
Table 1 the time required for MERO and E-MERO to attain
a specified MER target—0.05 for the synthetic dataset and
0.03 for the Adult dataset. The data reveals that MERO out-
paces E-MERO, being 5.7 times faster and 6.9 times faster
on the synthetic and Adult datasets, respectively. Addition-
ally, it’s important to note that MERO is more memory-
efficient, as it eliminates the need to store training data.

Second, we illustrate the benefit of the anytime capability
of Algorithm 1 by comparing with the multi-stage approach
detailed in Section 3.2, denoted by MS-MERO. In the case
of MS-MERO, we assign a preset value of T as 2 × 104

for the synthetic dataset and 2× 103 for the Adult dataset.
However, we continue the execution of the 3rd stage even
when the count of iterations goes beyond the set value of
T . In Fig. 2, the graph displays the progression of MER in
relation to the number of iterations. We exclude the initial
two stages of MS-MERO from the illustration, because it
only produces a model during the 3rd stage. In the begin-
ning, MS-MERO rapidly reduces the MER, but as the actual
number of executed rounds exceeds the predetermined limit,
its parameter settings are not optimal. Consequently, we
observe a stagnation or even a slight increase in the MER.
In contrast, MERO demonstrates a consistent decrease in
MER and ultimately outperforms MS-MERO. Such results
underscore the importance of anytime algorithms, especially
when the total number of iterations is unknown.
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Figure 3. Individual risk versus the number of iterations on the synthetic dataset.

Third, we contrast MERO with GDRO to analyze their
unique characteristics. Notice that MERO and GDRO adopt
different objectives, and therefore neither holds absolute
superiority (Agarwal & Zhang, 2022, Proposition 1 and
Example 1). While the MER of MERO is always better
than that of GDRO, it does not necessarily mean that the
model yielded by MERO is universally preferable across
all distributions. To illustrate this point, we compare our
Algorithm 1 with the stochastic approximation algorithm of
Zhang et al. (2023, Algorithm 1) designed for GDRO, which
is also referred to as GDRO for convenience. We assess
the risks associated with each distribution for both MERO
and GDRO, and in the initial comparison, we set the x-axis
as the number of iterations to ensure that both algorithms
consume the same number of samples. Experimental results
on the synthetic dataset are presented in Fig. 3. As can be
seen, GDRO exhibits strong performance with distributions
P5 and P6, while MERO demonstrates superior results with
the remaining 4 distributions. This pattern is as expected,
since GDRO targets the raw risk, and the last two distri-
butions are characterized by the high level of noise, hence
the large risk. Consequently, GDRO tends to concentrate
its efforts on these distributions, achieving lower risks for
them. By contrast, MERO effectively mitigates the impact
of noise, achieving a more balanced performance across

various distributions. Experimental results on the Adult
dataset, showcased in Fig. 4 of Appendix C, lead us to simi-
lar conclusions: GDRO exhibits slightly better performance
on distributions (P1, P3 and P5) with large risk.

6. Conclusion and Future Work
This paper aims to develop efficient stochastic approxima-
tion approaches for MERO. First, we design a multi-stage
stochastic algorithm, which attains a (nearly) optimal con-
vergence rate of O(

√
(logm)/T ) for a fixed number of it-

erations T . Then, we propose an anytime stochastic method,
which reduces the error at an Õ(

√
(logm)/t) rate at ev-

ery iteration t. Next, we delve into the setting where dif-
ferent distributions possess varying sample budgets, and
develop a two-stage stochastic procedure that is endowed
with distribution-dependent convergence rates. Finally, we
substantiate the efficiency and effectiveness of our methods
through experimental validation.

A future direction involves applying stochastic approxima-
tion to empirical MERO to reduce the computational cost.
By leveraging the finite-sum structure (Zhang et al., 2013b;
Johnson & Zhang, 2013; Reddi et al., 2016), we have re-
cently made progress in this direction (Yu et al., 2024).
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Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., and
Bouchachia, A. A survey on concept drift adaptation.
ACM Computing Surveys, 46(4):1–37, 2014.

Haddadpour, F., Kamani, M. M., Mahdavi, M., and Karbasi,
A. Learning distributionally robust models at scale via
composite optimization. In International Conference on
Learning Representations, 2022.

Harvey, N. J. A., Liaw, C., Plan, Y., and Randhawa, S. Tight
analyses for non-smooth stochastic gradient descent. In
Proceedings of the 32nd Conference on Learning Theory,
pp. 1579–1613, 2019.

Jain, P., Nagaraj, D., and Netrapalli, P. Making the last
iterate of sgd information theoretically optimal. In Pro-
ceedings of the 32nd Conference on Learning Theory, pp.
1752–1755, 2019.

Jiang, R., Wang, J., Zhang, M., and Guan, Y. Two-stage min-
imax regret robust unit commitment. IEEE Transactions
on Power Systems, 28(3):2271–2282, 2013.

Jin, J., Zhang, B., Wang, H., and Wang, L. Non-convex dis-
tributionally robust optimization: Non-asymptotic analy-
sis. In Advances in Neural Information Processing Sys-
tems 34, pp. 2771–2782, 2021.

Johnson, R. and Zhang, T. Accelerating stochastic gradient
descent using predictive variance reduction. In Advances
in Neural Information Processing Systems 26, pp. 315–
323, 2013.

10



Efficient Stochastic Approximation of Minimax Excess Risk Optimization

Juditsky, A., Nemirovski, A., and Tauvel, C. Solving varia-
tional inequalities with stochastic mirror-prox algorithm.
Stochastic Systems, 1(1):17–58, 2011.

Juditsky, A. B. and Nemirovski, A. S. Large deviations of
vector-valued martingales in 2-smooth normed spaces.
ArXiv e-prints, arXiv:0809.0813, 2008.

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang,
M., Balsubramani, A., Hu, W., Yasunaga, M., Phillips,
R. L., Gao, I., Lee, T., David, E., Stavness, I., Guo, W.,
Earnshaw, B., Haque, I., Beery, S. M., Leskovec, J., Kun-
daje, A., Pierson, E., Levine, S., Finn, C., and Liang, P.
Wilds: A benchmark of in-the-wild distribution shifts.
In Proceedings of the 38th International Conference on
Machine Learning, pp. 5637–5664, 2021.

Kuhn, D., Esfahani, P. M., Nguyen, V. A., and Shafieezadeh-
Abadeh, S. Wasserstein distributionally robust optimiza-
tion: Theory and applications in machine learning. Op-
erations Research & Management Science in the Age of
Analytics, pp. 130–166, 2019.

Lan, G. An optimal method for stochastic composite op-
timization. Mathematical Programming, 133:365–397,
2012.
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A. More Related Work
For the DRO problem in (1), the uncertain set S is typically chosen to be the neighborhood surrounding a target distribution
P0, and constructed by using certain distance functions between distributions, such as the f -divergence (Ben-Tal et al.,
2013), the Wasserstein distance (Esfahani & Kuhn, 2018; Kuhn et al., 2019), and the maximum mean discrepancy (Staib
& Jegelka, 2019). Other ways for defining S include moment constraints (Delage & Ye, 2010; Wiesemann et al., 2014)
and hypothesis testing of goodness-of-fit (Bertsimas et al., 2018). The nature of the loss function can exhibit variability: it
could assume a convex form (Ben-Tal et al., 2015; Shapiro, 2017), a non-convex structure (Jin et al., 2021; Qi et al., 2021),
or potentially incorporate a regularizer (Sinha et al., 2018). Research efforts may be directed towards diverse objectives,
including the development of the optimization algorithms (Namkoong & Duchi, 2016; Levy et al., 2020; Rafique et al.,
2022; Haddadpour et al., 2022; Song et al., 2022), the exploration of finite sample and asymptotic properties of the empirical
solution (Namkoong & Duchi, 2017; Duchi & Namkoong, 2021), the determination of confidence intervals for the risk
(Duchi et al., 2021), or the approximation of nonparametric likelihood (Nguyen et al., 2019).

B. Analysis
In this section, we present proofs of main theorems.

B.1. Proof of Theorem 3.6

Besides the high probability bound in (19), we will also establish an expectation bound:

E
[
Ri(w̄

(i)
t )−R∗

i

]
≤ DG(3 + ln t)

4(
√
t+ 1− 1)

, ∀i ∈ [m], t ∈ Z+. (33)

The analysis closely adheres to the content in Section 2.3 of Nemirovski et al. (2009), and for the sake of completeness, we
present the proof here.

Let w(i)
∗ ∈ argminw∈W Ri(w) be the optimal solution that minimizes Ri(·). From the property of mirror descent, e.g.,

Lemma 2.1 of Nemirovski et al. (2009), we have

η
(i)
j ⟨∇ℓ(w

(i)
j ; z

(i)
j ),w

(i)
j −w
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∗ ⟩
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∗ ,w
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2
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j ; z
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∗ ,w
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(i)
j )2G2

2
.

(34)

Thus, we have

η
(i)
j ⟨∇Ri(w

(i)
j ),w

(i)
j −w

(i)
∗ ⟩

=η
(i)
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(i)
j ; z

(i)
j ),w
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(i)
∗ ⟩+ η
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(i)
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2
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(i)
j )−∇ℓ(w

(i)
j ; z

(i)
j ),w

(i)
j −w

(i)
∗ ⟩.

Summing the above inequality over j = 1, . . . , t, we have

t∑
j=1
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(35)
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From the convexity of the risk function, we have

Ri(w̄
(i)
t )−Ri(w

(i)
∗ ) = Ri

 t∑
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η
(i)
j w
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Recall that w(i)
j and w

(i)
∗ do not depend on z

(i)
j , and thus

Ej−1[δ
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j ] = η
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j
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]
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(i)
j −w

(i)
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〉
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So, δ(i)1 , . . . , δ
(i)
t is a martingale difference sequence.

B.1.1. THE EXPECTATION BOUND

Taking expectation over (36), we have

E
[
Ri(w̄

(i)
t )−Ri(w

(i)
∗ )
]
≤

2D2 +G2
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j=1(η
(i)
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By setting η
(i)
j = D

G
√
j
, we have
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Notice that
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From (39) and (40), we have

E
[
Ri(w̄

(i)
t )−Ri(w

(i)
∗ )
]
≤ DG(3 + ln t)

4(
√
t+ 1− 1)

which proves (33).

B.1.2. THE HIGH PROBABILITY BOUND

To establish the high probability bound, we make use of the Hoeffding-Azuma inequality for martingales (Cesa-Bianchi &
Lugosi, 2006).
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Lemma B.1. Let V1, V2, . . . be a martingale difference sequence with respect to some sequence X1, X2, . . . such that
Vi ∈ [Ai, Ai + ci] for some random variable Ai, measurable with respect to X1, . . . , Xi−1 and a positive constant ci. If
Sn =

∑n
i=1 Vi, then for any t > 0,

Pr[Sn > t] ≤ exp

(
− 2t2∑n

i=1 c
2
i
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.

To apply the above lemma, we need to show that |δ(i)j | is bounded. We have∥∥∥∇Ri(w
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As a result,
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From Lemma B.1, with probability at least 1− δ/[2mt2], we have
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Substituting (44) into (36), with probability at least 1− δ/[2mt2], we have
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3 + ln t+ 16

√
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4(
√
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.

We complete the proof by taking the union bound over all i ∈ [m] and t ∈ Z+, and using the well-known fact

∞∑
t=1

1

t2
=

π2

6
≤ 2.

B.2. Proof of Theorem 3.7

We first present the complete form of Theorem 3.7.

Theorem B.2. Under Assumptions 3.1, 3.2, 3.3, and 3.4, by setting

η
(i)
t =

D

G
√
t
, ηwt =

2D2√
(2D2G2 + 2 lnm)t

, and ηqt =
2 lnm√

(2D2G2 + 2 lnm)t
(45)
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in Algorithm 1, we have

E

[
ϵϕ(w̄t, q̄t) = max

q∈∆m

ϕ(w̄t,q)− min
w∈W

ϕ(w, q̄t)

]

≤
(5 + 3 ln t)

√
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3 + ln t+ 16(1 +

√
lnm)

√
2(1 + ln t)

]
(1 + ln t)

2(
√
t+ 1− 1)

=O

(
log2 t+ log1/2 m log3/2 t√

t

) (46)

for all t ∈ Z+. Furthermore, with probability at least 1− 2δ,

ϵϕ(w̄t, q̄t) = max
q∈∆m

ϕ(w̄t,q)− min
w∈W

ϕ(w, q̄t)

≤ 1

2(
√
t+ 1− 1)

[√
2D2G2 + 2 lnm

(
5 + 3 ln t+ 8

√
(1 + ln t) ln

2t2

δ

)

+2DG

(
3 + ln t+ 16

√
(1 + ln t) ln

2mt2

δ

)
(1 + ln t)

]
= O

(
log2 t+ log1/2 m log3/2 t√

t

) (47)

for all t ∈ Z+.

Following the analysis of Nemirovski et al. (2009, §3.1), we will first combine the two update rules in (16) and (17) into a
single one.

B.2.1. MERGING THE TWO UPDATE RULES IN (16) AND (17)

Let E be the space in which W resides. We equip the Cartesian product E × Rm with the following norm and dual norm:

∥∥(w,q)
∥∥ =

√
1

2D2
∥w∥2w +

1

2 lnm
∥q∥21, and

∥∥(u,v)∥∥∗ =
√

2D2∥u∥2w,∗ + 2∥v∥2∞ lnm. (48)

We use the notation x = (w,q), and equip the set W ×∆m with the distance-generating function

ν(x) = ν(w,q) =
1

2D2
νw(w) +

1

2 lnm
νq(q). (49)

It is easy to verify that ν(x) is 1-strongly convex w.r.t. the norm ∥ · ∥ in (48). Let B(·, ·) be the Bregman distance associated
with ν(·):

B(x,x′) =ν(x)−
[
ν(x′) + ⟨∇ν(x′),x− x′⟩

]
=

1

2D2

(
νw(w)−

[
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′) + ⟨∇νw(w
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])
+

1

2 lnm

(
νq(q)−

[
νq(q

′) + ⟨∇νq(q
′),q− q′⟩
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=
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Bw(w,w′) +

1

2 lnm
Bq(q,q
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(50)

where x′ = (w′,q′). Recall the definitions of ow and oq in Section 3.1, and we have

(ow,oq) = argmin
(w,q)∈W×∆m

ν(w,q).

Then, we can show that the domain W ×∆m is bounded since

max
(w,q)∈W×∆m

B([w,q], [ow,oq]) =
1

2D2
max
w∈W

Bw(w,ow) +
1

2 lnm
max
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(6)
≤ 1. (51)
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With the above configurations, (16) and (17) are equivalent to

xt+1 = argmin
x∈W×∆m

{
ηt
〈
[gw(wt,qt),−gq(wt,qt)],x− xt

〉
+B(x,xt)

}
(52)

where ηt > 0 is the step size that satisfies

ηwt = 2ηtD
2, and ηqt = 2ηt lnm. (53)

And in the beginning, we set x1 = argminx∈W×∆m
ν(x) = (w1,q1) = (ow,oq).

B.2.2. ANALYSIS OF SMD WITH BIASED STOCHASTIC GRADIENTS

To simplify the notation, we define

F (wt,qt) = [∇wϕ(wt,qt),−∇qϕ(wt,qt)]

=

[
m∑
i=1

qt,i∇Ri(wt),−
[
R1(wt)−R∗
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m

]⊤] (54)

which contains the true gradient of ϕ(·, ·) at (wt,qt), and
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which contains the stochastic gradient used in (52). The norm of the stochastic gradient is well-bounded:
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and thus ∥∥g(wt,qt)
∥∥
∗ =

√
2D2∥gw(wt,qt)∥2w,∗ + 2∥gq(wt,qt)∥2∞ lnm ≤

√
2D2G2 + 2 lnm︸ ︷︷ ︸

:=M

. (56)

The bias of g(wt,qt) is characterized by

F (wt,qt)− Et−1 [g(wt,qt)] =
[
0,−

[
R1(w̄

(1)
t )−R∗

1, . . . , Rm(w̄
(m)
t )−R∗

m

]⊤]
. (57)

From the convexity-concavity of ϕ(·, ·), we have (Nemirovski et al., 2009, (3.9))

max
q∈∆m

ϕ(w̄t,q)− min
w∈W

ϕ(w, q̄t)

(18)
= max

q∈∆m

ϕ
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w
k

,q
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q
k
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(53)
= max

q∈∆m

ϕ
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w,
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
≤

 t∑
j=1

ηj

−1 max
q∈∆m

t∑
j=1

ηjϕ(wj ,q)− min
w∈W

t∑
j=1

ηjϕ(w,qj)


≤

 t∑
j=1

ηj

−1

max
(w,q)∈W×∆m

t∑
j=1

ηj

[〈
∇wϕ(wj ,qj),wj −w⟩ − ⟨∇qϕ(wj ,qj),qj − q

〉]

(54)
=

 t∑
j=1

ηj

−1

max
x∈W×∆m

t∑
j=1

ηj
〈
F (wj ,qj),xj − x

〉
.

(58)

As a result, we can decompose the optimization error as follows:

max
q∈∆m

ϕ(w̄t,q)− min
w∈W

ϕ(w, q̄t)

≤

 t∑
j=1

ηj

−1

max
x∈W×∆m

t∑
j=1

ηj
〈
g(wj ,qj),xj − x

〉
︸ ︷︷ ︸

:=E1

+

 t∑
j=1

ηj

−1

max
x∈W×∆m

t∑
j=1

ηj
〈
Ej−1 [g(wj ,qj)]− g(wj ,qj),xj − x

〉
︸ ︷︷ ︸

:=E2

+

 t∑
j=1

ηj

−1

max
x∈W×∆m

t∑
j=1

ηj
〈
F (wj ,qj)− Ej−1 [g(wj ,qj)] ,xj − x

〉
︸ ︷︷ ︸

:=E3

.

(59)

We proceed to bound the three terms in (59). To bound the first term E1, we follow the derivation of (34), and have

ηj
〈
g(wj ,qj),xj − x

〉
≤B(x,xj)−B(x,xj+1) +

η2j
2
∥g(wj ,qj)∥2∗

(56)
≤B(x,xj)−B(x,xj+1) +

M2

2
η2j .

(60)

Summing the above inequality over j = 1, . . . , t, we have

t∑
j=1

ηj
〈
g(wj ,qj),xj − x

〉
≤ B(x,x1) +

M2

2

t∑
j=1

η2j
(51)
≤ 1 +

M2

2

t∑
j=1

η2j . (61)

Next, we consider the second term E2. Because of the maximization operation, the variable x depends on the randomness of
the algorithm, and thus we cannot treat ηj⟨Ej−1[g(wj ,qj)]− g(wj ,qj),xj − x⟩, j = 1, . . . , t as a martingale difference
sequence. To address this challenge, we make use of the “ghost iterate” technique of Nemirovski et al. (2009), and develop
the following lemma.

Lemma B.3. Under the condition of Theorem 3.7, we have

E

 max
x∈W×∆m

t∑
j=1

ηj
〈
Ej−1 [g(wj ,qj)]− g(wj ,qj),xj − x

〉 ≤ 1 + 2M2
t∑

j=1

η2j , ∀t ∈ Z+. (62)
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Furthermore, with probability at least 1− δ,

max
x∈W×∆m

t∑
j=1

ηj
〈
Ej−1 [g(wj ,qj)]− g(wj ,qj),xj − x

〉

≤1 + 2M2
t∑

j=1

η2j + 8M

√√√√ t∑
j=1

η2j

(
ln

2t2

δ

)
, ∀t ∈ Z+.

(63)

To bound the last term E3, we make use of Theorem 3.6, and prove the following lemma.

Lemma B.4. Under the condition of Theorem 3.7, we have

E

 max
x∈W×∆m

t∑
j=1

ηj
〈
F (wj ,qj)− Ej−1 [g(wj ,qj)] ,xj − x

〉
≤

t∑
j=1

ηj
DG

[
3 + ln j + 16(1 +

√
lnm)

√
2(1 + ln j)

]
2(
√
j + 1− 1)

, ∀t ∈ Z+.

(64)

Furthermore, with probability at least 1− δ,

max
x∈W×∆m

t∑
j=1

ηj
〈
F (wj ,qj)− Ej−1 [g(wj ,qj)] ,xj − x

〉
≤

t∑
j=1

ηj
DG

[
3 + ln j + 16

√
(1 + ln j) ln(2mj2/δ)

]
2(
√
j + 1− 1)

, ∀t ∈ Z+.

(65)

Combining (59), (61), (62) and (64), we have

E

[
max
q∈∆m

ϕ(w̄t,q)− min
w∈W

ϕ(w, q̄t)

]

≤

 t∑
j=1

ηj

−12 +
5M2

2

t∑
j=1

η2j +

t∑
j=1

ηj
DG

[
3 + ln j + 16(1 +

√
lnm)

√
2(1 + ln j)

]
2(
√
j + 1− 1)

 .

By setting

ηj =
1

M
√
j
, (66)

we have

E

[
max
q∈∆m

ϕ(w̄t,q)− min
w∈W

ϕ(w, q̄t)

]

≤

 t∑
j=1

1√
j

−12M +
5M

2

t∑
j=1

1

j
+

t∑
j=1

1√
j

DG
[
3 + ln j + 16(1 +

√
lnm)

√
2(1 + ln j)

]
2(
√
j + 1− 1)

 .

It is easy to verify that

2(
√
j + 1− 1) ≥

√
j

2
, ∀j ∈ Z+. (67)
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So, we have

E

[
max
q∈∆m

ϕ(w̄t,q)− min
w∈W

ϕ(w, q̄t)

]

≤

 t∑
j=1

1√
j

−12M +
5M

2

t∑
j=1

1

j
+ 2DG

[
3 + ln t+ 16(1 +

√
lnm)

√
2(1 + ln t)

] t∑
j=1

1

j


(40)
≤ 1

2(
√
t+ 1− 1)

(
M(5 + 3 ln t) + 2DG

[
3 + ln t+ 16(1 +

√
lnm)

√
2(1 + ln t)

]
(1 + ln t)

)
which proves (46). The setting of step sizes ηwt and ηqt in (45) is derived by combining (53) and (66).

From (59) , (61), (63) and (65), with probability at least 1− 2δ, we have

max
q∈∆m

ϕ(w̄t,q)− min
w∈W

ϕ(w, q̄t)

≤

 t∑
j=1

ηj

−12 +
5M2

2

t∑
j=1

η2j + 8M

√√√√ t∑
j=1

η2j

(
ln

2t2

δ

)

+

t∑
j=1

ηj
DG

[
3 + ln j + 16

√
(1 + ln j) ln(2mj2/δ)

]
2(
√
j + 1− 1)


(66),(67)
≤

 t∑
j=1

1√
j

−12M +
5M

2

t∑
j=1

1

j
+ 8M

√√√√(ln 2t2

δ

) t∑
j=1

1

j

+2DG

(
3 + ln t+ 16

√
(1 + ln t) ln

2mt2

δ

)
t∑

j=1

1

j


(40)
≤ 1

2(
√
t+ 1− 1)

[
M

(
5 + 3 ln t+ 8

√
(1 + ln t) ln

2t2

δ

)

+2DG

(
3 + ln t+ 16

√
(1 + ln t) ln

2mt2

δ

)
(1 + ln t)

]

which proves (47).

B.3. Proof of Theorem 4.1

Besides the high probability bound in (23), we will also establish an expectation bound:

E
[
Ri(w̄

(i))−R∗
i

]
≤ 2DG

√
ni

, ∀i ∈ [m]. (68)

We follow the analysis of Theorem 3.6, and use a fixed step size to simplify the results.

Let t = ni

2 . From (38), we have

E
[
Ri(w̄

(i))−Ri(w
(i)
∗ )
]
≤
2D2 +G2

∑t
j=1(η

(i))2

2
∑t

j=1 η
(i)

=
D2

tη(i)
+

G2η(i)

2
= DG

√
2

t
=

2DG
√
ni

where we set η(i) = D
G

√
2
t = 2D

G
√
ni

, which proves (68).
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Repeating the proof in Section B.1.2, with probability at least 1− δ/m, we have

Ri(w̄
(i))−Ri(w

(i)
∗ ) ≤

D2 + G2

2

∑t
j=1(η

(i))2 + 8DG
√∑t

j=1(η
(i))2 ln m

δ∑t
j=1 η

(i)

=
D2

tη(i)
+

G2η(i)

2
+

8DG
√
ln m

δ√
t

=DG

√
2

t

(
1 + 4

√
2 ln

m

δ

)
=

2DG
√
ni

(
1 + 4

√
2 ln

m

δ

)
for any i ∈ [m]. We obtain (23) by taking the union bound over all i ∈ [m].

B.4. Proof of Theorem 4.5

Theorem 4.5 is a condensed version of the following theorem and corollary.
Theorem B.5. Define

pmax = max
i∈[m]

pi, ωmax = max
i∈[m]

p2inm

ni
, rmax = max

i∈[m]

pi√
ni

L̃ = 2
√
2pmax(D

2L+D2G
√
lnm), and σ2 = 2cωmax(κD

2G2 + ln2 m)

(69)

where c > 0 is an absolute constant. Under Assumptions 3.1, 3.2, 3.3, 3.4, 4.3, and 4.4, and setting

η(i) =
2D

G
√
ni

, ηw = 2D2 min

(
1

√
3L̃

, 2

√
2

7σ2nm

)
, and ηq = 2min

(
1

√
3L̃

, 2

√
2

7σ2nm

)
lnm

in Algorithm 2, with probability at least 1− 2δ, we have

Ri(w̄)−R∗
i ≤ 1

pi
p∗φ

+
1

pi

14L̃
nm

+

√
σ2

nm

(
28√
3
+ 7

√
6 log

2

δ
+

28
√
2

nm
log

2

δ

)
+ 4DG

(
1 + 4

√
2 ln

m

δ

)
rmax

 (70)

where p∗φ is the optimal value of (21).
Corollary B.6. Under the condition of Theorem B.5 and (32), with high probability, we have

Ri(w̄)−R∗
i =

1

pi
p∗φ +O

((
1

nm
+

1
√
ni

)
lnm

)
.

B.5. Proof of Theorem B.5

Following the analysis of Zhang et al. (2023, Theorem 4), we bound the optimization error of (w̄, q̄) for (24) below.
Theorem B.7. Under the condition of Theorem B.5, with probability at least 1− δ, we have

ϵφ̂(w̄, q̄) ≤ 14L̃

nm
+

√
σ2

nm

(
28√
3
+ 7

√
6 log

2

δ
+

28
√
2

nm
log

2

δ

)
.

Then, we make use of Lemma 4.2 to bound the optimization error of (w̄, q̄) for problem (21). From Theorem 4.1 and
Lemma 4.2, with probability at least 1− δ, we have

ϵφ(w̄, q̄) ≤ϵφ̂(w̄, q̄) + 2 max
i∈[m]

{
pi
[
Ri(w̄

(i))−R∗
i

]}
≤ϵφ̂(w̄, q̄) + 2 max

i∈[m]

{
pi

2DG
√
ni

(
1 + 4

√
2 ln

m

δ

)}
=ϵφ̂(w̄, q̄) + 4DG

(
1 + 4

√
2 ln

m

δ

)
max
i∈[m]

pi√
ni

.
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Combining with Theorem B.7, with probability at least 1− 2δ, we have

ϵφ(w̄, q̄)

≤14L̃

nm
+

√
σ2

nm

(
28√
3
+ 7

√
6 log

2

δ
+

28
√
2

nm
log

2

δ

)
+ 4DG

(
1 + 4

√
2 ln

m

δ

)
max
i∈[m]

pi√
ni

.
(71)

Next, we bound the excess risk of w̄ on every distribution. To this end, we have

max
i∈[m]

{
pi
[
Ri(w̄)−R∗

i

]}
− min

w∈W
max
q∈∆m

φ(w,q)

= max
q∈∆m

{
m∑
i=1

qipi
[
Ri(w̄)−R∗

i

]}
− min

w∈W
max
q∈∆m

φ(w,q)

≤ max
q∈∆m

{
m∑
i=1

qipi
[
Ri(w̄)−R∗

i

]}
− min

w∈W

{
m∑
i=1

q̄ipi
[
Ri(w)−R∗

i

]}
= max

q∈∆m

φ(w̄,q)− min
w∈W

φ(w, q̄) = ϵφ(w̄, q̄).

Thus, for every distribution Pi, the excess risk can be bounded in the following way:

Ri(w̄)−R∗
i

≤ 1

pi
min
w∈W

max
q∈∆m

φ(w,q) +
1

pi
ϵφ(w̄, q̄)

(71)
≤ 1

pi
min
w∈W

max
q∈∆m

φ(w,q)

+
1

pi

14L̃
nm

+

√
σ2

nm

(
28√
3
+ 7

√
6 log

2

δ
+

28
√
2

nm
log

2

δ

)
+ 4DG

(
1 + 4

√
2 ln

m

δ

)
max
i∈[m]

pi√
ni

 .

which proves (70).

B.6. Proof of Corollary B.6

From (69) and (70) of Zhang et al. (2023), we have

1

pi

L̃

nm
= O

((
1

nm
+

1
√
ni

)√
lnm

)
and

1

pi

√
σ2

nm
= O

((
1

nm
+

1
√
ni

)√
κ+ ln2 m

)
. (72)

Furthermore,

rmax

pi
=

1

pi
max
i∈[m]

pi√
ni

=
1

pi
max
i∈[m]

(
1/
√
nm + 1

1/
√
nm +

√
nm/ni

1
√
ni

)

≤ 1

pi
max
i∈[m]

((
1

√
nm

+ 1

)√
ni

nm

1
√
ni

)
=

1

pi

(
1

√
nm

+ 1

)
1

√
nm

=
1/
√
nm +

√
nm/ni

1/
√
nm + 1

(
1

√
nm

+ 1

)
1

√
nm

=
1

nm
+

1
√
ni

.

(73)

Combining (70), (72), and (73), we have

Ri(w̄)−R∗
i =

1

pi
min
w∈W

max
q∈∆m

φ(w,q) +O

((
1

nm
+

1
√
ni

)√
κ+ ln2 m

)
.
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B.7. Proof of Corollary 4.7

Under the assumption of this corollary, we have

0 ≤p∗φ = min
w∈W

max
q∈∆m

φ(w,q)

≤ max
q∈∆m

φ(w∗,q) = max
q∈∆m

{
m∑
i=1

qipi
[
Ri(w∗)−R∗

i

]}
= 0.

B.8. Proof of Theorem B.7

Our analysis is similar to that of Theorem 4 of Zhang et al. (2023). For brevity, we will only highlight the differences.

We first introduce the monotone operator F (w,q) associated with (24):

F (w,q) =[∇wφ̂(w,q);−∇qφ̂(w,q)]

=

[
m∑
i=1

qipi∇Ri(w);−
[
p1[R1(w)−R1(w̄

(1))], . . . , pm
[
Rm(w)−Rm(w̄(m))

]]⊤]
.

It is slightly different from the monotone operator defined by Zhang et al. (2023, (65)), attributed to the inclusion of
R1(w̄

(1)), . . . , Rm(w̄(m)). However, these additional terms do not alter the continuity of F (w,q). In particular, Lemma 3
of Zhang et al. (2023) remains applicable, leading to the following lemma.

Lemma B.8. For the monotone operator F (w,q), we have

∥F (w,q)− F (w′,q′)∥∗ ≤ L̃
∥∥(w −w′,q− q′)

∥∥
where L̃ is defined in (69).

Then, we investigate the stochastic oracle in Algorithm 2:

g(w,q) = [gw(w,q);−gq(w,q)]

where

gw(w,q) =

m∑
i=1

qipi

nm

ni

ni/nm∑
j=1

∇ℓ(w; z(i,j))

 ,

gq(w,q) =

p1nm

n1

n1/nm∑
j=1

[
ℓ(w; z(1,j))− ℓ(w̄(1); z(1,j))

]
, . . . , pm

[
ℓ(w; z(m))− ℓ(w̄(m); z(m))

]⊤

and z(i,j) is the j-th sample drawn from distribution Pi. Again, g(w,q) is different from that of Zhang et al. (2023, (67)),
because of the additional terms. However, it is easy to verify that the variance only changes by a constant factor, and Lemma
4 of Zhang et al. (2023) still holds with a different constant.

Lemma B.9. For the stochastic oracle g(w,q), we have

E

[
exp

(
∥F (w,q)− g(w,q)∥2∗

σ2

)]
≤ 2

where σ2 is defined in (69).

The final difference lies in the number of iterations for SMPA, which is nm/4 in our Algorithm 2, and nm/2 in the work of
Zhang et al. (2023).

From Corollary 1 of Juditsky et al. (2011), by setting

η = min

(
1

√
3L̃

, 2

√
2

7σ2nm

)
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Figure 4. Individual risk versus the number of iterations on the Adult dataset.

we have

Pr

ϵφ(w̄, q̄) ≥ 14L̃

nm
+ 28

√
σ2

3nm
+ 7Λ

√
2σ2

nm

 ≤ exp

(
−Λ2

3

)
+ exp

(
−Λnm

4

)
for all Λ > 0. Choosing Λ such that exp(−Λ2/3) ≤ δ/2 and exp(−Λnm/4) ≤ δ/2, we have with probability at least 1− δ

ϵφ(w̄, q̄) ≤ 14L̃

nm
+ 28

√
σ2

3nm
+ 7

(√
3 log

2

δ
+

4

nm
log

2

δ

)√
2σ2

nm
.

C. Full Experiments
In this section, we conduct empirical studies to evaluate our proposed algorithms.

C.1. Datasets and Experimental Settings

Following previous work (Namkoong & Duchi, 2016; Soma et al., 2022), we employ both synthetic and real-world datasets.

For the synthetic dataset, we construct m = 6 distributions, each of which is associated with a true classifier w∗
i ∈ R1000.

The selection process is as follows: we initially choose an arbitrary w∗
0 on the unit sphere. Subsequently, we randomly

pick m points on a sphere with radius d, centered at w∗
0 . These points are then projected onto the unit sphere to form the

set {w∗
i }i∈[m]. We set d = 0.2 to keep the classifiers {w∗

i }i∈[m] close, thereby emphasizing the optimization challenges
due to the varying noise across the distributions. For each distribution i ∈ [m], a sample (x, y) is generated where x
follows a standard normal distribution N (0, I), and y = sign(x⊤w∗

i ) or its inverse, each with respective probabilities
pi = 1− 0.05× i and 1− pi.

We additionally utilize the Adult dataset (Becker & Kohavi, 1996), which encompasses a variety of attributes, including age,
gender, race, and educational background, for a total of 48842 individuals. The samples are classified into 6 distinct groups,
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Figure 5. Individual risk versus the running time on the synthetic dataset.

based on a combination of race {black, white, others} and gender {female, male}. By employing one-hot encoding for 12
attributes, 103-dimensional feature vectors are generated to classify whether the income surpasses $5000.

We designate the logistic loss as our loss function, and utilize various methods to train a linear model. In assessing their
performance, it’s essential to determine the model’s risk for each distribution. To approximate the risk value, we will draw a
specific number of samples and use the average risk calculated from these samples as an estimation. The minimal risk R∗

i

for each distribution is estimated in a similar way: initially, a model is trained to minimize the empirical risk using a large
set of samples; subsequently, the risk is calculated based on a freshly drawn sample set.

C.2. Experiments on Balanced Data

In our experiments with the synthetic dataset, samples will be dynamically generated in real time, adhering to the generation
protocol in Section C.1. Regarding the Adult dataset, we designate the distribution Pi to represent the uniform distribution
over the data within the i-th group, and thus the sample generalization process simplifies to randomly selecting samples
from each group with replacement.

Besides the results in Section 5, we also compare the running time of MERO and GDRO. Note that the stochastic algorithm
for GDRO is more efficient than our Algorithm 1, as it does not require estimating the minimal risk for each distribution. To
examine the difference, we plot the risk relative to the running time in Fig. 5 and Fig. 6. We observe that the risk decreases
more rapidly for GDRO compared to MERO, primarily because GDRO processes a greater number of samples in the same
amount of time. Nevertheless, the ultimate performance of GDRO and MERO is consistent with previous findings presented
in Fig. 3 and Fig. 4, with GDRO generally performing better on harder distributions. Additionally, an upward trend in the
final curve of GDRO is noted. This is because Algorithm 1 of Zhang et al. (2023), like MS-MERO, is not anytime. As a
result, its fixed step size becomes suboptimal as time progresses.
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Figure 6. Individual risk versus the running time on the Adult dataset.
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Figure 7. The MWER versus the running time on the imbalanced
synthetic dataset.

Table 2. Running times of W-MERO and EW-MERO on the imbal-
anced synthetic dataset.

Algorithm MWER Value Times (s)
W-MERO 0.12 20.3

EW-MERO 0.12 78.5

C.3. Experiments on Imbalanced Data

For experiments involving imbalanced data, we fix the number of samples per distribution, with the quantity varying
among distributions. Mirroring the setup of Zhang et al. (2023), we designate the sample size for the synthetic dataset as
ni = 5000× (7− i), generating each sample as before. Pertaining to the Adult dataset, we randomly extract 364 samples
from each group, reserving them for subsequent risk assessment. The remaining number of samples across the 6 groups is
{26656, 11519, 1780, 1720, 999, 364}. Furthermore, each sample within the groups is processed only once to simulate the
imbalanced scenario. In this way, Pi corresponds to the (unknown) underlying distribution from which the samples in the
i-th group are drawn.
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Figure 8. Individual risk versus the number of iterations on the imbalanced synthetic dataset.

Note that the optimization procedure of Agarwal & Zhang (2022) is also applicable for minimizing the empirical counterpart
of weighted MERO. Therefore, we initially conduct a comparison between our two-stage approach in Section 4.2, and their
method. For ease of reference, we label our algorithm and theirs as W-MERO and EW-MERO, respectively, to emphasize
that the former is designed for weighted MERO, while the latter focuses on the empirical variant. In Fig. 7, we illustrate how
the maximal weighted excess risk (MWER), denoted as maxi∈[m]{pi[Ri(w)−R∗

i ]}, changes with respect to the running
time. Acknowledging that both algorithms have an initialization phase, so their curves do not start from zero. Consistent
with previous experiments in Fig. 1, our W-MERO converges more rapidly than EW-MERO.2 For a detailed view, the
precise times required for W-MERO and EW-MERO to reach a certain MWER value are listed in Table 2.

Next, we examine the effectiveness of our W-MERO in handling imbalanced scenarios. To this end, we compare it with
the original MERO—running Algorithm 1 for nm iterations. Recall that W-MERO reduces the excess risk of the i-th
distribution at an O((logm)/

√
ni) rate, and MERO attains an Õ(

√
(logm)/nm) rate for all distributions. Additionally, we

include the result of weighted GDRO (W-GDRO) (Zhang et al., 2023, Algorithm 4) to reiterate the distinction between
risk minimization and excess risk minimization. Experimental results on the synthetic dataset are provided in Fig. 8, and
consistent with our theoretical expectations. Specifically, the final risk of W-MERO closely approaches that of MERO on
distribution P6, which holds the smallest sample size, and W-MERO surpasses MERO on all other distributions. Moreover,
the larger the number of samples is, the more pronounced the advantage of W-MERO becomes. In line with the experiments
in Fig. 3, W-GDRO performs well on the last two distributions, characterized by their significantly high noise levels. We
present the outcomes on the Adult dataset in Fig. 9, and observe analogous patterns.

2In this experiment, the imbalanced Adult dataset is omitted. This is because the limited number of samples prevents an accurate
estimation of the value of R∗

i .
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Figure 9. Individual risk versus the number of iterations on the imbalanced Adult dataset.

D. Supporting Lemmas
D.1. Proof of Lemma 4.2

From the definition of φ(·, ·) and φ̂(·, ·), for any q, we have

argmin
w∈W

φ(w,q) = argmin
w∈W

φ̂(w,q) (74)

and for any (w,q)

∣∣φ(w,q)− φ̂(w,q)
∣∣ = ∣∣∣∣∣

m∑
i=1

qipi
[
Ri(w̄

(i))−R∗
i

]∣∣∣∣∣ ≤ max
i∈[m]

{
pi
[
Ri(w̄

(i))−R∗
i

]}
. (75)

Let ŵ = argminw∈W φ(w, q̄) and q̂ = argmaxq∈∆m
φ(w̄,q). Then, we have

ϵφ(w̄, q̄) = max
q∈∆m

φ(w̄,q)− min
w∈W

φ(w, q̄) = φ(w̄, q̂)− φ(ŵ, q̄)

(75)
≤ φ̂(w̄, q̂)− φ̂(ŵ, q̄) + 2 max

i∈[m]

{
pi
[
Ri(w̄

(i))−R∗
i

]}
≤ max

q∈∆m

φ̂(w̄,q)− φ̂(ŵ, q̄) + 2 max
i∈[m]

{
pi
[
Ri(w̄

(i))−R∗
i

]}
(74)
= max

q∈∆m

φ̂(w̄,q)− min
w∈W

φ̂(w, q̄) + 2 max
i∈[m]

{
pi
[
Ri(w̄

(i))−R∗
i

]}
=ϵφ̂(w̄, q̄) + 2 max

i∈[m]

{
pi
[
Ri(w̄

(i))−R∗
i

]}
.
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D.2. Proof of Lemma B.3

We create a virtual sequence by performs SMD with Et−1 [g(wt,qt)]− g(wt,qt) as the gradient:

yt+1 = argmin
x∈W×∆m

{
ηj
〈
Et−1[g(wt,qt)]− g(wt,qt),x− yt

〉
+B(x,yt)

}
(76)

where y1 = x1. Then, we further decompose the error term as

max
x∈W×∆m

t∑
j=1

ηj
〈
Ej−1 [g(wj ,qj)]− g(wj ,qj),xj − x

〉
≤ max

x∈W×∆m

t∑
j=1

ηj
〈
Ej−1 [g(wj ,qj)]− g(wj ,qj),yj − x

〉
︸ ︷︷ ︸

:=A

+

t∑
j=1

ηj
〈
Ej−1 [g(wj ,qj)]− g(wj ,qj),xj − yj

〉
︸ ︷︷ ︸

:=B

.

(77)

To bound term A, we repeat the analysis of (60), and have

ηj
〈
Ej−1 [g(wj ,qj)]− g(wj ,qj),yj − x

〉
≤B(x,yj)−B(x,yj+1) +

η2j
2

∥∥Ej−1 [g(wj ,qj)]− g(wj ,qj)
∥∥2
∗

≤B(x,yj)−B(x,yj+1) + 2M2η2j

(78)

where the last step makes use of the following inequality∥∥Ej−1 [g(wj ,qj)]− g(wj ,qj)
∥∥
∗ ≤

∥∥Ej−1 [g(wj ,qj)]
∥∥
∗ + ∥g(wj ,qj)∥∗

≤Ej−1

[
∥g(wj ,qj)∥∗

]
+ ∥g(wj ,qj)∥∗

(56)
≤ 2M.

(79)

Summing (78) over j = 1, . . . , t, we have

A =

t∑
j=1

ηj
〈
Ej−1 [g(wj ,qj)]− g(wj ,qj),yj − x

〉
≤B(x,y1) + 2M2

t∑
j=1

η2j
(51)
≤ 1 + 2M2

t∑
j=1

η2j .

(80)

To bound term B in (77), we define

δj = ηj
〈
Ej−1 [g(wj ,qj)]− g(wj ,qj),xj − yj

〉
.

As xj and yj are independent of the random samples z(1)j , . . . , z
(m)
j used to construct g(wj ,qj) in (55), δ1, . . . , δt forms a

martingale difference sequence. Consequently, we have

E[B] = E

 t∑
j=1

δj

 = 0. (81)

Taking expectations over both sides of (77), we have

E

 max
x∈W×∆m

t∑
j=1

ηj
〈
Ej−1 [g(wj ,qj)]− g(wj ,qj),xj − x

〉
≤E

[
max

x∈W×∆m

A

]
+ E[B]

(80),(81)
≤ 1 + 2M2

t∑
j=1

η2j
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which proves (62).

To establish a high probability bound, we follow the analysis in Section B.1.2 and utilize Lemma B.1 to bound B. To this
end, we first show that |δj | is bounded:

|δj | =
∣∣∣ηj〈Ej−1 [g(wj ,qj)]− g(wj ,qj),xj − yj

〉∣∣∣
≤ηj

∥∥Ej−1 [g(wj ,qj)]− g(wj ,qj)
∥∥
∗∥xj − yj∥

(79)
≤ 2Mηj

(
∥xj − x1∥+ ∥x1 − yj∥

)
≤2Mηj

(√
2B(xj ,x1) +

√
2B(yj ,x1)

)
(51)
≤ 4

√
2Mηj .

From Lemma B.1 and the union bound, with probability at least 1− δ, we have

B =

t∑
j=1

δj ≤ 8M

√√√√ t∑
j=1

η2j

(
ln

2t2

δ

)
, ∀t ∈ Z+. (82)

We obtain (63) by substituting (80) and (82) into (77).

D.3. Proof of Lemma B.4

First, we have 〈
F (wj ,qj)− Et−1 [g(wj ,qj)] ,xj − x

〉
(57)
=
〈[

0,−
[
R1(w̄

(1)
j )−R∗

1, . . . , Rm(w̄
(m)
j )−R∗

m

]⊤]
,xj − x

〉
=−

〈[
R1(w̄

(1)
j )−R∗

1, . . . , Rm(w̄
(m)
j )−R∗

m

]
,qj − q

〉
≤
∥∥∥[R1(w̄

(1)
j )−R∗

1, . . . , Rm(w̄
(m)
j )−R∗

m

]∥∥∥
∞
∥qj − q∥1

≤2
∥∥∥[R1(w̄

(1)
j )−R∗

1, . . . , Rm(w̄
(m)
j )−R∗

m

]∥∥∥
∞

which implies

max
x∈W×∆m

t∑
j=1

ηj
〈
F (wj ,qj)− Ej−1 [g(wj ,qj)] ,xj − x

〉
≤

t∑
j=1

2ηj

∥∥∥[R1(w̄
(1)
j )−R∗

1, . . . , Rm(w̄
(m)
j )−R∗

m

]∥∥∥
∞
.

(83)

From (19) in Theorem 3.6, we know that with probability at least 1− δ,∥∥∥[R1(w̄
(1)
j )−R∗

1, . . . , Rm(w̄
(m)
j )−R∗

m

]∥∥∥
∞

≤
DG

[
3 + ln j + 16

√
(1 + ln j) ln(2mj2/δ)

]
4(
√
j + 1− 1)

(84)

for all j ∈ Z+. We obtain (65) by substituting (84) into (83).

The proof of the expectation bound is more involved. Taking expectations over (83), we have

E

 max
x∈W×∆m

t∑
j=1

ηj
〈
F (wj ,qj)− Ej−1 [g(wj ,qj)] ,xj − x

〉
≤

t∑
j=1

2ηjE
[∥∥∥[R1(w̄

(1)
j )−R∗

1, . . . , Rm(w̄
(m)
j )−R∗

m

]∥∥∥
∞

]
.

(85)
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Then, one may attempt to make use of the expectation bound (33) in Theorem 3.6. However, due to the presence of the
infinity norm in (85), it is difficult to obtain a tight upper bound. As an alternative, we will exploit the fact that Ri(w̄

(i)
t )−R∗

i

is sub-Gaussian (Vershynin, 2018), for all i ∈ [m], t ∈ Z+.

Recall the martingale difference sequence δ
(i)
1 , . . . , δ

(i)
t in (37). From (43) and Lemma B.1, we have

Pr

 t∑
j=1

δ
(i)
j > x

 ≤ exp

(
− x2

64D2G2
∑t

j=1(η
(i)
j )2

)
. (86)

From (36), we have

Pr

(Ri(w̄
(i)
t )−Ri(w

(i)
∗ )
) t∑

j=1

η
(i)
j

−

D2 +
G2

2

t∑
j=1

(η
(i)
j )2

 > x


≤Pr

 t∑
j=1

δ
(i)
j > x

 (86)
≤ exp

(
− x2

64D2G2
∑t

j=1(η
(i)
j )2

)

which implies

Pr

Ri(w̄
(i)
t )−Ri(w

(i)
∗ )− 1∑t

j=1 η
(i)
j

D2 +
G2

2

t∑
j=1

(η
(i)
j )2

 > x


≤ exp

−
x2
(∑t

j=1 η
(i)
j

)2
64D2G2

∑t
j=1(η

(i)
j )2

 .

Since η(1)j = · · · = η
(m)
j , we can invoke the following lemma to bound the expectation of maxi∈[m]{Ri(w̄

(i)
t )−Ri(w

(i)
∗ )}.

Lemma D.1. Suppose there are m non-negative random variables Xi such that

Pr [Xi ≥ µ+ t] ≤ exp

(
− t2

σ2

)
for all i ∈ [m]. Then, we have

E

[
max
i∈[m]

Xi

]
≤ µ+ σ

√
2 lnm+

σ
√
2π

2
.

From the above lemma, we have

E

[
max
i∈[m]

{
Ri(w̄

(i)
t )−Ri(w

(i)
∗ )
}]

≤ 1∑t
j=1 η

(i)
j

D2 +
G2

2

t∑
j=1

(η
(i)
j )2

+

(
√
2 lnm+

√
2π

2

)√√√√√64D2G2
∑t

j=1(η
(i)
j )2(∑t

j=1 η
(i)
j

)2
=
2D2 +G2

∑t
j=1(η

(i)
j )2 + 16DG(

√
lnm+

√
π/2)

√
2
∑t

j=1(η
(i)
j )2

2
∑t

j=1 η
(i)
j

=
2DG+DG

∑t
j=1

1
j + 16DG(

√
lnm+

√
π/2)

√
2
∑t

j=1
1
j

2
∑t

j=1
1√
j

(40)
≤

DG
[
3 + ln t+ 16(

√
lnm+

√
π/2)

√
2(1 + ln t)

]
4(
√
t+ 1− 1)

.

(87)

We obtain (64) by substituting (87) into (85) and noticing
√
π/2 ≤ 1.
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D.4. Proof of Lemma D.1

First, we have

Pr

[
max
i∈[m]

Xi ≥ µ+ t

]
≤

m∑
i=1

Pr [Xi ≥ µ+ t] ≤ m exp

(
− t2

σ2

)
.

To simplify the notation, we define X = maxi∈[m] Xi. Since X is non-negative, we have

E [X] ≤
∫ ∞

0

Pr [X ≥ x] dx =

∫ µ+σ
√
2 lnm

0

Pr [X ≥ x] dx+

∫ ∞

µ+σ
√
2 lnm

Pr [X ≥ x] dx

≤µ+ σ
√
2 lnm+

∫ ∞

µ+σ
√
2 lnm

m exp

(
− (x− µ)2

σ2

)
dx

=µ+ σ
√
2 lnm+

∫ ∞

µ+σ
√
2 lnm

m exp

(
− (x− µ)2

2σ2

)
exp

(
− (x− µ)2

2σ2

)
dx.

When x ≥ µ+ σ
√
2 lnm, we have

m exp

(
− (x− µ)2

2σ2

)
≤ 1.

Thus

E [X] ≤µ+ σ
√
2 lnm+

∫ ∞

µ+σ
√
2 lnm

exp

(
− (x− µ)2

2σ2

)
dx

≤µ+ σ
√
2 lnm+

∫ ∞

µ

exp

(
− (x− µ)2

2σ2

)
dx = µ+ σ

√
2 lnm+

σ
√
2π

2
.
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