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ABSTRACT
Previous running time analyses of evolutionary algorithms
(EAs) in noisy environments often studied the one-bit noise
model, which flips a randomly chosen bit of a solution be-
fore evaluation. In this paper, we study a natural extension
of one-bit noise, the bit-wise noise model, which indepen-
dently flips each bit of a solution with some probability. We
analyze the running time of the (1+1)-EA solving OneMax
and LeadingOnes under bit-wise noise for the first time, and
derive the ranges of the noise level for polynomial and super-
polynomial running time bounds. The analysis on Leadin-
gOnes under bit-wise noise can be easily transferred to one-
bit noise, and improves the previously known results.
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1 INTRODUCTION
Evolutionary algorithms (EAs) have been widely applied to
solve real-world optimization tasks, where the exact objec-
tive (i.e., fitness) evaluation of candidate solutions is often
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impossible, while we can obtain only a noisy one [3, 13]. How-
ever, previous theoretical analyses of EAs mainly focused on
noise-free optimization, where the fitness evaluation is exact.

For running time analysis, a leading theoretical aspect [2,
14], only a few pieces of work on noisy evolutionary opti-
mization have been reported. Droste [6] first analyzed the
(1+1)-EA on the OneMax problem in the presence of one-bit
noise and showed the maximal noise probability p = logn/n
allowing a polynomial running time, where n is the problem
size. Gießen and Kötzing [11] recently studied the Leadin-
gOnes problem, and proved that the expected running time
is polynomial if p ≤ 1/(6en2) and exponential if p = 1/2.

For inefficient optimization of the (1+1)-EA under high
noise levels, some implicit mechanisms of EAs were proved
to be robust to noise. In [11], it was shown that the (µ+1)-
EA with a small population of size Θ(logn) can solve One-
Max in polynomial time even if the probability of one-bit
noise reaches 1. The robustness of populations to noise was
also proved in the setting of non-elitist EAs [4, 17]. How-
ever, Friedrich et al. [8] showed the limitation of populations
by proving that the (µ+1)-EA needs super-polynomial time
for solving OneMax under additive Gaussian noiseN (0, σ2)
with σ2 ≥ n3. This difficulty can be overcome by the com-
pact genetic algorithm (cGA) [8] and a simple Ant Colony
Optimization (ACO) algorithm [9], both of which find the
optimal solution in polynomial time with a high probability.

The ability of explicit noise handling strategies was also
theoretically studied. Qian et al. [19] proved that the thresh-
old selection strategy is robust to noise: the expected running
time of the (1+1)-EA using threshold selection on OneMax un-
der one-bit noise is always polynomial regardless of the noise
level. For the (1+1)-EA solving OneMax and LeadingOnes
under one-bit or additive Gaussian noise, the resampling
strategy was shown able to reduce the running time from
exponential to polynomial in high noise levels [18]. Akimoto
et al. [1] also proved that resampling with a large sample
size can make optimization under additive unbiased noise
behave as optimization in a noise-free environment. The
interplay between resampling and implicit noise-handling
mechanisms has been statistically studied in [10].

The studies mentioned above mainly considered the one-
bit noise model, which flips a random bit of a solution before
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Table 1: For the running time of the (1+1)-EA solving OneMax and LeadingOnes under prior noise models, the ranges of
noise parameters for a polynomial upper bound and a super-polynomial lower bound are shown below.

(1+1)-EA bit-wise noise (p, 1
n

) bit-wise noise (1, q) one-bit noise

OneMax O(logn/n), ω(logn/n) O(logn/n2), ω(logn/n2) [11] O(logn/n), ω(logn/n) [6]

LeadingOnes O(logn/n2), ω(logn/n) O(logn/n3), ω(logn/n2) ≤ 1/(6en2),= 1/2 [11]; O(logn/n2), ω(logn/n)

evaluation with probability p. However, the noise model,
which can change several bits of a solution simultaneously,
may be more realistic and needs to be studied, as mentioned
in the first noisy theoretical work [6].

In this paper, we study the bit-wise noise model, which is
characterized by a pair (p, q) of parameters. It happens with
probability p, and independently flips each bit of a solution
with probability q before evaluation. We analyze the running
time of the (1+1)-EA solving OneMax and LeadingOnes under
bit-wise noise with two specific parameter settings (p, 1

n
) and

(1, q). The ranges of p and q for a polynomial upper bound
and a super-polynomial lower bound are derived, as shown
in the middle two columns of Table 1. For the (1+1)-EA on
LeadingOnes, we also transfer the running time bounds from
bit-wise noise (p, 1

n
) to one-bit noise by using the same proof

procedure. As shown in the bottom right of Table 1, our
results improve the previously known ones [11].

The rest of this paper is organized as follows. Section 2
introduces some preliminaries. The running time analysis on
OneMax and LeadingOnes is presented in Sections 3 and 4,
respectively. Section 5 concludes the paper.

2 PRELIMINARIES
In this section, we first introduce the optimization problems,
evolutionary algorithms and noise models studied in this
paper, respectively, and then present the analysis tools that
we use throughout this paper.

2.1 OneMax and LeadingOnes
In this paper, we use two well-known pseudo-Boolean func-
tions OneMax and LeadingOnes. The OneMax problem as
presented in Definition 2.1 aims to maximize the number of
1-bits of a solution. The LeadingOnes problem as presented
in Definition 2.2 aims to maximize the number of consecu-
tive 1-bits counting from the left of a solution. Their optimal
solution is 11 . . . 1 (briefly denoted as 1n). It has been shown
that the expected running time of the (1+1)-EA on OneMax
and LeadingOnes is Θ(n logn) and Θ(n2), respectively [7].

Definition 2.1 (OneMax). The OneMax Problem of size n
is to find an n bits binary string x∗ such that

x∗ = arg maxx∈{0,1}n
(
f(x) =

∑n

i=1
xi
)
.

Definition 2.2 (LeadingOnes). The LeadingOnes Problem
of size n is to find an n bits binary string x∗ such that

x∗ = arg maxx∈{0,1}n
(
f(x) =

∑n

i=1

∏i

j=1
xj
)
.

2.2 Bit-wise Noise
There are mainly two kinds of noise models: prior and poste-
rior [11, 13]. The prior noise comes from the variation on a
solution, while the posterior noise comes from the variation
on the fitness of a solution. Previous theoretical analyses of-
ten focused on a specific prior noise model, one-bit noise. As
presented in Definition 2.3, it flips a random bit of a solution
before evaluation with probability p. However, in many real-
istic applications, noise can change several bits of a solution
simultaneously rather than only one bit. We thus consider
the bit-wise noise model. As presented in Definition 2.4, it
happens with probability p, and independently flips each bit
of a solution with probability q before evaluation.

To the best of our knowledge, only bit-wise noise with
p = 1 and q ∈ [0, 1] has been recently studied. Gießen and
Kötzing [11] proved that for the (1+1)-EA on OneMax, the
expected running time is polynomial if q = O(logn/n2) and
super-polynomial if q = ω(logn/n2). In this paper, we will
study two specific bit-wise noise models: p ∈ [0, 1] ∧ q = 1

n

and p = 1 ∧ q ∈ [0, 1], which are briefly denoted as bit-wise
noise (p, 1

n
) and bit-wise noise (1, q), respectively.

Definition 2.3 (One-bit Noise). Given a parameter p ∈ [0, 1],
let fn(x) and f(x) denote the noisy and true fitness of a bi-
nary solution x ∈ {0, 1}n, respectively, then

fn(x) =

{
f(x) with probability 1− p,
f(x′) with probability p,

where x′ is generated by flipping a uniformly randomly cho-
sen bit of x.

Definition 2.4 (Bit-wise Noise). Given parameters p, q ∈
[0, 1], let fn(x) and f(x) denote the noisy and true fitness of
a binary solution x ∈ {0, 1}n, respectively, then

fn(x) =

{
f(x) with probability 1− p,
f(x′) with probability p,

where x′ is generated by independently flipping each bit of x
with probability q.

2.3 (1+1)-EA
The (1+1)-EA as described in Algorithm 1 is studied in this
paper. For noisy optimization, only a noisy fitness value
fn(x) instead of the exact one f(x) can be accessed, and
thus step 4 of Algorithm 1 changes to be “if fn(x′) ≥ fn(x)”.
Note that the reevaluation strategy is used as in [5, 6, 11].
That is, besides evaluating fn(x′), fn(x) will be reevaluated
in each iteration of the (1+1)-EA. The running time is usually
defined as the number of fitness evaluations needed to find
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an optimal solution w.r.t. the true fitness function f for the
first time [1, 6, 11].

ALGORITHM 1 ((1+1)-EA). Given a function f over {0,1}n
to be maximized, it consists of the following steps:

1. x := uniformly randomly selected from {0, 1}n.
2. Repeat until the termination condition is met
3. x′ :=flip each bit of x independently with prob. 1/n.
4. if f(x′) ≥ f(x)
5. x := x′.

2.4 Analysis Tools
The process of the (1+1)-EA solving OneMax or LeadingOnes
can be directly modeled as a Markov chain {ξt}+∞t=0 . We only
need to take the solution space {0, 1}n as the chain’s state
space (i.e., ξt ∈ X = {0, 1}n), and take the optimal solution
1n as the chain’s optimal state (i.e., X ∗ = {1n}). Given a
Markov chain {ξt}+∞t=0 and ξt̂ = x, we define its first hitting
time (FHT) as τ = min{t | ξt̂+t ∈ X ∗, t ≥ 0}. The math-
ematical expectation of τ , E[[τ | ξt̂ = x]] =

∑+∞
i=0 iP (τ = i),

is called the expected first hitting time (EFHT) starting from
ξt̂ = x. If ξ0 is drawn from a distribution π0, E[[τ | ξ0 ∼ π0]] =∑
x∈X π0(x)E[[τ | ξ0 = x]] is called the EFHT of the Markov

chain over the initial distribution π0. Thus, the expected
running time of the (1+1)-EA starting from ξ0 ∼ π0 is equal
to 1 + 2 · E[[τ | ξ0 ∼ π0]], where the term 1 corresponds to
evaluating the initial solution, and the factor 2 corresponds
to evaluating the offspring solution x′ and reevaluating the
parent solution x in each iteration. Note that we consider
the expected running time of the (1+1)-EA starting from a
uniform initial distribution in this paper.

In the following, we give three drift theorems that will be
used to derive the EFHT of Markov chains in the paper.

LEMMA 2.5 (ADDITIVE DRIFT [12]). Given a Markov chain
{ξt}+∞t=0 and a distance function V (x), if for any t ≥ 0 and any
ξt with V (ξt) > 0, there exists a real number c > 0 such that

E[[V (ξt)− V (ξt+1) | ξt]] ≥ c,

then the EFHT satisfies that E[[τ | ξ0]] ≤ V (ξ0)/c.

LEMMA 2.6 (SIMPLIFIED DRIFT [15, 16]). Let Xt, t ≥ 0,
be real-valued random variables describing a stochastic pro-
cess. Suppose there exists an interval [a, b] ⊆ R, two constants
δ, ε > 0 and, possibly depending on l := b− a, a function r(l)
satisfying 1 ≤ r(l) = o(l/ log(l)) such that for all t ≥ 0 the
following two conditions hold:

1. E[[Xt −Xt+1 | a < Xt < b]] ≤ −ε,

2. P (|Xt+1 −Xt| ≥ j | Xt > a) ≤ r(l)

(1 + δ)j
for j ∈ N0.

Then there is a constant c > 0 such that for T := min{t ≥ 0 :

Xt ≤ a | X0 ≥ b} it holds P (T ≤ 2cl/r(l)) = 2−Ω(l/r(l)).

LEMMA 2.7 (SIMPLIFIED DRIFT WITH SELF-LOOPS [20]).
Let Xt, t ≥ 0, be real-valued random variables describing a
stochastic process. Suppose there exists an interval [a, b] ⊆ R,
two constants δ, ε > 0 and, possibly depending on l := b− a,

a function r(l) satisfying 1 ≤ r(l) = o(l/ log(l)) such that for
all t ≥ 0 the following two conditions hold:

1. ∀a<i<b : E[[Xt−Xt+1|Xt= i]] ≤ −ε · P (Xt+1 6= i|Xt= i),

2. ∀i > a, j ∈ N0 :

P (|Xt+1−Xt| ≥ j | Xt= i)≤ r(l)

(1+δ)j
· P (Xt+1 6= i|Xt= i).

Then there is a constant c > 0 such that for T := min{t ≥ 0 :

Xt ≤ a | X0 ≥ b} it holds P (T ≤ 2cl/r(l)) = 2−Ω(l/r(l)).

3 THE ONEMAX PROBLEM
In this section, we analyze the running time of the (1+1)-
EA on OneMax under bit-wise noise. Note that for bit-wise
noise (1, q), it has been proved that the maximal value of q
allowing a polynomial running time is logn/n2, as shown in
Theorem 3.1.

THEOREM 3.1. [11] For the (1+1)-EA on OneMax under bit-
wise noise (1, q), the expected running time is polynomial if
q = O(logn/n2) and super-polynomial if q = ω(logn/n2).

For bit-wise noise (p, 1
n

), we prove in Theorems 3.4 and 3.5
that the maximum value of p allowing a polynomial running
time is logn/n. Instead of using the original drift theorems,
we apply the upper and lower bounds for the (1+1)-EA on
stochastic OneMax in [11]. Let xk denote any solution with
k number of 1-bits, and fn(xk) denote its noisy objective
value, which is a random variable. Lemma 3.2 intuitively
means that if the probability of recognizing the true better
solution by noisy evaluation is large, the running time can be
polynomially upper bounded. On the contrary, Lemma 3.3
shows that if the probability of making a right comparison is
small, the running time can be exponentially lower bounded.
Both of them are proved by applying standard drift theorems,
and can be used to simplify our analysis.

LEMMA 3.2. [11] Suppose there is a positive constant c ≤
1/15 and some 2 < l ≤ n/2 such that

∀k < n : P (fn(xk) < fn(xk+1)) ≥ 1− l

n
;

∀k < n− l : P (fn(xk) < fn(xk+1)) ≥ 1− cn− k
n

,

then the (1+1)-EA optimizes f in expectation inO(n logn) +

n2O(l) iterations.

LEMMA 3.3. [11] Suppose there is some l ≤ n/4 and a
constant c ≥ 16 such that

∀n− l ≤ k < n : P (fn(xk) < fn(xk+1)) ≤ 1− cn− k
n

,

then the (1+1)-EA optimizes f in 2Ω(l) iterations with a high
probability.

THEOREM 3.4. For the (1+1)-EA on OneMax under bit-wise
noise (p, 1

n
), the expected running time is polynomial if p =

O(logn/n).

PROOF. We prove it by using Lemma 3.2. For any positive
constant b, suppose that p ≤ b logn/n. We set the two param-
eters in Lemma 3.2 as c = min{ 1

15
, b} and l = 2b logn

c
∈ (2, n

2
].
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For any k < n, fn(xk) ≥ fn(xk+1) implies that fn(xk) ≥
k + 1 or fn(xk+1) ≤ k, either of which happens with proba-
bility at most p. By the union bound, we get

P (fn(xk) ≥ fn(xk+1)) ≤ 2p ≤ 2b logn

n
=
lc

n
≤ l

n
.

For any k < n− l, we easily get

P (fn(xk) ≥ fn(xk+1)) ≤ lc

n
< c

n− k
n

.

By Lemma 3.2, we know that the expected running time is
O(n logn) + n2O(2b logn/c), i.e., polynomial. �

THEOREM 3.5. For the (1+1)-EA on OneMax under bit-wise
noise (p, 1

n
), the expected running time is super-polynomial

if p = ω(logn/n) ∩ 1 − ω(logn/n) and exponential if p =
1−O(logn/n).

PROOF. We use Lemma 3.3 to prove it. Let c = 16. The
case p = ω(logn/n)∩1−ω(logn/n) is first analyzed. For any
positive constant b, let l = b logn. For any k ≥ n− l, we get

P (fn(xk) ≥ fn(xk+1)) ≥ P (fn(xk) = k) · P (fn(xk+1) ≤ k).

To make fn(xk) = k, it is sufficient that the noise does not
happen, i.e., P (fn(xk) = k) ≥ 1− p. To make fn(xk+1) ≤ k,
it is sufficient to flip one 1-bit and keep other bits unchanged
by noise, i.e., P (fn(xk+1) ≤ k) ≥ p · k+1

n
(1− 1

n
)n−1. Thus,

P (fn(xk) ≥ fn(xk+1)) ≥ (1− p) · pk + 1

en
= ω(logn/n).

Since cn−k
n
≤ c l

n
= cb logn

n
, the condition of Lemma 3.3

holds. Thus, the expected running time is 2Ω(b logn) (where b
is any constant), i.e., super-polynomial.

For the case p = 1−O(logn/n), let l =
√
n. We use another

lower bound p(1− 1
n

)n forP (fn(xk) = k), since it is sufficient
that no bit flips by noise. Thus, we have

P (fn(xk) ≥ fn(xk+1)) ≥ p
(

1− 1

n

)n
· pk + 1

en
= Ω(1).

Since cn−k
n
≤ c
√
n
n

, the condition of Lemma 3.3 holds. Thus,
the expected running time is 2Ω(

√
n), i.e., exponential. �

4 THE LEADINGONES PROBLEM
In this section, we first analyze the running time of the (1+1)-
EA on LeadingOnes under bit-wise noise (p, 1

n
) and bit-wise

noise (1, q), respectively. Then, we transfer the analysis from
bit-wise noise (p, 1

n
) to one-bit noise; the results are comple-

mentary to the known ones recently derived in [11].

4.1 Bit-wise Noise (p, 1
n)

For bit-wise noise (p, 1
n

), we prove in the following three
theorems that the expected running time is polynomial if
p = O(logn/n2) and super-polynomial if p = ω(logn/n).
Their proofs are accomplished by applying additive drift
analysis, the simplified drift theorem with self-loops and
the simplified drift theorem, respectively.

THEOREM 4.1. For the (1+1)-EA on LeadingOnes under bit-
wise noise (p, 1

n
), the expected running time is polynomial if

p = O(logn/n2).

PROOF. We use Lemma 2.5 to prove it. For any positive
constant b, suppose that p ≤ b logn/n2. Let LO(x) denote
the true number of leading 1-bits of a solution x. We first con-
struct a distance function V (x) as, for any x with LO(x) = i,

V (x) =
(

1 +
c

n

)n
−
(

1 +
c

n

)i
,

where c = 4b logn + 1. It is easy to verify that V (x ∈ X ∗ =
{1n}) = 0 and V (x /∈ X ∗) > 0.

Then, we investigate E[[V (ξt)− V (ξt+1) | ξt = x]] for any
x with LO(x) < n (i.e., x /∈ X ∗). Assume that currently
LO(x) = i, where 0 ≤ i ≤ n− 1. We divide the drift into two
parts: positive E+ and negative E−. That is,

E[[V (ξt)− V (ξt+1) | ξt = x]] = E+ − E−.

For the positive drift, we need to consider that the number
of leading 1-bits is increased. By mutation, we have

P (LO(x′) ≥ i+ 1) =

(
1− 1

n

)i
1

n
, (1)

since it needs to flip the (i + 1)-th bit (which must be 0) of
x and keep the i leading 1-bits unchanged. For any x′ with
LO(x′) ≥ i + 1, fn(x′) < fn(x) implies that fn(x′) ≤ i − 1
or fn(x) ≥ i+ 1. Note that,

P (fn(x′) ≤ i− 1) = p

(
1−

(
1− 1

n

)i)
, (2)

since at least one of the first i leading 1-bits of x′ needs to be
flipped by noise;

P (fn(x) ≥ i+ 1) = p

(
1− 1

n

)i
1

n
, (3)

since it needs to flip the first 0-bit of x and keep the leading
1-bits unchanged by noise. By the union bound, we get

P (fn(x′) ≥ fn(x)) = 1− P (fn(x′) < fn(x))

≥ 1− p

(
1−

(
1− 1

n

)i+1
)
≥ 1− p i+ 1

n
≥ 1

2
,

(4)

where the last inequality is by p = O(logn/n2). Furthermore,
for any x′ with V (x′) ≥ i+ 1,

V (x)−V (x′) ≥
(

1+
c

n

)i+1

−
(

1+
c

n

)i
=
c

n

(
1+

c

n

)i
. (5)

By combining Eqs. (1), (4) and (5), we have

E+ ≥
(

1− 1

n

)i
1

n
· 1

2
· c
n

(
1 +

c

n

)i
≥ c

6n2

(
1 +

c

n

)i
,

where the last inequality is by (1− 1
n

)i ≥ (1− 1
n

)n−1 ≥ 1
e
≥ 1

3
.

For the negative drift, we need to consider that the number
of leading 1-bits is decreased. By mutation, we have

P (LO(x′) ≤ i− 1) = 1−
(

1− 1

n

)i
, (6)

since it needs to flip at least one leading 1-bit of x. For any
x′ with LO(x′) ≤ i− 1 (where i ≥ 1), fn(x′) ≥ fn(x) implies
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that fn(x′) ≥ i or fn(x) ≤ i− 1. Note that,

P (fn(x′) ≥ i) ≤ p
(

1− 1

n

)i−1
1

n
, (7)

since for the first i bits of x′, it needs to flip the 0-bits (whose
number is at least 1) and keep the 1-bits unchanged by noise;

P (fn(x) ≤ i− 1) = p

(
1−

(
1− 1

n

)i)
, (8)

since at least one leading 1-bit of x needs to be flipped by
noise. By the union bound, we get

P (fn(x′) ≥ fn(x)) ≤ p−p
(

1− 2

n

)(
1− 1

n

)i−1

≤ p i+1

n
. (9)

Furthermore, for any x′ with LO(x′) ≤ i− 1,

V (x′)− V (x) ≤
(

1 +
c

n

)i
− 1. (10)

By combining Eqs. (6), (9) and (10), we have

E− ≤

(
1−

(
1− 1

n

)i)
· p i+ 1

n
·
((

1 +
c

n

)i
− 1

)
≤
(

1− 1

e

)
· p ·

(
1 +

c

n

)i
≤ 2p

3

(
1 +

c

n

)i
.

Thus, by subtracting E− from E+, we have

E[[V (ξt)−V (ξt+1) | ξt = x]] ≥
(

1+
c

n

)i( c

6n2
− 2p

3

)
(11)

≥
(

1 +
c

n

)i(4b logn+ 1

6n2
− 2b logn

3n2

)
≥ 1

6n2
,

where the second inequality is by c = 4b logn + 1 and p ≤
b logn/n2. Note that V (x) ≤ (1 + c

n
)n ≤ ec = e4b logn+1 =

en4b. By Lemma 2.5, we get

E[[τ | ξ0]] ≤ 6n2 · en4b = O(n4b+2),

i.e., the expected running time is polynomial. �

THEOREM 4.2. For the (1+1)-EA on LeadingOnes under
bit-wise noise (p, 1

n
), if p = ω(logn/n) ∩ o(1), the expected

running time is super-polynomial.

PROOF. We use Lemma 2.7 to prove it. Let Xt = |x|0 be
the number of 0-bits of the solution x after t iterations of the
(1+1)-EA. Let c be any positive constant. We consider the
interval [0, c logn], i.e., the parameters a = 0 (i.e., the global
optimum) and b = c logn in Lemma 2.7.

Then, we analyze the drift E[[Xt −Xt+1 | Xt = i]] for 1 ≤
i < c logn. As in the proof of Theorem 4.1, we divide the drift
into two parts: positive E+ and negative E−. That is,

E[[Xt −Xt+1 | Xt = i]] = E+ − E−.

For the positive drift, we need to consider that the number
of 0-bits is decreased. For mutation on x (where |x|0 = i),
letX and Y denote the number of flipped 0-bits and 1-bits,
respectively. Then, X ∼ B(i, 1

n
) and Y ∼ B(n− i, 1

n
), where

B(·, ·) is the binomial distribution. LetPmut(x, x′) denote the
probability of generating x′ by mutating x. To estimate an

upper bound on E+, we assume that the offspring solution
x′ with |x′|0 < i is always accepted. Thus, we have

E+ ≤
∑

x′:|x′|0<i

Pmut(x, x
′)(i− |x′|0) =

i∑
k=1

k · P (X−Y = k)

=
∑i

k=1
k ·
∑i

j=k
P (X = j) · P (Y = j − k)

=
∑i

j=1

∑j

k=1
k · P (X = j) · P (Y = j − k)

≤
∑i

j=1
j · P (X = j) =

i

n
.

For the negative drift, we need to consider that the number
of 0-bits is increased. We analyze the n− i cases where only
one 1-bit is flipped (i.e., |x′|0 = i+ 1), which happens with
probability 1

n
(1 − 1

n
)n−1. Assume that LO(x) = k ≤ n − i.

If the j-th (where 1 ≤ j ≤ k) leading 1-bit is flipped, the
offspring solution x′ will be accepted (i.e., fn(x′) ≥ fn(x)) if
fn(x′) ≥ j − 1 and fn(x) ≤ j − 1. Note that,

P (fn(x′)≥j−1)=1−p+p

(
1− 1

n

)j−1

≥1−pj−1

n
≥ 1

2
, (12)

where the equality is since it needs to keep the j − 1 leading
1-bits of x′ unchanged, and the last inequality is by p = o(1);

P (fn(x) ≤ j − 1) = p

(
1−

(
1− 1

n

)j)
(13)

= p

(
1− 1

n

)j ((
1 +

1

n− 1

)j
− 1

)
≥ p

e
· j

n− 1
≥ pj

3n
,

where the equality is since at least one of the first j leading
1-bits of x needs to be flipped by noise. Thus, we get

P (fn(x′) ≥ fn(x)) ≥ pj

6n
. (14)

If one of the n− i− k non-leading 1-bits is flipped, LO(x′) =
LO(x) = k. We can use the same analysis procedure as Eq. (4)
in the proof of Theorem 4.1 to derive that

P (fn(x′) ≥ fn(x)) ≥ 1− pk + 1

n
≥ 1

2
, (15)

where the second inequality is by p = o(1). Combining all
the n− i cases, we get

E−≥ 1

n

(
1− 1

n

)n−1

·

(
k∑
j=1

pj

6n
+
n−i−k

2

)
· (i+1−i) (16)

≥ 1

en

(
pk(k + 1)

12n
+
n− i− k

2

)
≥ pk2

36n2
+
n− i− k

6n
.

By subtracting E− from E+, we get

E[[Xt −Xt+1 | Xt = i]] ≤ i

n
− pk2

36n2
− n− i− k

6n
.

To investigate condition (1) of Lemma 2.7, we also need to
analyze the probability P (Xt+1 6= i | Xt = i). For Xt+1 6= i,
it is necessary that at least one bit of x is flipped and the
offspring x′ is accepted. We consider two cases: (1) at least
one of the k leading 1-bits of x is flipped; (2) the k leading 1-
bits of x are not flipped and at least one of the last n−k bits is
flipped. For case (1), the mutation probability is 1− (1− 1

n
)k
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and the acceptance probability is at most p k+1
n

by Eq. (9). For
case (2), the mutation probability is (1− 1

n
)k(1−(1− 1

n
)n−k) ≤

n−k
n

and the acceptance probability is at most 1. Thus,

P (Xt+1 6= i | Xt = i) ≤ p+
n− k
n

. (17)

When k < n− np, we have

E[[Xt −Xt+1 | Xt = i]] ≤ i

n
− n− i− k

6n
(18)

≤−n−k
12n

− np/2−7c logn

6n
≤−n−k

12n
≤− 1

24

(
p+

n−k
n

)
,

where the second inequality is by n− k > np and i < c logn,
the third inequality is by p = ω(logn/n) and the last is by
n− k > np. When k ≥ n− np, we have

E[[Xt −Xt+1 | Xt = i]] ≤ i

n
− pk2

36n2
(19)

≤ c logn

n
− p

144
≤ − p

288
≤ − 1

576

(
p+

n− k
n

)
,

where the second inequality is by p = o(1) and i < c logn,
the third is by p = ω(logn/n) and the last is by n − k ≤ np.
Combining Eqs. (17), (18) and (19), we get that condition (1)
of Lemma 2.7 holds with ε = 1

576
.

For condition (2) of Lemma 2.7, we need to showP (|Xt+1−
Xt| ≥ j | Xt = i) ≤ r(l)

(1+δ)j
· P (Xt+1 6= i | Xt = i) for i ≥ 1.

For P (Xt+1 6= i | Xt = i), we analyze the n cases where
only one bit is flipped. Using the similar analysis procedure
as E−, except that flipping any bit rather than only 1-bit is
considered here, we easily get

P (Xt+1 6= i | Xt = i) ≥ pk(k + 1)

36n2
+
n− k

6n
. (20)

For |Xt+1 −Xt| ≥ j, it is necessary that at least j bits of x are
flipped and the offspring solution x′ is accepted. We consider
two cases: (1) at least one of the k leading 1-bits is flipped; (2)
the k leading 1-bits are not flipped. For case (1), the mutation
probability is at most k

n

(
n−1
j−1

)
1

nj−1 and the acceptance prob-

ability is at most p k+1
n

by Eq. (9). For case (2), the mutation
probability is at most (1− 1

n
)k
(
n−k
j

)
1
nj and the acceptance

probability is at most 1. Thus, we have

P (|Xt+1 −Xt| ≥ j | Xt = i) (21)

≤ k

n

(
n− 1

j − 1

)
1

nj−1
· pk + 1

n
+

(
1− 1

n

)k(
n− k
j

)
1

nj

≤ pk(k+1)

n2
· 4

2j
+
n−k
n
· 2

2j
≤
(
pk(k+1)

36n2
+
n−k
6n

)
· 144

2j
.

By combining Eq. (20) with Eq. (21), we get that condition (2)
of Lemma 2.7 holds with δ = 1 and r(l) = 144.

Note that l = b− a = c logn. By Lemma 2.7, the expected
running time is 2Ω(c logn), where c is any positive constant.
Thus, the expected running time is super-polynomial. �

THEOREM 4.3. For the (1+1)-EA on LeadingOnes under bit-
wise noise (p, 1

n
), the expected running time is exponential if

p = Ω(1).

PROOF. We use Lemma 2.6 to prove it. Let Xt = i be the
number of 0-bits of the solution x after t iterations of the
(1+1)-EA. We consider the interval i ∈ [0, n1/2]. To analyze
the drift E[[Xt −Xt+1 | Xt = i]] = E+−E−, we use the same
analysis procedure as Theorem 4.2. For the positive drift, we
have E+ ≤ i

n
= o(1). For the negative drift, we re-analyze

Eqs. (14) and (15). From Eqs. (12) and (13), we get that
P (fn(x′) ≥ j − 1) ≥ p(1− j−1

n
) and P (fn(x) ≤ j − 1) ≥ pj

3n
.

Thus, Eq. (14) becomes

P (fn(x′) ≥ fn(x)) ≥ p2j

3n

(
1− j − 1

n

)
. (22)

For Eq. (15), we need to analyze the acceptance probability
forLO(x′) = LO(x) = k. Since it is sufficient to keep the first
(k + 1) bits of x and x′ unchanged in noise, Eq. (15) becomes

P (fn(x′)≥fn(x))≥p2

(
1− 1

n

)2(k+1)

≥ p2

(
1− k+1

n

)2

. (23)

By applying the above two inequalities to Eq. (16), we have

E−≥ p2

en

(
k∑
j=1

j(n−j+1)

3n2
+

(n−i−k)(n−1−k)2

n2

)
=Ω(1),

where the equality is by p = Ω(1). Thus, E+ − E− = −Ω(1).
That is, condition (1) of Lemma 2.6 holds.

Since it is necessary to flip at least j bits of x, we have

P (|Xt+1 −Xt| ≥ j | Xt ≥ 1) ≤

(
n

j

)
1

nj
≤ 1

j!
≤ 2 · 1

2j
,

which implies that condition (2) of Lemma 2.6 holds with
δ = 1 and r(l) = 2. Note that l = n1/2. Thus, by Lemma 2.6,
the expected running time is exponential. �

4.2 Bit-wise Noise (1, q)

For bit-wise noise (1, q), we prove in the following three
theorems that the expected running time is polynomial if
q = O(logn/n3) and super-polynomial if q = ω(logn/n2).
The proof idea is similar to that for bit-wise noise (p, 1

n
). The

main difference led by the change of noise is the probability
of accepting the offspring solution, i.e., P (fn(x′) ≥ fn(x)).

THEOREM 4.4. For the (1+1)-EA on LeadingOnes under bit-
wise noise (1, q), the expected running time is polynomial if
q = O(logn/n3).

PROOF. The proof is very similar to that of Theorem 4.1.
The change of noise only affects the probability of accept-
ing the offspring solution in the analysis. For any positive
constant b, suppose that q ≤ b logn/n3.

For the positive driftE+, we need to re-analyzeP (fn(x′) ≥
fn(x)) (i.e., Eq. (4) in the proof of Theorem 4.1) for the parent
x with LO(x) = i and the offspring x′ with LO(x′) ≥ i + 1.
By bit-wise noise (1, q), Eqs. (2) and (3) change to

P (fn(x′)≤ i−1)=1−(1−q)i; P (fn(x)≥ i+1)=(1−q)iq.

Thus, by the union bound, Eq. (4) becomes

P (fn(x′) ≥ fn(x)) ≥ 1− (1− (1− q)i + (1− q)iq) (24)

= (1− q)i+1 ≥ 1− q(i+ 1) ≥ 1/2,
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where the last inequality is by q = O(logn/n3).
For the negative driftE−, we need to re-analyzeP (fn(x′)≥

fn(x)) (i.e., Eq. (9) in the proof of Theorem 4.1) for the parent
x with LO(x) = i (where i ≥ 1) and the offspring x′ with
LO(x′) ≤ i − 1. By bit-wise noise (1, q), Eqs. (7) and (8)
change to

P (fn(x′)≥ i)≤q(1−q)i−1, P (fn(x)≤ i−1)=1−(1−q)i.

Thus, by the union bound, Eq. (9) becomes

P (fn(x′) ≥ fn(x)) ≤ q(1− q)i−1 + 1− (1− q)i (25)

= 1−(1−q)i−1(1−2q)≤1−(1−(i−1)q)(1−2q)≤(i+1)q,

where the second inequality is by (1 − q)i−1 ≥ 1 − (i − 1)q
and 1− 2q > 0 for q = O(logn/n3).

By applying Eq. (24) and Eq. (25) to E+ and E−, respec-
tively, Eq. (11) changes to

E[[V (ξt)−V (ξt+1) | ξt = x]] ≥
(

1+
c

n

)i( c

6n2
− 2q(i+1)

3

)
≥
(

1 +
c

n

)i(4b logn+ 1

6n2
− 2bn logn

3n3

)
≥ 1

6n2
.

That is, the condition of Lemma 2.5 still holds with 1
6n2 . Thus,

the expected running time is polynomial. �

THEOREM 4.5. For the (1+1)-EA on LeadingOnes under
bit-wise noise (1, q), if q = ω(logn/n2) ∩ o(1/n), the expected
running time is super-polynomial.

PROOF. We use the same analysis process as Theorem 4.2.
The only difference is the probability of accepting the off-
spring solution due to the change of noise. For the positive
drift, we still have E+ ≤ i

n
, since we assume that x′ is always

accepted in the proof of Theorem 4.2.
For the negative drift, we need to re-analyze P (fn(x′)≥

fn(x)) for the parent solution x with LO(x) = k and the
offspring solution x′ with LO(x′) = j − 1 (where 1 ≤ j ≤ k +
1). For j ≤ k, to derive a lower bound on P (fn(x′) ≥ fn(x)),
we consider the j cases where fn(x) = l and fn(x′) ≥ l
for 0 ≤ l ≤ j − 1. Since P (fn(x) = l) = (1 − q)lq and
P (fn(x′) ≥ l) = (1− q)l, Eq. (14) changes to

P (fn(x′)≥fn(x))≥
j−1∑
l=0

(1−q)lq · (1−q)l≥ 1−(1−q)2j

2
(26)

=
1

2
(1−q)2j

((
1 +

q

1−q

)2j

− 1

)
≥ (1−q)2j qj

1−q ≥
qj

2
,

where the last inequality is by (1− q)2j ≥ 1−2qj ≥ 1/2 since
q = o(1/n). For j = k+ 1 (i.e., LO(x′) = LO(x) = k), we can
use the same analysis as Eq. (24) to derive a lower bound 1/2,
since the last inequality of Eq. (24) still holds with p = o(1/n).
Thus, Eq. (15) also holds here, i.e.,

P (fn(x′) ≥ fn(x)) ≥ 1

2
. (27)

By applying Eqs. (26) and (27) to E−, Eq. (16) changes to

E− ≥ qk2

12n
+
n− i− k

6n
.

Thus, we have

E[[Xt−Xt+1 | Xt = i]] = E+ − E− ≤ i

n
− qk2

12n
− n−i−k

6n
.

For the upper bound analysis of P (Xt+1 6= i | Xt = i) in the
proof of Theorem 4.2, we only need to replace the acceptance
probability p k+1

n
in the case ofLO(x′) < LO(x) with (k+1)q

(i.e., Eq. (25)). Thus, Eq. (17) changes to

P (Xt+1 6= i | Xt = i) ≤ (k + 1)q +
n− k
n
≤ nq +

n− k
n

.

To compare E[[Xt −Xt+1 | Xt = i]] with P (Xt+1 6= i | Xt =
i), we consider two cases: k < n − n2q and k ≥ n − n2q.
By using q = ω(logn/n2) and applying the same analysis
procedure as Eqs. (18) and (19), we can derive that condition
(1) of Lemma 2.7 holds with ε = 1

192
.

For the lower bound analysis of P (Xt+1 6= i | Xt = i), by
applying Eqs. (26) and (27), Eq. (20) changes to

P (Xt+1 6= i | Xt = i) ≥ qk(k + 1)

12n
+
n− k

6n
.

For the analysis of |Xt+1 −Xt| ≥ j, by replacing the accep-
tance probability p k+1

n
in the case of LO(x′) < LO(x) with

(k + 1)q, Eq. (21) changes to

P (|Xt+1 −Xt| ≥ j | Xt = i) ≤ qk(k+1)

n
· 4

2j
+
n−k
n
· 2

2j

≤
(
qk(k + 1)

12n
+
n− k

6n

)
· 48

2j
.

That is, condition (2) of Lemma 2.7 holds with δ = 1, r(l) =
48. Thus, the expected running time is super-polynomial. �

THEOREM 4.6. For the (1+1)-EA on LeadingOnes under bit-
wise noise (1, q), the expected running time is exponential if
q = Ω(1/n).

PROOF. We use Lemma 2.6 to prove it. Let Xt = i be the
number of 0-bits of the solution x after t iterations of the
(1+1)-EA. We consider the interval i ∈ [0, n1/2]. To analyze
the drift E[[Xt −Xt+1 | Xt = i]], we use the same analysis
procedure as the proof of Theorem 4.2.

We first consider q = Ω(1/n)∩o(1). We need to analyze the
probability P (fn(x′) ≥ fn(x)), where the offspring solution
x′ is generated by flipping only one 1-bit of x. Let LO(x) = k.
For the case where the j-th (where 1 ≤ j ≤ k) leading 1-bit is
flipped, as the analysis of Eq. (26), we get

P (fn(x′) ≥ fn(x)) ≥ 1− (1− q)2j

2
≥ (1− q)2j qj

1− q .

If (1− q)2j < 1
2

, 1−(1−q)2j
2

≥ 1
4

; otherwise, (1− q)2j qj
1−q ≥

qj
2

.
Thus, we have

P (fn(x′) ≥ fn(x)) ≥ min{1/4, qj/2}.
For the case that flips one non-leading 1-bit (i.e., LO(x′) =
LO(x) = k), to derive a lower bound on P (fn(x′) ≥ fn(x)),
we consider fn(x) = l and fn(x′) ≥ l for 0 ≤ l ≤ k. Thus,

P (fn(x′)≥fn(x))≥
k−1∑
l=0

(1−q)lq ·(1−q)l + (1−q)k+1·(1−q)k

≥ 1−(1−q)2k

2
+ (1−q)2k+1 =

1

2
+ (1−q)2k

(
1

2
−q
)
≥ 1

2
,
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where the last inequality is by q = o(1). By applying the above
two inequalities to Eq. (16), we get

E− ≥ 1

en

(
k∑
j=1

min

{
1

4
,
qj

2

}
+
n− i− k

2

)
.

If k ≥ n
2

,
∑k
j=1 min{ 1

4
, qj

2
} = Ω(n) since q = Ω(1/n). If

k < n
2

, n−i−k
2

= Ω(n) since i ≤
√
n. Thus, E− = Ω(1).

For q = Ω(1), we use the trivial lower bound q for the
probability of accepting the offspring solution x′, since it is
sufficient to flip the first leading 1-bit of x by noise. Then,

E− ≥ 1

en
(kq + (n− i− k)q) =

(n− i)q
en

= Ω(1).

Thus, for q = Ω(1/n), we have

E[[Xt −Xt+1 | Xt = i]] = E+ − E− ≤ i

n
− Ω(1) = −Ω(1).

That is, condition (1) of Lemma 2.6 holds. Its condition (2)
trivially holds with δ = 1 and r(l) = 2. Thus, the expected
running time is exponential. �

4.3 One-bit Noise
For the (1+1)-EA on LeadingOnes under one-bit noise, it has
been known that the running time is polynomial if p ≤ 1

6en2

and exponential if p = 1
2

[11]. We extend this result by prov-
ing in Theorem 4.7 that the running time is polynomial if
p = O(logn/n2) and super-polynomial if p = ω(logn/n).
The proof can be accomplished as same as that of Theo-
rems 4.1, 4.2 and 4.3 for bit-wise noise (p, 1

n
). This is because

although the probabilities P (fn(x′) ≥ fn(x)) of accepting
the offspring solution are different, their bounds used in the
proofs for bit-wise noise (p, 1

n
) still hold for one-bit noise.

THEOREM 4.7. For the (1+1)-EA on LeadingOnes under
one-bit noise, the expected running time is polynomial if p =
O(logn/n2), super-polynomial if p = ω(logn/n) ∩ o(1) and
exponential if p = Ω(1).

PROOF. We re-analyzeP (fn(x′)≥fn(x)) for one-bit noise,
and show that the bounds on P (fn(x′) ≥ fn(x)) used in the
proofs for bit-wise noise (p, 1

n
) still hold for one-bit noise.

For the proof of Theorem 4.1, Eqs. (2) and (3) change to

P (fn(x′) ≤ i− 1) = p
i

n
, P (fn(x) ≥ i+ 1) = p

1

n
,

and thus Eq. (4) still holds; Eqs. (7) and (8) change to

P (fn(x′) ≥ i) ≤ p 1

n
, P (fn(x) ≤ i− 1) = p

i

n
,

and thus Eq. (9) still holds.
For the proof of Theorem 4.2, Eqs. (12) and (13) change to

P (fn(x′) ≥ j−1) = 1− pj−1

n
, P (fn(x) ≤ j−1) = p

j

n
,

and thus Eq. (14) still holds.
For the proof of Theorem 4.3, Eq. (22) still holds by the

above two equalities; Eq. (23) still holds since the probability
of keeping the first (k + 1) bits of a solution unchanged in
one-bit noise is 1− p k+1

n
≥ p(1− k+1

n
). �

5 CONCLUSION
In this paper, we theoretically study the (1+1)-EA solving
OneMax and LeadingOnes under bit-wise noise. We derive
the ranges of noise parameters for the running time being
polynomial and super-polynomial, respectively. The previ-
ously known ranges for the (1+1)-EA solving LeadingOnes
under one-bit noise are also improved. In the future, we shall
improve the currently derived bounds on LeadingOnes, as
they do not cover the whole range of noise parameters.
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