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Abstract. Evolutionary algorithms (EAs) have been widely used to
solve multi-objective optimization problems, and have become the most
popular tool. However, the theoretical foundation of multi-objective EAs
(MOEAs), especially the essential theoretical aspect, i.e., running time
analysis, is still largely underdeveloped. The few existing theoretical
works mainly considered simple MOEAs, while the non-dominated sort-
ing genetic algorithm II (NSGA-II), probably the most influential MOEA,
has not been analyzed except for a very recent work considering a sim-
plified variant without crossover. In this paper, we present a running
time analysis of the standard NSGA-II for solving LOTZ, the commonly
used bi-objective optimization problem. Specifically, we prove that the
expected running time (i.e., number of fitness evaluations) is O(n3) for
LOTZ, which is the same as that of the previously analyzed simple
MOEAs, GSEMO and SEMO, as well as the NSGA-II without crossover.
Next, we introduce a new parent selection strategy, stochastic tourna-
ment selection (i.e., k tournament selection where k is uniformly sam-
pled at random), to replace the binary tournament selection strategy of
NSGA-II, decreasing the upper bound on the required expected running
time to O(n2). Experiments are also conducted, suggesting that the de-
rived running time upper bounds are tight. We also empirically compare
the performance of the NSGA-II using the two selection strategies on
the widely used benchmark problem ZDT1, and the results show that
stochastic tournament selection can help the NSGA-II converge faster.

1 Introduction

Multi-objective optimization, which requires optimizing several objective func-
tions simultaneously, arises in many areas. Since the objectives are usually con-
flicting, there does not exist a single solution that can perform well on all these
objectives. Thus, the goal of multi-objective optimization is to find a set of
Pareto optimal solutions (or the Pareto front, i.e., the set of objective vectors of
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the Pareto optimal solutions), representing different optimal trade-offs between
these objectives. Evolutionary algorithms (EAs) [2] are a kind of randomized
heuristic optimization algorithms, inspired by natural evolution. They maintain
a set of solutions, i.e., a population, and iteratively improve the population by re-
producing new solutions and selecting better ones. Due to the population-based
nature, EAs are very popular for solving multi-objective optimization problems,
and have been widely used in many real-world applications [4].

Compared with practical applications, the theoretical foundation of EAs is
still underdeveloped, which is mainly because the sophisticated behaviors of
EAs make theoretical analysis quite difficult. Though much effort has been de-
voted to the essential theoretical aspect, i.e., running time analysis, leading to
a lot of progress [1,10,28,34] in the past 25 years, most of them focused on
single-objective optimization, while only a few considered the more complicated
scenario of multi-objective optimization. In the following, we briefly review the
results of running time analyses on multi-objective EAs (MOEAs).

The running time analysis of MOEAs started from GSEMO, a simple MOEA
which employs the bit-wise mutation operator to generate an offspring solution
in each iteration and keeps the non-dominated solutions generated-so-far in the
population. For GSEMO solving the bi-objective optimization problems LOTZ
and COCZ, the expected running time has been proved to be O(n3) [16] and
O(n2 log n) [3,30], respectively, where n is the problem size. SEMO is a counter-
part of GSEMO, which employs the local mutation operator, one-bit mutation,
instead of the global bit-wise mutation operator. Laumanns et al. [21] proved
that the expected running time of SEMO solving LOTZ and COCZ are Θ(n3)
and O(n2 log n), respectively. Giel and Lehre [17] considered another bi-objective
problem OneMinMax, and proved that both GSEMO and SEMO can solve it in
O(n2 log n) expected running time. Doerr et al. [9] also proved a lower bound
Ω(n2/p) for GSEMO solving LOTZ, where p < n−7/4 is the mutation rate, i.e.,
the probability of flipping each bit when performing bit-wise mutation.

Later, the analyses of GSEMO were conducted on multi-objective combina-
torial optimization problems. For bi-objective minimum spanning trees (MST),
GSEMO was proved to be able to find a 2-approximation of the Pareto front
in expected pseudo-polynomial time [24]. For multi-objective shortest paths, a
variant of GSEMO can achieve an (1 + ε)-approximation in expected pseudo-
polynomial time [18,26], where ε > 0. Laumanns et al. [20] considered GSEMO
and its variant for solving a special case of the multi-objective knapsack problem,
and proved that the expected running time of the two algorithms for finding all
the Pareto optimal solutions are O(n6) and O(n5), respectively.

There are also studies that analyze GSEMO for solving single-objective con-
strained optimization problems. By optimizing a reformulated bi-objective opti-
mization problem that optimizes the original objective and a constraint-related
objective simultaneously, GSEMO can reduce the expected running time signif-
icantly for achieving a desired approximation ratio. For example, by reformu-
lating the set cover problem into a bi-objective problem, Friedrich et al. [12]
proved that GSEMO and SEMO can solve a class of set cover instances in
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O(mn(log cmax + log n)) expected running time, which is better than the expo-
nential expected running time of (1+1)-EA, i.e., the single-objective counterpart
to GSEMO, where m,n and cmax denote the size of the ground set, the size of
the collection of subsets, and the maximum cost of a subset, respectively. More
evidence has been proved on the problems of minimum cuts [25], minimum cost
coverage [31], MST [27] and submodular optimization [15]. Note that we concern
inherently multi-objective optimization problems in this paper.

Based on GSEMO and SEMO, the effectiveness of some strategies for multi-
objective evolutionary optimization has been analyzed. For example, Laumanns
et al. [21] showed the effectiveness of greedy selection by proving that using this
strategy can reduce the expected running time of SEMO from O(n2 log n) to
Θ(n2) for solving the COCZ problem. Qian et al. [30] showed that crossover can
accelerate filling the Pareto front by comparing the expected running time of
GSEMO with and without crossover for solving the artificial problems COCZ
and weighted LPTNO (a generalization of LOTZ), as well as the combinatorial
problem multi-objective MST. The effectiveness of some other mechanisms, e.g.,
heuristic selection [29], diversity [13], fairness [14,21], and diversity-based parent
selection [6] have also been examined.

Though GSEMO and SEMO share the general structure of MOEAs, they
have been much simplified. To characterize the behavior of practical MOEAs,
some efforts have been devoted to analyzing MOEA/D, which is a popular
MOEA based on decomposition [32]. Li et al. [23] analyzed a simplified vari-
ant of MOEA/D without crossover for solving COCZ and weighted LPTNO,
and proved that the expected running time is Θ(n log n) and Θ(n2), respec-
tively. Huang et al. [19] also considered a simplified MOEA/D, and examined
the effectiveness of different decomposition approaches by comparing the run-
ning time for solving two many-objective problems mLOTZ and mCOCZ, where
m denotes the number of objectives.

Surprisingly, the running time analysis of the non-dominated sorting genetic
algorithm II (NSGA-II) [8], the probably most influential MOEA, has been rarely
touched. The NSGA-II enables to find well-spread Pareto-optimal solutions by
incorporating two substantial features, i.e., non-dominated sorting and crowding
distance, and has become the most popular MOEA for solving multi-objective
optimization problems [7]. To the best of our knowledge, the only attempt is a
very recent work, which, however, considered a simplified version of NSGA-II
without crossover, and proved that the expected running time is O(n2 log n) for
OneMinMax and O(n3) for LOTZ [33].

In this paper, we present a running time analysis for the standard NSGA-II.
We prove that the expected running time of NSGA-II is O(n3) for solving LOTZ.
Note that the running time upper bound is the same as that of GSEMO and
SEMO [16,17,21,30], implying that the NSGA-II does not have an advantage
over simplified MOEAs on LOTZ if the derived upper bound is tight.

Next, we introduce a new parent selection strategy, i.e., stochastic tour-
nament selection, which samples a number k uniformly at random and then
performs k tournament selection. By replacing the original binary tournament
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selection of NSGA-II with stochastic tournament selection, we prove that the
expected running time of NSGA-II can be improved to O(n2) for LOTZ. We
also conduct experiments, suggesting that the derived upper bounds are tight.
Furthermore, we empirically examine the performance of the NSGA-II using the
two selection strategies on the widely used benchmark problem ZDT1 [35]. The
results show that stochastic tournament selection can help the NSGA-II converge
faster, disclosing its potential in practical applications.

2 Preliminaries

In this section, we first introduce multi-objective optimization, and then intro-
duce the procedure of NSGA-II.

2.1 Multi-objective Optimization

Multi-objective optimization requires to simultaneously optimize two or more
objective functions, as shown in Definition 1. We consider maximization here,
while minimization can be defined similarly. The objectives are usually conflict-
ing, and thus there is no canonical complete order in the solution space X . The
comparison between solutions relies on the domination relationship, as presented
in Definition 2. A solution is Pareto optimal if there is no other solution in X
that dominates it. The set of objective vectors of all the Pareto optimal solutions
constitutes the Pareto front. The goal of multi-objective optimization is to find
the Pareto front, that is, to find at least one corresponding solution for each
objective vector in the Pareto front.

Definition 1 (Multi-objective Optimization). Given a feasible solution space
X and objective functions f1, f2, . . . , fm, multi-objective optimization can be for-
mulated as maxx∈X

(
f1(x), f2(x), ..., fm(x)

)
.

Definition 2 (Domination). Let f = (f1, f2, . . . , fm) : X → Rm be the objec-
tive vector. For two solutions x and y ∈ X :
– x weakly dominates y (denoted as x � y) if ∀1 ≤ i ≤ m, fi(x) ≥ fi(y);
– x dominates y (denoted as x � y) if x � y and fi(x) > fi(y) for some i;
– x and y are incomparable if neither x � y nor y � x.

2.2 NSGA-II

The NSGA-II algorithm [8] as presented in Algorithm 1 is a popular MOEA,
which incorporates two substantial features, i.e., non-dominated sorting and
crowding distance. NSGA-II starts from an initial population of N random so-
lutions (line 1). In each generation, it employs binary tournament selection N
times to generate a parent population P ′ (line 4), and then applies one-point
crossover and bit-wise mutation on the N/2 pairs of parent solutions to generate
N offspring solutions (lines 5–9). Note that the two adjacent selected solutions
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Algorithm 1 NSGA-II Algorithm [8]
Input: objective functions f1, f2 . . . , fm, population size N
Output: N solutions from {0, 1}n

1: P ← N solutions uniformly and randomly selected from {0,1}n;
2: while criterion is not met do
3: Q = ∅;
4: apply binary tournament selection N times to generate a parent population P ′

of size N ;
5: for each consecutive pair of the parent solutions x and y in P ′ do
6: apply one-point crossover on x and y to generate two solutions x′ and y′,

with probability 0.9;
7: apply bit-wise mutation on x′ and y′ to generate x′′ and y′′, respectively;
8: add x′′ and y′′ into Q
9: end for
10: partition P ∪Q into non-dominated sets F1, F2, . . .;
11: let P = ∅, i = 1;
12: while |P ∪ Fi| < N do
13: P = P ∪ Fi, i = i+ 1
14: end while
15: assign each solution in Fi with a crowding distance;
16: sort the solutions in Fi by crowding distance in descending order, and add the

first N − |P | solutions into P
17: end while
18: return P

form a pair, and thus the N selected solutions form N/2 pairs. The one-point
crossover operator first selects a crossover point i ∈ {1, 2, . . . , n} uniformly at
random, where n is the problem size, and then exchanges the first i bits of two so-
lutions. The bit-wise mutation operator flips each bit of a solution independently
with probability 1/n. Note that for real-coded solutions (which, however, are not
considered in this paper), the one-point crossover operator and bit-wise mutation
operator can be replaced by other operators, e.g., the simulated binary crossover
(SBX) operator and polynomial mutation operator [8]. The binary tournament
selection presented in Definition 3 picks two solutions randomly from the popu-
lation P with or without replacement, and then selects a better one (ties broken
uniformly). Note that we consider the strategy with replacement in this paper.

Definition 3 (Binary Tournament Selection). The binary tournament se-
lection strategy first picks two solutions from the population P uniformly at ran-
dom, and then selects a better one with ties broken uniformly.

After generating N offspring solutions, the best N solutions in the current pop-
ulation P and the offspring population Q are selected as the population in the
next generation (lines 10–16). In particular, the solutions in the current and off-
spring populations are partitioned into non-dominated sets F1, F2, . . . (line 10),
where F1 contains all the non-dominated solutions in P ∪ Q, and Fi (i ≥ 2)
contains all the non-dominated solutions in (P ∪Q) \ ∪i−1j=1Fj . Note that we use
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the notion rank(x) = i to denote that x belongs to Fi. Then, the solutions in
F1, F2, . . . are added into the next population (lines 12–14), until the population
size exceeds N . For the critical set Fi whose inclusion makes the population
size larger than N , the crowding distance is computed for each of the contained
solutions (line 15). Finally, the solutions in Fi with large crowding distance are
selected to fill the remaining population slots (line 16).

When using binary tournament selection (line 4), the selection criterion is
based on the crowded-comparison, i.e., x is superior to y (denoted as x �c y) if

rank(x) < rank(y) OR rank(x) = rank(y) ∧ dist(x) > dist(y). (1)

Intuitively, the crowding distance of a solution means the distance between its
closest neighbour solutions, and a solution with larger crowding distance is pre-
ferred so that the diversity of the population can be preserved as much as pos-
sible. Note that when computing the crowding distance, we assume that the
relative positions of the solutions with the same objective vector are unchanged
or totally reversed when the solutions are sorted w.r.t. some objective function.
Such requirement can be met by any stable sorting algorithm, e.g., the bub-
ble sort or merge sort, which maintains the relative order of items with equal
keys (i.e., values). What’s more, the built-in sorting functions in MATLAB, e.g.,
sortrows() and sort(), can also satisfy the requirement. Under such assumption,
the population size needed to find the Pareto front can be reduced (a detailed
discussion is provided after Theorem 1).

In line 6 of Algorithm 1, the probability of using crossover has been set to 0.9,
which is the same as the original setting and also commonly used [8]. However,
the theoretical results derived in this paper can be directly generalized to the
scenario where the probability of using crossover belongs to [Ω(1), 1−Ω(1)].

3 Running Time Analysis of NSGA-II

In this section, we analyze the expected running time of the standard NSGA-II
in Algorithm 1 solving the bi-objective pseudo-Boolean problem LOTZ, which
is widely used in MOEAs’ theoretical analyses [9,21,30].

The LOTZ problem presented in Definition 4 aims to maximize the number
of leading 1-bits and the number of trailing 0-bits of a binary bit string. The
Pareto front of LOTZ is F = {(0, n), (1, n−1), . . . , (n, 0)}, and the corresponding
Pareto optimal solutions are 0n, 10n−1, . . . , 1n.

Definition 4 (LOTZ [21]). The LOTZ problem of size n is to find n bits binary
strings which maximize f(x) =

(∑n
i=1

∏i
j=1 xj ,

∑n
i=1

∏n
j=i(1− xj)

)
, where xj

denotes the j-th bit of x ∈ {0, 1}n.

We prove in Theorem 1 that the NSGA-II can find the Pareto front in O(n2)
expected number of generations, i.e., O(n3) expected number of fitness evalua-
tions, because the generated N offspring solutions need to be evaluated in each
iteration. Note that the running time of an EA is usually measured by the num-
ber of fitness evaluations, because evaluating the fitness of a solution is often the
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most time-consuming step in practice. The main proof idea can be summarized
as follows. The NSGA-II first employs the mutation operator to find the two
solutions with the largest number of leading 1-bits and the largest number of
trailing 0-bits, i.e., 1n and 0n, respectively; then employs the crossover operator
to find the whole Pareto front.

Theorem 1. For the NSGA-II solving LOTZ, if using binary tournament se-
lection and a population size N such that 2n+2 ≤ N = O(n), then the expected
number of generations for finding the Pareto front is O(n2).

Note that Zheng et al. [33] proved that for NSGA-II using bit-wise mutation
(without crossover), the expected running time is O(Nn2) if the population size
N is at least 5n+ 5. Thus, the requirement for the population size N is relaxed
from 5n + 5 to 2n + 2. The main reason for the relaxation is that under the
assumption in Section 2.2 (i.e., the order of the solutions with the same objective
vector is unchanged or totally reversed when the solutions are sorted according
to some fj), there exist at most two solutions with i leading 1-bits such that
their ranks are equal to 1 and crowding distances are larger than 0, for each
i ∈ {0, 1, . . . , n}. Meanwhile, for any objective vector in the Pareto front that
has been obtained by the algorithm, there is at least one corresponding solution
in the population such that its rank is equal to 1 and crowding distance is larger
than 0, implying that the solution will occupy one of the 2n+2 slots, and thus be
maintained in the population. Without such assumption, there may exist more
solutions with crowding distance larger than 0 for each objective vector in the
Pareto front, thus requiring a larger population size.

4 NSGA-II Using Stochastic Tournament Selection

In the previous section, we have proved that the expected running time of the
standard NSGA-II is O(n3) for LOTZ, which is the same as that of the previously
analyzed simple MOEAs, GSEMO and SEMO [21,30]. Next, we introduce a
new parent selection strategy, i.e., the stochastic tournament selection, into the
NSGA-II, and show that the expected running time needed to find the whole
Pareto front can be reduced to O(n2).

4.1 Stochastic Tournament Selection

As the crowded-comparison �c in Eq. (1) actually gives a total order of the
solutions in the population P , binary tournament selection can be naturally
extended to k tournament selection [11], as presented in Definition 5, where k is
a parameter such that 1 ≤ k ≤ N . That is, k solutions are first picked from P
uniformly at random, and then the solution with the smallest rank is selected. If
several solutions have the same smallest rank, the one with the largest crowding
distance is selected, with ties broken uniformly.

Definition 5 (k Tournament Selection). The k tournament selection strat-
egy first picks k solutions from the population P uniformly at random, and then
selects the best one with ties broken uniformly.
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Note that a larger k implies a larger selection pressure, i.e., a larger probability
of selecting a good solution, and thus the value of k can be used to control the
selection pressure of EAs [11]. However, this also brings about a new issue, i.e.,
how to set k properly. In order to reduce the risk of setting improper values of k as
well as the overhead of tuning k, we introduce a natural strategy, i.e., stochastic
tournament selection in Definition 6, which first selects a number k randomly,
and then performs the k tournament selection. In this paper, we consider that
the tournament candidates are picked with replacement.

Definition 6 (Stochastic Tournament Selection). The stochastic tourna-
ment selection strategy first selects a number k from {1, 2, . . . , N} uniformly at
random, where N is the size of the population P , and then employs the k tour-
nament selection to select a solution from the population P .

In each generation of NSGA-II, we need to select N parent solutions indepen-
dently, and each selection may involve the comparison of several solutions, which
may lead to a large number of comparisons. To improve the efficiency of stochas-
tic tournament selection, we can first sort the solutions in the population P , and
then perform the parent selection procedure. Specifically, each solution xi (1 ≤
i ≤ N) in P is assigned a number π(i), where π : {1, 2, . . . , N} → {1, 2, . . . , N}
is a bijection such that

∀1 ≤ i, j ≤ N, i 6= j : xi �c xj ⇒ π(i) < π(j). (2)

That is, a solution with a smaller number is better. Note that the number π(·)
is assigned randomly if several solutions have the same rank and crowding dis-
tance. Then, we sample a number k randomly from {1, 2, . . . , N} and pick k
solutions from P at random, where the solution with the lowest π(·) value is
finally selected.

Lemma 1 presents the property of stochastic tournament selection, which will
be used in the following theoretical analysis. It shows that any solution (even
the worst solution) in P can be selected with probability at least 1/N2, and any
solution belonging to the best O(1) solutions in P (with respect to �c) can be
selected with probability at least Ω(1). Note that for binary tournament selec-
tion, the probability of selecting the worst solution (denoted as xw) is 1/N2,
because xw is selected if and only if the two solutions picked for competition
are both xw; the probability of selecting the best solution (denoted as xb) is
1− (1− 1/N)2 = 2/N − 1/N2, because xb is selected if and only if xb is picked
at least once. Thus, compared with binary tournament selection, stochastic tour-
nament selection can increase the probability of selecting the top solutions, and
meanwhile maintain the probability of selecting the bottom solutions. Note that
such probability is similar to the power law distribution in [6].

Lemma 1. If using stochastic tournament selection, any solution in P can be
selected with prob. at least 1/N2. Furthermore, a solution xi ∈ P with π(i)=O(1)
can be selected with prob. Ω(1), where π : {1, 2, . . . , N} → {1, 2, . . . , N} is a
bijection satisfying Eq. (2).



Better Running Time of the NSGA-II 9

4.2 Running Time Analysis

We prove that the expected number of generations of the NSGA-II using stochas-
tic tournament selection is O(n) (implying O(n2) expected running time) for
solving LOTZ, in Theorem 2. The proof idea of Theorem 2 is similar to that
of Theorem 1. That is, the NSGA-II first employs the mutation operator to
find the solutions that maximize each objective function, and then employs the
crossover operator to quickly find the remaining objective vectors in the Pareto
front. However, the utilization of stochastic tournament selection can make the
NSGA-II select prominent solutions, i.e., solutions maximizing each objective
function, with larger probability, making the crossover operator easier fill in the
remaining Pareto front and thus reducing the total running time.

Theorem 2. For the NSGA-II solving LOTZ, if using stochastic tournament
selection and a population size N such that 2n + 2 ≤ N = O(n), then the
expected number of generations for finding the Pareto front is O(n).

5 Experiments

In the previous sections, we have proved that when binary tournament selec-
tion is used in the NSGA-II, the expected number of generations is O(n2) for
LOTZ; when stochastic tournament selection is used, the expected number of
generations can be improved to O(n). But as the lower bounds on the running
time have not been derived, the comparison may be not strict. Thus, we conduct
experiments to examine the tightness of these upper bounds. We also conduct
experiments on the widely used benchmark problem ZDT1 [35], to examine the
performance of the stochastic tournament selection in more realistic scenarios.

5.1 LOTZ Problem

For the LOTZ problem, we examine the performance of NSGA-II when the prob-
lem size n changes from 10 to 100, with a step of 10. On each problem size n,
we run the NSGA-II 1000 times independently, and record the number of gener-
ations until the Pareto front is found. Then, the average number of generations
and the standard deviation of the 1000 runs are reported in Figure 1(a). To show
the relationship between the average number of generations and the problem size
n clearly, we also plot the estimated ratio, i.e., the average number of generations
divided by the problem size n, in Figure 1(b).

From the left subfigures of Figure 1(a) and 1(b), we can observe that the
average number of generations is approximately Θ(n2), suggesting that the upper
bound O(n2) derived in Theorem 1 is tight. By the right subfigures of Figure 1(a)
and 1(b), the average number of generations is clearly a linear function of n,
which suggests that the upper bound O(n) derived in Theorem 2 is also tight.
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Fig. 1. Average #generations and the estimated ratio of the NSGA-II using binary
tournament selection or stochastic tournament selection for solving the LOTZ problem.
Left subfigure: the NSGA-II using binary tournament selection; right subfigure: the
NSGA-II using stochastic tournament selection.

5.2 ZDT1 Problem

The ZDT1 problem presented in Definition 7 is a widely used benchmark to
test the practical performance of MOEAs [35]. It has 30 continuous decision
variables with each variable taking value from [0, 1]. As suggested in [8], we use
30 bits (i.e., a binary string of length 30) to code each decision variable. The
Pareto front of ZDT1 is F = {(f1, 1 −

√
f1) | f1 ∈ [0, 1]}. Note that ZDT1 is a

minimization problem, and thus we need to change the domination relationship
in Definition 2 from “fi(x) ≥ (or>)fi(y)” to “fi(x) ≤ (or<)fi(y)” accordingly.

Definition 7 (ZDT1 [35]). The ZDT1 problem is to find a 30-dimensional
decision vector x = (x1, x2, . . . , x30) which minimizes f(x) =

(
x1, g(x)

(
1 −√

x1/g(x)
))
, where ∀1 ≤ i ≤ 30 : xi ∈ [0, 1], and g(x) = 1 + 9 ·

∑30
i=2 xi/29.

Different from the LOTZ problem, the Pareto front of the ZDT1 problem
is an uncountable set. Thus, instead of examining the running time for finding
the whole Pareto front, we run NSGA-II for a fixed number of generations,
i.e., 300, and examine the quality of the obtained population. To measure the
quality of a set of solutions, we use the inverted generational distance (IGD)
indicator, which has been widely used in multi-objective optimization [5,22]. As
presented in Definition 8, IGD(R,A) intuitively means the average distance of
the reference points in R to the objective vectors in A, where the reference points
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Fig. 2. Average IGD value of the NSGA-II using binary or stochastic tournament
selection for solving the ZDT1 problem. Left subfigure: average IGD value of the NSGA-
II vs. #generations; right subfigure: average IGD value of the NSGA-II using stochastic
tournament selection divided by that of the NSGA-II using binary tournament selection
vs. #generations.

are usually sampled from the Pareto front in advance, and the set A consists of
objective vectors of the solutions in the population. It is straightforward to see
that a smaller IGD value implies a better approximation of the population to
the Pareto front, in terms of both convergence and diversity.

Definition 8 (IGD [5]). Given a set R = {r1, r2, . . . , rl} of reference points
and a set A of objective vectors, the IGD value of the set A with respect to R
is defined as IGD(R,A) = 1

l

∑l
i=1 mina∈A d2(r

i,a), where d2(ri,a) denotes the
Euclidean distance between ri and a.

In our experiments, we sample 200 points uniformly from the Pareto front as
the reference set R, and set the population size N to 100. We run the NSGA-II
1000 times independently, and report the average IGD value of the 1000 runs
every 10 generations. From Figure 2(a), we can observe that (i) initially, the two
selection strategies achieve similar performance; (ii) in the intermediate stage,
the NSGA-II using stochastic tournament selection converges to the Pareto front
faster than the NSGA-II using binary tournament selection; (iii) finally, the two
selection strategies both achieve IGD value very close to 0, implying a good ap-
proximation ability of the two strategies. We also plot the ratio of the average
IGD value obtained by the NSGA-II using stochastic tournament selection and
binary tournament selection in Figure 2(b). We can observe that the ratio is
always at most 1, and decreases rapidly in the initial optimization procedure,
implying that stochastic tournament selection is always better, and can help the
NSGA-II converge faster. As time goes by, the advantage of stochastic tourna-
ment selection diminishes, because the NSGA-II using the two strategies have
both found objective vectors which approximate the Pareto front well.

To better visualize the performance of the NSGA-II using the two selection
strategies, we also plot the objective vectors obtained by the NSGA-II every
50 generations in one of the runs. Figure 3 shows that the objective vectors
obtained by the NSGA-II using stochastic tournament selection are always evenly
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Fig. 3. Objective vectors obtained by the NSGA-II using binary or stochastic tourna-
ment selection for solving the ZDT1 problem.

distributed along the Pareto front, and gradually converge, suggesting the good
spread ability of stochastic tournament selection.

In summary, the two selection strategies can achieve similar performance
when given long enough time, but stochastic tournament selection can help the
NSGA-II converge faster. The reason may be that the second objective value
of the ZDT1 problem can be consecutively decreased by decreasing the value
of x2, x3, . . . , x30, i.e., a currently good solution is helpful in the subsequent
optimization process; and stochastic tournament selection can take advantage of
these good solutions more efficiently.

6 Conclusion

In this paper, we theoretically analyze the running time of the NSGA-II solving
the bi-objective problem LOTZ, and derive the upper bound that is the same
as that of the previously analyzed simple MOEAs, GSEMO and SEMO. Then,
we propose a new parent selection strategy, stochastic tournament selection, to
replace the binary tournament selection strategy of the NSGA-II, and prove
that the NSGA-II using the new strategy can find the Pareto front of LOTZ
with a much smaller running time upper bound. Experimental results suggest
that the derived upper bounds on LOTZ are tight, and also show the superior
performance of stochastic tournament selection on the widely used benchmark
problem ZDT1. In the future, we will analyze the lower bounds on the running
time to make the comparison strict, and it is also interesting to examine the
effectiveness of stochastic tournament selection on more problems.
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