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Abstract Evolutionary algorithms (EAs) are a sort of nature-inspired metaheuristics, which have wide

applications in various practical optimization problems. In these problems, objective evaluations are usually

inaccurate, because noise is almost inevitable in real world, and it is a crucial issue to weaken the negative

effect caused by noise. Sampling is a popular strategy, which evaluates the objective a couple of times, and

employs the mean of these evaluation results as an estimate of the objective value. In this work, we introduce

a novel sampling method, median sampling, into EAs, and illustrate its properties and usefulness theoretically

by solving OneMax, the problem of maximizing the number of 1s in a bit string. Instead of the mean, median

sampling employs the median of the evaluation results as an estimate. Through rigorous theoretical analysis

on OneMax under the commonly used onebit noise, we show that median sampling reduces the expected

runtime exponentially. Next, through two special noise models, we show that when the 2-quantile of the

noisy fitness increases with the true fitness, median sampling can be better than mean sampling; otherwise,

it may fail and mean sampling can be better. The results may guide us to employ median sampling properly

in practical applications.
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1 Introduction

As a kind of general-purpose optimization algorithms, evolutionary algorithms (EAs) [1] have wide ap-
plications in practical optimization problems [2, 3]. During the optimization procedure, the obtained
objective (i.e., fitness) value is usually inaccurate because of noise [4]. For example, in machine learning,
the estimated performance of a prediction model usually deviates from the true performance because the
model is evaluated on a limited amount of data; in aerodynamic design, the computational fluid dynamics
(CFDs) simulation is needed to evaluate the performance of a given structure, which is usually compu-
tationally expensive and approximated, leading to noisy fitness. The existence of noise may mislead the
search direction and deteriorate the efficiency of EAs. Therefore, it is important to handle noise in fitness
evaluation during evolutionary optimization.

The sampling strategy independently evaluates the fitness m times, where m is the sample size, and
then the mean of these samples is used to estimate the exact fitness. Sampling is very popular to tackle
noise, because it has a m-fold reduction in the variance of the noisy evaluation. Meanwhile, it also
has a m-fold increase in the computation time, thus some variants are proposed, including adaptive
sampling [5,6] and sequential sampling [7,8], which decide the value of m dynamically in each generation.
However, there has been a great lack of the theoretical understanding for sampling.

Runtime analysis, an important theoretical aspect for EAs, has achieved a lot of progresses [9–14]
recently. However, they mainly consider exact environments, and the results on noisy evolutionary
optimization is rare. Noise increases the randomness in the optimization procedure, making the analysis
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more difficult. As a representative evolutionary algorithm, (1+1)-EA maintains one solution in the
population, and generates a new solution in each iteration by mutating the parent solution. It was first
studied on two frequently-used pseudo-Boolean problems, OneMax (OM) and LeadingOnes (LO). The
goal of OM is maximizing the number of 1s in a solution, while the goal of LO is maximizing the number
of continuous 1s from the first bit in a solution. Runtime analysis for the two problems under various
noise models [15–20] showed that only if the noise level is low, (1+1)-EA can quickly find the optimum.
For instance, onebit noise is a frequently-used noise model in theoretical analysis. With probability p,
it changes a uniformly selected bit in a solution before evaluation, leading to a random fitness value.
For OM of size n under onebit noise, the expected runtime (ERT) of (1+1)-EA is superpolynomial if
p = ω(log n/n). There are also some studies concerning the effectiveness of various strategies to tackle
noise, e.g., threshold selection [19,21,22], populations [16,18,20,23,24] and sampling [25–27]. For instance,
if µ = Θ(log n), the ERT of (µ+ 1)-EA optimizing OM under onebit noise is polynomial for any p ∈ [0, 1]
(note that p denotes the noise probability). Several works also show the robustness of the compact genetic
algorithm [28] and a simple ant colony optimization algorithm [29–32] against noise.

The above mentioned runtime analyses concerning sampling [25–27] revealed that the exponential
runtime under high noise levels can be turned to be polynomial by sampling, and the sample size may be
critical to the effectiveness of sampling. Moreover, Akimoto et al. [33] showed that optimization under
unbiased noise can perform like exact optimization, if the sample size m is large enough. In these works,
the sampling strategy utilizes the mean of the samples as an approximation of the true fitness. Then
a natural question is whether other information of the samples can be used to make EAs more robust
against noise.

Note that mean is actually a measure of central tendency, and thus, it is straightforward to use another
widely known measure median. Compared to mean, median has the advantage of being insensitive
to outliers. For example, “breakdown point” [34, 35] is a commonly used indicator for insensitivity,
which denotes the minimum ratio of variables that need to be contaminated to make the estimator
become infinite (i.e., cause breakdown). The breakdown point of mean is close to 0 because a single bad
observation can make the mean become infinite, whereas the breakdown point of median is 0.5 because
median becomes infinite only if more than 50% of the variables become infinite. In fact, economists
use the sample median frequently when reporting statistics concerning certain economic measures, e.g.,
household income [36].

In this paper, we introduce the sampling strategy using median (called median sampling) into EAs and
theoretically examine its effectiveness. Instead of taking the mean, median sampling takes the median of
the samples as an estimate for the fitness. In order to better distinguish the two sampling strategies, we
call the original sampling strategy mean sampling in the following context. We will consider (1+1)-EA
solving noisy OM, and derive the ERT for reaching the optimum (with respect to the exact objective).
Following is our main results:

• For OM under onebit noise with any p ∈ [0, 1], we prove that the ERT of (1+1)-EA is polynomial
when median sampling with m = 2n3 + 1 is used. Previous analysis [17] has proved that the ERT of
(1+1)-EA is polynomial only if p = O(log n/n). Thus, the result shows the robustness of median sampling
against noise.

• For OM under segmented noise, we show that the ERT of (1+1)-EA using median sampling is
polynomial, while the ERT of (1+1)-EA using mean sampling is exponential. The results show that
median sampling can be a better choice, if the 2-quantile of the noisy fitness increases with the true
fitness. Note that the noisy fitness is a random variable, and the 2-quantile of a random variable X is
the value a satisfying P(X 6 a) > 0.5 and P(X > a) > 0.5 (i.e., the median of X).

• For OM under partial noise, we show that (1+1)-EA employing median sampling fails, while (1+1)-
EA employing mean sampling works. The results suggest that it would be better to choose other strategies
if the 2-quantile of the noisy fitness doesn’t increase with the true fitness.

Note that in parallel with our work, Doerr and Sutton [37] showed that median sampling can handle the
negative impact of noise for an integer valued objective function f , if fn(x) satisfies the ε-concentrate
condition, that is, P(fn(x) − f(x) > 0.5) 6 0.5 − ε and P(fn(x) − f(x) 6 −0.5) 6 0.5 − ε, where fn(x)
denotes the noisy objective value of x. They also considered two specific cases to show the superiority
of median sampling over mean sampling. For OM under additive Cauchy noise with parameter γ > 0.5,
they showed that the runtime of (1+1)-EA is superpolynomial w.h.p. (with high probability) if mean
sampling is used, and the runtime is polynomial w.h.p. if median sampling is used. For LO under bitwise
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noise (p, q) [27] satisfying p = 0.5 − ε ∧ q = Ω(1), they showed a superpolynomial ERT for (1+1)-EA if
mean sampling with m = O(n/ log2 n) is used, and the runtime is polynomial w.h.p. if median sampling
with m = O(log n) is used.

The remaining paper is presented as follows. First, Section 2 presents preliminaries. Then, Section 3
analyzes the effectiveness of median sampling. Next, Sections 4 and 5 compare median sampling with
mean sampling, and Section 6 provides some guidance for employing median sampling in practice. Finally,
Section 7 makes a conclusion.

2 Preliminaries

We first present the OM problem as well as (1+1)-EA which will be considered in this paper. Next, we
present the sampling strategy. The analysis tool is presented in the end.

2.1 OneMax Problem

We consider the frequently-used pseudo-Boolean function OM. Its goal is maximizing the number of
1s (namely, the bits with value 1) in a solution. Note that 11...1 (denoted as 1n) is the unique optimal
solution. The ERT of (1+1)-EA solving OM (without noise) is Θ(n log n) [38]. For notational convenience,
|x|0 will be used to represent the number of 0s (namely the bits with value 0) of x.

Definition 1. The goal of the OM Problem with size n is finding a binary string x∗ to maximize
f(x) =

∑n
i=1 xi.

2.2 (1+1) Evolutionary Algorithm

(1+1)-EA reflects the general structure of EAs, and is widely analyzed to theoretically understand the
behavior of EAs. Different from exact optimization, only a noisy fitness value fn(x) can be obtained in
noisy environments, and the value is a random variable because the noise may disturb the solution or the
objective value randomly. For example, there are two kinds of widely used noise models: posterior and
prior. The posterior noise comes from the variation on the fitness of a solution, e.g., fn(x) = f(x) + δ,
where δ is randomly drawn from some distribution. The prior noise comes from the variation on a
solution, i.e., fn(x) = f(x′), where x′ is generated from x by random perturbations. Therefore, line 5 in
Algorithm 1 changes from the true fitness “f(·)” to the noisy fitness “fn(·)”. In the optimization process,
reevaluation strategy, which evaluates both the offspring and parent solutions in each generation, is used
as in [17,18,29]. In the optimization procedure of an EA, fitness evaluations are the most time-consuming
part, thus we will simply define its runtime as the number of objective evaluations. Termination condition
is the finding of the optimum w.r.t. the exact objective [17,18,33]. In this work, we consider maximizing
f : {0, 1}n → R.

Algorithm 1 (1+1)-EA

1: Let x be a uniformly chosen solution in {0, 1}n.
2: While the stopping criterion doesn’t satisfy
3: z ← copy x.
4: Change each bit of z with a probability of 1/n independently.
5: If fn(z) > fn(x) then x← z.

2.3 Median Sampling

Mean sampling has often been used in noisy evolutionary optimization to tackle noise [5,7]. As described
in Definition 2, it uses the mean of m independent evaluations to approximate the true fitness f(x), where
m is called the sample size. By mean sampling, the output f̄(x) is close to the mathematical expectation
of fn(x). As described in Definition 3, median sampling takes the median of m independent evaluations

to approximate the true fitness f(x). By median sampling, the output f̂(x) is close to the 2-quantile of

fn(x), namely P(fn(x) 6 f̂(x)) ≈ 1/2.
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Definition 2 (Mean Sampling). The objective value of x is evaluated independently m times, then

f̄(x) =

m∑
i=1

fn
i (x)

m

is output, where fn
1 (x), fn

2 (x), . . . , fn
m(x) denote m noisy fitness values.

Definition 3 (Median Sampling). The objective value of x is evaluated independently m times, then

f̂(x) =

{
fn
i(m+1)/2

(x) if m is odd,(
fn
im/2

(x) + fn
im/2+1

(x)
)
/2 if m is even.

is output, where fn
i1

(x) 6 fn
i2

(x) 6 . . . 6 fn
im

(x) denote the ordered noisy fitness values.

When mean (or median) sampling is used, line 5 in Algorithm 1 becomes “f̄(·)” (or “f̂(·)”). For both
of the sampling strategies, m = 1 means that sampling is not used.

2.4 Analysis Tool

It is straightforward to model the evolutionary optimization procedure as a Markov chain {ξt}+∞t=0 , because
the subsequent procedure only depends on the current state. For (1+1)-EA optimizing OM, we can
simply set the chain’s state space as {0, 1}n and the optimal state as 1n (namely ξt ∈ X = {0, 1}n and
X ∗ = {1n}). The first hitting time (FHT) of {ξt}∞t=0 is τ = min{t | ξt ∈ X ∗, t > 0}. If the chain’s initial
state is ξ0 = x, then its expected FHT (EFHT) is denoted as E(τ | ξ0 = x) =

∑∞
t=0 t · P(τ = t | ξ0 = x).

If ξ0 obeys a distribution π0 (denoted as ξ0 ∼ π0), then its EFHT is defined as E(τ | ξ0 ∼ π0) =∑
x∈X π0(x)E(τ | ξ0 = x). For (1+1)-EA, the initial solution is evaluated once, then in each iteration,

the parent solution and the offspring solution both need to be evaluated. Note that the initial solution is
generated randomly from {0, 1}n, thus the ERT of (1+1)-EA is 1 + 2 · E(τ | ξ0 ∼ π0), where π0 denotes
the uniform distribution. For (1+1)-EA using sampling, the ERT becomes m + 2m · E(τ | ξ0 ∼ π0),
because it needs to perform m independent evaluations for each solution.

As presented in Theorem 1, the additive drift theorem aims to derive upper bounds of EFHT. To use
the approach, first we need to design a function V (·) as a measurement for the difference between a state
and the optimal state, and V (·) should satisfy V (x) = 0 for any optimal x and V (x) > 0 otherwise.
Next, we need deriving a lower bound c for E(V (ξt)− V (ξt+1)|ξt), i.e., the progress towards X ∗ in each
generation. Finally, we can upper bound EFHT through dividing V (ξ0) by c. When the context is clear,
V (ξt)/V (ξt+1) will be briefly denoted as Vt/Vt+1.

Theorem 1 (Additive drift [39]). Given {ξt}+∞t=0 and V (·), if ∃c > 0 such that ∀t > 0 and ∀ξt with
Vt > 0,

E(Vt − Vt+1|ξt) > c,

then E(τ |ξ0) 6 V (ξ0)/c.

3 The Robustness of Median Sampling Against Onebit Noise

Onebit noise is commonly used in theoretical analyses [17, 18, 26, 27]. With probability p, it changes a
uniformly selected bit in x before x is evaluated. For OM under such noise model, the ERT of (1+1)-EA
is superpolynomial for p = ω(log n/n) [17]; the ERT is polynomial ∀p ∈ [0, 1] if using mean sampling with
m = 4n3 [27]. Theorem 2 shows that the ERT is polynomial if using median sampling with m = 2n3 + 1,
which illustrates that median sampling can efficiently tackle noise.

Definition 4 (Onebit Noise). Suppose fn(·)/f(·) denotes the noisy/true objective function. Then

P(fn(x) = f(x)) = 1− p, P(fn(x) = f(y)) = p,

where p ∈ [0, 1] and y is derived by changing a uniformly selected bit in x.

To prove Theorem 2, we present Lemma 1 to analyze f̂(x) under onebit noise by taking a sample size

of 2n3 + 1. It intuitively means f̂(x) is close to the 2-quantile of fn(x) w.h.p.

Lemma 1. Under onebit noise, if median sampling with m = 2n3 + 1 is used, then
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(i) if p · n−|x|0n > 1
2 + Ω(1)

n , then P(f̂(x) = n− |x|0 − 1) > 1− e−Ω(n);

(ii) if p · |x|0n >
1
2 + Ω(1)

n , then P(f̂(x) = n− |x|0 + 1) > 1− e−Ω(n);

(iii) if p · |x|0n 6
1
2 −

Ω(1)
n , then P(f̂(x) 6 n − |x|0) > 1 − e−Ω(n); furthermore, if p · n−|x|0n 6 1

2 −
Ω(1)
n

also holds, then P(f̂(x) = n− |x|0) > 1− e−Ω(n).

Proof. First we consider (i). Suppose |x|0 = i and (n− i)p/n > 1/2 + c/n for a constant c. Suppose s
denotes the number of noisy evaluations satisfying fn(x) = n− 1− i in m independent noisy evaluations.
Observe that in each evaluation, P(fn(x) = n − 1 − i) = (n − i)p/n, thus E(s) = m(n − i)p/n >
m(1/2 + c/n) > m/2 + cn2. Then we get

P (s 6 m/2) = P
(
s 6 m/2 + cn2 − cn2

)
6 P

(
s 6 E(s)− cn2

)
6 P

(
|s− E(s)| > cn2

)
6 2e−2c2n4/m = e−Ω(n),

(1)

where the last inequality is derived according to Hoeffding’s inequality. Therefore,

P(s > m/2) > 1− e−Ω(n). (2)

By the definition of median sampling, P(f̂(x) = n− |x|0− 1) > 1− e−Ω(n), thus the claim holds. We can
similarly prove (ii).
Now we consider (iii). Under onebit noise, fn(x) can take at most three values (i.e., n−1−|x|0, n−|x|0,

n + 1 − |x|0), thus f̂(x) can only take one of the three values by the definition of median sampling and
m = 2n3 + 1. Note that P(fn(x) 6 n− |x|0) = 1−P(fn(x) = n+ 1− |x|0) = 1− |x|0p/n > 1/2 + Ω(1)/n,

then similar to case (i), P(f̂(x) 6 n− |x|0) > 1− e−Ω(n).
Then we consider the “furthermore” clause. By P(fn(x) > n − |x|0) = 1 − P(fn(x) = n − 1 − |x|0) =

1 − (n − |x|0)p/n > 1/2 + Ω(1)/n, we also derive P(f̂(x) > n − |x|0) > 1 − e−Ω(n). Thus, P(f̂(x) =

n− |x|0) = 1− P(f̂(x) > n− |x|0)− P(f̂(x) < n− |x|0) > 1− e−Ω(n), i.e., the claim holds.
Combining the above analysis, the Lemma holds. �

Theorem 2. For OM under onebit noise, the ERT of (1+1)-EA employing median sampling with
m = 2n3 + 1 is polynomial.

Proof. The main idea is applying Theorem 1. We consider three cases for p and in each case, we will
design a distance function V (x) and we need to examine E(Vt−Vt+1 | ξt = x) for x 6= 1n. Suppose |x|0 = i,

1 6 i 6 n. For ease of notation, let Pmut(x, z) = P(z is mutated from x), and Pacc(x, z) = P(f̂(z) > f̂(x)).
For ease of analysis, the drift is divided into E1 and E2. That is,

E(Vt − Vt+1 | ξt = x) = E1 − E2, (3)

where
E1 =

∑
|z|0<i

Pmut(x, z) · Pacc(x, z) · (V (x)− V (z)), (4)

E2 =
∑
|z|0>i

Pmut(x, z) · Pacc(x, z) · (V (z)− V (x)). (5)

(1) p 6 n/(2(n+ 1)). V (x) is designed to be |x|0, namely the number of 0s in x.
For E1, we consider mutating only one zero bit in x (namely |z|0 = i− 1), and its probability is i/n · (1−
1/n)n−1 > i/(en). Then z will replace x if f̂(z) = n+1− i and f̂(x) = n− i. Conditions of Lemma 1-(iii)
hold because p 6 n/(2(n+ 1)) = 1/2− 1/(2(n+ 1)), then

Pacc(x, z) > P(f̂(z) = n+ 1− i, f̂(x) = n− i) > 1− e−Ω(n). (6)

Thus,

E1 >
i

en
· (1− e−Ω(n)) >

1

3n
, (7)

where the last inequality is by n is large enough.
For E2, we consider the increase of 0s. For z satisfying |z|0 > i, accepting it implies f̂(z) 6= n − |z|0 or

f̂(x) 6= n− i. Note that conditions of (iii) in Lemma 1 are satisfied, then we have

Pacc(x, z) 6 e−Ω(n). (8)
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Thus,
E2 6 (n− i) · e−Ω(n) 6 elogn · e−Ω(n) = e−Ω(n), (9)

where the last equality is by n is large enough.
Subtract E2 from E1, we get

E (Vt − Vt+1 | ξt = x) > Ω

(
1

n

)
, (10)

where the last equation derives from large enough n. Therefore, by Theorem 1, E(τ |ξ0) 6 n/Ω(1/n) =
O(n2), because V (x) 6 n. Note that each iteration needs 2m = 4n3 + 2 fitness evaluations, we can derive
a polynomial ERT.

(2) n/(2(n + 1)) < p < n/(n + 7). The proof procedure is similar to case (1), but the V (x) is more
complicated because the effect of the noise on a solution x may vary as |x|0 changes. The distance
function is as follows:

V (x) =


i if i > n

2p + 3 or n− n
2p + 3 < i < n

2p − 3 or i < max{1, n− n
2p − 3},

n
2p if n

2p − 3 6 i 6 n
2p + 3,

n− n
2p + 2 if max{1, n− n

2p − 3} 6 i 6 n− n
2p + 3.

We consider five cases for i.
(2a) i > n/(2p) + 3.
For E1, we also consider mutating only one zero bit in x, then Pmut(x, z) > i/(en). Note that |z|0 >
n/(2p) + 2, thus pi/n > p|z|0/n > 1/2 + 2p/n. By (ii) in Lemma 1,

Pacc(x, z) > P(f̂(z) = n+ 2− i, f̂(x) = n+ 1− i) > 1− e−Ω(n). (11)

If |z|0 > n/(2p) + 3, then V (x)− V (z) = 1; else V (x)− V (z) = i− n/(2p) > 3. Thus, V (x)− V (z) > 1
and E1 = Ω(1/n).
Now we consider E2. For z satisfying |z|0 > i, p|z|0/n > pi/n > 1/2 + 3p/n > 1/2 + 3/(2(n+ 1)). Thus,
by (ii) in Lemma 1,

P(f̂(z) = n+ 1− |z|0, f̂(x) = n+ 1− i) > 1− e−Ω(n), (12)

implying Pacc(x, z) 6 e−Ω(n). Accordingly, E2 6 e−Ω(n).
(2b) n/(2p)− 3 6 i 6 n/(2p) + 3. Note that i > n/(2p)− 3 > (n+ 7)/2− 3 = Ω(n).
First we consider the positive drift E1. By n/(2p)− 3− (n−n/(2p) + 3) = n/p−n− 6 > 1, there always
exists some z such that n− n/(2p) + 3 < |z|0 = dn/(2p)− 3e − 1 and such z can be mutated from x by
flipping at most seven 0s. Thus,

Pmut(x, z) >

(
i

7

)(
1− 1

n

)n−7(
1

n

)7

= Ω(1).

Note that p(n − |z|0)/n < 1/2 − 3p/n and p|z|0/n < 1/2 − 3p/n, thus P(f̂(z) = n − i) > 1 − e−Ω(n) by
(iii) in Lemma 1. Therefore, z will replace x with probability 1− e−Ω(n). Moreover,

V (x)− V (z) > n/(2p)− |z|0 > n/(2p)− (n/(2p)− 3) = 3,

we have E1 = Ω(1).
For E2, we consider z with |z|0 > i. If i > n/(2p) + 1, Eq. (12) holds and we have Pacc(x, z) 6 e−Ω(n),
then we get

E2 6 (n− i) · e−Ω(n) 6 elogn · e−Ω(n) = e−Ω(n),

where the last equality is by n is large enough.
If i 6 n/(2p) + 1, then any z satisfying |z|0 > i + 3 will never be accepted under onebit noise. For z
satisfying |z|0 6 i+ 2, we have |z|0 6 n/(2p) + 3, thus V (z) = n/(2p) = V (x). Then E2 = 0. Combining
the two cases for z, we get E2 6 e−Ω(n).
(2c) n − n/(2p) + 3 < i < n/(2p) − 3. First we examine f̂(x). Note that p(n − i)/n < 1/2 − 3p/n and

pi/n < 1/2− 3p/n, thus P(f̂(x) = n− i) > 1− e−Ω(n) by (iii) in Lemma 1.
For E1, we consider mutating only one zero bit in x, namely |z|0 = i − 1 > n − n/(2p) + 2. Note that
p(n− |z|0)/n < 1/2− 2p/n and p|z|0/n < 1/2− 3p/n, we can derive Eq. (6) and E1 = Ω(1/n).
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For E2, we consider two cases for z satisfying |z|0 > i. If |z|0 > i+2, accepting z implies f̂(x) = n− i−1.
Thus, Pacc(x, z) 6 e−Ω(n). If |z|0 = i + 1, then p(n − |z|0)/n < 1/2 − 4p/n and p|z|0/n < 1/2 − 2p/n,

thus P(f̂(z) = n− |z|0) > 1− e−Ω(n). Then Eq. (8) still holds, i.e., Pacc(x, z) 6 e−Ω(n). Combining the
two cases, E2 6 e−Ω(n).
(2d) max{1, n− n/(2p)− 3} 6 i 6 n− n/(2p) + 3.
First we consider the positive drift E1. Note that

n− n

2p
+ 3−max{1, n− n

2p
− 3} 6 n− n

2p
+ 3−

(
n− n

2p
− 3

)
6 6,

x can generate an offspring z with |z|0 < max{1, n − n/(2p) − 3} by flipping at most seven bits, whose
probability is at least Ω(1/n7). Then we examine Pacc(x, z). Because

pi

n
6 p

(
n− n

2p
+ 3

)
1

n
= p

n+ 3

n
− 1

2
6
n+ 3

n+ 7
− 1

2
=

1

2
− 4

n+ 7
,

we derive P(f̂(x) 6 n− i) > 1− e−Ω(n) by (iii) in Lemma 1. Note that f̂(z) > n− i always holds under
onebit noise, we get Pacc(x, z) > 1− e−Ω(n). If 1 6 n− n/(2p)− 3, we get

V (x)− V (z) > n− n

2p
+ 2−

(
n− n

2p
− 3

)
> 5;

else |z|0 = 0 and

V (x)− V (z) > n− n

2p
+ 2 > 1.

Thus, E1 = Ω(1/n7).
For E2, it is only necessary to take z satisfying |z|0 6 i+ 2 into account because z with |z|0 > i+ 3 will
be rejected. If i > n− n/(2p) + 1, we have n− n/(2p) + 1 6 i < |z|0 6 n− n/(2p) + 5. Thus,

p · n− |z|0
n

< p · n− i
n
6

1

2
− p

n

and

p · i
n
< p · |z|0

n
6

(n+ 5)p

n
− 1

2
<
n+ 5

n+ 7
− 1

2
=

1

2
− 2

n+ 7
,

which implies that Eq. (8) holds by (iii) in Lemma 1. If i < n−n/(2p)+1, we have |z|0 < n−n/(2p)+3.
By V (x) = V (z) = n− n/(2p) + 2, we have E2 = 0. Combining the two cases, E2 6 e−Ω(n).
(2e) i < max{1, n − n/(2p) − 3}. If 1 > n − n/(2p) − 3, then i = 0, thus we only need to consider that
1 < n− n/(2p)− 3, namely i < n− n/(2p)− 3.
For E1, we consider mutating only one zero bit in x, i.e., |z|0 = i − 1. Similar to the above analysis,

Pmut(x, z) > 1/(en). Note that p(n− i)/n > 1/2 + 3p/n , we derive P(f̂(x) = n− i− 1) > 1− e−Ω(n) by
(i) in Lemma 1. Thus, Pacc(x, z) > 1− e−Ω(n). Note that V (x)− V (z) = i− |z|0 = 1, thus E1 = Ω(1/n).
For E2, it is only necessary to take z with |z|0 6 i + 2 < n − n/(2p) − 1 into account. Note that

p(n − |z|0)/n > 1/2 + p/n, thus by Lemma 1, P(f̂(z) = n − |z|0 − 1) = 1 − e−Ω(n), implying that
Pacc(x, z) 6 e−Ω(n). Then we have E2 6 e−Ω(n).
Combining the five cases, we have E1 > Ω(1/n7) and E2 6 e−Ω(n). By subtracting E2 from E1, Eq. (10)
becomes

E (Vt − Vt+1 | ξt = x) = Ω

(
1

n7

)
, (13)

and we can also derive a polynomial ERT.
(3) p > n/(n + 7). The effect of the noise changes when the level of the noise changes. Accordingly,

we need to design a new distance function:

V (x) =

{
i if i > n

2p + 3 or i < n− n
2p − 3,

n
2 if n− n

2p − 3 6 i 6 n
2p + 3.

Next we consider three cases for i.
(3a) i > n/(2p)+3. The proof procedure is the same as case (2a), except that “V (x)−V (z) = i−n/(2p) >
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3” changes to V (x)− V (z) = i− n/2 > n/(2p) + 3− n/2 > 3. We derive E1 = Ω(1/n) and E2 6 e−Ω(n).
(3b) n− n/(2p)− 3 6 i 6 n/(2p) + 3. Note that i > n− n/(2p)− 3 = Ω(n).
First we consider the positive drift E1. There exists some z with |z|0 = dn− n/(2p)− 3e − 1 and such z
can be mutated from x by flipping at most n/(2p) + 3− (n− n/(2p)− 3) + 1 = n/p− n+ 6 + 1 6 14 0s.
Thus,

Pmut(x, z) >

(
i

14

)(
1− 1

n

)n−14(
1

n

)14

= Ω(1).

If i 6 n− n/(2p)− 1, then p(n− i)/n > 1/2 + p/n. Thus, Pacc(x, z) > P(f̂(x) = n− i− 1) > 1− e−Ω(n)

by (i) in Lemma 1. If i > n− n/(2p)− 1, it can be verified that z will always be accepted under onebit
noise. Note that

V (x)− V (z) > n/2− |z|0 > n/2− (n− n/(2p)− 3) > 3.

Thus, we have E1 = Ω(1).
For E2, the proof procedure is the same as that of case (2b), except that “V (z) = n/(2p) = V (x)” changes
to V (z) = n/2 = V (x). Thus, we get E2 6 e−Ω(n).
(3c) i < n − n/(2p) − 3. The analysis for E1 and E2 is the same as that of case (2e), then we have
E1 = Ω(1/n) and E2 6 e−Ω(n).
Combining the three cases, we have E1 = Ω(1/n) and E2 6 e−Ω(n). Subtract E2 from E1, we get

E (Vt − Vt+1 | ξt = x) = Ω

(
1

n

)
, (14)

and we can also derive a polynomial ERT. �
By the above proof, we can give an intuitive explanation for the effectiveness of median sampling. For

x and z which satisfy f(x)> f(z), when the 2-quantile of fn(x) is larger than that of fn(z), x will be
estimated better than z by median sampling w.h.p., implying a correct comparison.

4 Cases Where Median Sampling is Better than Mean Sampling

For OM under segmented noise (Definition 5), we show that (1+1)-EA equipped with median sampling
can do better than (1+1)-EA using mean sampling. The segmented noise is from [25], but we make
a little modification to simplify the analysis. As presented in Definition 5, the noisy evaluation of a
solution x can be divided into three segments. The objective evaluation is accurate in the first segment,
but inaccurate in other segments because of noise. We show that for OM under segmented noise, the ERT
of (1+1)-EA using mean sampling is exponential (i.e., Theorem 3); and the ERT of (1+1)-EA employing
median sampling with m = 2n3 + 1 is polynomial (i.e., Theorem 4). The analyses show that median
sampling can be better if the 2-quantile increases with the true fitness.

Definition 5. ∀x ∈ {0, 1}n, its noisy objective fn(·) is defined as follows:
(1) if |x|0 > n

50 , fn(x) = n− |x|0;
(2) if n

100 < |x|0 6
n
50 ,

P(fn(x) = n− |x|0) =
1

2
+

1

n
, P(fn(x) = 3n+ |x|0) =

1

2
− 1

n
;

(3) if |x|0 6 n
100 ,

P(fn(x) = 4n(n− |x|0)) = 1− 1

n
, P(fn(x) = (2n+ |x|0)3) =

1

n
;

where n/100 ∈ N+.

Theorem 3 shows that mean sampling fails under segmented noise and the reason is similar to that
found in [25]. Consider x and z satisfying |z|0 = |x|0 +1. In segment (2), a small sample cannot eliminate
the impact of noise, and P(f̄(x) 6 f̄(z)) is still very large. In segment (3), the expected gap between
fn(z) and fn(x) is positive. Therefore, a larger sample size will enlarge P(f̄(x) 6 f̄(z)) and performs
worse; moreover, no medium sample size makes a good tradeoff. Therefore, mean sampling fails. Its
rigorous proof can be derived directly from Theorem 5.2 in [25], because the change of noise doesn’t
affect the proof.
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Theorem 3. For OM under segmented noise, the ERT of (1+1)-EA employing mean sampling is
exponential.

To prove Theorem 4, Lemma 2 is used. This lemma can upper bound the runtime, when the true
better solution has a large probability to be recognized as better. Note that xj denotes some solution
with j 0s, and F (·) denotes the estimated fitness of a solution.

Lemma 2 ([18]). The EFHT of (1+1)-EA solving noisy OM is polynomial if

∀0 < i 6 j : P(F (xj) > F (xi−1)) 6
log n

15n
. (15)

We also present Lemma 3 to analyze f̂(x) under segmented noise by taking a sample size of 2n3 + 1.

Lemma 3. Under segmented noise, if median sampling with m = 2n3 + 1 is used, then P(f̂(x) =

n− |x|0) = 1− e−Ω(n) if n
100 < |x|0 6

n
50 ; P(f̂(x) = 4n(n− |x|0)) = 1− e−Ω(n) if |x|0 6 n

100 .

Proof. The main procedure is analogous to Lemma 1. If n
100 < |x|0 6 n

50 , suppose there are s noisy
evaluations where fn(x) = n − |x|0 in m independent noisy evaluations. Then Eq. (2) also holds and

P(f̂(x) = n − |x|0) = 1 − e−Ω(n). If |x|0 6 n
100 , we similarly have P(f̂(x) = 4n(n − |x|0)) = 1 − e−Ω(n).

Thus, the lemma holds. �

Theorem 4. For OM under segmented noise, the ERT of (1+1)-EA employing median sampling with
m = 2n3 + 1 is polynomial.

Proof. The main idea is applying Lemma 2. Given 0 < i 6 j, let g = f̂(xj) − f̂(xi−1). To analyze
P(g > 0), we consider four cases for i.
(1) i > n

50 . Note that fn(xj) = f(xj) and fn(xi−1) is larger by considering i − 1 > n
50 and i − 1 6 n

50 ,
respectively. Therefore, we get P(g > 0) = 0.
(2) n

100 + 1 < i 6 n
50 . If j > n

50 , we have P(g > 0) = 0, because fn(xj) = n− j and fn(xi−1) > n− i+ 1 >
n− j. If j 6 n

50 , by Lemma 3, we have

P(g < 0) > P
(
f̂(xj) = n− j, f̂(xi−1) = n− i+ 1

)
= 1− e−Ω(n).

(3) i 6 n
100 + 1. The analysis is analogous to case (2). If j > n

100 , then P(g > 0) = 0. If j 6 n
100 , then

P(g < 0) > P
(
f̂(xj) = 4n(n− j), f̂(xi−1) = 4n(n− i+ 1)

)
= 1− e−Ω(n).

Combining the three cases, we have shown ∀0 < i 6 j : P(g > 0) 6 log n/(15n) for sufficiently large
n. Then, by Lemma 2, the EFHT is polynomial. In each iteration, the algorithm needs 2m = 4n3 + 2
evaluations, thus the ERT is polynomial. �

5 Cases Where Mean Sampling is Better than Median Sampling

For OM under partial noise (Definition 6), we show that (1+1)-EA using median sampling is sometimes
worse than (1+1)-EA using mean sampling. For partial noise presented in Definition 6, a false objective
value is returned when |x|0 < n/2. We prove that for OM under partial noise, the ERT of (1+1)-EA
employing mean sampling with m = n3 is polynomial (i.e., Theorem 5); and the ERT of (1+1)-EA
employing median sampling is exponential (i.e., Theorem 6). The analyses suggest that median sampling
may fail if the 2-quantile of the noisy fitness doesn’t increase with the true objective value, and it is
better to choose other strategies.

Definition 6. ∀x ∈ {0, 1}n, its noisy objective fn(·) is defined as follows:
(1) if |x|0 > n

2 , fn(x) = n− |x|0;
(2) if |x|0 < n

2 ,
P(fn(x) = |x|0/2) = 2/3, P(fn(x) = 2(n− |x|0)) = 1/3.

Theorem 5. For OM under partial noise, the ERT of (1+1)-EA employing mean sampling with m = n3

is polynomial.

Proof. The main idea is applying Lemma 2. Given 0 < i 6 j, let g = f̄(xi−1) − f̄(xj). To analyze
P(g > 0), we classify i into two cases.
(1) i > n

2 + 1. We have f̄(xi−1) = n− i+ 1 and f̄(xj) = n− j, thus P(g 6 0) = 0.
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(2) i < n
2 + 1. First we need to derive µ := E(g). Note that E(f̄(xi−1)) = E(fn(xi−1)) = (i− 1)/2 · 2/3 +

2(n− i+ 1) · 1/3 = (2n− i+ 1)/3. We classify j into two cases. (a) If j > n
2 , then E(f̄(xj)) = n− j, thus

E(g) =
2n

3
− i

3
+

1

3
− n+ j > −n

3
+

1

3
+

2j

3
>

1

3
.

(b) If j < n
2 , then E(f̄(xj)) = (2n− j)/3 and E(g) = (j − i+ 1)/3 > 1/3. Thus, we have µ > 1/3. Then

we have

P(g 6 0) 6 P(|g − µ| > µ) 6 2e−2mµ2/(2n)2 6 2e−m/(18n2) = 2e−n/18,

where the second inequality holds by |fn(xi−1)− fn(xj)| 6 2n and Hoeffding’s inequality.
Similar to the discussion at the end of Theorem 4, the ERT is polynomial. �

From the proof, we can derive an intuitively explanation for the effectiveness of mean sampling. For x
and z satisfying f(x) > f(z) (i.e., z is worse), the expectation of fn(x) is larger than fn(z). Then, there
is a small enough probability to accept z if using mean sampling. Thus, the search direction of (1+1)-EA
will not be misled and the optimal solution can be quickly found.

To prove Theorem 6, we use Lemma 4 [18], which intuitively means that if a true worse solution (i.e.,
a solution with more 0s) is estimated better than a true better solution with some probability, then we
can derive the lower bound for the runtime.

Lemma 4 ([18]). If there exists a real number l 6 n/4 satisfying

∀0 < i 6 l : P(F (xi) < F (xi−1)) 6 1− 16i

n
, (16)

then w.h.p., the FHT of (1+1)-EA solving noisy OM is 2Ω(l).

Theorem 6. For OM under partial noise, the ERT of (1+1)-EA employing median sampling is expo-
nential.

Proof. We use Lemma 4 for the proof. Given 0 < i < n
2 , let g = f̂(xi) − f̂(xi−1). First we show that

P(f̂(xi−1) = (i − 1)/2) > 1/3 for i < n
2 . Suppose s denotes the number of noisy evaluations satisfying

fn(xi−1) = (i− 1)/2 in m independent noisy evaluations. We classify m into 2 cases.
(1) m is even. Let

A =

m∑
j=m/2+1

(
m

j

)(
2

3

)j (
1

3

)m−j
, B =

m/2−1∑
j=0

(
m

j

)(
2

3

)j (
1

3

)m−j
, C =

(
m

m/2

)(
2

3

)m/2(
1

3

)m/2
.

Note that sum of the three items is 1, and A > B,

A >

(
m

m/2 + 1

)(
2

3

)m/2+1(
1

3

)m/2−1

> C.

Thus, P(s > m/2 + 1) = A > 1/3. By definition of median sampling, we derive P(f̂(xi−1) = (i− 1)/2) >
1/3.
(2) m is odd. We have

P(s > (m+ 1)/2) =

m∑
j=(m+1)/2

(
m

j

)(
2

3

)j (
1

3

)m−j
>

(m−1)/2∑
j=0

(
m

j

)(
2

3

)j (
1

3

)m−j
.

Thus, P(s > (m + 1)/2) > 1/2. By the definition of median sampling, we can derive that P(f̂(xi−1) =
(i− 1)/2) > 1/2.

To make g > 0, it is sufficient that f̂(xi−1) = (i − 1)/2 since it always holds that f̂(xi) > i/2. Thus,
P(g > 0) > 1/3 for i < n

2 . Then, the condition of Lemma 4 holds by setting l = n/48. Thus, the EFHT

is 2Ω(l) = 2Ω(n), i.e., exponential. �
From the analysis, we can give an intuitive explanation for the failure of median sampling. Consider x

and z satisfying |x|0 = |z|0 − 1 (that is, z is worse), the 2-quantile of fn(z) is larger than that of fn(x),
and z will be estimated better than x by median sampling w.h.p., implying a wrong comparison.
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Figure 1 2-quantile of the noisy fitness of the sequence

0n, 10n−1, . . . , 1n. Note that i in x-axis corresponds to the

(i+ 1)-th solution 1i0n−i in the sequence.

Figure 2 Estimated ERT for (1+1)-EA with and without me-

dian sampling on OneMax under onebit noise.

6 Application Illustration

In this section, we provide some guidance for employing median sampling in practice. The theoretical
results have revealed that if the 2-quantile of the noisy fitness increases with the true fitness, we can use
median sampling to tackle noise. Inspired by this finding, we may use the following three steps to check
the effectiveness of median sampling in practice.

1. Find a sequence of solutions with increasing true objective values. Note that the solution space
can be very large, and we only need to find some representative solutions. The true fitness of a
solution can be obtained by conducting evaluation accurately, instead of using an approximation.
For example, a prediction model in machine learning can be evaluated using a large amount of data,
and a structure in aerodynamic design can be evaluated by CFDs simulation. Note that the number
of representative solutions is very limited, and the evaluation process can be easily parallelized, thus
the computational cost is usually acceptable.

2. Find an appropriate sample size m, such that the 2-quantile of the noisy fitness increases with the
sequence. If such sample size doesn’t exist or the sample size is too large, it would be better to
choose other strategies.

3. If finding such a sample size, evaluate each solution m times independently and output the median
of the m objective values as the estimated fitness during the optimization procedure.

As an application illustration, we use (1+1)-EA to solve OM under onebit noise. It has been known
that the ERT of (1+1)-EA solving OM under onebit noise is super-polynomial if the noise probability
p = ω(log n/n), thus we set p = log2 n/n. We set the problem size n = 100 and use 0n, 10n−1, . . . , 1n as
the sequence of solutions with increasing true fitness. We select the sample size m from 5, 10, 15, . . ., such
that the 2-quantile of the noisy fitness increases with the sequence. Figure 1 shows that it holds when
m = 15. Thus, using a sample size m = 15 is probably enough to reduce the negative effect of noise.

To show the effectiveness of median sampling, we next compare the ERT of (1+1)-EA with and
without median sampling for the problem size n ∈ {5, 10, ...100}. For each n, we run (1+1)-EA 100 times
independently. In each run, we record the number of fitness evaluations until an optimal solution with
respect to the true fitness function is found for the first time. The total number of evaluations of the 100
runs are averaged as the estimation of the ERT. The results are shown in Figure 2. It can be observed
that though using median sampling needs to evaluate a solution m times for estimating the fitness, the
total number of evaluations required by (1+1)-EA to find the optimum is decreased drastically.

7 Conclusion

In this paper, we introduce median sampling into EAs to handle noise and theoretically analyze the
effectiveness of median sampling. We first consider one classical case, i.e., OM under onebit noise, and



Bian C, et al. Sci China Inf Sci 12

show that median sampling can reduce the ERT of (1+1)-EA from exponential to polynomial. Next,
by two illustrative examples, we show that when the 2-quantile of the noisy fitness increases with the
true objective value, median sampling is better than the commonly used mean sampling; otherwise, it
is worse. The results provide us with some guidance to employ median sampling in practice. In the
future, it would be interesting to analyze the effect of median sampling on real-world noisy optimization
problems.
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