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Abstract

Tabular data is prevalent across diverse domains in machine learning. With the rapid
progress of deep tabular prediction methods, especially pretrained (foundation) models,
there is a growing need to evaluate these methods systematically and to understand their
behavior. We present an extensive study on TALENT, a collection of 300+ datasets spanning
broad ranges of size, feature composition (numerical/categorical mixes), domains, and
output types (binary, multi-class, regression). Our evaluation shows that ensembling
benefits both tree-based and neural approaches. Traditional gradient-boosted trees remain
very strong baselines, yet recent pretrained tabular models now match or surpass them on
many tasks, narrowing—but not eliminating—the historical advantage of tree ensembles.
Despite architectural diversity, top performance concentrates within a small subset of models,
providing practical guidance for method selection. To explain these outcomes, we quantify
dataset heterogeneity by learning from meta-features and early training dynamics to predict
later validation behavior. This dynamics-aware analysis indicates that heterogeneity—such
as the interplay of categorical and numerical attributes—largely determines which family of
methods is favored. Finally, we introduce a two-level design beyond the 300 common-size
datasets: a compact TALENT-tiny core (45 datasets) for rapid, reproducible evaluation,
and a TALENT-extension suite targeting high-dimensional, many-class, and very large-scale
settings for stress testing. In summary, these results offer actionable insights into the
strengths, limitations, and future directions for improving deep tabular learning.

Keywords: machine learning on tabular data, deep tabular learning, tabular benchmarks

1 Introduction

Machine learning systems are now deployed across a wide spectrum of real-world applications.
Although raw data may arrive in varied and complex forms, it is commonly cast into vectorized
representations through feature engineering or learned encoders. For example, image data can
be converted into vectors using feature extractors such as SIFT (Szeliski, 2022), while modern
approaches rely on convolutional layers to learn representations automatically (Goodfellow
et al., 2016). In supervised learning, the objective is to map these vectors to labels—discrete
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for classification or continuous for regression—and to generalize to unseen instances drawn
from the same distribution.

Among data modalities, tabular data plays a central and pervasive role. It represents
perhaps the most general and widely used form of supervised learning, organizing information
as instances (rows) and attributes (columns), and it naturally arises in applications such as
click-through rate prediction (Yan et al., 2014; Juan et al., 2016; Zhang et al., 2016; Guo
et al., 2017), healthcare (Hassan et al., 2020), medical analysis (Schwartz et al., 2007; Subasi,
2012), and e-commerce (Nederstigt et al., 2014). Its broad adoption stems from flexibility:
scales and domains vary widely, attributes may be numerical or categorical (including binary
or ordinal), and features often mix heterogeneous statistical behaviors.

Tabular machine learning methods have evolved significantly over time. Classical ap-
proaches, such as Logistic Regression (LR), Support Vector Machines (SVM), Multi-Layer
Perceptrons (MLP), and decision trees, have served as the foundation for a wide range of
algorithms (Bishop, 2006; Hastie et al., 2009; Mohri et al., 2012). For practical applications,
tree-based ensemble methods like Random Forest (Breiman, 2001), XGBoost (Chen and
Guestrin, 2016), Light GBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2018)
have demonstrated consistent advantages across various tasks. Inspired by the success of
Deep Neural Networks (DNNs) in domains such as vision and natural language process-
ing (Simonyan and Zisserman, 2015; Vaswani et al., 2017; Devlin et al., 2019), recent efforts
have adapted DNNs for tabular classification and regression tasks (Wang et al., 2017; Song
et al., 2019; Badirli et al., 2020; Gorishniy et al., 2021; Borisov et al., 2024). Modern practice
shows that carefully regularized and tuned MLPs can be highly competitive (Kadra et al.,
2021; Holzmdiller et al., 2024), while tokenization /attention designs bring additional modeling
capacity on mixed-type features (Huang et al., 2020; Chen et al., 2024).

A recent and influential development is the emergence of tabular foundation models.
These methods pretrain on large collections of synthetic/real tasks and leverage in-context
learning to enable fast adaptation to new datasets with minimal tuning (Hollmann et al.,
2023; Ma et al., 2024; Hollmann et al., 2025; Qu et al., 2025; Zhang et al., 2025). In many
scenarios, such models close a substantial portion of the historical performance gap between
tree ensembles and deep architectures, while retaining attractive deployment properties (e.g.,
few-shot adaptation, fast inference). Understanding where and why these gains arise—relative
to strong classical ensembles and modern deep baselines—requires evaluations that are both
broad (to avoid benchmark artifacts) and up-to-date (to reflect the latest methods).

Unlike vision and language where widely adopted resources such as ImageNet enable
consistent comparisons (Deng et al., 2009), the tabular domain lacks a unifying framework
for systematic evaluation (Borisov et al., 2024). Existing tabular datasets are scattered
across UCI (Hamidieh, 2018), OpenML (Vanschoren et al., 2014), and Kaggle, and they
vary substantially in size, feature composition, and application domain. To reflect how
tabular learning is used in practice over vectorized representations, evaluations must draw
on datasets spanning diverse domains, feature types, and scales—rather than rely on narrow
collections that risk benchmark artifacts. This need for broad coverage is further underscored
by the “no free lunch” theorem,! which implies that empirical superiority only emerges within
realistic, bounded task families. Consequently, collecting datasets that cover a wide range

1. Formally, the theorem states that if we average performance uniformly over all possible tasks with training
and test sets independent, all algorithms perform equivalently on average (Wolpert, 1996). In practice,
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of real-world settings is essential to mimic practical conditions and to obtain meaningful

insights into method behavior.

Prior studies also show that limited coverage and outdated baselines can yield biased
conclusions (Macia et al., 2013). While average rank remains a common summary across
datasets (Delgado et al., 2014; Grinsztajn et al., 2022; McElfresh et al., 2023), complementary
criteria have been advocated (Delgado et al., 2014; McElfresh et al., 2023; Holzmiiller
et al., 2024; Gorishniy et al., 2025), and recent work highlights challenges such as dataset
aging (Kohli et al., 2024) and reliance on expert feature engineering (Tschalzev et al., 2024). In
this paper, we address these gaps with TALENT, a collection of 300+ datasets covering binary,
multi-class, and regression tasks across domains including education, biology, chemistry, and
finance. TALENT spans a wide range of sizes, feature types, and imbalance ratios to support
fair, up-to-date, and comprehensive comparisons. Based on this resource, we aim to answer
three key questions:

Is there a consistent empirical picture across multiple tabular datasets? We compare
40 representative tabular methods under a unified protocol using multiple criteria (average
ranks, statistical tests, probability of best performance, aggregated errors). As the number
of datasets grows, conclusions stabilize: while no single method dominates universally, top
performance consistently concentrates within a small shortlist of models, and ensembling
benefits both tree-based and deep tabular approaches. In the presence of recent foundation-
style models, our results refine the long-standing “trees vs. DNNs” discussion.

How can we measure dataset heterogeneity, and how does it affect the behavior of deep
tabular methods? We quantify heterogeneity using meta-features and study their relation
to model behavior by predicting later validation dynamics from meta-features and early
training signals. This dynamics-aware view highlights the role of feature-space heterogene-
ity—especially the interplay between categorical and numerical attributes, sparsity, and
entropy variance—in shaping when specific method families succeed or fail.

Can we support lightweight yet informative evaluation? We design a two-level evaluation
strategy: a compact TALENT-tiny (45 datasets, ~15% of the full suite) for rapid prototyping
that balances tree-friendly and DNN-friendly cases under more stricter quality rules, and a
supplemental TALENT-extension that stress-tests methods on high-dimensional, many-class,
and very large-scale datasets. Together, they enable efficient experimentation and targeted
analysis beyond the common-size regime.

The contributions of this paper are summarized as:?

e A large-scale, up-to-date evaluation of 40 tabular methods over 300+ datasets with multiple
complementary criteria, showing that top performance concentrates within a small shortlist
and that ensembling benefits both tree-based and DNN-based methods.

e A dynamics-aware heterogeneity analysis that maps meta-features and early learning
signals to later validation behavior, identifying the most predictive sources of heterogeneity
(e.g., categorical-numerical interplay, sparsity, entropy variance).

e A two-level evaluation design: TALENT-tiny (~15% of TALENT) for fast, balanced com-
parisons under strict quality controls, and TALENT-extension for stress-testing on high-
dimensional, many-class, and large-scale regimes.

however, real-world applications focus on subsets of tasks that exhibit inductive biases and priors, within
which certain algorithms may consistently outperform others.
2. The code and the dataset link is available at https://github.com/LAMDA-Tabular/TALENT.
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Figure 1: Performance—efficiency—size comparison of representative tabular methods on
TALENT for (a) binary classification, (b) multi-class classification, (c) regression, and (d) all
tasks. The performance is measured by the average rank of all methods (lower is better).
The efficiency is measured by the average training time in seconds (lower is better). The
model size is measured based on the average size of all models (the larger the radius, the
larger the model).

2 Related Work
2.1 Learning with Tabular Data

Tabular data is a common format across various applications, such as click-through rate pre-
diction (Richardson et al., 2007; Zhang et al., 2016) and time-series forecasting (Ahmed et al.,
2010; Padhi et al., 2021). The most common supervised settings are standard classification
and regression, where models learn mappings from vectorized instances to discrete or contin-
uous targets and are evaluated on i.i.d. test data (Bishop, 2006; Hastie et al., 2009; Mohri
et al., 2012). Tree-based methods, such as Random Forest (Breiman, 2001), XGBoost (Chen
and Guestrin, 2016), Light GBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2018),
remain highly competitive due to their strong inductive bias for heterogeneous features and
interactions. Because both model families and hyperparameters strongly influence general-
ization (Delgado et al., 2014), automated selection and tuning methods (e.g., AutoML) are
widely used (Feurer et al., 2015; Guyon et al., 2019). Beyond supervised prediction, related
tabular tasks include clustering (Rauf et al., 2024; Svirsky and Lindenbaum, 2024), anomaly
detection (Shenkar and Wolf, 2022; Han et al., 2022; Yin et al., 2024), data generation (Xu
et al., 2019; Hansen et al., 2023; Vero et al., 2024), open-environment learning (Ye et al.,
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2021; Hou et al., 2023a,b; Xu et al., 2023), symbolic regression (Wilstrup and Kasak, 2021;
Cava et al., 2021), and streaming scenarios (Zhou, 2024; Rubachev et al., 2025a).

2.2 Deep Tabular Data Learning

Deep models have been adapted to tabular prediction to learn representations directly from
inputs and capture complex nonlinear interactions (Cheng et al., 2016; Guo et al., 2017; Popov
et al., 2020; Arik and Pfister, 2021; Katzir et al., 2021; Chen et al., 2022). Architectures
commonly explored include residual MLPs and Transformer variants (Gorishniy et al., 2021;
Hollmann et al., 2023; Zhou et al., 2023; Chen et al., 2024), complemented by regularization
and augmentation tailored for tabular data (Ucar et al., 2021; Bahri et al., 2022; Rubachev
et al., 2022). A key observation is that carefully tuned, relatively simple networks can be
highly competitive (Kadra et al., 2021; Holzmiiller et al., 2024).

Advantages of deep tabular models. DNNs excel at modeling higher-order interactions
via nonlinear feature composition (Wang et al., 2017, 2021), support end-to-end multi-task
learning and representation sharing (Somepalli et al., 2022; Wu et al., 2024), and are trained
by gradient-based optimization that flexibly accommodates new objectives with minimal
redesign. They also integrate naturally into multi-modal systems combining tables with
images, audio, or text (Gorishniy et al., 2021; Jiang et al., 2024a).

Design trends. Early neural approaches often mimicked tree workflows or emphasized
feature-correlation modeling (Cheng et al., 2016; Guo et al., 2017; Popov et al., 2020; Chang
et al., 2022). Subsequent work refined MLPs with principled initialization, normalization,
and regularization (Gorishniy et al., 2021; Kadra et al., 2021; Holzmiiller et al., 2024).
Token /attention models adapt Transformer-style processing to heterogeneous columns (Huang
et al., 2020; Chen et al., 2024; Zhou et al., 2023). Advanced ensemble strategies are
also investigated and incorporated in deep tabular prediction (Gorishniy et al., 2025).
Retrieval /neighborhood-based formulations (e.g., context-based prediction or exemplar
conditioning) improve robustness and adaptation (Gorishniy et al., 2024; Ye et al., 2025b).

Pretrained /foundation models. Recent work pretrains neural predictors on large collec-
tions of (often synthesized) tabular tasks and deploys them to novel datasets via in-context
learning without explicit gradient updates (Hollmann et al., 2023; Ma et al., 2024; van
Breugel and van der Schaar, 2024; Hollmann et al., 2025; Qu et al., 2025; Zhang et al.,
2025). Parameter- and data-efficient adaptation strategies further improve performance
across regimes (e.g., lightweight fine-tuning and localized adapters) (Feuer et al., 2024;
Thomas et al., 2024; Liu and Ye, 2025). Several studies have also evaluated and analyzed the
behavior of recent foundation models such as TabPFN v2 (Ye et al., 2025a; Rubachev et al.,
2025b). Overall, these foundation-style approaches substantially improve data efficiency and
increasingly narrow the historical advantage of tree ensembles. Comprehensive surveys situate
the field along a spectrum from task-specific to cross-task to general paradigms (Borisov
et al., 2024; Jiang et al., 2025).

2.3 Tabular Prediction with Semantic Information and LLMs

Recent work has begun to exploit the semantic information encoded in feature names,
metadata, and textual descriptions to improve tabular prediction. One strategy is to
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transform features into embeddings (tokens), thereby mapping tables of varying sizes into
a standardized token space. Pretrained models such as Transformers can then encode
transferable knowledge that benefits downstream tasks (Yan et al., 2024b; Ye et al., 2024a).
Another line of research reformulates tabular inputs as natural language sequences, enabling
large language models (LLMs) to directly learn feature-label relationships. For instance,
LIFT (Dinh et al., 2022) and TabLLM (Hegselmann et al., 2023) serialize tables into textual
prompts for fine-tuning or few-shot prediction. UniPredict (Wang et al., 2023) enhances
this paradigm by enriching prompts with metadata and task-specific instructions, while
IngesTables (Yak et al.; 2023) integrates external reasoning steps for multi-hop tabular
inference. More recent efforts (Gardner et al., 2024; Wen et al., 2024) propose specialized
instruction-tuning techniques that further adapt LLMs for tabular contexts. These approaches
demonstrate the promise of leveraging prior knowledge embedded in LLMs for tabular tasks,
particularly in low-data regimes. However, their effectiveness depends heavily on the richness
of semantic information available (e.g., meaningful feature names or metadata) and can be
limited by scalability issues when serializing high-dimensional tables into text.

2.4 Tabular Methods Evaluations

Comprehensive evaluations are essential for understanding how tabular methods behave
before deployment. Several studies have attempted to benchmark tabular models, and differ
in (i) the breadth and realism of their dataset coverage, (ii) the families of approaches they
include, and (iii) the evaluation protocols they adopt.

Dataset Coverage. Early benchmarks focused on relatively small or narrow collections of
datasets. For example, Delgado et al. (2014) evaluated 179 classifiers across 121 datasets,
concluding that Random Forest variants were often the best performers, though later work
by Wainberg et al. (2016) highlighted flaws in the evaluation protocol. More recent studies
have expanded the coverage modestly: Kadra et al. (2021) studied MLPs on 40 classification
datasets, while Gorishniy et al. (2021) examined MLPs, ResNets, and Transformer-based
models on 11 datasets. Grinsztajn et al. (2022) used 45 datasets to investigate differences
between tree-based and deep methods. A broader effort by McElfresh et al. (2023) included
176 classification datasets and 19 methods, but excluded regression tasks and applied strict
limits on training data size and time, which may have disadvantaged deep models. Overall,
most prior benchmarks underrepresent the diversity of real-world tabular tasks, particularly
in regression, high-dimensional, and large-scale settings.

Target Approaches. Benchmark scope also varies by method family. Classical evaluations
emphasized tree ensembles and linear models; more recent work incorporates modern deep
tabular methods. For instance, McElfresh et al. (2023) compared classical models with
modern deep approaches, finding TabPFN (Hollmann et al., 2023) to be a strong performer.
Other studies have emphasized specific architectures, such as MLP variants (Kadra et al.,
2021), ResNets (Gorishniy et al., 2021), or Transformers (Chen et al., 2024), but often in
limited settings that make it difficult to generalize their findings.

Evaluation Protocols. Benchmarking protocols also vary considerably. Some studies
adopt uniform hyperparameter settings or limited tuning budgets, which can bias results
against deep models that require careful tuning. For example, the strict time and trial
limits in McElfresh et al. (2023) may have led to suboptimal evaluations for complex neural
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architectures. Recent work has also explored alternative evaluation perspectives, including
dataset quality (Erickson et al., 2025), dataset age (Kohli et al., 2024), reliance on expert-
crafted features (Tschalzev et al., 2024), temporal characteristics of tabular data (Rubachev
et al., 2025a; Tschalzev et al., 2024), and cross-validation as well as post-hoc ensemble
strategies to boost performance (Erickson et al., 2025).

Summary. Effective assessment requires datasets that span classification and regression,
cover diverse domains and feature types, and pair fair, well-tuned protocols with appropriate
statistical comparisons. Achieving this breadth entails computational trade-offs. With rapid
advances in deep tabular learning (Holzmiiller et al., 2024; Ye et al., 2025b; Beaglehole
et al., 2025)—especially pretrained foundation models (Hollmann et al., 2025; Qu et al.,
2025)—there is a pressing need for evaluations that balance wide coverage with rigor, enabling
reliable, nuanced conclusions about the strengths and limitations of modern tabular methods.

3 Preliminary

3.1 Learning with Tabular Data

A tabular dataset D = {(x;,y;)}, is formatted as N examples and d features (attributes),
corresponding to N rows and d columns in a table. Each instance &; € R¢ is represented by its
d feature values. The j-th feature of instance x;, denoted z; j, may be numerical (continuous),
z;5™ € R, or categorical (discrete), xfajt Categorical features are typically transformed into
numerical vectors using encoding strategies such as one-hot or target encoding (Hancock and
Khoshgoftaar, 2020).

In a supervised prediction task, each instance is associated with a label y;, where y; €
{1,—1} for binary classification, y; € [C] = {1,...,C} for multi-class classification, and
yi € R for regression. Given D = {(z;, )}, the goal is to learn a model f by empirical
risk minimization:

mfin Z Uyis 9i = f(i)) + Q) , (1)

(zi,y:)€D

where £(-,-) measures the discrepancy between the predicted label g; and the true label y;
(e.g., cross-entropy for classification), and €(f) is a regularization term. The learned model
f is expected to generalize to unseen instances sampled from the same distribution as D.

While this formulation captures the standard setting of supervised tabular learning, we
note that it does not encompass all paradigms. Some methods adopt unsupervised or self-
supervised pretraining objectives on tabular data, aiming to learn transferable representations
before fine-tuning on supervised tasks (Ucar et al., 2021; Rubachev et al., 2022). Others
focus on generative modeling of tabular data (Hansen et al., 2023; Vero et al., 2024), or
employ ensemble strategies that combine multiple predictions from different runs, seeds, or
data splits (Erickson et al., 2025). Since such strategies vary widely and often depend on
additional design choices, in this work we restrict our evaluation to the intrinsic supervised
performance of each model, while acknowledging that external ensembles or pretraining can
further improve results.
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3.2 Representative Tabular Models

We consider several representative families of models for tabular prediction, including classical
methods, tree-based methods, and deep neural network (DNN)-based methods.

Classical Methods. As a trivial baseline, we include the “Dummy” approach, which always
predicts the majority class for classification or the mean of the target for regression. We
further evaluate standard classical methods: Logistic Regression (LR), K-Nearest Neighbors
(KNN), and Support Vector Machines (SVM). We also include Recursive Feature Machines
(RFM) (Radhakrishnan et al., 2023), which enable kernel machines to learn features by
recursively reweighting them via a gradient-inspired mechanism without backpropagation, and
their extension xRFM (Beaglehole et al., 2025). For classification tasks, we also include Naive
Bayes and the Nearest Class Mean (NCM) (Tibshirani et al., 2002). For regression tasks,
Linear Regression replaces LR, and we additionally consider DNNR (Nader et al., 2022).

Tree-based Methods. Tree-based models are widely regarded as strong baselines for
tabular learning Delgado et al. (2014). We include Random Forest (Breiman, 2001), as well
as gradient-boosting ensembles (Friedman, 2001, 2002) such as XGBoost (Chen and Guestrin,
2016), Light GBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2018), all of which are
established as highly competitive across tasks (Grinsztajn et al., 2022; McElfresh et al., 2023).

DNN-based Methods. Deep tabular methods vary in their design principles and prediction
strategies. We categorize them into the following groups:

e MLP Variants. Vanilla MLPs operate directly on raw features and, with careful tuning,
can be competitive (Kadra et al., 2021; Yan et al., 2024a). Strong baselines include the
implementation in (Gorishniy et al., 2021), MLP-PLR with periodic activations (Gorishniy
et al., 2022), and RealMLP with tailored modules/encodings and optimization (Holzmiiller
et al., 2024). Other variants include SNN (Klambauer et al., 2017) and ResNet-style
architectures (Gorishniy et al., 2021).

e Specially Designed Architectures. Several works design custom architectures to
capture explicit feature interactions. DCNv2 (Wang et al., 2021) combines embeddings,
cross layers, and deep networks. TabCaps (Chen et al., 2023a) encapsulates instance
features into vectorial representations to enhance representation learning.

e Token-based Methods. These methods map feature values into high-dimensional tokens,
enabling attention mechanisms to model high-order interactions. Representative approaches
include Autolnt (Song et al., 2019), TabTransformer (Huang et al., 2020), FT-Transformer
(FT-T) (Gorishniy et al., 2021), and ExcelFormer (Chen et al., 2024), which introduces
semi-permeable attention and attentive feed-forward layers.

e Regularization-based Methods. These methods enhance generalization through ex-
plicit regularization. TANGOS (Jeffares et al., 2023) enforces neuron specialization and
orthogonality. SwitchTab (Wu et al., 2024) introduces a self-supervised encoder—decoder
framework, while PTaRL (Ye et al., 2024b) calibrates features through prototypes.

e Tree-mimic Methods. Inspired by decision trees, these architectures combine neural
networks with tree-like structures. NODE (Popov et al., 2020) generalizes oblivious
decision trees, GrowNet (Badirli et al., 2020) embeds shallow networks within boosting,
and TabNet (Arik and Pfister, 2021) employs sequential attention for feature selection.
DANets (Chen et al., 2022) group correlated features to produce higher-level abstractions.
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e Neighborhood-based Methods. These approaches make predictions by retrieving and
weighting similar instances. TabR (Gorishniy et al., 2024) augments a learned predictor
with a KNN-style retrieval component, while ModernNCA (Ye et al., 2025b) modernizes
classic NCA (Goldberger et al., 2004) for robust, retrieval-based tabular learning.

e Ensemble-based Methods. Ensemble-style DNNs share parameters to train multiple
predictors efficiently. TabM (Gorishniy et al., 2025) builds on BatchEnsemble (Wen et al.,
2020) with an MLP backbone; for analysis we also consider a BatchEnsemble-enhanced
variant of ModernNCA (MNCA-ens).

e Pretrained Foundation Models. Pretrained tabular transformers enable in-context
inference on new datasets with little to no task-specific training or hyperparameter tuning.
TabPFN (Hollmann et al., 2023) predicts labels by conditioning directly on the training set.
We also include stronger successors that scale to larger datasets: TabPFN v2 (Hollmann
et al., 2025) and TabICL (Qu et al., 2025). TabPFN and TabICL currently target
classification, whereas TabPFN v2 supports both classification and regression. In addition,
we evaluate adaptation methods built on TabPFN, including LocalPFN (Thomas et al.,
2024), TuneTables (Feuer et al., 2024), and BETA (Liu and Ye, 2025).

Other Methods. Additional models such as Trompt (Chen et al., 2023b), BiSHop (Xu
et al., 2024), ProtoGate (Jiang et al., 2024b), and GRANDE (Marton et al., 2024) fall outside
our main categories. We omit them here due to substantially longer training/inference times
or because their goals (e.g., extreme efficiency) are orthogonal to our focus on predictive
accuracy. Similarly, pretrained variants such as HyperFast (Bonet et al., 2024), TabDPT (Ma
et al., 2024), TabFlex (Zeng et al., 2025), and MotherNet (Mueller et al., 2025) are not
included, as stronger and more recent foundation models are already covered. Finally, we
exclude RealTabPFN (Garg et al., 2025) to avoid potential data overlap: its continual
pretraining corpus intersects with our benchmark, which could confound fair evaluation.

4 A Comprehensive Tabular Data Benchmark

This section describes how TALENT is constructed, characterizes the datasets it contains,
details the quality controls we apply, and highlights why TALENT is well-suited for advancing
research on tabular learning.

4.1 Design Philosophy

To meaningfully measure the ability of tabular methods across diverse scenarios, the guiding
principle of the TALENT benchmark is to evaluate models under broad and realistic coverage
that mirrors the heterogeneity of real-world applications. The benchmark is built around
two complementary layers of coverage. First, we construct a large and diverse collection
of common-size datasets, which form the foundation for standard evaluation. This layer
ensures that comparisons are made across a broad range of classical and deep models under
typical conditions. Second, we incorporate specialized settings—such as high-dimensional
feature spaces, many-class classification problems, and very-large-scale datasets—in TALENT-
extension that reflect more challenging but practically important scenarios. These are
evaluated separately (see subsection 7.2), allowing us to analyze scalability and robustness
under conditions that go beyond the common-size setting.
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In addition to the coverage of dataset sizes, we adopt a two-level dataset selection strategy
to balance inclusiveness with fairness. The general TALENT set is constructed with relatively
weak filtering rules, excluding only datasets that present clear quality issues such as label
leakage or annotation errors. This design maximizes breadth while minimizing evaluation bias.
Complementing this, we curate a core set of datasets, i.e., TALENT-tiny, in subsection 7.1
that applies stricter rules to ensure balance across domains, feature types, and scales, and
to include both tree-friendly and DNN-friendly tasks. This core set provides a controlled,
reliable environment for detailed analysis and rapid iteration.

4.2 Datasets Collection

TALENT aggregates datasets from UCI (Hamidieh, 2018), OpenML (Vanschoren et al.,
2014), and Kaggle. We first construct the general TALENT set using a set of filtering and
preprocessing rules that emphasize inclusiveness while removing datasets with obvious quality
problems. The stricter rules used to define the TALENT-tiny core set follow the two-level
strategy above and are described later.

Initial filtering rules. We begin with the following quality controls:

e Size. Exclude datasets with fewer than 500 instances (N < 500) or fewer than 5 features
(d < 5), which tend to yield unstable evaluations due to limited test coverage.

e Missing values. Remove datasets with > 20% missing values to avoid unreliable
comparisons.

e Trivial classification. Exclude classification datasets that are overly easy (e.g., a simple
MLP exceeds 99% accuracy) or dominated by a majority class.

e Attribute preprocessing. Drop non-informative attributes (e.g., id, index, timestamp);
ordinally encode categorical features (Borisov et al., 2024; McElfresh et al., 2023); and
follow Gorishniy et al. (2021) for the remaining preprocessing.

e Duplicates. Remove subsets and near-duplicates from UCI/OpenML to ensure uniqueness.

e Task type correction. Relabel 22 mis-specified regression datasets with only two unique
targets as binary classification.

Multi-version datasets. Some datasets share an origin but differ in collection condi-
tions, feature extraction, or augmentation (e.g., forex- at different sampling frequencies,
wine-quality- under different standards, and mfeat- variants of handwritten digits). We
retain such versions unless they completely overlap, as they reflect real-world application
requirements and resource constraints. These variations provide an opportunity to evaluate
how different tabular models handle such practical scenarios: the best method on one version
is not always best on others. Removing them has little impact on aggregate rankings when
many datasets are included, but retaining them provides valuable insights into consistency
across related tasks.

“Easy” datasets revisited. Although the rules above filter out trivial cases, not all models

achieve optimal performance on some seemingly easy datasets. For example, mice_protein_-

expression is solved by KNN and RealMLP (Holzmiiller et al., 2024), while many strong
models underperform. We therefore retain such datasets when performance is not uniformly
trivial, as they expose informative discrepancies.

Datasets from other modalities. TALENT includes 25 datasets whose features are

extracted from images or audio (e.g., optdigits, segment, phoneme). While some recent
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analyses argue these are less relevant for tabular evaluation (Kohli et al., 2024; Erickson
et al., 2025), in many practical scenarios, only extracted features—not raw modalities—are
available due to resource or deployment constraints. We therefore keep them to reflect
real-world usage and to test model robustness to such inputs.

Inherent distribution shifts. Some datasets contain implicit distribution shifts, for
example, due to temporal splits in the collection where timestamps used during collection
create non-stationary distributions (Tschalzev et al., 2024; Rubachev et al., 2025a). Cai
and Ye (2025) show that the choice of split strategy between training and validation sets
can significantly affect absolute performance values, even though the relative ranking of
methods often remains stable. This suggests that while distribution shift complicates reliable
generalization, comparative evaluations may still provide useful insights under consistent
protocols. In this paper, however, we focus on standard tabular prediction tasks, where training
and test instances are assumed to be drawn from the same underlying distribution. This
assumption allows us to establish a fair and controlled evaluation framework. Nevertheless,
we acknowledge that distribution shifts are common in real-world applications, and developing
benchmarks that explicitly address such scenarios is an important direction for future research.
Datasets with known leakage. Recent analyses have revealed that a number of widely
used tabular datasets suffer from data leakage, most often caused by the inclusion of features
that directly or indirectly encode the target variable (Rubachev et al., 2025a; Tschalzev et al.,
2025). In our collection, we identify 13 datasets with potential leakage. While such datasets
may compromise strict evaluation quality, we deliberately retain them in the general TALENT
benchmark for two reasons: first, to maintain comparability with prior work, where these
datasets have been widely used; and second, to assess the general ability of tabular methods
to handle diverse real-world data, including imperfectly curated datasets that are commonly
encountered in practice. For rigorous and bias-free evaluation, however, all datasets with
identified leakage are excluded from the curated TALENT-tiny subset. The detailed list and
explanations are provided in Appendix A.

From general to core sets. The rules above define the general TALENT benchmark,
designed for inclusiveness while filtering out datasets with obvious issues. To provide a
stricter, more balanced evaluation, we also construct the TALENT-{iny core set by applying
stronger rules: excluding datasets derived from other modalities and with leakages, removing
trivial or duplicated variants, and focusing on tasks that balance tree- and DNN-friendly
cases. This two-level design allows researchers to use TALENT for broad benchmarking while
relying on TALENT-tiny for controlled, in-depth analysis.

Ultimately, TALENT consists of 120 binary-classification, 80 multi-class, and 100 regression
datasets, offering both breadth and depth for evaluating tabular learning. The complete list
of TALENT, the selection for TALENT-tiny, and summary statistics for TALENT-extension are
reported in Table 1.
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Table 1: The list of datasets (including names and source URLSs) in our proposed benchmark,
along with the statistics for each dataset.

TALENT

ID Name (Source) Task Class Sample Feature Tiny|ID Name (Source) Task Class Sample Feature Tiny
1 100-plants-margin Cls 100 1600 64 151 JapaneseVowels Cls 9 9961 14

2 100-plants-shape Cls 100 1600 64 152 jasmine Cls 2 2984 144 v
3 100-plants-texture Cls 100 1599 64 153 jm1 Cls 2 10885 21

4 1000-Cameras-Dataset Reg — 1038 10 154 Job Profitability Reg — 14480 28

5 2dplanes Reg — 40768 10 v' |155 jungle _chess_endgame Cls 3 44819 6 v
6 abalone Cls 3 4177 8 156 kcl Cls 2 2109 21

7 Abalone reg Reg — 4177 8 v’ |[157 KDD Cls 2 5032 45

8 accelerometer Cls 4 153004 4 158 kdd ipums la 97-small Cls 2 5188 20

9 ada Cls 2 4147 48 v’ [159 KDDCup09 _upselling Cls 2 5128 49

10 ada agnostic Cls 2 4562 48 160 kin8nm Reg — 8192 8

11 ada prior Cls 2 4562 14 161 kr-vs-k Cls 18 28056 6

12 adult Cls 2 48842 14 162 kr-vs-kp Cls 2 3196 36

13 Ailerons Reg — 13750 40 163 kropt Cls 18 28056 6

14 airfoil self noise Reg — 1503 5 164 Laptop Prices Dataset Reg — 4441 8

15 airline satisfaction Cls 2 129880 21 165 law-school-admission Cls 2 20800 11 v
16 airlines_ 2000 Cls 2 2000 7 v’ |166 led24 Cls 10 3200 24

17 allbp Cls 3 3772 29 v 167 led7 Cls 10 3200 7

18 allrep Cls 4 3772 29 168 letter Cls 26 20000 15

19 Amazon employee access Cls 2 32769 7 169 Long Cls 2 4477 19

20 analcatdata authorship Cls 4 841 69 170 longitudinal-survey Cls 2 4908 16 v
21 analcatdata supreme Reg — 4052 7 v |171 madeline Cls 2 3140 259

22 archive2 - Reg — 1143 12 172 MagicTelescope Cls 2 19020 9

23 archive r56 Portuguese Reg — 651 30 173 mammography Cls 2 11183 6

24 artificial-characters Cls 10 10218 7 174 Marketing Campaign Cls 2 2240 27

25 ASP-POTASSCO Cls 11 1294 141 v |175 maternal health risk Cls 3 1014 6

26 auction verification Reg — 2043 7 176 mauna-loa-atmospheric Reg — 2225 6

27 autoUniv-au4-2500 Cls 3 2500 100 177 mfeat-factors Cls 10 2000 216

28 autoUniv-au7-1100 Cls 5 1100 12 v' |178 mfeat-fourier Cls 10 2000 76

29 avocado_sales Reg — 18249 13 179 mfeat-karhunen Cls 10 2000 64

30 bank Cls 2 45211 16 180 mfeat-morphological Cls 10 2000 6

31 bank32nh Reg — 8192 32 181 mfeat-pixel Cls 10 2000 240

32 bank8FM Reg — 8192 8 182 mfeat-zernike Cls 10 2000 47

33 Bank Customer Churn Cls 2 10000 10 183 MiamiHousing2016 Reg — 13932 16

34 banknote_authentication Cls 2 1372 4 184 MIC Cls 2 1649 104

35 baseball Cls 3 1340 16 185 mice protein expression Cls 8 1080 75

36 Basketball ¢ Cls 2 1340 11 186 microaggregation2 Cls 5 20000 20 v
37 Bias correction r Reg — 7725 21 187 MIP-2016-regression Reg — 1090 144

38 Bias correction r 2 Reg — 7725 21 188 mobile ¢36 oversampling Cls 2 51760 6

39 bike sharing demand Reg — 10886 9 189 Mobile Phone in Ghana Reg — 3600 14

40 BLE RSSI localization Cls 3 9984 3 190 Mobile Price Cls 4 2000 20

41 BNG(breast-w) Cls 2 39366 9 191 Moneyball Reg — 1232 14

42 BNG(cmc) Cls 3 55296 9 192 mozilla4 Cls 2 15545 4

43 BNG(echoMonths) Reg — 17496 8 193 mv Reg — 40768 10

44 BNG(lowbwt) Reg — 31104 9 194 NASA PHM2008 Reg — 45918 21

45 BNG(mv) Reg — 78732 10 195 naticusdroid permissions Cls 2 29332 86

46 BNG((stock) Reg — 59049 9 196 NHANES age prediction Reg — 2277 7

47 BNG(tic-tac-toe) Cls 2 39366 9 197 Nutrition Health_Survey Cls 2 2278 7

48 boston Reg — 506 13 198 okcupid stem Cls 3 26677 13 v
49 Brazilian houses Reg — 10692 8 199 online shoppers Cls 2 12330 14 v
50 California-Housing-Cls Cls 2 20640 8 200 OnlineNewsPopularity Reg — 39644 59

51 car-evaluation Cls 4 1728 21 201 optdigits Cls 10 5620 64

52 Cardiovascular-Disease Cls 2 70000 11 202 ozone-level-8hr Cls 2 2534 72

53 chscase_ foot Reg — 526 5 203 ozone level Cls 2 2536 36 v
54 churn Cls 2 5000 20 204 page-blocks Cls 5 5473 10

55 Click prediction Cls 2 39948 3 205 Parkinson Sound Record Reg — 1040 26

56 cmc Cls 3 1473 9 206 Parkinson Telemonitor Reg — 5875 19

57 colleges Reg — 7063 44 207 pcl - Cls 2 1109 21

58 combined cycle plant Reg — 9568 4 208 pc3 Cls 2 1563 37

59 communities and crime Reg — 1994 102 209 pc4 Cls 2 1458 37 v
60 company bankruptcy Cls 2 6819 95 v |210 pendigits Cls 10 10992 16

61 compass Cls 2 16644 17 211 Performance-Prediction Cls 2 1340 19

62 compressive strength Reg — 1030 8 v’ |212 philippine Cls 2 5832 308

63 connect-4 Cls 3 67557 42 213 PhishingWebsites Cls 2 11055 30 v
64 Contaminant-10.0GHz Cls 2 2400 30 214 phoneme Cls 2 5404 5

65 Contaminant-10.5GHz Cls 2 2400 30 215 Physicochemical _r Reg — 45730 9 v
66 Contaminant-11.0GHz Cls 2 2400 30 216 PieChart3 Cls 2 1077 37

67 Contaminant-9.0GHz Cls 2 2400 30 217 Pima Indians_ Diabetes Cls 2 768 8

68 Contaminant-9.5GHz Cls 2 2400 30 218 PizzaCutter3 Cls 2 1043 37

69 contraceptive method Cls 3 1473 9 219 pol Cls 2 10082 26

70 CookbookReviews Reg — 18182 7 220 pol reg Reg — 15000 48

71 CPMP-2015-regression Reg — 2108 25 221 pole Reg — 14998 26 v
72 CPS1988 Reg — 28155 6 222 predict students dropout Cls 3 4424 34

73 cpu act Reg — 8192 21 v 223 puma32H - Reg — 8192 32

74 cpu small Reg — 8192 12 224 puma8NH Reg — 8192 8

75 credit Cls 2 16714 10 225 Pumpkin Seeds Cls 2 2500 12

76 credit-g Cls 2 1000 20 226 gsar aquatic toxicity Reg — 546 8 v
77 Credit_c Cls 3 100000 22 227 QSAR_biodegradation Cls 2 1054 41
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https://www.openml.org/search?type=data&status=active&id=1491&sort=runs
https://www.openml.org/search?type=data&status=active&id=375&sort=runs
https://www.openml.org/search?type=data&status=active&id=1492&sort=runs
https://www.openml.org/search?type=data&status=active&id=41143
https://www.openml.org/search?type=data&status=active&id=1493&sort=runs
https://www.openml.org/search?type=data&status=active&id=1053&sort=runs
https://www.openml.org/search?type=data&status=active&id=43714&sort=runs
https://www.openml.org/search?type=data&status=active&id=44311&sort=runs
https://www.openml.org/search?type=data&status=active&id=215&sort=runs
https://www.openml.org/search?type=data&status=active&id=41027&sort=runs
https://www.openml.org/search?type=data&status=active&id=1557&sort=runs
https://www.openml.org/search?type=data&status=active&id=1067&sort=runs
https://archive.ics.uci.edu/dataset/1/abalone
https://www.openml.org/search?type=data&status=active&id=45075&sort=runs
https://archive.ics.uci.edu/dataset/846/accelerometer
https://www.openml.org/search?type=data&status=active&id=44124&sort=runs
https://www.openml.org/search?type=data&status=active&id=41156&sort=runs
https://www.openml.org/search?type=data&status=active&id=44186&sort=runs
https://www.openml.org/search?type=data&status=any&sort=runs&order=desc&id=1043
https://www.openml.org/search?type=data&status=active&id=189&sort=runs
https://www.openml.org/search?type=data&status=active&id=1037&sort=runs
https://www.openml.org/search?type=data&status=active&id=1481&sort=runs
https://archive.ics.uci.edu/dataset/2/adult
https://www.openml.org/search?type=data&status=active&id=3
https://www.openml.org/search?type=data&status=active&id=296&sort=runs
https://www.openml.org/search?type=data&status=active&id=184&sort=runs
https://www.openml.org/search?type=data&status=active&id=43919&sort=runs
https://www.kaggle.com/datasets/talhabarkaatahmad/laptop-prices-dataset-october-2023
https://www.kaggle.com/datasets/yakhyojon/customer-satisfaction-in-airline
https://www.openml.org/search?type=data&status=active&id=43889&sort=runs
https://www.openml.org/search?type=data&status=active&id=44528&sort=runs
https://www.openml.org/search?type=data&status=active&id=40677&sort=runs
https://www.openml.org/search?type=data&status=active&id=40707&sort=runs
https://www.openml.org/search?type=data&status=active&id=40678&sort=runs
https://www.openml.org/search?type=data&status=active&id=40708&sort=runs
https://www.openml.org/search?type=data&status=active&id=6&sort=runs
https://www.openml.org/search?type=data&status=active&id=4135&sort=runs
https://www.openml.org/search?type=data&status=active&id=42636&sort=runs
https://www.openml.org/search?type=data&status=active&id=458&sort=runs
https://www.openml.org/search?type=data&status=active&id=43892&sort=runs
https://www.openml.org/search?type=data&status=active&id=504&sort=runs
https://www.openml.org/search?type=data&status=active&id=41144&sort=runs
https://www.kaggle.com/datasets/yasserh/wine-quality-dataset
https://www.openml.org/search?type=data&status=active&id=1120&sort=runs
https://www.kaggle.com/datasets/whenamancodes/student-performance/data
https://www.openml.org/search?type=data&status=active&id=310&sort=runs
https://www.openml.org/search?type=data&status=active&id=1459&sort=runs
https://www.kaggle.com/datasets/rodsaldanha/arketing-campaign
https://www.openml.org/search?type=data&status=active&id=41705&sort=runs
https://archive.ics.uci.edu/dataset/863/maternal+health+risk
https://archive.ics.uci.edu/dataset/713/auction+verification
https://www.openml.org/search?type=data&status=active&id=41187&sort=runs
https://www.openml.org/search?type=data&status=active&id=1548&sort=runs
https://www.openml.org/search?type=data&status=active&id=12&sort=runs
https://www.openml.org/search?type=data&status=active&id=1552&sort=runs
https://www.openml.org/search?type=data&status=active&id=14&sort=runs
https://www.openml.org/search?type=data&status=active&id=43927&sort=runs
https://www.openml.org/search?type=data&status=active&id=16&sort=runs
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://www.openml.org/search?type=data&status=active&id=18&sort=runs
https://www.openml.org/search?type=data&status=active&id=558&sort=runs
https://www.openml.org/search?type=data&status=active&id=20&sort=runs
https://www.openml.org/search?type=data&status=active&id=572&sort=runs
https://www.openml.org/search?type=data&status=active&id=22&sort=runs
https://www.kaggle.com/datasets/gauravtopre/bank-customer-churn-dataset
https://www.openml.org/search?type=data&status=active&id=43093&sort=runs
https://archive.ics.uci.edu/dataset/267/banknote+authentication
https://www.openml.org/search?type=data&status=active&id=45648&sort=runs
https://www.openml.org/search?type=data&status=active&id=185&sort=runs
https://archive.ics.uci.edu/dataset/342/mice+protein+expression
https://www.kaggle.com/datasets/yakhyojon/national-basketball-association-nba
https://www.openml.org/search?type=data&status=active&id=41671&sort=runs
https://archive.ics.uci.edu/dataset/514/bias+correction+of+numerical+prediction+model+temperature+forecast
https://www.openml.org/search?type=data&status=any&id=43071
https://archive.ics.uci.edu/dataset/514/bias+correction+of+numerical+prediction+model+temperature+forecast
https://archive.ics.uci.edu/dataset/755/accelerometer+gyro+mobile+phone+dataset
https://www.openml.org/search?type=data&status=active&id=1414&sort=runs
https://www.kaggle.com/datasets/redpen12/mobile-phone-market-in-ghana
https://archive.ics.uci.edu/dataset/586/ble+rssi+dataset+for+indoor+localization
https://www.kaggle.com/datasets/iabhishekofficial/mobile-price-classification
https://www.openml.org/search?type=data&status=active&id=251&sort=runs
https://www.openml.org/search?type=data&status=active&id=41021
https://www.openml.org/search?type=data&status=active&id=255&sort=runs
https://www.openml.org/search?type=data&status=active&id=1046&sort=runs
https://www.openml.org/search?type=data&status=active&id=1199&sort=runs
https://www.openml.org/search?type=data&status=active&id=344&sort=runs
https://www.openml.org/search?type=data&status=active&id=1193&sort=runs
https://www.openml.org/search?type=data&status=any&sort=runs&order=desc&qualities.NumberOfClasses=lte_1&id=42821
https://www.openml.org/search?type=data&status=active&id=1213&sort=runs
https://archive.ics.uci.edu/dataset/722/naticusdroid+android+permissions+dataset
https://www.openml.org/search?type=data&status=active&id=1200&sort=runs
https://archive.ics.uci.edu/dataset/887/national+health+and+nutrition+health+survey+2013-2014+(nhanes)+age+prediction+subset
https://www.openml.org/search?type=data&status=active&id=137&sort=runs
https://archive.ics.uci.edu/dataset/887/national+health+and+nutrition+health+survey+2013-2014+(nhanes)+age+prediction+subset
https://www.openml.org/search?type=data&status=active&id=531
https://www.openml.org/search?type=data&status=active&id=45067&sort=runs
https://www.openml.org/search?type=data&status=active&id=44152&sort=runs
https://www.openml.org/search?type=data&status=active&id=45060&sort=runs
https://www.openml.org/search?type=data&status=active&id=45578&sort=runs
https://www.openml.org/search?type=data&status=active&id=4545
https://www.openml.org/search?type=data&status=active&id=40664&sort=runs
https://www.openml.org/search?type=data&status=active&id=28&sort=runs
https://www.openml.org/search?type=data&status=active&id=45547&sort=runs
https://www.openml.org/search?type=data&status=active&id=1487&sort=runs
https://www.openml.org/search?type=data&status=active&id=703
https://www.openml.org/search?type=data&status=active&id=301&sort=runs
https://www.openml.org/search?type=data&status=active&id=40701&sort=runs
https://www.openml.org/search?type=data&status=active&id=30&sort=runs
https://www.openml.org/search?type=data&status=any&sort=runs&order=desc&id=1220
https://archive.ics.uci.edu/dataset/301/parkinson+speech+dataset+with+multiple+types+of+sound+recordings
https://www.openml.org/search?type=data&status=active&id=23&sort=runs
https://archive.ics.uci.edu/dataset/189/parkinsons+telemonitoring
https://www.openml.org/search?type=data&status=active&id=42727
https://www.openml.org/search?type=data&status=active&id=1068&sort=runs
https://archive.ics.uci.edu/dataset/294/combined+cycle+power+plant
https://www.openml.org/search?type=data&status=active&id=1050&sort=runs
https://archive.ics.uci.edu/dataset/183/communities+and+crime
https://www.openml.org/search?type=data&status=active&id=1049&sort=runs
https://www.kaggle.com/datasets/fedesoriano/company-bankruptcy-prediction
https://www.openml.org/search?type=data&status=active&id=32&sort=runs
https://www.openml.org/search?type=data&status=active&id=44162&sort=runs
https://www.openml.org/search?type=data&status=active&id=43812&sort=runs
https://archive.ics.uci.edu/dataset/165/concrete+compressive+strength
https://www.openml.org/search?type=data&status=active&id=41145
https://www.openml.org/search?type=data&status=active&id=40668
https://www.openml.org/search?type=data&status=active&id=4534&sort=runs
https://www.openml.org/search?type=data&status=active&id=45538&sort=runs
https://www.openml.org/search?type=data&status=active&id=1489&sort=runs
https://www.openml.org/search?type=data&status=active&id=45539&sort=runs
https://archive.ics.uci.edu/dataset/265/physicochemical+properties+of+protein+tertiary+structure
https://www.openml.org/search?type=data&status=active&id=45540&sort=runs
https://www.openml.org/search?type=data&status=active&id=1453&sort=runs
https://www.openml.org/search?type=data&status=active&id=45536&sort=runs
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.openml.org/search?type=data&status=active&id=45537&sort=runs
https://www.openml.org/search?type=data&status=active&id=1444&sort=runs
https://archive.ics.uci.edu/dataset/30/contraceptive+method+choice
https://www.openml.org/search?type=data&status=active&id=44122&sort=runs
https://www.openml.org/search?type=data&status=active&id=45744&sort=runs
https://www.openml.org/search?type=data&status=active&id=201&sort=runs
https://www.openml.org/search?type=data&status=active&id=41700&sort=runs
https://www.openml.org/search?type=data&status=active&id=43963&sort=runs
https://archive.ics.uci.edu/dataset/697/predict+students+dropout+and+academic+success
https://www.openml.org/search?type=data&status=active&id=197&sort=runs
https://www.openml.org/search?type=data&status=active&id=308&sort=runs
https://www.openml.org/search?type=data&status=active&id=562&sort=runs
https://www.openml.org/search?type=data&status=active&id=225&sort=runs
https://www.openml.org/search?type=data&status=active&id=44089&sort=runs
https://www.kaggle.com/datasets/muratkokludataset/pumpkin-seeds-dataset
https://www.openml.org/search?type=data&status=active&id=31
https://archive.ics.uci.edu/dataset/505/qsar+aquatic+toxicity
https://www.kaggle.com/code/clkmuhammed/credit-score-classification-part-1-data-cleaning#B.-Numeric-Column-NaN-Values:-Reassign-Group-Min-Max
https://archive.ics.uci.edu/dataset/254/qsar+biodegradation
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78 credit card defaults Cls 2 30000 23 228 gsar fish toxicity Reg — 908 6
79 Customer Personality Cls 2 2240 24 229 Rain in Australia Cls 3 145460 18
80 dabetes us hospitals Cls 2 101766 20 230 Retinopathy Debrecen Cls 2 1151 19
81 Data Science_Salaries Reg — 3755 5 231 rice cammeo_and_osmancik Cls 2 3810 7
82 dataset sales Reg — 10738 10 232 ringnorm Cls 2 7400 20
83 debutanizer Reg — 2394 7 233 rl Cls 2 4970 12
84 delta ailerons Cls 2 7129 5 234 RSSI Estimation Reg — 5760 6
85 delta elevators Reg — 9517 6 235 RSSI  Estimation 1 Reg — 14400 12
86 Diamonds Reg — 53940 9 236 SAT11-HAND-regression Reg — 4440 116
87 dis Cls 2 3772 29 237 satellite image Reg — 6435 36
88 dna Cls 3 3186 180 238 satimage Cls 6 6430 36
89 drug consumption Cls 7 1884 12 239 SDSS17 Cls 3 100000 12
90 dry bean dataset Cls 7 13611 16 240 segment Cls 7 2310 17
91 E-CommereShippingData Cls 2 10999 10 241 seismic+bumps Cls 2 2584 18
92 eeg-eye-state Cls 2 14980 14 242 semeion Cls 10 1593 256
93 electricity Cls 2 45312 8 243 sensory Reg — 576 11
94 elevators Reg — 16599 18 244 shill-bidding Cls 2 6321 3
95 Employee Cls 2 4653 8 245 Shipping Cls 2 10999 9
96 estimation of obesity Cls 7 2111 16 246 Shop Customer Data Reg — 2000 6
97 eucalyptus Cls 5 736 19 v |247 shrutime Cls 2 10000 10
98 eye movements Cls 3 10936 27 248 shuttle Cls 7 58000 9
99 eye movements bin Cls 2 7608 20 249 socmob Reg — 1156 5
100 Facebook Comment _Volume Reg — 40949 53 250 space ga Reg — 3107 6
101 Fiat Reg — 1538 6 251 spambase Cls 2 4601 57
102 FICO-HELOC-cleaned Cls 2 9871 23 252 splice Cls 3 3190 60
103 fifa Reg — 18063 5 V' |253 sports _articles Cls 2 1000 59
104 Firm-Teacher-Direction Cls 4 10800 16 254 statlog Cls 2 1000 20
105 first-order-theorem Cls 6 6118 51 255 steel industry energy Reg — 35040 10
106 Fitness Club ¢ Cls 2 1500 6 256 steel _plates_faults Cls 7 1941 27
107 Food Delivery Time Reg — 45593 8 257 stock Reg — 950 9
108 FOREX audcad-day-High Cls 2 1834 10 258 stock _fardamento02 Reg — 6277 6
109 FOREX audcad-hour-High Cls 2 43825 10 259 sulfur Reg — 10081 6
110 FOREX audchf-day-High Cls 2 1833 10 260 Superconductivty Reg — 21197 81
111 FOREX audjpy-day-High Cls 2 1832 10 261 svmguide3 Cls 2 1243 22
112 FOREX audjpy-hour-High Cls 2 43825 10 262 sylvine Cls 2 5124 20
113 FOREX audsgd-hour-High Cls 2 43825 10 263 taiwanese bankruptcy Cls 2 6819 95
114 FOREX audusd-hour-High Cls 2 43825 10 264 telco-customer-churn Cls 2 7043 18
115 FOREX cadjpy-day-High Cls 2 1834 10 265 Telecom Churn_ Dataset Cls 2 3333 17
116 FOREX _cadjpy-hour-High Cls 2 43825 10 266 texture Cls 11 5500 40
117 tried Reg — 40768 10 267 thyroid Cls 3 7200 21
118 GAMETES Epistasis Cls 2 1600 20 268 thyroid-ann Cls 3 3772 21
119 GAMETES Heterogeneity Cls 2 1600 20 269 thyroid-dis Cls 5 2800 26
120 garments_ productivity Reg — 1197 13 270 topo 2 1 Reg — 8885 266
121 gas-drift Cls 6 13910 128 271 treasury Reg — 1049 15
122 gas turbine emission Reg — 36733 10 272 turiye student Cls 5 5820 32
123 Gender Gap in Spanish Cls 3 4746 13 v’ |273 twonorm Cls 2 7400 20
124 Gesture Phase Segment Cls 5 9873 32 274 UJI Pen _Characters Cls 35 1364 80
125 goltf play extended Cls 2 1095 9 275 us crime Reg — 1994 126
126 Goodreads-Computer-Book Reg — 1234 5 v’ |276 vehicle Cls 4 846 18
127 healthcare expenses Reg — 1338 6 277 volume Reg — 50993 53
128 Heart-Disease-Dataset Cls 2 1190 11 278 VulNoneVul Cls 2 5692 16
129 helena Cls 100 65196 27 279 walking-activity Cls 22 149332 4
130 heloc Cls 2 10000 22 280 wall-robot-navigation Cls 4 5456 24
131 hill-valley Cls 2 1212 100 v’ |281 Water Potability Cls 2 3276 8
132 house 16H Cls 2 13488 16 v’ |282 water quality Cls 2 7996 20
133 house 16H _reg Reg — 22784 16 283 Waterstress Cls 2 1188 22
134 house 8L Reg — 22784 8 v’ |284 Wave Energy Perth 100 Reg — 7277 201
135 house prices nominal Reg — 1460 79 285 Wave Energy Sydney 100 Reg — 2318 201
136 house sales_reduced Reg — 21613 18 286 Wave Energy Sydney_49 Reg — 17964 99
137 houses Reg — 20640 8 287 waveform-v1 Cls 3 5000 21
138 housing price _prediction Reg — 545 12 288 waveform-v2 Cls 3 5000 40
139 HR _Analytics Cls 2 19158 13 289 weather izmir Reg — 1461 9
140 htru Cls 2 17898 8 290 website _phishing Cls 3 1353 9
141 ibm-employee-performance Cls 2 1470 30 v' 291 Wil Cls 2 4821 5
142 IEEE80211aa-GATS Reg — 4046 27 v’ 292 wind Reg — 6574 14
143 in vehicle coupon Cls 2 12684 21 293 wine Cls 2 2554 4
144 Indian pines Cls 8 9144 220 294 wine+quality Reg — 6497 11
145 INNHotelsGroup Cls 2 36275 17 v' |295 wine-quality-red Cls 6 1599 4
146 Insurance Cls 2 23548 10 296 wine-quality-white Cls 7 4898 11
147 internet firewall Cls 4 65532 7 v' |297 Wine Quality red Reg — 1599 11
148 internet usage Cls 46 10108 70 298 Wine_ Quality white Reg — 4898 11
149 Intersectional-Bias Cls 2 11000 19 299 yeast Cls 10 1484 8
150 Is-this-a-good-customer Cls 2 1723 13 300 yprop_4_1 Reg — 8885 251
TALENT-Extension (high-dimensional)
1D Name (Source) Task Class Sample Feature | ID Name (Source) Task Class Sample Feature
1 ALLAML Cls 2 72 7129 10 lung Cls 5 203 3312
2 arcene Cls 2 200 10000 11 orlraws1l0P Cls 10 100 10304
3 BASEHOCK Cls 2 1993 4862 12 PCMAC Cls 2 1943 3289
4 CLL SUB 111 Cls 3 111 11340 13 Prostate GE Cls 2 102 5966
5 colon’ N Cls 2 62 2000 14 RELATHE Cls 2 1427 4322
6 gisette Cls 2 7000 5000 15 SMK CAN_ 187 Cls 2 187 19993
7 GLI 85 Cls 2 85 22283 16 TOX 171 Cls 4 171 5748
8 GLIOMA Cls 4 50 4434 17 warpAR10P Cls 10 130 2400
9 leukemia Cls 2 72 7070 18 warpPIE10P Cls 10 210 2420
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https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
https://archive.ics.uci.edu/dataset/504/qsar+fish+toxicity
https://www.kaggle.com/datasets/imakash3011/customer-personality-analysis
https://www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package
https://archive.ics.uci.edu/dataset/296/diabetes+130-us+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/dataset/329/diabetic+retinopathy+debrecen
https://www.kaggle.com/datasets/arnabchaki/data-science-salaries-2023/data
https://archive.ics.uci.edu/dataset/545/rice+cammeo+and+osmancik
https://www.openml.org/search?type=data&status=active&id=42183&sort=runs
https://www.openml.org/search?type=data&status=active&id=1496&sort=runs
https://www.openml.org/search?type=data&status=active&id=23516&sort=runs
https://www.openml.org/search?type=data&status=active&id=44160&sort=runs
https://www.openml.org/search?type=data&status=active&id=803&sort=runs
https://www.openml.org/search?type=data&status=active&id=45718&sort=runs
https://www.openml.org/search?type=data&status=active&id=198&sort=runs
https://www.openml.org/search?type=data&status=active&id=45720&sort=runs
https://www.kaggle.com/datasets/joebeachcapital/diamonds
https://www.openml.org/search?type=data&status=any&id=41980
https://www.openml.org/search?type=data&status=active&id=40713&sort=runs
https://www.openml.org/search?type=data&status=active&id=294&sort=runs
https://www.openml.org/search?type=data&status=active&id=40670&sort=runs
https://www.openml.org/search?type=data&status=active&id=182&sort=runs
https://archive.ics.uci.edu/dataset/373/drug+consumption+quantified
https://www.kaggle.com/datasets/fedesoriano/stellar-classification-dataset-sdss17
https://archive.ics.uci.edu/dataset/602/dry+bean+dataset
https://www.openml.org/search?type=data&status=active&id=36&sort=runs
https://www.kaggle.com/datasets/prachi13/customer-analytics
https://archive.ics.uci.edu/dataset/266/seismic+bumps
https://www.openml.org/search?type=data&status=active&id=1471&sort=runs
https://www.openml.org/search?type=data&status=active&id=1501&sort=runs
https://www.openml.org/search?type=data&status=active&id=151&sort=runs
https://www.openml.org/search?type=data&status=any&sort=runs&order=desc&qualities.NumberOfClasses=lte_1&id=546
https://www.openml.org/search?type=data&status=active&id=216&sort=runs
https://www.openml.org/search?type=data&status=active&id=42889&sort=runs
https://www.kaggle.com/datasets/tawfikelmetwally/employee-dataset
https://www.openml.org/search?type=data&status=active&id=45074&sort=runs
https://archive.ics.uci.edu/dataset/544/estimation+of+obesity+levels+based+on+eating+habits+and+physical+condition
https://www.kaggle.com/datasets/datascientistanna/customers-dataset
https://www.openml.org/search?type=data&status=active&id=188
https://www.openml.org/search?type=data&status=active&id=45062&sort=runs
https://www.openml.org/search?type=data&status=active&id=1044&sort=runs
https://www.openml.org/search?type=data&status=active&id=40685&sort=runs
https://www.openml.org/search?type=data&status=active&id=44130&sort=runs
https://www.openml.org/search?type=data&status=active&id=541&sort=runs
https://archive.ics.uci.edu/dataset/363/facebook+comment+volume+dataset
https://www.openml.org/search?type=data&status=active&id=507&sort=runs
https://www.openml.org/search?type=data&status=active&id=43828&sort=runs
https://www.openml.org/search?type=data&status=active&id=44&sort=runs
https://www.openml.org/search?type=data&status=active&id=45553&sort=runs
https://www.openml.org/search?type=data&status=active&id=46&sort=runs
https://www.openml.org/search?type=data&status=active&id=44026&sort=runs
https://archive.ics.uci.edu/dataset/450/sports+articles+for+objectivity+analysis
https://archive.ics.uci.edu/dataset/324/firm+teacher+clave+direction+classification
https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
https://www.openml.org/search?type=data&status=active&id=1475&sort=runs
https://archive.ics.uci.edu/dataset/851/steel+industry+energy+consumption
https://www.kaggle.com/datasets/ddosad/datacamps-data-science-associate-certification
https://archive.ics.uci.edu/dataset/198/steel+plates+faults
https://www.kaggle.com/datasets/rajatkumar30/food-delivery-time
https://www.openml.org/search?type=data&status=any&sort=runs&order=desc&qualities.NumberOfClasses=lte_1&id=223
https://www.openml.org/search?type=data&status=active&id=41721&sort=runs
https://www.openml.org/search?type=data&status=active&id=42545&sort=runs
https://www.openml.org/search?type=data&status=active&id=41763&sort=runs
https://www.openml.org/search?type=data&status=active&id=23515&sort=runs
https://www.openml.org/search?type=data&status=active&id=41875&sort=runs
https://archive.ics.uci.edu/dataset/464/superconductivty+data
https://www.openml.org/search?type=data&status=active&id=41882&sort=runs
https://www.openml.org/search?type=data&status=active&id=1589&sort=runs
https://www.openml.org/search?type=data&status=active&id=41718&sort=runs
https://www.openml.org/search?type=data&status=active&id=41146&sort=runs
https://www.openml.org/search?type=data&status=active&id=41865&sort=runs
https://archive.ics.uci.edu/dataset/572/taiwanese+bankruptcy+prediction
https://www.openml.org/search?type=data&status=active&id=41843&sort=runs
https://www.openml.org/search?type=data&status=active&id=42178&sort=runs
https://www.openml.org/search?type=data&status=active&id=41839&sort=runs
https://www.kaggle.com/datasets/mnassrib/telecom-churn-datasets
https://www.openml.org/search?type=data&status=active&id=41833&sort=runs
https://www.openml.org/search?type=data&status=active&id=40499&sort=runs
https://www.openml.org/search?type=data&status=active&id=564&sort=runs
https://archive.ics.uci.edu/dataset/102/thyroid+disease
https://www.openml.org/search?type=data&status=active&id=40646&sort=runs
https://www.openml.org/search?type=data&status=active&id=40497&sort=runs
https://www.openml.org/search?type=data&status=active&id=40649&sort=runs
https://www.openml.org/search?type=data&status=active&id=40478&sort=runs
https://archive.ics.uci.edu/dataset/597/productivity+prediction+of+garment+employees
https://www.openml.org/search?type=data&status=any&sort=runs&order=desc&qualities.NumberOfClasses=lte_1&id=422
https://www.openml.org/search?type=data&status=active&id=1476&sort=runs
https://www.openml.org/search?type=data&status=active&id=42367&sort=runs
https://archive.ics.uci.edu/dataset/551/gas+turbine+co+and+nox+emission+data+set
https://archive.ics.uci.edu/dataset/262/turkiye+student+evaluation
https://archive.ics.uci.edu/dataset/852/gender+gap+in+spanish+wp
https://www.openml.org/search?type=data&status=active&id=1507&sort=runs
https://www.openml.org/search?type=data&status=active&id=4538&sort=runs
https://archive.ics.uci.edu/dataset/160/uji+pen+characters
https://www.kaggle.com/datasets/samybaladram/golf-play-extended
https://www.openml.org/search?type=data&status=active&id=42730
https://www.openml.org/search?type=data&status=active&id=43785&sort=runs
https://www.openml.org/search?type=data&status=active&id=54&sort=runs
https://www.kaggle.com/datasets/arunjangir245/healthcare-insurance-expenses/
https://archive.ics.uci.edu/dataset/363/facebook+comment+volume+dataset
https://www.openml.org/search?type=data&status=active&id=43672&sort=runs
https://www.openml.org/search?type=data&status=active&id=44150&sort=runs
https://www.openml.org/search?type=data&status=active&id=41169
https://www.openml.org/search?type=data&status=active&id=1509&sort=runs
https://www.openml.org/search?type=data&status=active&id=45023&sort=runs
https://www.openml.org/search?type=data&status=active&id=1497&sort=runs
https://www.openml.org/search?type=data&status=active&id=1479&sort=runs
https://www.kaggle.com/datasets/uom190346a/water-quality-and-potability
https://www.openml.org/search?type=data&status=active&id=44123&sort=runs
https://www.kaggle.com/datasets/mssmartypants/water-quality
https://www.openml.org/search?type=data&status=active&id=574&sort=runs
https://www.openml.org/search?type=data&status=active&id=42464&sort=runs
https://www.openml.org/search?type=data&status=active&id=218&sort=runs
https://archive.ics.uci.edu/dataset/882/large-scale+wave+energy+farm
https://www.openml.org/search?type=data&status=any&id=42563
https://archive.ics.uci.edu/dataset/882/large-scale+wave+energy+farm
https://www.openml.org/search?type=data&status=active&id=42635&sort=runs
https://archive.ics.uci.edu/dataset/882/large-scale+wave+energy+farm
https://www.openml.org/search?type=data&status=active&id=537&sort=runs
https://archive.ics.uci.edu/dataset/107/waveform+database+generator+version+1
https://www.kaggle.com/datasets/harishkumardatalab/housing-price-prediction
https://www.openml.org/search?type=data&status=active&id=60&sort=runs
https://www.kaggle.com/datasets/arashnic/hr-analytics-job-change-of-data-scientists
https://www.openml.org/search?type=data&status=active&id=42369&sort=runs
https://archive.ics.uci.edu/dataset/372/htru2
https://archive.ics.uci.edu/dataset/379/website+phishing
https://www.openml.org/search?type=data&status=active&id=43895&sort=runs
https://www.openml.org/search?type=data&id=44489
https://www.openml.org/search?type=data&status=active&id=43180&sort=runs
https://www.openml.org/search?type=data&status=active&id=503&sort=runs
https://archive.ics.uci.edu/dataset/603/in+vehicle+coupon+recommendation
https://www.openml.org/search?type=data&status=active&id=44091&sort=runs
https://www.openml.org/search?type=data&status=active&id=41972&sort=runs
https://archive.ics.uci.edu/dataset/186/wine+quality
https://www.kaggle.com/datasets/mariyamalshatta/inn-hotels-group
https://www.openml.org/search?type=data&status=active&id=40691&sort=runs
https://www.openml.org/search?type=data&status=active&id=45064&sort=runs
https://www.openml.org/search?type=data&status=active&id=40498&sort=runs
https://archive.ics.uci.edu/dataset/542/internet+firewall+data
https://archive.ics.uci.edu/dataset/186/wine+quality
https://www.openml.org/search?type=data&status=active&id=372&sort=runs
https://archive.ics.uci.edu/dataset/186/wine+quality
https://www.openml.org/search?type=data&status=active&id=45040&sort=runs
https://www.openml.org/search?type=data&status=active&id=181&sort=runs
https://www.openml.org/search?type=data&status=active&id=43442&sort=runs
https://www.openml.org/search?type=data&status=active&id=416
https://jundongl.github.io/scikit-feature/files/datasets/ALLAML.mat
https://jundongl.github.io/scikit-feature/files/datasets/lung.mat
https://jundongl.github.io/scikit-feature/files/datasets/arcene.mat
https://jundongl.github.io/scikit-feature/files/datasets/orlraws10P.mat
https://jundongl.github.io/scikit-feature/files/datasets/BASEHOCK.mat
https://jundongl.github.io/scikit-feature/files/datasets/PCMAC.mat
https://jundongl.github.io/scikit-feature/files/datasets/CLL_SUB_111.mat
https://jundongl.github.io/scikit-feature/files/datasets/Prostate_GE.mat
https://jundongl.github.io/scikit-feature/files/datasets/colon.mat
https://jundongl.github.io/scikit-feature/files/datasets/RELATHE.mat
https://jundongl.github.io/scikit-feature/files/datasets/gisette.mat
https://jundongl.github.io/scikit-feature/files/datasets/SMK_CAN_187.mat
https://jundongl.github.io/scikit-feature/files/datasets/GLI_85.mat
https://jundongl.github.io/scikit-feature/files/datasets/TOX_171.mat
https://jundongl.github.io/scikit-feature/files/datasets/GLIOMA.mat
https://jundongl.github.io/scikit-feature/files/datasets/warpAR10P.mat
https://jundongl.github.io/scikit-feature/files/datasets/leukemia.mat
https://jundongl.github.io/scikit-feature/files/datasets/warpPIE10P.mat
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TALENT-Extension (many-class)

1D Name (Source) Task Class Sample Feature | ID Name (Source) Task Class Sample Feature
1 aloi Cls 1000 108000 128 4 dionis Cls 355 416188 60
2 BachChoralHarmony Cls 102 5665 15 5 MD MIX Mini_Copy Cls 706 28240 31
3 beer_reviews Cls 104 1586614 12 6 seattlecrime6 Cls 135 523577 7

TALENT-Extension (very-large-scale)

ID Name (Source) Task Class Sample Feature | ID Name (Source) Task Class Sample Feature
1 Airlines DepDelay 10M Reg — 10000000 9 12 jannis Cls 4 83733 54
2 blogfeedback Reg — 60021 276 13 KDDCup99 Cls 23 4898431 41
3 BNG(credit-a) Cls 2 1000000 15 14 microsoft Reg — 1200192 136
4 CDC Diabetes Health Cls 2 253680 21 15 nomao Cls 2 34465 118
5 covertype Cls 7 581012 54 16 poker-hand Cls 10 1025009 10
6 Data Science_Good_Kiva Cls 4 671205 11 17 sf-police-incidents Cls 2 2215023 8
7 dilbert Cls 5 10000 2000 18 Smoking and_ Drinking Cls 2 991346 23
8 fabert Cls 7 8237 800 19 UJIndoorLoc Reg — 21048 520
9 Fashion-MNIST Cls 10 70000 784 20 volkert Cls 10 58310 180
10 gina agnostic Cls 2 3468 970 21 Wave Energy_ Perth_49 Reg — 36043 99
11 Higgs Cls 2 1000000 28 22 yahoo Reg — 709877 699

4.3 Dataset Splits and Evaluation Criteria

Implementation details. We evaluate all methods described in subsection 3.2. Because
tabular models are sensitive to hyperparameters, we adopt a uniform tuning protocol to ensure
fairness. Full K-fold cross-validation would be robust but computationally prohibitive at our
scale; applying CV only to small datasets would introduce inconsistent selection pressure
due to arbitrary size thresholds. We therefore use a single, fixed hold-out protocol for the
main benchmark and study CV+ensembling separately on TALENT-tiny (see section 7).
Data splits and tuning. Each dataset is randomly split into train/val/test with proportions
64%/16%/20% following the setup in (Gorishniy et al., 2021, 2024). Hyperparameters
are selected on the validation split, and early stopping is triggered by the task metric on
validation (accuracy for classification; RMSE for regression). We use Optuna (Akiba et al.,
2019) with a fixed budget of 100 trials per method-dataset pair. After selecting the best
configuration, we retrain and evaluate each model with 15 random seeds and report the mean
across seeds. In section 7 we compare this protocol to CV+ensembles and show that, while
CV can improve absolute scores, the relative ordering of methods remains largely unchanged.
Preprocessing. We follow the pipeline of (Gorishniy et al., 2021). Numerical features are
imputed by column means and standardized (zero mean, unit variance). Categorical features
are ordinally encoded; missing categories are mapped to a dedicated token “—1". For non-deep
methods (except CatBoost) and for deep methods without an explicit categorical module,
we apply one-hot encoding after the ordinal step.

Method-specific settings. For gradient boosting, we explicitly pass feature types to CatBoost
(native categorical handling). For all deep methods, we use AdamW (Loshchilov and Hutter,
2019) and a batch size of 1024 unless noted otherwise. Pretrained tabular models are
evaluated from their latest public checkpoints with default inference hyperparameters (i.e.,
no per-dataset tuning). The complete search spaces and per-method training options are
available at https://github.com/LAMDA-Tabular/TALENT/tree/main/TALENT/configs.
Evaluation criteria. For classification tasks, we evaluate models using accuracy (higher
is better) as the primary metric and use Root Mean Square Error (RMSE, lower is better)
for regression tasks to select the best-performing model during training on the validation
set. Additionally, for classification tasks, we record F1 and AUC scores, which are especially
valuable for imbalanced datasets. For regression tasks, we also compute MAE and R? to
provide complementary evaluations of test set performance.
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https://www.openml.org/search?type=data&status=active&id=1592
https://www.openml.org/search?type=data&status=active&id=41167
https://www.openml.org/search?type=data&status=active&id=4552
https://www.openml.org/search?type=data&status=active&id=45049
https://www.openml.org/search?type=data&status=active&id=42087
https://www.openml.org/search?type=data&status=active&id=41960
https://www.openml.org/search?type=data&status=active&id=42728
https://www.openml.org/search?type=data&status=active&id=41168
https://archive.ics.uci.edu/dataset/304/blogfeedback
https://www.openml.org/search?type=data&status=active&id=42746
https://www.openml.org/search?type=data&status=active&id=258
https://www.openml.org/search?type=data&status=active&id=45579
https://archive.ics.uci.edu/dataset/891/cdc+diabetes+health+indicators
https://www.openml.org/search?type=data&status=active&id=1486
https://www.openml.org/search?type=data&status=active&id=150
https://www.openml.org/search?type=data&status=active&id=1567
https://www.kaggle.com/datasets/kiva/data-science-for-good-kiva-crowdfunding
https://www.openml.org/search?type=data&status=active&id=42344
https://www.openml.org/search?type=data&status=active&id=41163
https://www.kaggle.com/datasets/sooyoungher/smoking-drinking-dataset/data
https://www.openml.org/search?type=data&status=active&id=41164
https://archive.ics.uci.edu/dataset/310/ujiindoorloc
https://www.openml.org/search?type=data&status=active&id=40996
https://www.openml.org/search?type=data&status=active&id=41166&sort=runs
https://www.openml.org/search?type=data&status=any&sort=runs&order=desc&id=1038
https://archive.ics.uci.edu/dataset/882/large-scale+wave+energy+farm
https://archive.ics.uci.edu/dataset/280/higgs
https://webscope.sandbox.yahoo.com/catalog.php?datatype=c&guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS5oay8&guce_referrer_sig=AQAAAG9yp-KLlry_y1FwAHjGXEpNTR0uGEVXv-xZVSxDprnGdXGuD8sIHrUO2znvYPzNo3pTnHcDWwfON0mElgpTdswbhDpWXy68Jxy3F-FbxUd8AOv9OEA5SvMBjn6ET1JFc8aIZYxvySrBcKeeBgLxSQg7ZRGUL6S_JzBlhPz_kAg5
https://github.com/LAMDA-Tabular/TALENT/tree/main/TALENT/configs

A CLOSER LOOK AT DEEP LEARNING METHODS ON TABULAR DATASETS

To aggregate per-dataset performance and provide a holistic evaluation across all datasets,
we adopt several criteria:

e Average Rank. Following Delgado et al. (2014); McElfresh et al. (2023), we report the
average performance rank across all methods and datasets (lower is better).

e Statistical Comparison. To assess significant differences between methods, we plot
critical difference diagrams via Wilcoxon-Holm test (Demsar, 2006; McElfresh et al., 2023)
and paired t-test heatmaps to illustrate statistical comparisons.

e Average relative improvement. Following Gorishniy et al. (2025), we calculate the
relative improvement of a tabular method w.r.t. the performance of a tabular baseline,
e.g., MLP, and report the average value across all methods and datasets (higher is better).

e Aggregated Performance. We aggregate per-dataset results using the Shifted Geometric
Mean (SGM) (Holzmiiller et al., 2024). For classification tasks, we use classification error
(1 — accuracy), and for regression tasks, we use normalized RMSE (nRMSE).

e PAMA (Probability of Achieving the Best Accuracy). The fraction of datasets on
which a method attains the best performance among all contenders (Delgado et al., 2014).
Although originally proposed for classification, we extend it to regression by defining “best”
as the lowest error (e.g., RMSE), and retain the name for consistency.

These evaluation metrics ensure both robust performance aggregation and statistically sound
comparisons across diverse tabular datasets.

4.4 Advantages of Our Benchmark

Our benchmark is designed to evaluate tabular methods under broad, realistic coverage
and to surface behaviors that previous studies may miss. Figure 2 summarizes the key
properties of TALENT; together they highlight three advantages: substantially broader
task /domain /feature coverage, a more balanced size distribution, and explicit attention to
real-world difficulty factors (imbalance and class cardinality).

Coverage of tasks. Unlike benchmarks that focus only on classification (McElfresh et al.,
2023), TALENT spans all three standard tabular settings: 120 binary, 80 multi-class, and 100
regression datasets (Figure 2a). This breadth is important because many modern tabular
models are intended to handle both classification and regression with a single design.

Coverage of domains & feature types. We curate datasets from 13 application ar-
eas—including business & marketing, social science, finance, technology & internet, medical &
healthcare, multimedia, physics & astronomy, industry & manufacturing, biology & life sciences,
chemistry & materials, environmental science & climate, education, and handcrafted. This
diversity enables us to assess whether tabular methods can generalize across applications
from varied fields. Within each domain, we retain mixtures of feature types (numeric only,
categorical only, and mixed), as shown by the stacked bars in Figure 2b. This combination
in our benchmark stresses models to cope with heterogeneous attributes rather than a single,
homogeneous regime.

Coverage of data sizes. To avoid size-driven artifacts, we target a more uniform spread
over dataset complexity, measured by N X d (instances x features). Figure 2c shows that
TALENT allocates substantial mass to small, medium, and moderately large problems alike,
yielding fairer aggregate conclusions than skewed size distributions.
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Figure 2: Advantages of the proposed benchmark. (a) shows the number of datasets for three
tabular prediction tasks. (b) shows the histogram of datasets across various domains, as well
as the types of attributes. (c) shows the number of datasets along with the change of their
sizes (N x d). (d) shows the histogram of the number of categorical features in datasets with
categorical features. (e) shows the histogram of the imbalance rate for classification datasets.
(f) shows the histogram of the number of classes for multi-class classification datasets.

Coverage of categorical structure. Because categorical attributes are central to tabular
heterogeneity, we report both the number of categorical features per dataset (Figure 2d)
and the number of classes in multi-class tasks (Figure 2f). The resulting distributions are
intentionally broad—spanning datasets with very few to many categorical columns, and tasks
with small to large class cardinalities. This diversity ensures that evaluations meaningfully
stress models’ ability to handle categorical encodings, tokenization or embedding strategies,
and class-aware objectives across a wide spectrum of practical scenarios.

16



A CLOSER LOOK AT DEEP LEARNING METHODS ON TABULAR DATASETS

Coverage of imbalance. Real deployments often face skewed label distributions. Figure 2e
shows the imbalance-ratio histogram across our classification sets: while many datasets are
near-balanced, a substantial tail is moderately to strongly imbalanced. We evaluate with
vanilla training (no task-specific rebalancing), and additionally report F1/AUC to ensure
fair comparison on skewed test sets.

Summary. Compared with prior benchmarks, TALENT offers (i) richer task coverage
(including regression), (ii) multi-domain, mixed-feature datasets within each domain, (iii) a
more even spread over N X d, and (iv) explicit variation in categorical count, class cardinality,
and imbalance. This breadth and balance make TALENT a stronger proxy for real-world
tabular challenges and a more reliable basis for comparing deep and tree-based methods.

5 Comparison Results among Datasets

We compare tabular methods across 300 datasets using multiple evaluation criteria. To
provide a concise and clear analysis, we report only the aggregated performance metrics,
such as average rank, across the entire dataset collection. Detailed per-dataset results are
available in the online supplementary document at https://github.com/LAMDA-Tabular/
TALENT/tree/main/results.

In the figures presented in this section, we use distinct colors to represent different
categories of methods, ensuring clarity and ease of comparison. Specifically, Dummy is
represented by gray [[], while classical methods are denoted by coral orange [. Tree-based
methods are visualized using vibrant green [, and MLP variants are shown in rich red [l.
For methods with specially designed architectures, we use soft indigo [, while tree-
mimic methods are represented by emerald teal ll. Neighborhood-based methods are
depicted in vivid purple ll, token-based methods in bright cyan [, regularization-based
methods in fresh lime [], and pretrained foundation models in warm amber .

It is notable that some methods are limited to specific types of tasks. For example,
TabPFEFN v1 and TabICL are designed exclusively for classification tasks and cannot handle
regression, while DNNR is tailored for regression and cannot be applied to classification.
When showing the performance over all datasets, we only present the results of methods
capable of addressing both classification and regression tasks.

5.1 On Average Performance

We compare 40 representative tabular methods across 300 datasets, reporting average
performance ranks and conducting statistical significance tests with the Wilcoxon-Holm
procedure at a 0.05 level (Demsar, 2006). The critical difference diagrams are shown
in Figure 3, while detailed rank values and pairwise heatmaps are deferred to the appendix.
Figure 1 further contextualizes representative methods in terms of efficiency and model size.?

The most striking results come from pretrained foundation models. Across different
task types, TabPFN v2 and TabICL consistently rank among the best-performing methods.
In many cases, they significantly outperform classical ensembles and tuned deep models,
highlighting the benefits of pretraining and in-context learning for tabular data. While the

3. The average ranks in Figure 1 are computed on a representative subset and may differ slightly from the
full-rank results.
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Figure 3: Critical difference of all methods via the Wilcoxon-Holm test with a significance
level of 0.05. The lower the rank value, the better the performance.

earlier TabPFN v1 lags behind, its successors—especially TabPFN v2—extend to regression
tasks and display clear generalization advantages.

Beyond foundation models, several consistent patterns emerge. Tree-based ensembles
remain highly competitive: Random Forest and XGBoost provide reliable baselines, while
CatBoost and Light GBM often achieve top-tier ranks, especially in regression tasks. The
Wilcoxon—Holm analysis shows no significant differences among these gradient boosting
methods, underscoring their maturity and robustness. Recursive Feature Machines (RFM)
and its extension xRFM also achieve performance close to the strongest ensembles, occupying
similar rank intervals in both binary and regression settings. The results indicate that
tree-like structures may form an effective hybrid paradigm.

For deep methods, vanilla MLPs are generally weak, but tuned implementations such
as MLP-PLR and RealMLP close the gap substantially. RealMLP, in particular, achieves
competitive performance across tasks and is statistically stronger than many ResNet-style or
regularization-based variants. Token-based approaches (e.g., FT-T, ExcelFormer, Autolnt)
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achieve robust results, especially in classification, but significance tests show they often cluster

with ensembles in the same equivalence group, indicating that attention-based tokenization

provides stability but not decisive superiority.

Tree-mimic networks such as NODE and TabNet generally underperform relative to
ensembles. In contrast, neighborhood-based models such as ModernNCA achieve excellent
results and are often statistically comparable to CatBoost and Light GBM, highlighting the
promise of retrieval-based learning. Interestingly, ensembling within deep methods further
improves performance—TabM outperforms base MLPs, and MNCA-ens consistently surpasses
ModernNCA—indicating that ensemble effects remain beneficial even for neural models.

Despite these advances, the Wilcoxon—-Holm tests show that foundation models, ensembles,
and top DNNs (RealMLP, ModernNCA) often remain statistically tied, suggesting that
universal superiority has not yet been achieved. Scalability and computational cost also remain
open challenges for foundation models. Results from BETA further indicate that fine-tuning
strategies (e.g., task-specific adaptation of pretrained TabPFN) can yield improvements,
suggesting a promising direction for enhancing current foundation models.

Overall, these results yield several key observations:

e Pretrained foundation models (TabPFN v2, TabICL) deliver state-of-the-art performance
across many datasets and task types, substantially advancing over earlier versions. The
results of foundation models significantly narrow—but not entirely close—the gap between
tree-based and DNN-based paradigms.

e Tree-based ensembles (CatBoost, LightGBM, XGBoost) remain strong, reliable, and
statistically robust baselines.

e Carefully optimized DNNs, especially RealMLP and ModernNCA, can rival or surpass
ensembles, showing robustness across both classification and regression tasks.

e Token-based transformers (FT-T, ExcelFormer, Autolnt) provide stable and competitive
results, but their advantages are not statistically decisive over ensembles.

e Ensemble-style strategies (e.g., TabM, MNCA-ens) demonstrate consistent gains over their
base variants, suggesting that ensembling remains an effective principle even in modern
deep tabular learning.

e The Wilcoxon—Holm tests highlight large equivalence groups: many methods, while different
in design, are statistically indistinguishable. This indicates that progress often comes from
incremental but robust improvements, rather than single universally dominant architectures,
reflecting the growing maturity of the tabular learning ecosystem.

5.2 Relative Improvements over Tabular Baselines

Well-tuned MLP is widely regarded as a strong baseline for tabular prediction tasks. To
assess robustness, we evaluate each method by its relative improvement over MLP follow-
ing Gorishniy et al. (2025). Formally, for a method m on dataset d, the relative improvement
is defined as

R0 — Ryvup,a

ARy, —
. Ryipa

where R represents accuracy for classification and the min-max scaled negative RMSE
for regression. Box plots in Figure 4 summarize improvements across tasks, with medians

reflecting typical gains and interquartile ranges (IQRs) indicating stability.
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Figure 4: The Box-Plot of relative performance improvements of tabular methods over the
MLP baseline across binary classification, multi-class classification, and regression tasks. The
relative improvement is calculated for each dataset, where larger values indicate stronger
performance relative to the MLP baseline. The box plots show the median, interquartile
range (IQR), and outliers for each method. Methods with narrower IQRs demonstrate greater
stability, while wider distributions suggest variability in performance.
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Overall, the results confirm earlier statistical findings while highlighting additional nuances.
Tree ensembles (CatBoost, Light GBM, XGBoost) not only achieve strong median gains over
MLP but also exhibit narrow IQRs, underscoring their stability. Among deep methods,
RealMLP, TabR, and ModernNCA consistently improve upon MLP, with ModernNCA
showing particularly high and robust gains in regression. In contrast, models such as
SwitchTab, GrowNet, and TabNet show wide distributions with negative medians in some
settings, reflecting instability and lack of robustness.

Pretrained foundation models (TabPFN v2, TabICL) outperform MLP across nearly
all datasets, though their relative margins are often modest, suggesting broad consistency
rather than large per-dataset gains. Ensemble-enhanced approaches (e.g., MNCA-ens, TabM)
also reliably surpass MLP, confirming that ensembling deep methods improves stability.
Variants such as MLP-PLR provide small but systematic improvements over the vanilla MLP,
validating the importance of encoding refinements.

Across tasks, binary classification shows the most consistent gains for ensembles and
tuned DNNs, while multi-class classification is more challenging, with greater variance and
some ensembles underperforming MLP on subsets of datasets. Regression highlights the
relative strength of retrieval-based methods (ModernNCA, TabR) and pretrained models,
which achieve both higher medians and broader coverage of positive gains.

In summary, outperforming a strong MLP baseline remains non-trivial. Only a subset
of methods—gradient boosting ensembles, carefully tuned MLP variants, retrieval-based
methods, and pretrained foundation models—achieve consistent and stable improvements,
validating them as reliable baselines for future research.

5.3 Probability of Achieving the Best Accuracy

Since the performance of tabular methods varies across datasets, average ranks and statistical
tests may obscure methods that excel in specific scenarios. To complement these aggregate
metrics, we evaluate the Probability of Achieving the Best Accuracy (PAMA) (Delgado
et al., 2014), which measures the proportion of datasets on which a method achieves the best
performance. This perspective highlights dataset-specific adaptability and identifies methods
that frequently dominate.

The results in Figure 5 reveal several key findings. First, pretrained foundation models
show a decisive advantage. TabICL and TabPFN v2 achieve the highest PAMA scores across
tasks, winning on a substantial portion of datasets (up to 22.7% in multi-class classification).
Their strong performance underscores the value of pretraining and in-context learning for
diverse tabular problems. Importantly, their success is not limited to classification: TabPFN
v2 ranks second overall in regression tasks, further demonstrating its generality.

Second, classical ensembles remain highly competitive. CatBoost, LightGBM, and
XGBoost frequently appear among the top methods, particularly in regression, where
CatBoost and LightGBM achieve some of the highest PAMA scores. Extensions such
as RFM /xRFM also perform strongly, often statistically indistinguishable from the top
ensembles and pretrained models. These results reinforce earlier findings that tree-based
ensembles remain robust baselines, with strong adaptability across heterogeneous datasets.

Third, deep methods vary in their adaptability. ModernNCA and its ensemble variant
(MNCA-ens) frequently rank near the top across all tasks, with MNCA-ens achieving the
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Figure 5: PAMA (Probability of Achieving the Best Accuracy) of various methods in binary
classification (a), multi-class classification (b), regression (c), and all tasks (d). Each bar
segment denotes a tabular method, whose width is the percentage that the method achieves
the best performance over a kind of tabular prediction task. The wider the cell, the more
often that a method performs well on the tabular prediction task.

highest PAMA score (22.8%) in regression. This confirms the strength of neighborhood-based
retrieval strategies, particularly for numerical prediction. In contrast, early tree-mimic
architectures such as NODE and TabNet rarely achieve top ranks, echoing the earlier
statistical test results. Among MLP-based methods, RealMLP consistently achieves non-

trivial PAMA scores, outperforming most other DNN variants and demonstrating that careful
tuning can elevate simple architectures.

Finally, the PAMA distributions highlight the concentration of top-performing methods.
Across binary, multi-class, and regression tasks, fewer than 10 methods account for over 80%
of all best-performing cases (as marked by the dashed red line). This identifies a practical
“shortlist” of strong candidates—primarily TabICL, TabPFN v2, MNCA-ens, ModernNCA,
CatBoost, Light GBM, and TabM—that dominate across most scenarios. Simpler models
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Figure 6: Aggregated performance across datasets using Shifted Geometric Mean Error
(SGM). Per-dataset metrics are classification error (1-accuracy) for classification tasks and

normalized RMSE (nRMSE) for regression tasks. Lower values indicate better performance
and higher robustness across datasets and random seeds.

(e.g., Logistic Regression, KNN) occasionally achieve best results in niche datasets, but their
contributions are relatively small and task-specific.

In summary, PAMA provides a complementary view to average rank and statistical tests.
While many methods perform competitively on average, only a small subset consistently
wins across diverse datasets. Pretrained foundation models clearly lead, followed by strong

ensembles and retrieval-based methods, suggesting that future research should focus on
enhancing adaptability while preserving efficiency.

5.4 Averaged Performance

To evaluate robustness across datasets and random seeds, we report aggregated metrics:

Shifted Geometric Mean Error (SGM) for classification and normalized RMSE (nRMSE) for
regression, following Holzmiiller et al. (2024). The results are shown in Figure 6.
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Figure 7: Comparison of representative tabular prediction methods across 14 application
domains. The radar plot shows reversed rank scores, where larger values indicate better
average performance in a domain.

In binary classification, foundation models (e.g., TabPFN v2, TabICL) achieve the lowest
SGM values, closely followed by context-based methods (MNCA-ens, TabR) and strong
ensembles (CatBoost, Light GBM). RealMLP and MLP-PLR also perform competitively,
further confirming that enhanced MLPs can close much of the historical tree-DNN gap. These
results echo earlier average-rank analyses but emphasize that foundation and neighborhood-
based models deliver more stable, low-error behavior across seeds.

For multi-class classification, the ranking remains similar, with TabPFN v2 and MNCA-
ens again achieving the best SGM, while RealMLP and TabR remain close. Ensembles such
as CatBoost and Light GBM still perform strongly but no longer dominate, highlighting the
advantage of retrieval-based and pretrained approaches in more complex label structures.
Classical methods like LR, KNN, and NB perform poorly under SGM, reinforcing their lack
of robustness in high-class scenarios.

Regression shows a slightly different pattern: ensemble-enhanced models (MNCA-ens,
xRFM, CatBoost, Light GBM) and RealMLP achieve the lowest nRMSE. TabPFN v2 also
ranks among the top performers, suggesting that pretraining contributes to consistent
generalization even in continuous targets. In contrast, models such as TabNet, GrowNet,
and SwitchTab perform poorly, with high variability across datasets. Linear models (LR)
and simple baselines are the weakest, consistent with earlier analyses.

Overall, SGM and nRMSE highlight three key insights. First, pretrained foundation
models (TabPFN v2, TabICL) and neighborhood-based ensembles (MNCA-ens, TabR)
provide the most stable performance across tasks. Second, gradient boosting ensembles
remain reliable, particularly in regression. Third, carefully tuned MLPs (RealMLP, MLP-
PLR) consistently rank among the top tier, showing that architectural refinements plus
optimization strategies can rival classical ensembles. These findings reinforce conclusions
from average-rank and PAMA analyses while underscoring the added stability of foundation
and context-based methods under seed-sensitive metrics.
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Figure 8: Average ranks of representative tabular methods as dataset characteristics vary. (a)
summarizes trends with joint scale N x d; (b) and (c) isolate the marginal effects of sample
size N and feature dimensionality d; (d) varies the number of classes C, reflecting the label
granularity.

5.5 Results across Domains and Dataset Sizes

To better understand the behavior of tabular methods, we analyze their performance across
14 application domains and four dataset size groups. We select six representative models
from diverse categories: the tree-based model CatBoost, the token-based model FT-T, the
neighborhood-based model MNCA-ens, the pretrained foundation model TabPFN v2, the
enhanced MLP variant RealMLP, and the recursive feature model xRFM. Figure 7 presents
the reversed average ranks across domains using a spider chart (larger values indicate better
performance). Figure 8 presents the average ranks across dataset sizes (and other statistics)
with bar charts (lower values indicate better performance).

Domain-level analysis shows clear specialization among methods. Pretrained and
neighborhood-based approaches stand out with broad adaptability. TabPFN v2 performs
consistently well across many domains, particularly excelling in education, multimedia, and
social sciences, reflecting the benefits of pretraining for generalization on heterogeneous
tasks. MNCA-ens also achieves strong and steady performance, ranking among the best in
handcrafted, environmental, and healthcare datasets, which highlights the robustness
of retrieval-based ensemble strategies. Tree-based ensembles continue to serve as highly
competitive baselines. CatBoost is especially effective in chemistry and finance, where
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categorical structures and feature interactions dominate, while xRFM shows stable results
across a wide spectrum of domains, often close to the strongest pretrained and context-based
models. Other deep neural methods demonstrate complementary strengths. RealMLP
achieves notable gains in finance, physics, and industry, confirming the effectiveness of
enhanced MLP designs in structured domains. F'T-T delivers solid adaptability in technology
and social datasets, benefiting from tokenization and attention mechanisms, although its
advantage over ensembles is less pronounced.

The cross-domain analysis also underscores the variability of model behavior. For
instance, in biology and healthcare, ensemble methods maintain strong performance, while
in multimedia and social science tasks, foundation and retrieval-based models dominate.
This variation suggests that domain alignment is a critical factor in achieving optimal results,
and no single approach universally leads across all areas.

Dataset-size and composition analysis reveals fine-grained scalability patterns. As
shown in Figure 8, model performance varies notably when examined along four complemen-
tary dimensions—overall dataset size (N x d), number of samples (INV), feature dimensionality
(d), and number of classes (C). All rank values are computed over the full set of evaluated
methods in this study, while the figure visualizes only representative models for clarity.

Across overall dataset scales (Figure 8a), CatBoost continues to exhibit strong scalability,
improving steadily as the dataset size increases. In contrast, RealMLP performs best on
small-to-medium datasets but declines slightly as scale grows, highlighting optimization and
regularization challenges common to MLP-style models. TabPFN v2 ranks near the top on
medium-to-large datasets, demonstrating that pretraining confers robust generalization in
typical-size regimes, though its effectiveness tapers off when data size becomes very large—an
observation consistent with its pretraining limits and context-size constraints. MNCA-ens
remains consistently strong, benefiting from ensembling over neighborhood-based embeddings,
while xRFM shows competitive performance on small-to-medium scales but struggles a bit
when dataset size increases.

When isolating the effect of sample count (Figure 8b)), MNCA-ens, CatBoost, and
RealMLP all gain from larger N, confirming their strong scalability under data abundance.
TabPFN v2, however, shows its best results around 5k—10k samples before flattening out,
suggesting that its pretrained inference window constrains further improvements without
architectural extension. FT-Transformer remains stable but shows limited scalability advan-
tage. Conversely, xRFM again performs well in the small-data regime (N <2000), consistent
with its design as a lightweight, backpropagation-free architecture that benefits from smaller
sample sizes.

For feature dimensionality (Figure 8c)), both CatBoost and RealMLP retain strong
rankings as d grows, showcasing their robustness to redundant or weakly informative features.
Interestingly, TabPFN v2 maintains good performance even when d > 100, suggesting that
its pretraining includes sufficient diversity to generalize beyond low-dimensional regimes.
In contrast, FT-Transformer and xRFM exhibit noticeable degradation as d increases,
possibly due to insufficient regularization and the growing difficulty of effective feature
selection under very high dimensionality. We will later show in subsection 7.2 that such
high-dimensional regimes further amplify these differences, where foundation models in
particular face performance degradation in extremely wide feature spaces.
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Figure 9: Distribution of Tree-DNN scores across 300 datasets. The score is defined as the
difference between the best representative tree-based method and the best representative
DNN-based method. (a) excludes pretrained foundation models, while (b) includes TabPFN
v2 among the DNN-based group. Positive values indicate tree-friendly datasets, negative
values indicate DNN-friendly datasets.

When comparing across class cardinalities (Figure 8d)), ensemble-style deep models such
as MNCA-ens and RealMLP improve significantly as class numbers increase, demonstrating
their flexibility in capturing complex, fine-grained label boundaries. CatBoost remains robust
across all C, reinforcing its role as a dependable, well-regularized baseline. FT-Transformer
shows declining performance beyond C' > 10, possibly due to its token-based design being
less effective for large label vocabularies. xRFM maintains moderate performance in low-class
scenarios but exhibits limited gains for higher class counts.

Summary across domains and scales. Taken together, the domain- and size-wise analyses
reveal that model behavior is shaped jointly by the structural characteristics and the scale of
tabular data. These findings collectively suggest that fine-grained analyses along domain and
data-size axes offer more informative insights than aggregate rankings alone. They reveal
how different modeling principles respond to variations in feature structure, label granularity,
and data scale. Such observations motivate a more nuanced understanding of how classical
and deep paradigms complement each other in tabular prediction, laying the groundwork for
our subsequent discussion.

5.6 Revisiting the Tree-DNN Debate

A longstanding question in tabular learning is whether tree-based ensembles or deep neural
networks (DNNs) are inherently stronger. Earlier benchmarks generally favored ensembles
such as Random Forest, XGBoost, and CatBoost, while deep models struggled to consistently
outperform them. This “tree-DNN divide” motivated much of the early work on specialized
architectures for tabular data (Grinsztajn et al., 2022; McElfresh et al., 2023).

To quantify this divide, we adopt the Tree-DNN score (Equation 2), defined as the
difference between the best-performing tree-based model and the best-performing DNN-
based model after normalization. Higher values indicate datasets where ensembles dominate
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(tree-friendly), while lower values indicate datasets where DNNs dominate (DNN-friendly).

5 = Max(5XQBoost > SCatBoost s SRForest > SLightG) — MaX(SRealMLPs SFT-T> SMNCA, $TabM) - (2)

§ represents the normalized metric, such as accuracy for classification tasks or negative
RMSE for regression tasks.

Figure 9(a) shows the sorted score distribution without including pretrained models
(TabPFEN v2). A large portion of datasets remains tree-friendly, confirming that ensembles
retain a structural advantage on many tasks. However, a comparable fraction of datasets
favors DNNs, reflecting the progress of modern deep tabular methods such as RealMLP and
ModernNCA.

The picture changes once pretrained tabular foundation models are included (Figure 9(b)).
With TabPFN v2 added to the DNN group, the balance shifts substantially toward DNN-
friendly datasets. This highlights the transformative role of foundation models: they narrow,
and in many cases invert, the traditional advantage of ensembles by leveraging pretraining
and in-context inference. Still, the right tail of the distribution shows that there remain
numerous datasets where ensembles achieve clear wins, particularly in regression-heavy or
highly categorical settings.

Overall, the debate has evolved rather than disappeared. Tree-based ensembles remain
reliable, statistically competitive baselines across diverse tasks, especially when data structure
aligns with their strengths. Yet, pretrained foundation models represent a paradigm shift:
they elevate DNNs to state-of-the-art levels across many benchmarks, reducing the universality
of ensemble dominance. The results suggest a more nuanced view—trees still matter, but
pretrained models are redefining the frontier of tabular learning.

5.7 Comparisons with Imbalance-Sensitive Criteria

Real-world tabular datasets often exhibit class imbalance, making accuracy insufficient as a
sole evaluation metric. To complement previous analyses, we assess methods using AUC and
F1l-score on 67 classification datasets with imbalance rates below 0.25, without applying any
additional imbalance-handling strategies. The results are shown in Figure 10.

The rankings reveal both consistency and divergence compared to accuracy-based results.
AUC favors ensemble-style approaches and pretrained models: TabICL, TabPFN v2, and
CatBoost dominate, with TabICL achieving the lowest average rank. These methods excel at
separating minority and majority classes, reflecting their robust decision boundaries under
imbalance. ModernNCA and its ensemble variant also remain competitive, consistent with
their strong overall performance in earlier benchmarks.

In contrast, F1-score shifts the advantage toward certain DNN-based approaches. RealMLP
emerges as the top performer, with ModernNCA, TabR, and CatBoost following closely.
These models balance precision and recall more effectively, which is critical when evaluating
rare classes. Interestingly, TabICL and TabPFN v2—dominant under AUC—perform slightly
less consistently under F1, suggesting that while they are excellent at ranking predictions,
they may not optimize precision—recall trade-offs equally well.

(Classical ensembles such as Random Forest and XGBoost maintain mid-level performance
across both metrics, outperforming most classical baselines but trailing behind modern DNNs
and foundation models. Token-based methods like FT-T remain stable, appearing competitive
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Figure 10: Evaluations of tabular methods on 67 imbalanced classification datasets (31 binary
and 36 multi-class tasks with imbalance rates below 0.25). The average ranks are computed
using AUC (a) and Fl-score (b). Lower values indicate better performance.

under both AUC and F1, though rarely leading, which aligns with earlier observations from
statistical comparisons.

Overall, imbalance-sensitive evaluations confirm the robustness of strong ensembles
(CatBoost, Light GBM), advanced DNNs (RealMLP, ModernNCA), and foundation models
(TabICL, TabPEFN v2). Yet the divergence between AUC and F1 underscores that model
choice should align with task-specific goals: AUC-oriented scenarios benefit from ensembles
and pretraining, while Fl-sensitive contexts may prefer RealMLP or neighborhood-based
designs.

6 Measuring the Heterogeneity of Tabular Data

One of the central challenges in tabular learning arises from the inherent heterogeneity of
tabular datasets (Shwartz-Ziv and Armon, 2022). Unlike other modalities such as images
or text, where inputs share relatively uniform structures, tabular datasets often combine
diverse attribute types—including continuous values, binary indicators, ordinal features, and
high-cardinality categorical variables (Borisov et al., 2024). This diversity poses substantial
challenges for deep models, which must simultaneously accommodate heterogeneous statistical
properties and learn meaningful interactions across them.

In this section, we build on meta-features that capture dataset properties and systemati-
cally examine how their variations reflect the heterogeneity of tabular data. To this end, we
introduce a performance-curve prediction task, which learns to forecast the training dynamics
of a tabular method from both meta-features and early learning signals. A meta-feature
is considered effective if it contributes to accurately predicting these dynamics, thereby
indicating its role in shaping model behavior.

By analyzing the predictive relationships between meta-features and training dynamics,
we identify which dataset characteristics most strongly influence the effectiveness of deep
tabular models. Our results provide insights into how heterogeneity can be measured, which
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factors are most critical, and how they affect the success or failure of different representative
methods. This analysis not only clarifies the limitations of current approaches but also offers
guidance for designing more robust and adaptive tabular learning models.

6.1 Reformulating Meta-Feature Selection as a Dynamics Forecasting Task

Meta-features capture intrinsic properties of a tabular dataset. To understand which proper-
ties matter most for deep tabular learning, we link them to the epoch-wise training dynamics
of neural models. Instead of treating meta-feature selection as an isolated procedure, we
reformulate it as a forecasting task: predicting validation curves from dataset properties.
This formulation allows us to identify which dataset characteristics most strongly influence
model behavior.

Formally, given a training set D, we optimize a deep tabular model f with stochastic
gradient descent over Equation 1. Each epoch is a complete pass through D, with mini-batches
drawn after random permutation of the examples. Assuming the best hyperparameters of f
are predetermined, we record validation statistics (i.e., classification accuracy or normalized
RMSE for regression) as a sequence a = [aj,ag,...,ar| € Rz over T epochs until early
stopping.

We propose to forecast a using two signals: (i) dataset meta-features mp that encode
structural properties (e.g., number of attributes, joint entropy with the target), and (ii)
the initial segment of the validation curve. Specifically, we define a support set S € }Rf
containing the first K values of a, and a query set Q € R{fK with the remaining values.
The task is to learn a mapping

g:{mp,S} — Q,

leveraging both dataset statistics and early validation behavior. By analyzing which meta-
features improve forecasting accuracy, we can reveal the key factors shaping the training
dynamics of deep tabular methods.

6.2 Selecting Effective Meta-Features for Heterogeneity Analysis

To forecast training dynamics from S, we model the shape of validation curves directly. Let
t denote the epoch index and y the performance measure. Because § is short, we adopt
a learnable approach: predicting the parameters of a curve family from {S,mp}, where
meta-features provide auxiliary signals that adapt predictions to dataset-specific properties.
All data for this task are drawn from validation curves of MLPs trained with default
hyperparameters on our benchmark datasets. We split these curves into 80% training and
20% testing, ensuring no dataset overlap between the two.
Dynamics Curve Approximation. We model validation dynamics with the following
curve family:

ag(t) = Alogt + BVt +C + D/t, (3)

where t is the epoch number, a(t) is the validation performance, and 6 = {A, B, C, D} defines
the curve. This functional form is empirically selected to capture the characteristic sub-linear
growth and asymptotic convergence observed in tabular deep learning validation curves.
For accuracy curves, A and B are typically positive, reflecting monotonic improvement. To
capture dataset effects, we learn a meta-mapping h : {mp,S} — 0 (Vinyals et al., 2016;
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Figure 11: Importance of various meta-features for predicting training dynamics across
different types of tabular datasets. Legends such as “NN Regression” denote selected
important meta-features for regression tasks on DNN-friendly datasets.

Chao et al., 2020). Comparisons with other formulations of the curve family are discussed in
the Appendix.

Learning Objective. We optimize h by minimizing the mean absolute error (MAE) between
predicted and observed validation curves:

min DD Uapenmp,s) (), ar) - (4)

{mp,S}a:€Q

For each dataset, we collect the first five epochs (S) and meta-features mp (see Table 5), feed
them into A (an MLP), and predict §. The predicted curve extrapolates Q, and accuracy is
assessed by the discrepancy between predictions and ground-truth dynamics. After training,
h generalizes to unseen datasets, highlighting the most effective meta-features for forecasting
training behavior.

6.3 The Selected Meta-Features

We implement h as a four-layer MLP. The input dimension is 24: five dimensions from
the first five epochs of § and 19 from dataset meta-features (and derived statistics such as
range.mean, range.std, etc.). The output is the four parameters of Equation 3. We evaluate
h on classification and regression curves and find that including meta-features substantially
improves prediction accuracy. Additional results are reported in the appendix.

We further analyze which meta-features most strongly influence predictions by examining
their weights in h. Training datasets are divided into four categories (classification /regression
x tree-/DNN-friendly), where the tree-/DNN-friendly split is determined according to the
Tree-DNN score in Figure 9(a). For each category, we train a separate predictor and extract
the most important meta-features (see Figure 11). Results reveal that: (1) For classification
tasks, the gravity meta-feature—measuring the distance between minority and majority
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class centers—is critical for both tree-based and DNN-based methods. (2) For regression

tasks, range .mean (average attribute range) and mean.mean (average attribute mean) are

highly predictive. (3) Tree-based methods rely heavily on sparsity.mean, while DNN-based
methods are more sensitive to distributional statistics such as max.sd.

These observations suggest that dataset heterogeneity is well captured by a small set of
meta-features encoding complexity, feature variability, and data quality. Concretely:

e gravity: Measures the Minkowski distance between the centers of mass of the majority and
minority classes. A smaller distance indicates higher overlap between class distributions
and, thus, greater classification difficulty.

e inst_to_attr: The ratio of the number of instances to the number of attributes, reflecting
the balance between samples and features in the dataset.

There are four meta-features encoding the heterogeneity of features.

e sparsity_mean, sparsity_std : Quantify the variability of unique values in numeric

features, where sparsity for a feature vector v is defined as:

Sy =2 i?.o ' <¢ZJ) - 1'()) ’

with n representing the instance number and ¢(v) the number of distinct values in v.
e entropy_mean, entropy_std: Reflect the diversity in feature value distributions, where
entropy for a feature v is calculated using:

H(U) = - Zpk : 1Ogbase(pk)a
k

where p;, is the proportion of instances with the k-th unique value, and the logarithm base
equals the number of unique values in v.

e ig_range_std: The standard deviation of interquartile ranges (Q3 — (1) across all at-
tributes, capturing variability in feature spread.

e range_mean: The mean range (max — min) across all attributes.

There is a meta-feature encoding the data quality of a tabular dataset.

e nr_outliers encodes the quality of a tabular dataset. In detail, it is the number of
features containing at least one outlier value, where an outlier is defined as a value lying
outside 1.5 times the interquartile range (IQR).

These meta-features collectively provide a robust way for assessing dataset characteristics,
capturing factors such as class separability, feature variability, and the presence of anomalies.
By formalizing these properties, we enable a systematic evaluation of dataset properties and
their impact on model performance.

6.4 Correlation between Selected Meta-Features and Types of Tabular Methods

We analyze the relationship between dataset meta-features and the performance of nine
representative methods introduced in section 4. By pairing each dataset’s selected meta-
features with the corresponding average rank of each method, we identify the meta-feature
exhibiting the strongest absolute correlation with that method’s performance. A higher
absolute correlation indicates that the property revealed by the meta-feature has a stronger
influence on the performance of the corresponding tabular method.

32



A CLOSER LOOK AT DEEP LEARNING METHODS ON TABULAR DATASETS

Table 2: Meta-features with the strongest correlation to the performance (average rank) of
each representative method. The correlation values indicate the strength of the relationship,
with negative values showing better performance as the meta-feature decreases.

Method Correlation Value Meta-Feature

XGBoost 0.3809 entropy_mean
Light GBM -0.3487 entropy_std
Catboost 0.3101 entropy_mean
Random Forest -0.2571 sparsity_std
RealMLP -0.2819 inst_to_attr
TabM -0.2059 sparsity_mean
FT-T -0.2671 inst_to_attr
ModernNCA 0.1805 entropy_std
TabPFN v2 0.2765 inst_to_attr

Table 2 summarizes the meta-feature most strongly correlated with the performance
of each representative method. A negative correlation indicates that higher values of the
meta-feature are associated with better performance, while a positive correlation suggests
the opposite.

Specifically, most methods show the strongest correlation with Feature Heterogeneity
metrics, highlighting the impact of feature distribution variability on performance. For
example, XGBoost and CatBoost are most correlated with entropy_mean , while Light GBM
and ModernNCA show their strongest correlations with entropy_std. Random Forest is
most sensitive to sparsity_std, whereas TabM relies more on sparsity_mean. Several
deep learning methods—including RealMLP, FT-Transformer, and TabPFN v2—exhibit
strong correlations with inst_to_attr , a meta-feature representing the ratio of instances
to attributes. This diversity underscores that different tabular methods are influenced by
distinct dataset properties, even though feature heterogeneity metrics emerge as the most
consistent driver across models.

To further illustrate these relationships, we visualize how the rank of different methods
changes with respect to their most correlated meta-feature in Figure 12. The horizontal axis
shows the sorted values of the most correlated meta-feature, while the vertical axis indicates
the average rank for each representative method.

In some cases, the rank changes monotonically. For example, in Figure 12 (b), Light GBM
shows a decreasing trend in rank as entropy_std increases. Since the standard deviation of
entropy captures the variation in feature types within a dataset, this observation suggests
that tree-based methods perform better (achieve lower ranks) when the dataset contains a
higher diversity of feature types.

Conversely, several deep tabular methods, including RealMLP, FT-Transformer, and
TabPFN v2, show a monotonic increase in rank as inst_to_attr increases (see Figure 12 (e),
(g), and (i)). This indicates that these methods tend to perform worse when the number of
instances relative to the number of features is high, highlighting their sensitivity to dataset
size and feature dimensionality.
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Figure 12: Dynamics of the average rank for each representative method as shown in Table 2,
plotted against datasets ordered by their most correlated meta-feature. Each subfigure
corresponds to a selected method and its associated meta-feature. The horizontal axis
represents datasets ranked by ascending values of the meta-feature, while the vertical axis
shows the rank. To enhance readability, the curves have been smoothed.

TabM and Random Forest exhibit clear correlations with sparsity-related meta-features.
Specifically, TabM’s rank decreases as sparsity_mean decreases (better performance on

denser datasets), while Random Forest shows a decreasing trend in rank with lower sparsity_std
(see Figure 12 (d) and (f)).

Some methods, such as ModernNCA, display moderate sensitivity to feature heterogeneity
(entropy_std), with rank fluctuating in response to increasing variability (see Figure 12 (h)).

These observations collectively highlight the diverse ways in which dataset properties influence
the performance of different tabular methods.
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Table 3: Meta-features with the strongest correlation to the performance (average rank)
of tree-based methods, DNN-based methods, and their differences. The correlation values
indicate the strength of the relationship, with negative values showing better performance as
the meta-feature increases.

Category Correlation Value Meta-Feature

Tree -0.3854 entropy_std
DNN -0.3502 inst_to_attr
Tree-DNN -0.3333 entropy_std

6.5 Analysis of the Tree-DNN Performance Gap via Selected Meta-Features

We further analyze which meta-features most significantly influence the performance gap
between tree-based and DNN-based methods. Tree-based methods include Random Forest,
XGBoost, Light GBM, and CatBoost. We choose representative DNN-based methods with
low average ranks, i.e., RealMLP, TabM, ModernNCA, and FT-Transformer.

For each dataset, we compute the performance gap as the difference in average rank
values between tree-based and DNN-based methods. This tree-DNN performance gap
quantifies the relative advantage or disadvantage of one category over the other. The meta-
features most strongly correlated with the performance of tree-based methods, DNN-based
methods, and the tree-DNN gap are listed in Table 3.

Results presented in Table 3 establish a strong negative correlation between the Tree-
DNN performance gap and Feature Heterogeneity metrics, exemplified by entropy_std
(Correlation: —0.3333). This observation contrasts with the meta-feature inst_to_attr—
which has been emphasized in previous studies (McElfresh et al., 2023)—as it exhibits a
markedly weaker correlation with the performance differential. These findings suggest that
the degree of heterogeneity among dataset features is a more critical determinant driving the
relative model superiority. Specifically, datasets characterized by greater feature heterogeneity
(e.g., higher variability in feature entropy or sparsity) tend to confer an advantage to
tree-based methods, likely attributable to their intrinsic ability to effectively handle diverse
and non-uniform feature distributions through successive partitioning.

The visualizations in Figure 13 provide empirical substantiation for these correlations. Fig-
ure 13(a) illustrates that as entropy_std increases (along the index dimension), the average
rank for tree-based methods consistently decreases, indicative of performance improvement.
Crucially, Figure 13(c), which depicts the Tree-DNN gap against entropy_std, exhibits a
clear negative slope (downward trend). Since the gap is defined as Rankmyee — Rankpny, a
consistently negative value confirms that Rankm... < Rankpnn, thereby establishing that
tree-based models achieve superior performance relative to neural networks as feature het-
erogeneity intensifies. Conversely, Figure 13(b) presents the change in DNN rank with
respect to inst_to_attr; its overall ascending trend signifies that performance degrades
as inst_to_attr increases, an outcome consistent with the negative correlation of —0.3502
reported in Table 3.
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Figure 13: (a)-(b): The change of average rank from tree-based methods and DNN-based
methods w.r.t. the most correlated meta-feature entropy_std, respectively. We further
consider the differences in relative performance between tree-based models and DNN-based
models, represented by the difference in average rank between the two types of methods.
Plots in (c)-(f) highlight the changes of the tree-DNN gap against other meta-feature,
such as entropy_std, entropy_mean, sparsity_std, iq_range_std, and inst_to_attr.
To enhance readability, the curves have been smoothed.

6.6 Performance Comparison across Different Dataset Feature Types

We validate the previous observations using real-world tabular datasets by comparing the
performance of various methods across datasets with different feature types: purely numerical
features (No Cat Data), purely categorical features (No Num Data), and mixed feature types
(Mized Data). This analysis explores how dataset feature types influence performance, with
particular emphasis on heterogeneity metrics such as sparsity_attr or entropy_attr. The
results are visualized in a radar chart in Figure 14.

We have several key observations from Figure 14. First, raw-feature-based DNN methods
perform poorly on mixed feature datasets. DNN-based methods such as MLP and RealMLP
exhibit their worst performance on datasets with mixed feature types (Mized Data). This
observations validates the challenges faced by raw-feature-based neural networks when
dealing with datasets characterized by significant heterogeneity in feature distributions.
These methods perform better on purely numerical (No Cat Data) or purely categorical (No
Num Data) datasets, where the homogeneity of feature types reduces the learning complexity.

Tree-based methods like XGBoost, Light GBM, CatBoost, and Random Forest excel on
heterogeneous datasets. The results underscore their inherent advantage in handling datasets
with heterogeneous feature distributions, including a mix of numerical and categorical features.
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Figure 14: Performance comparison of methods across datasets with purely numerical features,
purely categorical features, and mixed feature types. Tree-based methods include XGBoost,
Light GBM, CatBoost, and Random Forest. DNN-based methods include MLP, ResNet, and
TabR. Token-based methods include FT-T, Autolnt, and ExcelFormer.

These methods effectively leverage feature splitting and hierarchical decision-making, making
them robust to varying feature types.

Token-based architectures, exemplified by the FT-Transformer (FT-T), demonstrate
performance metrics that align more closely with tree-based models than traditional raw-
feature-based DNN methods. This observation suggests that the learned embeddings for
categorical and numerical features in FT-T enable a superior capability to manage the
challenges inherent in mixed feature datasets. By effectively encoding and projecting features
into a unified embedding space, the model likely mitigates the effects of feature variability
and heterogeneity, thus facilitating better generalization across heterogeneous datasets.

Additionally, analysis of the specialized model TabPFN v2 reveals distinct performance
dependencies on feature types. TabPFN v2 exhibits its strongest performance on datasets
composed purely of numerical features, followed by mixed feature datasets, while demon-
strating the poorest results on purely categorical feature datasets. This pattern is
intrinsically linked to TabPFN v2’s pretraining data generation methodology and its inherent
strategy for handling categorical features, which typically involves treating them as numer-
ical data after simple preprocessing (such as one-hot or ordinal encoding). Consequently,
the development of robust and generalizable strategies for handling categorical features
remains a critical challenge for future research in the design of high-performing, universal
tabular models.

7 Lightweight and Stress-Test via TALENT-Tiny and TALENT-Extension

Although the proposed large benchmark facilitates the analysis of deep tabular models,
running a single method on all the datasets incurs a high computational burden. In this
section, we extract a subset of the benchmark containing 15% of the full benchmark, i.e.,
45 datasets, to enable more efficient tabular analysis. We also collect an extension set
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with challenging tabular datasets for stress testing. The statistics of all datasets are listed
in Table 1.

7.1 TALENT-Tiny: A Compact Benchmark for Efficient and Detailed Evaluations

Selection strategy. As mentioned in section 4, TALENT is designed with a large collection
of tabular datasets covering diverse characteristics. To curate TALENT-tiny, we apply stricter
rules to remove datasets from other modalities, those with inherent distribution shifts or
known leakage, and duplicated variants. To ensure representativeness, we also consider the
“evolved” tree-DNN debate (see subsection 5.6), selecting datasets where both tree-based
and DNN-based methods exhibit diverse behaviors.

We base this selection on the Tree-DNN score (Equation 2), which quantifies a dataset’s
preference for representative tree-based versus DNN-based methods. We categorize datasets
into three groups: tree-friendly, DNN-friendly, and tie. For each task type (binary classifi-
cation, multi-class classification, and regression), we partition datasets into groups by size
(N x d) to ensure small, medium, and large problems are all represented. From each size group,
we select one dataset from each Tree-DNN category (tree, DNN, and tie). When a group
has multiple candidates, we prefer datasets with clearer signal-to-noise ratios, higher-quality
metadata, and balanced categorical vs. numerical feature compositions.

To further promote diversity, we refine the pool by enforcing representation across 14
application domains (e.g., biology, finance, and healthcare). In cases where two datasets
are similar, we substitute with an alternative to avoid redundancy. This strategy results in
45 datasets: including 15 binary classification, 12 multi-class classification, and 18 regression
tasks. The final subset balances dataset size, feature type, domain, and method preference,
ensuring TALENT-tiny is compact yet representative for controlled, efficient evaluations.
Analysis on the necessity for cross-validation. Recent studies argue that the hold-out
strategy may cause hyperparameters to overfit the validation set (Tschalzev et al., 2024;
Erickson et al., 2025), while cross-validation (CV) with ensembling provides more stable
evaluation. However, CV greatly increases tuning costs, making it infeasible across 300
datasets in TALENT. Here, we compare both strategies on TALENT-tiny.

Figure 15 (left) reports results with the hold-out strategy. The ranking patterns reflect
those of the full benchmark, with tree-based ensembles (e.g., CatBoost, Light GBM, XGBoost)
showing particularly strong performance in binary classification, and RealMLP and MNCA
performing well in multi-class and regression. Importantly, the relative order of methods
aligns with large-scale results, indicating that the subset remains representative.

Figure 15 (right) shows results with cross-validation plus ensembling. Across most
methods, average ranks improve slightly compared to hold-out, confirming that ensembling
boosts stability. However, the relative order among methods remains largely unchanged.
For example, tree-based methods still dominate in binary classification, while RealMLP
and MNCA maintain strong performance in regression and multi-class classification. This
validates the use of hold-out in TALENT, given the impractical cost of CV across all datasets.

Interestingly, MNCA does not benefit much from vanilla ensembling, in contrast to the
clear gains observed with its dedicated ensemble variant (MNCA-ens) in earlier results. This
suggests that some methods require specialized ensemble designs—for MNCA, strategies
that increase neighborhood diversity may be particularly important. In contrast, gradient
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Figure 15: Average rank of representative tabular methods on TALENT-tiny under two
evaluation protocols: (left) the original hold-out strategy and (right) cross-validation with
ensemble. Ranks are computed based on accuracy for classification tasks and RMSE for
regression tasks. Lower rank values indicate stronger performance. While CV+ensemble
generally improves absolute performance values, the relative ordering among methods remains
stable, validating the practicality of the hold-out strategy for large-scale benchmarks.

boosting methods and RealMLP benefit naturally from CV-+ensemble, showing reduced
variance without needing customized ensemble mechanisms.

Overall, TALENT-tiny proves useful for efficient yet representative analysis. The compari-
son of hold-out versus CV+ensemble indicates that while ensembling stabilizes results, the
hold-out strategy provides reliable relative rankings across methods, justifying its adoption
in TALENT. At the same time, the divergent behaviors of methods like MNCA highlight
that ensemble strategies must sometimes be tailored to model design rather than applied
uniformly.
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Table 4: Performance of MLP models under different hyperparameter tuning trials, measured
by average rank across all methods. The six groups correspond to subsets divided by dataset
sample size, while the last column reports the overall performance. Parentheses indicate
p-values. Results show that compared with our standard setting of 100 tuning trials, 50 trials
are insufficient for effective tuning, whereas increasing the number of trials beyond 100 does
not yield further improvement.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Overall
50 trials +0.63 (0.144) +0.30 (0.147) +0.48 (0.547) +0.64 (0.214) +0.11 (0.919) +1.53* (0.003) +0.61* (0.002)
100 trials 17.54 17.10 18.57 18.32 17.36 15.94 17.47
150 trials +0.07 (0.828) —0.03 (0.879) +0.07 (0.958) —0.48 (0.522) —0.54 (0.211) —0.40 (0.303) —0.22 (0.262)
200 trials +0.20 (0.750) —0.29 (0.965) +0.45 (0.547) —0.65 (0.298) —0.54 (0.324) 0.00 (0.845)  —0.14 (0.602)

Analysis on the number of hyperparameter search. We further investigate the
influence of the number of hyperparameter search trials, which was set to 100 in our previous
experiments following Gorishniy et al. (2021). To assess the sensitivity of performance to
search effort, we evaluate the MLP method with 50, 100, 150, and 200 trials, and compare
their average ranks across subsets of datasets of different sizes.

The results, shown in Table 4, reveal several important trends. On smaller datasets,
increasing the number of trials beyond 50 yields diminishing returns: the gap between 50 and
100 trials is noticeable, but further increases to 150 or 200 trials do not lead to consistent
improvements. On larger datasets, additional search efforts beyond 100 trials bring marginal
but still limited gains. This suggests that 50 trials are insufficient for stable optimization,
but 100 trials already provide a near-saturation point for tuning effectiveness.

Across all dataset groups, the overall differences among 100, 150, and 200 trials are
relatively minor, as confirmed by the comparative rankings in the rightmost panel. The
performance curves of these three settings are nearly overlapping, indicating that the benefit
of exhaustive hyperparameter search is minimal once a certain search budget is reached.
Interestingly, while 50 trials consistently rank lower, the rank order of 100, 150, and 200
trials fluctuates slightly across dataset subsets without forming a clear hierarchy.

These results support the use of 100 trials as a balanced and practical setting in large-scale
benchmarks like TALENT, since it offers a strong trade-off between computational efficiency
and model competitiveness. Moreover, they highlight that blindly scaling up search budgets
does not guarantee better results, especially for tabular tasks where model robustness may
dominate over hyperparameter fine-tuning.

7.2 TALENT-Extension: Stress Testing in Challenging Scenarios

TALENT provides two complementary layers of coverage. While the main TALENT benchmark
provides broad coverage of typical tabular tasks, real-world data often exhibit more extreme
conditions that challenge scalability and model robustness. To explore these regimes, we
introduce TALENT-extension, a complementary suite designed to stress-test tabular methods
under three specialized yet practically important settings: high-dimensional feature spaces,
many-class classification problems, and very-large-scale datasets. These settings expose
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Figure 16: Average rank of representative methods on TALENT-extension under high-
dimensional and many-class conditions. Subfigures (a)—(c) correspond to high-dimensional
datasets, while (d) summarizes the results for many-class classification. Ranks are computed
using accuracy for classification and RMSE for regression (lower is better).

performance bottlenecks that are not always visible in standard-sized datasets and thus
provide a deeper understanding of each model’s inductive biases.

Dataset groups. TALENT-extension contains three groups of specialized tabular tasks.

¢ High-dimensional datasets. This group contains 18 datasets with feature dimensionality
ranging from 2,000 to over 20,000 (Table 1). Representative examples include biomedical
datasets such as colon, glioma, and TOX_171, as well as text-derived datasets like BASEHOCK
and RELATHE.

e Many-class datasets. This group includes 12 datasets with more than ten classes, such
as orlraws10P (10 classes, 10,304 features) and Fashion-MNIST (10 classes, 784 features).
These datasets emphasize the difficulty of learning fine-grained label structures where
class-aware objectives and embeddings are critical.

e Very large-scale datasets. This group comprises 18 datasets containing hundreds of
thousands to millions of instances, such as Airlines_DepDelay (10M samples), Higgs
(IM samples), and sf-police-incidents (2.2M samples). They test the computational
scalability of tabular methods under massive data volumes.

The evaluation protocol follows the same setup as in TALENT, except for high-dimensional
datasets, where limited sample sizes motivate aggregated cross-validation results with default
hyperparameters. We evaluate representative methods from classical baselines (Logistic
Regression, kNN), tree ensembles (Random Forest, XGBoost, Light GBM, CatBoost), and
deep tabular architectures (MLP, RealMLP, FT-Transformer, MNCA, TabM). Some other
methods, such as MNCA-ens and TabM, require significantly longer training times in these
specialized scenarios, so we omit them from the extended evaluation.

Results and analysis. The TALENT-extension results reveal several notable shifts relative
to the main TALENT benchmark:
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Figure 17: Average rank of representative methods on TALENT-extension (very large-scale
datasets). Ranks are computed based on accuracy and RMSE for classification and regression

tasks, respectively. Lower rank values indicate better overall performance.

e High-dimensional datasets. On high-dimensional datasets, the results (Figure 16a—c)
reveal several notable deviations from the main TALENT findings. Surprisingly, Logistic
Regression emerges as one of the strongest performers, consistently ranking near the
top across binary, multi-class, and aggregated tasks. This indicates that in ultra-sparse,
high-dimensional spaces—common in biomedical and text-derived data—simpler linear
models with regularization can generalize better than complex nonlinear architectures. In
contrast, methods like ModernNCA and KNN, which rely on neighborhood retrieval, suffer
significant degradation. Their performance drop reflects the curse of dimensionality, where
distance-based similarity becomes less meaningful as dimensionality grows. Tree-based
ensembles (e.g., CatBoost, Light GBM, XGBoost) remain stable but are not dominant; their
greedy feature-splitting mechanisms struggle when the number of irrelevant or redundant
features is large. Interestingly, RealMLP and standard MLPs show resilience—likely due to
their ability to perform distributed feature selection through gradient-based learning—but
still lag slightly behind linear baselines in some cases. Pretrained foundation models such as
TabPFN v2 perform poorly in this setting, suggesting that pretrained priors, while powerful
for small to mid-size datasets, transfer poorly when the feature distributions of target data
differ drastically from those seen during pretraining. This performance gap points to a
distribution mismatch between synthetic pretraining corpora and real high-dimensional
domains, where feature semantics differ and sample sparsity limits adaptation.

Many-class datasets. In the many-class regime (Figure 16d), the trends diverge from
the high-dimensional case. Deep models with strong representation learning capacity
regain their lead: RealMLP, ModernNCA, and TabR rank at the top, followed closely
by TabM and MLP-PLR. Their ability to learn shared embeddings across fine-grained
label spaces proves crucial for distinguishing numerous closely related classes. Tree-based
ensembles such as CatBoost and XGBoost remain competitive but no longer dominant,
suggesting that their partition-based decision structures may not scale efficiently with
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large label cardinalities. Interestingly, while foundation models (e.g., TabPFN v2) excelled
in the main TALENT benchmark, they perform inconsistently here, further underscoring
the limitation of in-context pretrained inference when label structures diverge from the
few-class distributions prevalent during pretraining. Ensemble-style deep models such as
TabM consistently outperform their base DNNs, reaffirming that ensembling remains an
effective strategy even in modern deep tabular learning.

e Large-scale datasets. As shown in Figure 17, very large datasets (up to millions
of rows) produce a performance landscape that differs from the main TALENT results.
Classical tree ensembles, especially CatBoost, rank at or near the top across tasks. Beyond
their inductive bias for categorical structure, a practical factor likely contributes: highly
optimized implementations make it feasible to train and ensemble many trees at scale,
which compounds accuracy. By contrast, ensembling deep tabular models is far more
time-consuming (multiple large models must be trained), so neural methods seldom benefit
from the same degree of ensemble amplification under strict compute budgets. Modern deep
methods still perform well: RealMLP is consistently strong, indicating that well-regularized
MLPs scale gracefully. Retrieval/attention models (e.g., MNCA, FT-T) remain competitive
but do not close the gap to the best tree ensembles. Pretrained foundation models (e.g.,
TabPFN v2) lag in this regime, likely due to a distribution/scale mismatch with their
pretraining setup and the lack of fine-tuning for massive datasets.

Broader observations. Taken together, the TALENT-extension results show both con-
tinuity and clear departures from the main TALENT findings. Several methods, such as
RealMLP, retain their strengths across regimes, yet the ordering of most methods changes
once we move to high dimensionality, many classes, or very large scale. In high-dimensional
problems, simple linear models (e.g., logistic regression) are unexpectedly competitive, and
neighborhood /retrieval methods degrade, indicating that feature redundancy and the curse
of dimensionality, rather than model expressivity, become the primary bottlenecks. For very
large datasets, tree ensembles—most notably CatBoost—regain a clear edge.

Pretrained foundation models remain reasonably robust but do not dominate in these
stress settings, indicating limits of pretraining when the target distribution departs from the
pretraining regime. It is notable that our use follows the default deployment, and simple
divide-and-conquer adaptations of TabPFN v2 have been shown to boost its effectiveness
efficiently (Ye et al., 2025a; Rubachev et al., 2025b). A promising direction is to either endow
tabular foundation models with an intrinsic ability to handle stress cases like large-scale
datasets, or to develop corresponding lightweight adaptation strategies.

Overall, these stress tests refine the tree-DNN discussion. Foundation models and modern
neural architectures have closed much of the gap in typical settings, yet tree ensembles
remain hard to beat in very large-scale scenarios, and linear baselines re-emerge in ultra
high-dimensional spaces. The evidence points toward hybrid, adaptive pipelines—combining
strong trees, scalable MLPs, and pretrained components—as a principled path to robust
tabular learning across diverse real-world conditions.

8 Conclusion

We presented a large-scale, systematic evaluation and analysis of deep tabular learning using
TALENT, a 300+ dataset collection spanning varied sizes, domains, feature compositions,
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and task types. Across this breadth, method rankings do vary by dataset, but performance
consistently concentrates within a small shortlist of models—offering a practical starting point
for model selection. We also find that ensembling benefits both tree-based and DNN-based
approaches: strong classical ensembles remain competitive, while recent pretrained (foun-
dation) models frequently narrow—though do not fully eliminate—the historical advantage
of trees. This refines the “trees vs. neural networks” narrative in today’s landscape. To
explain when different families win, we quantified dataset heterogeneity by learning from
meta-features and early training dynamics to predict later validation behavior. The analysis
highlights the roles of categorical-numerical interplay, sparsity, and entropy variation as key
drivers of model advantage. Finally, our two-level design complements the main collection
with TALENT-tiny (45 carefully balanced datasets for rapid, reproducible evaluation) and
TALENT-extension (high-dimensional, many-class, and very large-scale settings for stress
testing). Results on these subsets surface additional distinctions among model families and
provide actionable guidance for heterogeneity-aware, ensemble-strengthened tabular learning.

Appendix A. Datasets Selection Details

This appendix provides detailed information on datasets with certain quality issues and the
corresponding adjustments applied in our benchmark construction.

Datasets with mis-labeled task types. We identified 22 datasets whose task types were
incorrectly labeled, including Contaminant-9.0GHz, Contaminant-9.5GHz, Contaminant-
10.0GHz, Contaminant-10.5GHz, Contaminant-11.0GHz, Heart-Disease-Dataset, Insur-
ance, Intersectional-Bias, Is-this-a-good-customer, KDD, Long, Performance-Prediction,
Shipping, VulNoneVul, Waterstress, compass_reg, credit_reg, law-school-admission,
ozone_level, shill-bidding, shrutime, and svmguide3. After reviewing their metadata
and label structures, we corrected these datasets to binary classification tasks.

Tabular datasets derived from other modalities. Our benchmark includes 25 datasets
where tabular features are extracted from non-tabular sources such as images or audio.
These include Indian_pines, JapaneseVowels, Parkinsons_Telemonitor, artificial-
characters, dry_bean_dataset, hill-valley, kropt, letter, mfeat-factors, mfeat-
fourier, mfeat-karhunen, mfeat-morphological, mfeat-pixel, 100-plants-margin, 100-
plants-shape, 100-plants-texture, optdigits, page-blocks, pendigits, phoneme, satel-
lite_image, satimage, segment, semeion, and texture. Although some works (Kohli et al.,
2024; Erickson et al., 2025) exclude such datasets, we retain them because they reflect
practical cases where only pre-extracted features are available due to resource or efficiency
constraints.

Datasets with known or potential leakage. Prior analyses (Rubachev et al., 2025a;
Tschalzev et al., 2025) have shown that several public tabular datasets contain data leakage,
which can distort model comparison outcomes. Specifically, leakage has been reported
in Kaggle_bike_sharing_demand_challange, Facebook_Comment_Volume, GesturePhas-
eSegmentationProcessed, artificial-characters, compass, electricity, eye_movements,
eye_movements_bin, sulfur, and Brazilian_houses_reproduced. These issues often arise
from erroneous preprocessing or from features that directly encode the target variable. For
instance, the sulfur dataset includes a feature that is a near-duplicate of the target variable,
creating a direct leak (Rubachev et al., 2025a).
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We also identify potential leakage in three additional datasets. In Job_Profitability,

the target variable Jobs_Gross_Margin_Percentage can likely be inferred from the feature
Jobs_Gross_Margin. In CPMP-2015-regression, the feature run status reveals information
about the target runtime. In estimation_of_obesity_levels, the inclusion of raw height
and weight features makes obesity prediction almost trivial.
Potential leakage when evaluating general tabular models. General tabular models
are pretrained on multiple real-world or synthetic datasets and are often early-stopped using
a separate validation set of real-world datasets. While these models can be efficiently applied
to new datasets, the evaluation may lead to potential dataset leakage if the target dataset is
part of the pretraining or validation datasets. In such cases, the general model might exhibit
inflated performance due to prior exposure to the target dataset.

Specifically, we evaluate the general tabular model TabPFN (Hollmann et al., 2023),
which is pretrained on synthetic datasets and early-stopped via its performance on 180
real-world datasets. The checkpoint selection rule of TabPFN potentially creates bi-
ases for these datasets. Among the datasets in our benchmark, we found only two of
them, PizzaCutter3 and PieChart3, that overlap with TabPFN’s validation set. For
TabPFN v2 (Hollmann et al., 2025), we further examined its validation set and identified
27 datasets that overlap with those in our 300-dataset benchmark: ada_prior, allbp,
baseball, delta_ailerons, eye_movements, eye_movements_bin, GAMETES_Epistasis_-
2-Way_20atts_0.1H_EDM-1_1, hill-valley, JapaneseVowels, jungle_chess_2pcs_raw_-
endgame_complete, led24, longitudinal-survey, page-blocks, ringnorm, rl, thyroid-
ann, waveform-5000, debutanizer, delta_elevators, mauna-loa-atmospheric, puma32H,
stock_fardamento02, treasury, weather_izmir, wind.

To maintain comparability with prior studies, these datasets are retained in the general
TALENT benchmark. However, they are excluded from the stricter TALENT-tiny subset,
which focuses on high-quality, leakage-free evaluation. This design enables fair historical
comparison while supporting rigorous analysis in controlled settings.

Appendix B. Additional Comparison Results
B.1 Average Performance and Rankings

To complement the main statistical comparisons, we report detailed average ranks and
pairwise t-test results. The average ranks of 40 representative methods across 300 datasets
are shown in Figure 18, while pairwise Win/Tie/Lose outcomes are illustrated in Figure 19.
These provide a finer-grained view of the relative positioning of methods beyond the critical
difference diagrams in the main text.

From Figure 18, several clear patterns emerge. First, pretrained tabular foundation
models dominate across settings. TabPFN v2 and TabICL consistently achieve the lowest
ranks in binary and multi-class classification, confirming the strength of pretraining and
in-context learning strategies. In regression, TabPFN v2 remains the top performer, followed
closely by xRFM, MNCA-ens, and RealMLP. Notably, foundation models are the only family
that simultaneously excels across all three task types, underlining their broad generalization.

Tree-based ensembles continue to provide strong baselines. CatBoost and Light GBM
achieve top-tier ranks across both classification and regression tasks, while XGBoost trails
slightly but still outperforms most DNNs. Recursive Feature Machines (RFM) and its
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Figure 18: Average rank of tabular methods. We show the average rank of all methods
over binary (120 datasets), multi-class (80 datasets), regression (100 datasets), and all 300
datasets. The ranks are calculated based on accuracy and RMSE over classification and
regression tasks, respectively. The lower the rank value, the better the average performance.

extension xRFM perform particularly well on regression, often rivaling the strongest ensembles
and DNNs.

Among deep learning approaches, neighborhood-based methods stand out. ModernNCA
achieves consistently high ranks across all task types and remains competitive with CatBoost
and LightGBM. TabR also performs strongly in classification tasks. MLP variants show
a clear divide: vanilla MLP is weak, but tuned designs such as MLP-PLR and RealMLP
achieve much lower ranks, with RealMLP frequently joining the top-performing group.
Token-based models (e.g., FT-T, ExcelFormer, Autolnt) are stable performers, especially
in classification, but their ranks indicate they are not decisively stronger than the best
ensembles or neighborhood-based models. Tree-mimic models (NODE, TabNet, GrowNet)
generally remain in the lower half of the rankings.

46



A CLOSER LOOK AT DEEP LEARNING METHODS ON TABULAR DATASETS

Algorithm

Algorithm

B N S R R R R S g
&K FTELES SN 3 &@r RS éz S ‘if;a TS &:\}«e@

Opponent Algorithm

(b) Multi-Class Classification

Opponent Algorithm

(a) Binary Classification

=
z
Algorithm
g
H

Algorithm

HE
0

TANGOS TANGOS
o [ e PTaRL.
TabPFN v2

O Y I e
& TEEES w%yfg IS

o

3 s s b
ARGt eg

Opponent Algorithm

(d) All Tasks

Opponent Algorithm“
(c¢) Regression

Figure 19: Heatmaps illustrating the statistical comparisons between all pairs of methods
based on t-tests with a 95% confidence interval. The Win/Tie/Lose counts between each
pair of methods are also denoted. Darker colors indicate higher counts.

B.2 Pairwise Statistical Comparisons

To complement the average rank analysis, we further conduct pairwise statistical comparisons
between all pairs of methods using t-tests with a 95% confidence interval. The results are
visualized in Figure 19, which reports the Win/Tie/Lose counts between each pair of methods
across binary, multi-class, regression, and all tasks. Darker colors indicate higher counts,
reflecting more consistent superiority in the corresponding comparisons.

The heatmaps confirm many earlier findings: tree-based ensembles (CatBoost, Light-
GBM, XGBoost) dominate weaker baselines and cluster together as robust, statistically
indistinguishable methods. RealMLP and MLP-PLR clearly outperform vanilla MLPs and
ResNets, though they tie with strong ensembles in many cases. Token-based approaches
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(e.g., FT-T, ExcelFormer) show stable but not dominant behavior, often tying with both
ensembles and tuned DNNs.

Neighborhood-based methods, especially ModernNCA and MNCA-ens, stand out as
frequent winners in classification, rivaling ensembles and confirming the strength of retrieval-
based learning. Finally, pretrained foundation models (TabPFN v2, TabICL) achieve the
most consistent wins in binary and multi-class classification, while in regression, they remain
statistically tied with ensembles and ModernNCA, indicating task-dependent benefits.

Overall, the pairwise comparisons highlight that while pretrained models push state-of-
the-art performance, top ensembles and retrieval-based methods remain highly competitive,
forming overlapping statistical equivalence groups across many tasks.

Appendix C. Details of the Heterogeneity Analysis

This section provides additional details complementing our analysis of dataset heterogeneity
in section 6. We describe the meta-features employed, the recording of training dynamics, the
curve families used for modeling validation trajectories, and supplementary results. Finally,
we highlight a by-product of this framework: predicting the training dynamics of deep tabular
models, which may enable more efficient training in practice.

C.1 Details of Meta-Features

The meta-features encode structural and statistical properties of a dataset (McElfresh et al.,
2023). They form the foundation for analyzing how heterogeneity influences model behavior.
By incorporating these meta-features, we not only characterize tabular datasets but also
predict training dynamics, thereby identifying which dataset factors most strongly shape
model performance. We provide the full list of all meta-features in Table 5.

C.2 Recording Training Dynamics

Beyond end-point accuracy or RMSE, we record detailed training dynamics for each

dataset—method pair. These include:

e Training logs: learning rate schedules, batch-wise losses, and intermediate statistics.

e Performance metrics: validation/test loss, accuracy, RMSE, as well as secondary metrics
such as F1/AUC (classification) and MAE/R? (regression).

¢ Running time: measured across 15 random seeds, accounting for early stopping at
variable epochs.

e Model size: for both default and tuned hyperparameters.

These logs provide a rich foundation for connecting dataset properties with optimization

behavior, thereby supporting heterogeneity analysis.

C.3 Alternative Curve Families for Validation Dynamics

To forecast validation trajectories from early training segments, we experimented with several
curve families inspired by prior work in vision and language (Hestness et al., 2017; Rosenfeld
et al., 2020; Bahri et al., 2021). Let t denote epoch and y the performance measure. We
consider four functional forms:

e M1: y = at® (basic power-law form) (Alabdulmohsin et al., 2022).
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Table 5: Meta-features used in the training dynamics prediction task. The first column
indicates the selected key meta-features.

Selected Meta-Feature ‘ Explanation

attr_conc The concentration coef. of each pair of distinct attributes.

v class_conc The concentration coefficient between each attribute and class.
class_ent The target attribute Shannon’s entropy.

v inst_to_attr The ratio between the number of instances and attributes.

v mean The mean value of each attribute.
sd The standard deviation of each attribute.
var The variance of each attribute.

v range The range (max - min) of each attribute.

v iq_range The interquartile range (IQR) of each attribute.

v nr_attr The total number of attributes.

v sparsity The (possibly normalized) sparsity metric for each attribute.
t_mean The trimmed mean of each attribute.
nr_bin The number of binary attributes.
nr_cat The number of categorical attributes.
nr_num The number of numeric features.
nr_norm The number of attributes normally distributed based in a given method.
nr_cor_attr The number of distinct highly correlated pair of attributes.

v gravity The distance between minority and majority classes’ center of mass.
nr_class The number of distinct classes.

v joint_ent The joint entropy between each attribute and class.

v attr_ent Shannon’s entropy for each predictive attribute.

v cov The absolute value of the covariance of distinct dataset attribute pairs.
eigenvalues The eigenvalues of covariance matrix from dataset.
eq_num_attr The number of attributes equivalent for a predictive task.

v max The maximum value from each attribute.
min The minimum value from each attribute.
median The median value from each attribute.
freq_class The relative frequency of each distinct class.
mad The Median Absolute Deviation (MAD) adjusted by a factor.

v mut_inf The mutual information between each attribute and target.

v nr_inst The number of instances (rows) in the dataset.

v nr_outliers The number of attributes with at least one outlier value.

v ns_ratio The noisiness of attributes.

v imblance_ratio | The ratio of the number of instances in the minority to the majority class.
attr_to_inst The ratio between the number of attributes.

e M2: y = at® + c (shifted power-law) (Cortes et al., 1993; Hestness et al., 2017; Rosenfeld
et al., 2020; Abnar et al., 2022).

e M3: y = a(t + d)? + c with offset d controlling the onset of improvement.

e M4: (y —ex)/((e0 — y)*) = bt¢, where e is irreducible error and ¢y random-guess
performance.

Parameters are estimated from the initial support set S (first epochs). Once fitted, these
forms extrapolate the query set Q, enabling curve reconstruction.
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Table 6: Average MAE and OVD for various curves across test datasets. Both metrics are
“lower is better.” “Ours” refers to directly fitting the curves using Equation 3. “Ours with
MLP” indicates the method using the learned h.

Comparison Methods MAE OVD

M1 0.1845  0.2936
M2 0.8458  6.0805
M3 0.1331 0.1148
M4 0.1818  0.1794
Direct Fit (ours) 1.1927  1.8860
Meta-learned h (ours) | 0.0748 0.0701

C.4 Main Results and Analysis

We implement the meta-mapping h as a four-layer MLP. The input includes both the first 5
validation points and 19 meta-features, and the output is the parameter set 8 defining our
curve family.

We evaluate with Mean Absolute Error (MAE) and Optimal Value Difference (OVD).
OVD measures the discrepancy between the optimal values of predicted and true curves
(maximum for classification, minimum for regression). Results are reported in Table 6.

We also attempt to fit parameters for other curve families (M1-M4) using the optimization
objective in Equation 1. However, these formulations often face convergence issues, and direct
fitting with our curve form produces suboptimal results due to differences in fitting strategy.
As shown in Table 6, the gap between “Direct Fit” and “Meta-learned h” underscores the
necessity of incorporating meta-features: leveraging dataset properties in addition to early
dynamics substantially improves curve prediction accuracy.

Importantly, the learned predictor h can accurately extrapolate the remaining validation
performance curves from only the first few epochs.

Figure 20 illustrates qualitative fits for 16 unseen datasets. The predictor h successfully
reconstructs both DNN-friendly and tree-friendly learning curves, spanning classification and
regression tasks. Compared to baseline curve families, our method delivers more faithful
extrapolations, especially when meta-features are included.

In summary, these results confirm that linking dataset meta-features to training dynamics
is effective for characterizing heterogeneity. By capturing how dataset properties shape
optimization trajectories, our approach not only predicts validation curves more accurately
but also deepens understanding of why models succeed or fail on specific tabular datasets.

C.5 By-Product: Forecasting Training Dynamics for Efficiency

While our primary goal is to use dynamic forecasting as a tool for heterogeneity analysis,
it also yields a practical by-product: efficient early stopping. Since deep tabular training
is often expensive and hyperparameter-sensitive, forecasting later performance from early
epochs allows us to prune poor runs. For example, if accuracy plateaus or oscillates early,
training can be terminated and resources reallocated (Cortes et al., 1993).
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Figure 20: Visualization of the training dynamics fitting (validation curves of an MLP trained
with default hyperparameters) on 16 unseen datasets. The datasets in the first two rows and
the last two rows are DNN-friendly and Tree-friendly, respectively. The first and third rows
represent classification tasks, while the second and fourth rows represent regression tasks.

Thus, although not our main focus, this framework can also guide adaptive training
strategies while primarily serving as an analytical tool for understanding heterogeneity in
tabular datasets.

Appendix D. More Details on TALENT-Tiny

Figure 21 illustrates the distribution of Tree-DNN scores across the 45 datasets in TALENT-
tiny, a curated subset of TALENT designed for fine-grained analysis. Each score measures
the relative advantage of tree-based versus neural models on the same dataset. Datasets on
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Figure 21: Distribution of Tree-DNN scores across the 45 datasets in TALENT-tiny, which
illustrates the balanced nature of this curated subset.

the left are DNN-friendly, where deep models such as RealMLP and MNCA perform better,
while those on the right are tree-friendly, favoring ensembles like CatBoost. The overall
distribution is approximately symmetric, reflecting that TALENT-tiny maintains a balanced
mixture of both categories. This design facilitates controlled evaluations of model behaviors
and helps disentangle algorithmic factors from dataset bias, complementing the large-scale
results reported in the main benchmark.
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