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Abstract—Tabular data, structured as rows and columns,
is among the most prevalent data types in machine learning
classification and regression applications. Models for learning
from tabular data have continuously evolved, with Deep Neural
Networks (DNNs) recently demonstrating promising results
through their capability of representation learning. In this survey,
we systematically introduce the field of tabular representation
learning, covering the background, challenges, and benchmarks,
along with the pros and cons of using DNNs. We organize
existing methods into three main categories according to their
generalization capabilities: specialized, transferable, and general
models. Specialized models focus on tasks where training and
evaluation occur within the same data distribution. We introduce
a hierarchical taxonomy for specialized models based on the key
aspects of tabular data—features, samples, and objectives—and
delve into detailed strategies for obtaining high-quality feature-
and sample-level representations. Transferable models are pre-
trained on one or more datasets and subsequently fine-tuned on
downstream tasks, leveraging knowledge acquired from homo-
geneous or heterogeneous sources, or even cross-modalities such
as vision and language. General models, also known as tabular
foundation models, extend this concept further, allowing direct
application to downstream tasks without additional fine-tuning. We
group these general models based on the strategies used to adapt
across heterogeneous datasets. Additionally, we explore ensemble
methods, which integrate the strengths of multiple tabular models.
Finally, we discuss representative extensions of tabular learning,
including open-environment tabular machine learning, multimodal
learning with tabular data, and tabular understanding tasks.
More information can be found in the following repository:
https://github.com/LAMDA-Tabular/Tabular-Survey.

Index Terms—Tabular Data, Representation Learning, Deep
Tabular Learning, Tabular Foundation Model

I. INTRODUCTION

TABULAR data, characterized by structured rows and
columns, is one of the most prevalent data formats in real-

world machine learning applications, spanning diverse domains
such as finance [1], healthcare [2], education [3], recommen-
dation systems [4], and scientific research. In particular, AI
for scientific research (AI4science) has increasingly relied on
tabular data, as numerous prominent datasets—such as those
from genomics [5], chemistry [6], and climate science [7],
[8]—naturally adopt tabular forms.

Tabular data inherently organizes information in a structured,
table-like format. In this survey, we focus primarily on super-
vised tabular machine learning tasks, specifically classification
and regression. Beyond their structured organization, tabular
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Fig. 1. A brief introduction to tabular data and associated learning tasks. Each
row represents an instance and each column corresponds to an attribute or
feature, which can be numerical or categorical. The most common tabular
tasks are classification and regression as shown in the right side of the figure.

datasets frequently include heterogeneous attributes [9], encom-
passing numerical, categorical, or mixed data types that may
be dense or sparse. Additionally, many tabular datasets present
quality challenges, such as noisy measurements, missing values,
outliers, inaccuracies [10], and privacy constraints [11], all of
which complicate the modeling process. The most common
supervised tabular tasks are classification and regression,
where the goal is to learn mappings from training data to
discrete or continuous targets, respectively. As illustrated in
Fig. 1, each row represents an instance (with its corresponding
label), while each column corresponds to a specific attribute
or feature [12]. Ideally, learned mappings should generalize
effectively, accurately predicting outcomes for new instances
drawn from the same underlying distribution.

Machine learning methods for tabular data have evolved
significantly over the years [13], [14], [15]. Recently, the rise of
deep learning has profoundly impacted domains like computer
vision [16] and natural language processing [17], where Deep
Neural Networks (DNNs) extract semantic representations
directly from raw inputs [18], [19], [20]. These learned
representations have not only improved generalization but have
also facilitated knowledge transfer across related tasks [21].
The flexibility of DNNs in modeling feature interactions and
learning hierarchical structures has inspired interest in adapting
deep learning techniques to tabular data.

Indeed, DNNs were applied to tabular data decades ago,
initially targeting dimensionality reduction and visualization
tasks [22], [23], [24], yet they typically struggled to match
tree-based methods on standard classification and regression
problems. Later advances in DNNs have led to significant
improvements across various tabular-related applications, such
as click-through rate prediction [25], anomaly detection [26],
recommendation systems [27], and time series forecasting [28].

https://github.com/LAMDA-Tabular/Tabular-Survey
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Fig. 2. We organize existing tabular classification/regression methods into three categories according to their generalization capabilities: specialized (left),
transferable (middle), and general (right) models. Specialized models focus on tasks where training and evaluation occur within the same data distribution.
Transferable models are pre-trained on one or more datasets and subsequently fine-tuned on downstream tasks. General models, also known as tabular foundation
models, extend this concept further, allowing direct application to downstream tasks without additional fine-tuning. General models and transferable methods
are synergistic: transferable techniques facilitate the training of general models, which in turn serve as powerful pre-trained models for downstream fine-tuning.

Modern deep learning approaches, benefiting from better-
designed architectures, optimized training strategies, high-
quality representations, have revitalized DNN performance
on tabular data, often rivaling or surpassing traditional tree-
based models [29], [30], [31]. Given the wide variety of
approaches emerging in deep tabular modeling, a systematic
overview that revisits critical factors and current methodologies
in representation learning for tabular data becomes necessary.

This survey begins by introducing the background of tabular
data learning, highlighting the challenges involved and critically
examining the advantages and limitations of utilizing DNNs
compared to classical—particularly tree-based—methods [32],
[33], [34], [35]. Given the observed instability of method
performance across different tabular datasets, we also discuss
comprehensive strategies for dataset collection, evaluation, and
analysis, aiming to establish robust criteria for aggregating
performance metrics across multiple datasets [36], [37], [38].

We broadly categorize deep tabular methods into three
types: specialized methods, transferable methods, and general
methods, distinguished by the scope of datasets on which
they are trained and deployed, as well as their corresponding
generalization capabilities (illustrated in Fig. 2). Specialized
tabular methods align closely with classical supervised models,
typically trained and evaluated on data drawn from the
same distribution. In contrast, transferable methods leverage
knowledge from models pre-trained on one or multiple source
datasets, subsequently fine-tuning these models on target
datasets; the primary challenge here lies in addressing the
heterogeneity between pre-trained sources and target tasks. The
recently proposed general tabular methods—motivated by the
remarkable “zero-shot” generalization abilities demonstrated by
large language models (LLMs)—exhibit exceptional versatility.
These general models can directly apply to downstream
tabular datasets without additional fine-tuning, achieving robust
generalization due to advanced pre-training strategies.

Crucially, rather than viewing these categories as a strict
hierarchy, we emphasize the synergistic relationship between
transferable and general methods. On one hand, techniques
foundational to transferable models, such as self-supervised

learning and heterogeneous feature alignment, serve as essential
building blocks for constructing robust general models. On
the other hand, general models often function as powerful
starting points for transfer learning; fine-tuning a general model
(e.g., TabPFN variants [39], [40], [41]) on downstream tasks
typically yields superior performance compared to zero-shot
inference, effectively blurring the line between general and
transferable approaches. Together with specialized methods,
which remain dominant on large-scale, distribution-specific
tasks, these paradigms form a complementary ecosystem,
providing diverse tools tailored to different data scales and
computational constraints.

For specialized methods, numerous designs have been pro-
posed from diverse perspectives, and previous papers have often
categorized these methods based primarily on their architectural
characteristics or behaviors. Existing taxonomies [42], for
example, group specialized methods into feature-preprocessing-
based [29], [43], data-augmentation-based [44], [45], [46],
[47], MLP variants [48], [30], specialized DNN architec-
tures [49], [50], [51], [52], [53], [54], [55], [56], tree-mimic
approaches [57], [58], [59], token-based techniques [60], [61],
[29], [62], [63], regularization-driven methods [64], [65], and
neighborhood-based strategies [66], [67], [31]. However, such
categorizations can appear scattered, making it difficult to
connect the core ideas between methods in distinct groups.
In contrast, this survey introduces a hierarchical taxonomy
based on the key aspects of tabular data—features, samples,
and objectives—providing a cohesive organizational framework.
Our approach emphasizes detailed strategies for obtaining high-
quality representations at both feature- and sample-levels. This
unified perspective helps bridge core ideas across methods,
facilitating clearer comparative discussions and potentially
guiding the design of more advanced tabular models.

Instead of training a model from scratch on a single tabular
dataset, transferable models leverage knowledge encoded
in a pre-trained model from another dataset, which can
significantly enhance the training process, especially when
data or computational resources for the target task are limited.
A major challenge in transferring knowledge across tabular
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tasks lies in the inherent heterogeneity between the source
and target datasets, particularly differences in their feature and
label spaces. In this survey, we adopt a broad perspective on
transferable tabular models, categorizing methods based on
the sources of their pre-trained knowledge. Specifically, we
discuss models pre-trained on homogeneous tabular domains,
such as self-supervised methods with additional pre-training
steps on the target dataset itself [68], [69]; models pre-trained
across heterogeneous tabular domains [70], [71], [62]; and
methods transferring knowledge from other modalities, such as
vision-based pre-trained models [72], [73]. Additionally, since
incorporating attribute semantics (when available) is a common
strategy for bridging heterogeneous attribute spaces across
tabular datasets [74], [75], [76], we also explore approaches
leveraging language models in the final category. In particular,
we further organize these language model-based strategies
according to the methods to extract knowledge and the types of
language models involved—ranging from small-scale language
models to Large Language Models (LLMs) [77], [78], [79].

Inspired by recent advancements in foundation models from
vision and language domains [80], [81], general models—
also known as tabular foundation models—expand the concept
of transferable tabular models by enabling direct application
to downstream tasks without additional fine-tuning. This
capability, commonly referred to as the model’s “zero-shot”
ability, significantly enhances the model’s usability across
diverse tabular datasets. In contrast to transferable models,
which primarily focus on bridging knowledge gaps between
source and target datasets, general models aim to construct
highly adaptive architectures capable of handling a wide
array of heterogeneous datasets simultaneously. We categorize
these general models based on the strategies used to achieve
adaptiveness across diverse tabular tasks, specifically examining
adaptations from both data-centric [82] and model-centric per-
spectives [83], [84]. Furthermore, we discuss critical branches
of general tabular models in detail: the TabPFN variants
leveraging in-context learning [85], [86], [87], and methods
utilizing attributes and semantics to unify heterogeneous tasks
within a common representation framework [88], [89], [90].

Additionally, ensemble methods [91], [39], [87] are intro-
duced, which improve the generalization ability based on the
strengths of multiple tabular models. By summarizing the state
of the field and discussing extensions, we aim to guide future
research and applications in tabular representation learning.

II. BACKGROUND

This section presents the (supervised) tabular machine
learning task, including the notation of tabular data learning,
the history of tabular data, the challenges of learning from
tabular data, evaluation metrics, and tabular benchmarks.

A. Learning with Tabular Data

A supervised tabular dataset is formatted as N examples and
d features/attributes corresponding to N rows and d columns
in the table. An instance xi ∈ Rd is depicted by its d feature
values. Assume xi,j as the j-th feature of instance xi, it could
be a numerical (continuous) one xnum

i,j ∈ R, like the temperature

of a region or the density of the object. xi can also be a
categorical (discrete) value xcat

i,j , like one of multiple colors,
the location of a person, or even some textual descriptions
of the instance. Each instance is associated with a label yi,
where yi ∈ {1,−1} in a binary classification task, yi ∈ [C] =
{1, . . . , C} in a multi-class classification task, and yi ∈ R in
a regression task. This survey primarily focuses on standard
classification and regression tasks and does not specifically
discuss ordinal regression [92].

Given a tabular dataset D = {(xi, yi)}Ni=1, we aim to learn
a mapping f on D that maps xi to its label yi. In other words,
the model predicts xi with ŷi = f(xi). The general objective
learning f follows the structural risk minimization:

min
f

∑
(xi,yi)∈D

ℓ(y, ŷi = f(xi)) + Ω(f) . (1)

ℓ(·, ·) measures the discrepancy between the predicted label
ŷi and the true label yi, e.g., cross-entropy in classification
and mean square error in regression. Ω(·) is the regularization
on the model, which restricts the complexity of f . We expect
the learned f is able to extend its ability to unseen instances
sampled from the same distribution as D.

Tabular methods differ in their strategies to implement f .
The “dummy” approach makes predictions based on training
labels {yi}Ni=1 directly, which outputs the major class in
the training set for classification and the average of all
labels for regression, respectively. In a C-class classification
task, classical parametric methods implement f with a linear
mapping, i.e., f(xi) = W⊤xi + b, where the classifier
W ∈ Rd×C and b ∈ RC is the bias. With different loss
functions, we can implement Logistic Regression, SVM, or
even AdaBoost. In contrast, non-parametric methods implement
the prediction via f(xi) = f(xi,D), depending on the whole
training set. For example, KNN searches neighbors in the
training set D with the K smallest distance w.r.t. xi.

Deep tabular methods implement f with a deep neural
network. Most deep models could be decomposed into two
parts, i.e., f(xi) = W⊤ϕ(xi) + b. Similar to the linear
model, W and b are the components of the classifier, with
W ∈ Rd′×C . ϕ maps the input vector xi into the d′ dimension
space, which extracts semantic embeddings for the given input.
ϕ could be implemented with an MLP or a residual network.

B. Challenges of Learning from Tabular Data

Different from other types of data sources, e.g., images and
texts, there exist several challenges dealing with tabular datasets
due to their characteristics.
Heterogeneity of Features. Unlike continuous image data or
token-based text, tabular data often contains both numerical
and categorical attributes, each requiring different handling [9],
[93]. Numerical features vary in range and distribution, re-
quiring normalization or scaling. Categorical features differ in
cardinality and semantics, needing encoding methods like one-
hot vectors or embeddings. Models must handle these mixed
types carefully to retain feature utility.
Lack of Spatial Relationships. Tabular data lacks the spatial
or sequential structure present in other modalities [72], [48].
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Column order has no semantic meaning, making it permutation-
invariant. Rows are typically assumed to be independently and
identically distributed (i.i.d.), eliminating temporal or sequential
correlations. This lack of structure limits the applicability of
deep architectures designed to exploit such dependencies.
Sensitivity to Perturbations. Unlike images, text, or time
series data, tabular data often exhibits sharp decision bound-
aries where small variations in critical features can lead to
significant shifts in the target label [32], [33]. Furthermore,
when predicting with LLMs, they often struggle with precise
numerical reasoning and are insensitive to small numerical
changes, leading to suboptimal performance on tasks requiring
high-precision arithmetic or regression [94].
Low-quality and Missing Data. Unlike image or text data,
where contextual redundancy helps mitigate missing values,
tabular data is more sensitive to incomplete or noisy entries [95],
[96]. Missing values can introduce bias and degrade perfor-
mance, while noisy data reduces reliability. Thus, preprocessing
steps like cleaning and imputation are essential.
Importance of Feature Engineering. Tabular models heavily
rely on input feature quality [43], [97]. Unlike in vision or
NLP, where DNNs learn from raw data, tabular tasks often
require domain knowledge and manual feature engineering.
Modeling feature interactions usually demands expert-driven
transformations, which significantly affect performance [98].
Class Imbalance. Tabular classification tasks often face label
imbalance, where some classes are underrepresented [99]. This
leads to biased predictions and poor performance on minority
classes. Solutions include oversampling, undersampling, and
loss reweighting. Metrics like AUC and F1-score help evaluate
models under imbalance. Recent studies show deep and
classical models handle imbalance differently, warranting
careful method selection [100], [37].
Scalability to Large Datasets. Tabular datasets can be
large-scale and high-dimensional, posing computational and
generalization challenges [101]. As dimensionality increases,
the risk of overfitting also increases. Thus, efficient training and
adequate resources are essential. Scaling tabular models while
preserving generalization remains a critical challenge [102].
Model Selection and Hyperparameter Tuning. Tabular
models are highly sensitive to hyperparameters [103], [104].
Choosing suitable architectures and tuning parameters like
learning rate or tree count is often costly and time-consuming.
Although AutoML techniques [105], [106] offer automation,
identifying optimal settings for deep tabular models under
constraints remains difficult yet vital.
Domain-Specific Constraints. Applications in domains like
healthcare or finance impose regulatory and ethical con-
straints [107]. Healthcare models must comply with privacy
laws like HIPAA [108] and be interpretable to clinicians. Finan-
cial systems face fairness and compliance requirements. Such
constraints affect algorithm choices and demand interpretability
and validation [109].

C. Evaluation of a Tabular Method

We present the evaluation of tabular methods, ranging from
traditional to modern, to provide a comprehensive evaluation

across different aspects. For a given model on a dataset D, we
employ standard metrics that quantify the discrepancy between
the predicted label ŷi and the true label yi.
Evaluation on A Single Task. For classification tasks,
Accuracy (or Error Rate) is commonly employed as the
primary metric. AUC and F1 scores are further used to address
imbalanced label distributions, while Expected Calibration
Error (ECE) [110] calculates the weighted average error of
the estimated probabilities. All criteria are the higher, the
better, except the error rate and ECE. For regression tasks,
common metrics include Mean Squared Error (MSE), Mean
Absolute Error (MAE), and Root Mean Squared Error (RMSE),
with MAE and RMSE sharing the scale of the original labels.
Lower values denote superior performance. Additionally, the
coefficient of determination (R2) is employed, with higher
values indicating a better fit.
Evaluation on A Set of Tasks. The diversity of tabular datasets
makes it hard for one model to perform best universally,
so evaluation should consider both per-dataset results and
aggregated metrics for overall effectiveness. Early research
predominantly relied on Average Rank (Friedman Rank) [12],
[35] and Critical Difference Comparisons to evaluate model
performance across datasets. Models are ranked per dataset
using metrics like accuracy or RMSE. Statistical tests such
as Wilcoxon-Holm, Friedman, and Nemenyi [111] assess the
significance of rank differences. To mitigate the influence of
outliers, PAMA [12] measures the fraction of datasets where
a model achieves the best accuracy, while P95 quantifies the
likelihood that at least 95% of the maximum.

As research progressed, more diverse evaluation metrics were
introduced, e.g., Arithmetic Mean, normalized Accuracy, nor-
malized RMSE [32], [30], Mean Normalized Error, Shifted Ge-
ometric Mean (SGM) error [30]. Beyond absolute performance,
relative comparisons such as Relative Improvement [112], ELO-
based evaluation [41] are also important.

D. Tabular Benchmarks and Datasets

This section introduces existing benchmarks and datasets,
along with associated considerations for constructing the
benchmarks and evaluation protocols.

1) Popular Tabular Benchmarks and Datasets: We begin
by introducing several benchmarks constructed from raw
tabular features across various dimensions, followed by datasets
enriched with semantic annotations.
Standard Benchmarks. Tabular learning methods often exhibit
dataset-specific performance, and evaluations based on a
small number of datasets may be biased by randomness or
dataset idiosyncrasies. Therefore, constructing comprehensive
benchmarks is critical for robust and generalizable evaluation.

An effective benchmark should cover a wide range of
datasets to evaluate generalization across different tasks and
feature characteristics. This includes binary classification, multi-
class classification, and regression tasks. For example, [12]
benchmarked 179 classifiers across 121 datasets and found
that Random Forest variants consistently outperformed others.
[48] evaluated MLPs augmented with ensembling and data
augmentation across 40 classification datasets. [29] further
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demonstrated the competitiveness of MLPs, ResNets, and
Transformer-based models on 11 datasets. [32] conducted a
broad comparison on 45 datasets, analyzing the performance
gap between tree-based and deep learning methods.

Benchmarks should include datasets of varying sizes to
evaluate scalability and efficiency. [35] uses 176 classification
datasets with different sizes to compare across methods.
However, limited tuning and strict time constraints may have
led to suboptimal evaluations for some deep methods [113].

To ensure generalization, datasets should come from multiple
domains, e.g., healthcare, biology, and finance. [114] evaluates
attention and contrastive learning methods on 28 datasets.
[42] uses over 300 datasets covering diverse tasks, sizes, and
domains to assess the generalization of DNN-based models.
TabArena [115] constructs a continuously maintained living
benchmarking system for standardized and reliable evaluation.
Semantic-Enriched Datasets. Recent work has focused on
tabular datasets with rich semantics, such as task-related meta-
information and attribute names. UniTabE [116] introduces a
7TB dataset with 13 billion examples for pre-training. CM2 [76]
proposes OpenTabs for cross-table pre-training, including 46M
tables with column name semantics. TP-BERTa [75] filters
OpenTabs to 101 binary and 101 regression datasets with at
least 10,000 samples and no more than 32 features, totaling
10 million samples. GTL [78], TabLib [117], and T4 [88]
also extract large-scale data from real-world sources such as
Kaggle and GitHub. These semantic-rich datasets are primarily
used for pre-training LLMs on tabular data, while others serve
for evaluating standard methods. Several toolboxes support
both classical and deep methods [118], [119], [120], [121].
Building a comprehensive benchmark requires considering
both the diversity and quality of the dataset.

2) Evaluation Protocols: Given the strong sensitivity of
tabular methods to data and the additional randomness in deep
methods, robust evaluation is essential. Furthermore, due to
the high computational cost of some methods, it is equally
important to ensure evaluation efficiency.
Model Selection. Model selection on the validation set involves
hyperparameter tuning and early stopping to ensure reliable
evaluation. Given the high dimensionality of hyperparameters in
deep models, automated tools like Optuna [122] are widely used
for efficient search [29], [67]. Models are typically trained with
multiple random seeds for stability, and early stopping [123]
is applied in each trial to avoid overfitting, selecting the best
epoch based on validation performance.
Performance Evaluation. To assess generalization and prevent
overfitting, models are typically evaluated using train/val/test
splits. However, fixed splits may lead to inconsistent results.
With the rise of deep learning, more robust evaluation protocols
have been proposed [124], including (1) fixing the split and
running multiple trials with different random seeds [52], [57],
[67], [29], [56], [125], [69]; and (2) cross-validation, where
new splits are generated per fold [61], [85], [126], [30]. Hybrid
approaches combining both have also been explored [127].

Recent work has highlighted that holdout-based hyperparam-
eter tuning can be unstable and prone to overfitting [128], [113].
[113] found it ineffective on TabZilla [35] datasets, advocating
for 5-fold cross-validation, which altered prior meta-feature

conclusions. [42] further refined these insights by identifying
more predictive meta-features. For small datasets, alternative
evaluation strategies have been proposed [129]. [130] showed
that simple data reshuffling can improve generalization, making
holdout selection competitive with cross-validation while being
more efficient.

III. FROM CLASSICAL TO DEEP METHOD

We present possible advantages of deep learning for tabular
data, as well as the potential challenges of deep learning when
compared with tree-based methods.

A. Advantages of deep representation learning

Deep tabular models offer several advantages beyond per-
formance when compared with classical methods.
Ability to Model Complex Feature Interactions. DNNs effec-
tively capture high-order, non-linear feature interactions, which
are difficult for traditional models like linear regression or
decision trees [49], [52]. Through hierarchical representations,
low-level interactions are learned in early layers, while deeper
layers capture complex dependencies, making DNNs suited for
modeling intricate tabular relationships.
End-to-End Learning. Unlike traditional methods that separate
feature engineering, preprocessing, and tuning, DNNs can learn
directly from raw features without manual transformations.
This end-to-end training reduces human bias and streamlines
workflows [29], [131]. DNNs also support multi-task learning,
enabling shared representations that improve both performance
and efficiency [132], [68], [47].
Integration with Other Modalities. Deep tabular models
excel in multi-modal pipelines, combining tabular data with
images, audio, or text. In AI4science, for example, tabular
data may be fused with images [133] (e.g., medical imaging)
or time series [134], [135] (e.g., forecasting). DNNs naturally
model such heterogeneous interactions, enabling more accurate,
comprehensive predictions.
Flexibility with Dynamic Environments. DNNs benefit from
gradient-based optimization, enabling efficient, iterative training
and adaptability to changing objectives [9]. Unlike tree-based
models, which often require task-specific adjustments, DNNs
handle dynamic environments such as real-time prediction,
financial analysis, and decision systems where feature re-
lationships may shift. Their adaptability supports online or
incremental learning, integrating new data without retraining
from scratch [136], [137].
Long-Term Knowledge Transfer and Learning. DNNs can
retain and transfer knowledge across tasks [138], reducing
the need for retraining when applied to related domains [139].
This is especially valuable in AI4science, where models trained
on one data type can be adapted to others, saving time and
resources. Such transferability enables more efficient and
sustained use of data and model capabilities.

B. Debates between Tree-Based Methods and DNNs

While deep tabular methods show promise in learning
representations and nonlinear predictors, they often struggle to
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outperform classical models like Gradient Boosted Decision
Trees (GBDT). Many studies still consider GBDT strong
baselines [32], [35], and their relative advantages may diminish
across diverse evaluation datasets.

Several reasons contribute to why tree-based methods retain
their advantages over DNNs in many tabular tasks:
Better Handling of High-Frequency Data. Tree-based meth-
ods, especially GBDT, efficiently handle high-frequency or
dense data with small variations [34]. By recursively splitting
on informative features, they capture local and global patterns
effectively. In contrast, DNNs may struggle with fine-grained
patterns without extensive regularization [140]. To address
this, [43] showed that periodic activations enhance learning of
high-frequency functions.
Natural Handling of Mixed Data Types. Tree-based models
naturally support mixed data types and handle categorical
features without one-hot encoding [9], [42], streamlining
preprocessing, whereas DNNs rely on encoding methods,
adding complexity and potentially harming performance [61].
Lower Computational Requirements for Training and
Inference. Tree-based models are often more computationally
efficient than DNNs [29], especially for smaller datasets or
rapid deployment [35]. GBDTs train quickly and require fewer
resources, while DNNs typically demand more computation
(e.g., GPUs, time) to match performance [141], [84], making
them less suitable in resource-limited settings.
Robustness to Noisy and Missing Data. Tree-based models
handle noisy and missing data more effectively. Decision trees
accommodate missing values through optimal splitting and
tolerate inconsistent data [32]. In contrast, DNNs are more
sensitive and require preprocessing (e.g., imputation, noise
filtering) to maintain performance [63], [85].
Interpretability and Transparency. Tree-based models are
highly interpretable [58], [59], [142]. Their decision paths
can be visualized, and feature importance is directly accessi-
ble [143], [144], [145], making them well-suited for domains
like finance and healthcare. Although interpretability tools
like LIME [146] and SHAP [147] exist for DNNs, tree-based
models remain more intuitive. Recent work [57], [126] has
aimed to improve neural network interpretability by mimicking
tree-based behavior.
Handling Outliers and Skewed Data. Tree-based methods
are more robust to outliers and skewed distributions. Decision
trees split based on feature ranges, naturally isolating extreme
values. In contrast, DNNs often require additional techniques
(e.g., outlier removal) to manage such data [148], [149].

In conclusion, despite the rapid progress of deep learning,
tree-based models such as XGBoost [143], LightGBM [145],
and CatBoost [144] remain the dominant solution for many
tabular tasks. They offer superior training efficiency and robust-
ness to unscaled features. Furthermore, classical probabilistic
methods continue to serve as strong baselines for tasks requiring
uncertainty estimation [150], [151]. Consequently, rigorous
benchmarking against these established non-DNN approaches
remains a critical standard for evaluating the effectiveness of
deep tabular representation learning.

IV. TAXONOMY OF SPECIALIZED METHODS

Similar to the evolution of deep learning, which progresses
from specialized learning to transfer learning and ultimately to
foundation models [196], we categorize deep tabular methods
into three groups, as shown in Fig. 2: specialized methods,
transferable methods, and general methods. This classification
reflects both the evolutionary development of deep learning
techniques and the increasing generalization capabilities.

Beyond such taxonomy, it is also insightful to view the field
through the lens of input modalities. Similar to benchmarks
(in Sub-Section II-D), recent deep tabular methods can also be
divided into standard methods and semantic-enriched methods.
Standard methods focus on extracting patterns purely from
raw numerical and categorical values, modeling the structural
relationships between rows, columns, and targets. In contrast,
semantics-enriched methods integrate auxiliary textual informa-
tion with LLMs, such as attribute names and meta descriptions.
While our survey is organized primarily by generalization
capability, this modality-based distinction permeates all three
categories, with semantic enrichment becoming increasingly
central in transferable and general models.

Specialized methods, being the earliest developed and most
widely used category, will be our starting point for discussion.
Tabular data consists of features (columns), samples (rows), and
objectives (labels), which together define the structure and the
task objectives. We emphasize detailed strategies for obtaining
high-quality representations at both feature- and sample-level
for the target task. Specifically, given the input data, according
to the general learning objective in Equation 1, we consider
how to transform the tabular input xi (feature aspect), how
to construct relationships between samples (sample aspect),
how to design the objective ℓ(·) and regularize Ω(·) (objective
aspect). In particular,
• Feature Aspect. We focus on how to transform the raw

tabular input into intermediate representations. We consider
two types of features: numerical and categorical. By explicitly
modeling the relationships between the two features (e.g.,
feature importance and interactions), we are able to enhance
the model’s understanding of the input space.

• Sample Aspect. In addition to features, we explore how
to retrieve and utilize neighboring samples to capture inter-
sample dependencies, thereby improving predictions. In order
to improve the model’s prediction ability, we explore the
relationships between a target sample and its “neighbors.”

• Objective Aspect. We examine how to modify the loss func-
tion and objective to introduce inductive biases. By directly
guiding the learning process with the target variables, we
incorporate prior knowledge or task-specific preferences into
the model, improving its generalizability and interpretability.

It is worth noting that these three aspects are not mutually
exclusive but rather complementary. Feature-aspect methods
primarily address the heterogeneity of tabular attributes, trans-
forming diverse data types into a unified representation space
capable of capturing high-order interactions. Sample-aspect
methods compensate for the lack of explicit spatial or sequential
structure by leveraging relationships between instances (e.g.,
retrieval or attention), thereby enriching the representation
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TABLE I
THE TAXONOMY OF REPRESENTATION LEARNING FOR TABULAR DATA.

Algorithm Category Reference

Specialized Methods

§ V
Feature-aspect Methods

Feature Encoding [29], [43], [62]

Feature Selection [57], [58], [142], [59], [126], [152], [153]

Feature Projection [50], [29], [30], [56]

Feature Interaction [52], [60], [61], [53], [63], [47], [154]

§ IV-A
Sample-aspect Methods

Sample Interaction [68], [155], [156], [125], [65]

Neighbor Retrieval [157], [66], [67], [31]

§ IV-B
Objective-aspect Methods

Training Objective [65]

Training Regularization [158], [48], [64]

§ VI
Transferable Methods

Homogeneous [61], [46], [68], [159], [44], [160], [161], [162], [45], [163], [164], [165], [166]

Heterogeneous [167], [168], [161], [70], [71], [62], [169], [170]

Language Model [74], [171], [116], [76], [75], [172], [173], [174], [79], [175], [176], [77], [177]

Vision Model [178], [179], [180], [72], [73], [181], [182], [183]

§ VII
General Mehtods

Raw-Feature-based [82], [83], [84], [184]

TabPFN Variants [85], [87], [185], [40], [186], [41], [187], [188], [189], [39], [190], [191], [192]

Semantics-based [88], [89], [90], [193], [194], [195]

with global context. Finally, Objective-aspect methods inject
necessary inductive biases (such as sparsity or regularization)
directly into the optimization process to guide generalization.
Deep tabular models (e.g., FT-Transformer [29], SAINT [68])
can integrate strategies from multiple aspects to tackle the
complex challenges of tabular learning effectively.

In specialized methods, we focus solely on learning from
pure data, excluding feature semantics considered in transfer-
able methods (in Section VI). Since specialized methods cover
lots of approaches—with feature-aspect methods being the
largest subset—we first introduce sample-aspect and objective-
aspect methods, then Feature-aspect methods in Section V.

A. Sample-aspect Specialized Methods

Sample interaction methods take a retrieval-based approach,
focusing on relationships between individual samples rather
than features. In a tabular dataset, each sample xi represents
a row with d features, and the goal is to leverage relationships
between a target sample and its “extracted neighbors” to im-
prove predictions. The general form for the sample interaction
methods can be expressed as:

ŷi = f (R(xi,D; Φ)) , (2)

where D is the set of all samples (training data) available for
retrieval or learning. R(·) is the sample interaction module,
which retrieves or aggregates information from relevant samples
in S for the target sample xi. Φ represents the learnable
parameters of R. f(·) is the prediction head that maps the
aggregated information to the final output ŷi.

Sample aspect approaches can be broadly categorized into
two main strategies. The first approach introduces the modeling
of sample relationships R during representation training,
allowing the model to learn better representations by capturing
inter-sample dependencies. The second approach is retrieval-
based models, which directly predict outcomes by retrieving
and utilizing neighbors’ relationships R when testing.
Sample Interaction. These methods assist in representation
learning by allowing the model to capture relationships between

samples, which in turn helps generate a more robust represen-
tation during training. During testing, the model becomes more
sensitive to each sample without interaction.

SAINT [68] introduces inter-sample attention beyond inter-
attribute attention, which improves row classification by relating
each row to others in the table. NPT [155] extends this via non-
parametric Transformers, whereas Hopular [156] employs Hop-
field networks, sharing conceptual alignment with SAINT [68].
Unlike nearest-neighbor classification, the distance metric
is learned end-to-end. Trompt [125] posits that the feature
importance in tabular data is sample-dependent. During feature
extraction, it treats the information between samples as prompts.
PTaRL [65] identifies two issues in the representation of tabular
data samples: entanglement and localization. It addresses these
by modeling global sample relationships through prototype
generation and representation projection, helping the model
produce clear and consistent decisions.
Neighbor Retrieval. These methods construct high-quality
contexts to aid prediction by retrieving valuable neighbors
and designing efficient ways to utilize them based on the
relationships between samples. The training data is used to
assist during testing.

DNNR [66] argues that a key advantage of neighbor-based
methods is the model’s transparency, meaning that the model’s
decisions can be explained by inspecting its components.
TabR [67] proposes that, compared to purely parametric (e.g.,
retrieval-free) models, retrieval-based models can achieve
superior performance while also exhibiting several practically
important properties, such as the ability for incremental learning
and enhanced robustness. ModernNCA [31] revitalizes the
classic tabular prediction method, Neighbourhood Component
Analysis (NCA) [197], by designing and incorporating deep
learning architectures and strategies. The resulting method
efficiently leverages neighboring samples for prediction.

B. Objective-aspect Specialized Methods

The general objective learning f follows the structural risk
minimization as in Equation 1, where ℓ is the loss function
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Fig. 3. Illustration of feature-aspect methods, including feature encoding,
feature selection, feature projection and feature interaction.

to set the training objective between the prediction and the
ground truth label. Ω(·) is the regularization on the model,
which directs the objective or restricts the complexity of f .

Objective-aspect methods in deep learning are an extension
of these traditional regularization techniques, where inductive
bias is introduced by adjusting the loss function ℓ or adding
regularizers Ω. In the training progress, the goal is to leverage
regularization on the model to improve predictions.

Objective-aspect approaches can be broadly categorized
into two main strategies. The first approach involves training
objectives, which enhance the model with a specialized ability.
The second approach introduces a regularizer, allowing the
model to learn strong generalized representations.
Training Objective. For training objectives, PTaRL [65]
constructs prototype-based projection space and learns the
disentangled representation around global prototypes. PTaRL
uses a diversification constraint for representation calibration
and introduces a matrix orthogonalization constraint to ensure
the independence of global prototypes.
Training Regularization. For training regularization,
RLNs [158] overcome the challenge of an intractable number
of hyperparameters during training by introducing an efficient
tuning scheme, which minimizes a new “Counterfactual Loss.”
In RLNs, the regularization coefficients are optimized together
with learning the network weight parameters. [48] introduces
“cocktails,” dataset-specific combinations of 13 regularization
techniques, showing that even simple neural networks can
outperform tree-based architectures when optimized with these
methods. TANGOS [64] introduces a regularization-based
improvement. It regularizes neuron attributions to encourage
neurons to specialize and become orthogonal to one another.

V. FEATURE-ASPECT SPECIALIZED METHODS

Tabular data consists of various features, including categori-
cal and numerical variables. Its complexity stems from varied
feature types, interrelationships, and often high dimensionality.
Traditional methods rely on manual feature engineering—such
as encoding categorical variables and feature selection—to
improve performance and reduce overfitting. As deep learning
evolved, these techniques have been integrated and extended.
Deep tabular models can automatically learn feature representa-
tions, reducing the need for manual engineering. Feature-aspect

methods, like encoding, selection, projection, and interaction,
transform raw inputs into informative forms, helping capture
intricate relationships and improve generalization. Feature
encoding and interaction methods are specifically designed to
address the heterogeneity of features, transforming diverse data
types into a unified latent space. Meanwhile, feature projection
techniques help mitigate the high dimensionality often resulting
from one-hot encoding.

A. Feature Encoding

Various encoding strategies have been explored for both
categorical and numerical features in tabular data. Additionally,
with the advancement of the attention mechanism, feature
tokenization, similar to word embeddings in natural language
processing, transforms all features into embeddings.
Categorical Encoding. Categorical variables represent data
types divided into groups, such as race, sex, age group, and
educational level [198]. These features are usually converted
into integers. Two common techniques are Ordinal Encoding
and One-Hot Encoding.

Ordinal Encoding assigns each category a distinct integer,
useful when categories have an inherent order like “low,”
“medium,” and “high.” Its main advantage is simplicity and
efficiency, transforming the variable into a single numeric
column. However, it assumes an ordinal relationship that may
not exist—for example, “red,” “blue,” and “green,” with Ordinal
Encoding would introduce an artificial order that does not reflect
any meaningful ranking.

On the other hand, One-Hot Encoding creates a binary
column for each unique category. For example, the variable
“color” with categories red, blue, and green would generate three
columns: “is red,” “is blue,” and “is green,” encoding red as
(1,0,0), blue as (0,1,0), and green as (0,0,1). This method suits
nominal categorical variables without inherent order. While it
avoids ordinal assumptions, One-Hot Encoding can produce
a high-dimensional feature space when many unique values
exist, increasing computational costs and risking overfitting.

In some cases, more advanced encodings address these
limitations. For example, Target Encoding assigns each category
the mean target value, useful when categorical features strongly
relate to the target. In Leave-one-out embedding, every category
is replaced with the mean of the target variable of that category,
which excludes the current row to avoid overfitting.
Numerical Encoding. For encoding, MLP-PLR [43] introduces
two numerical encoding methods: Piecewise Linear Encoding
(PLE) and Periodic Activation Functions. These encoding
methods can be integrated with other differentiable layers
(e.g., Linear, ReLU) to enhance performance. PLE produces
alternative initial representations for the original scalar values
and is based on feature binning. Periodic Activation Functions
take into account the fact the embedding framework where
all features are computed independently of each other forbids
mixing features during the embedding process and train the
pre-activation coefficients instead of keeping them fixed. [34]
utilizes tools from spectral analysis, showing that functions
described by tabular datasets often have high irregularity, and
can be smoothed by transformations such as scaling and ranking
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to improve performance. They propose “frequency reduction”
as an inductive bias during training.
Feature Tokenization. Feature tokenizer performs a similar
role to the feature extractor in traditional models. It trans-
forms the input features to embeddings [60], [29]. Since the
feature representations of features are very sparse and high-
dimensional, a common way is to represent them into low-
dimensional spaces (e.g., word embeddings). The general form
for feature tokenization can be expressed as:

Ti,j = bj + T (xi,j ; Ψ) ∈ Rt, (3)

where T (·) is the feature tokenizer module, which transforms
the input feature vector xi ∈ Rd to a token embedding Ti,j ∈
Rt. t is the dimension of token embedding. bj is the j-th
feature bias. T can be implemented with different forms. Ψ
represents the learnable parameters of T .

In AutoInt [60], both the categorical and numerical features
are embedded into low-dimensional spaces, which reduces
the dimension of the input features and meanwhile allows
different types of features to interact with each other. TabTrans-
former [61] embed each categorical feature into a parametric
embedding of dimension t using Column embedding. An
embedding vector is assigned to each feature, and a set of
embeddings is constructed for all categorical features. Unlike
TabTransformer, SAINT [68] proposes projecting numerical
features into a t-dimensional space before passing their em-
bedding through the transformer encoder. FT-Transformer [29]
adapts the Transformer architecture for tabular data, where all
features are transformed to embeddings and applies a stack of
Transformer layers to the embeddings. Specifically, the numeri-
cal tokenizer is implemented as the element-wise multiplication
T num
i = bnum

i + xnum
i ·W num

i , and the categorical tokenizer is
implemented as the lookup table T cat

i = bcat
i + eTi W

cat
i , where

eTi is a one-hot vector for the corresponding categorical feature.
Other transformer-based methods, like [63], [70], [169], use
the same feature tokenizer as FT-Transformer.

B. Feature Selection

High dimensionality in tabular data often leads to overfitting,
where models focus on irrelevant features. Feature selection
addresses this by retaining only the most informative fea-
tures, improving generalization and reducing computational
cost. Traditional tree-based models perform feature selection
inherently by evaluating feature impact during construction.
Decision trees utilize metrics such as information gain or
the Gini index for feature selection, while ensemble methods
like random forests determine feature importance by assessing
each feature’s contribution [199], [200]. Recently, modern deep
learning methods for tabular data often mimic trees’ structures
for feature selection.

GrowNet [57] and NODE [58] mimic ensemble meth-
ods, with GrowNet stacking weak DNN learners inspired
by GBDT, and NODE using differentiable oblivious trees
with Bagging and Stacking. NODE-GAM [59] adapts NODE
into a scalable GAM [201] for learning non-linear patterns.
TabNet [142] combines DNN representation learning with
tree-like interpretability and sparse feature selection, while

GRANDE [126] leverages tree-style hard splits via gradient-
based learning to bridge the gap with deep models. Recursive
Feature Machines (RFM) [152] enables kernel machines to
learn features by recursively reweighting features via a gradient-
inspired mechanism without backpropagation. xRFM [153]
extends feature learning kernel machines with a tree structure
to both adapt to the local structure of the data and scale to
unlimited amounts of training data.

In parallel, instead of mimicking tree structures, another line
of work integrates differentiable feature selection into neural
networks. STG [202] enhances LASSO by modeling nonlinear
feature interactions and using smooth Bernoulli-based gates for
regularization, while LSPIN [203] learns instance-wise gating
probabilities to select the most informative features per sample.

C. Feature Projection

Feature projection methods aim to project the raw data
into a middle form, enhancing the representation ability for
later architectures. Feature projection methods can be broadly
categorized into two main approaches: MLP variants and special
designed architectures. These approaches aim to enhance the
model’s ability to represent complex features for underlying
feature structures.
MLP Variants. For model architecture, RTDL [29] investigates
both ResNet-like and Transformer-based architectures tailored
for tabular data, proposing simple yet effective adaptations
of these widely-used deep models. Another contemporaneous
work [48] enhances the MLP architecture by equipping it with
a comprehensive suite of modern regularization techniques.
Instead of introducing architectural innovations, this study
focuses on systematically exploring different regularization
methods to identify an effective “regularization cocktail” for
plain MLPs. For a more comprehensive strategy, RealMLP [30]
explores multiple aspects including preprocessing, hyperparam-
eters, architecture, regularization, and initialization.
Special Designed Architectures. For units, motivated by
the observation that normalization techniques are prone to
disturbances during training, SNN [50] proposes the Scaled
Exponential Linear Unit (SELU) to improve deep models for
tabular data. NAMs [204] uses exp-centered (ExU) hidden
units to improve the learnability for fitting jumpy functions.
BiSHop [56] uses a dual-component approach, sequentially
processing data both column-wise and row-wise through two
interconnected directional learning modules. They use layers of
generalized sparse modern Hopfield layers, a sparse extension
of the modern Hopfield model with learnable sparsity.

D. Feature Interaction

Feature interaction methods aim to model relationships
among features to enhance the representation power of deep
learning models on tabular data. In tabular datasets, each sample
xi ∈ Rd is described by d features. The general form for feature
interaction methods can be expressed as:

ŷi = f (H(xi; Θ)) , (4)

where xi ∈ Rd is the input feature vector for a single instance,
H(·) is the feature interaction module, which transforms the
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input x by capturing feature dependencies or generating higher-
order feature interactions. Θ represents the learnable parameters
of H. f(·) is the prediction head that maps the transformed
representation to the final output ŷ.

Feature interaction methods can be broadly categorized into
two main approaches: the design of automatic feature interac-
tion modules and the mining of implicit feature relationships.
These approaches aim to enhance the model’s ability to learn
complex feature interactions and underlying feature structures
within tabular data.
Automatic Feature Interaction Modules. These methods do
not assume specific feature types within the tabular dataset.
Instead, they focus on improving the feature interaction process,
enabling the model to learn complex, high-order feature
relationships autonomously.

DCNv2 [52] improves the learning of the model’s feature
interaction by improving the “Cross Network” structure. Au-
toInt [60] maps the original sparse high-dimensional feature
vectors into a low-dimensional space and models high-order fea-
ture interactions by stacking interaction layers with a multi-head
attention mechanism. Unlike AutoInt, the TabTransformer[61]
only maps categorical features into contextual embeddings
and feeds them into a Transformer model, while numerical
continuous features are directly concatenated with the interacted
contextual embeddings. When tabular data contains only
numerical features, TabTransformer behaves in an MLP-like
manner. Conversely, when the data contains only categorical
features, TabTransformer operates similarly to AutoInt.
Implicit Feature Relationships. Methods in this category
typically assume that features in tabular data can be abstracted
into implicit types and that it is necessary to design a suitable
feature learning process to adapt to the characteristics of
different types of features.

DANets [53] propose the existence of underlying feature
groups in tabular data, where features within each group are
correlated. They learn to group input features and perform fur-
ther feature abstraction. SwitchTab [47] introduces the idea of
extracting sample-specific “Salient Features” and sample-shared
“Mutual Information” in tabular features. It leverages self-
supervised learning to assist in learning feature representations.
ExcelFormer [63] argues that while DNN assigns weights to
each feature, it does not actively exclude irrelevant features. To
address this, it introduces Semi-Permeable Attention for feature
interaction, which allows features with lower information con-
tent to access information from more informative features while
preventing highly informative features from being influenced
by less relevant ones. AMFormer [154] proposes the hypothesis
that arithmetic feature interactions are crucial for deep tabular
models. Based on the Transformer architecture, it introduces
components designed to extract both additive and multiplicative
interaction information.

VI. FROM SPECIALIZED TO TRANSFERABLE MODEL

Instead of training a tabular model from scratch, learning
based on a Pre-Trained Model (PTM) may increase the learning
efficacy and reduce the resource and data requirement. For
example, in a house prices prediction task, training a regressor

Masked Language Model

Contrastive Pre-training

Supervised Pre-training

Fig. 4. Illustration of homogeneous transferable tabular methods. The pre-
trained model could be constructed from supervised or self-supervised learning,
including masked language model, contrastive pre-training, and hybrid methods.

in a certain area may benefit from a well-trained predictor from
its neighborhood. These methods primarily tackle the challenge
of low-quality and missing data (specifically, label scarcity) by
transferring knowledge from data-rich source domains.

Learning by reusing the PTM usually contains two stages.
The first is the pre-training of a tabular model, from one or
more upstream tasks. Given the PTM and a downstream task, an
adaptation strategy is needed to transform the PTM to the target
task or facilitate the learning of the target model. Formally, a
well-trained model gΘ is often available and can be leveraged to
facilitate the training of fθ over D. Here, gΘ is pre-trained on a
dataset D′ = {(x′

j , y
′
j)}N

′

j=1 with instances x′
j ∈ Rd′

and labels
y′j ∈ [C ′]. To reuse expert knowledge in gΘ, an adaptation
strategy is applied: fθ = Adapt(fθ0

| D, gΘ), where θ0 is the
initialization of the model. The notation could also be extended
to cases with more than one PTM. The main challenge to reuse
one or more PTMs is to bridge the gap between the PTM and
the target tabular model [205]. We categorize PTMs into three
kinds based on the source of PTM gΘ.
Homogeneous Transferable Tabular Model. First, the PTM
may come from the same form of task (with d′ = d and
C ′ = C, but with different distributions Pr(D′) ̸= Pr(D) or
model families g ̸= f ). For example, those pre-trained from
other domains [69], or those unlabeled instances [46], [68].
Heterogeneous Transferable Tabular Model. In addition, we
consider a PTM pre-trained from a slightly different task with
D. In addition to the previous difference, the PTM gΘ may
differ from fθ in feature dimension (d′ ̸= d) or target class
set (C ′ ̸= C), so the adaptation method Adapt(·) must handle
such heterogeneity [62], [169].
Cross-Modal Transferable Tabular Model. Moreover, the pre-
trained model could also be constructed from another modality,
such as vision and language domains. The cross-modality PTM
is hard to be applied to the tabular prediction task in most cases,
so auxiliary information from the tabular task like the semantic
meaning of attributes (i.e., the attribute names) are usually
assumed to be available in this case, where PTM like large
language models may provide the latent semantic meanings as
external knowledge [74], [71].

A. Homogeneous Transferable Tabular Model

Benefiting from the strong capacity of deep neural networks,
some recent studies focus on pre-training a tabular model from
unsupervised instances, and then adapting the model via fine-
tuning the PTM on the target (even few-shot) labeled examples.
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This strategy could be applied in standard supervised learning
or semi-supervised learning.
Supervised Pre-training Objectives. A straightforward way to
incorporate the target variable in pre-training is to treat input
corruption as augmentation for supervised objectives. [69]
identifies pre-training practices for tabular deep models across
datasets and architectures. They demonstrate that incorporating
target labels in pre-training improves downstream performance
and propose several target-aware objectives.
Self-Supervised Pre-training Objectives. The self-supervised
pre-training objectives can be mainly categorized into three
categories: the masked language model, contrastive pre-training,
and hybrid methods.
Masked Language Model (MLM). MLM is an unsupervised pre-
training objective where a random subset of features is masked
and predicted in a multi-target classification manner [61].
VIME [46] estimates mask vectors from corrupted data and
reconstructs features, generating multiple augmented samples
via different masks and imputations. SubTab [44] reconstructs
data from a subset of features instead of corrupted inputs to
better capture latent representations. SEFS [160] reconstructs
the input using a randomly selected feature subset and esti-
mates a gate vector to indicate feature selection. MET [162]
concatenates feature representations and adds an adversarial
reconstruction loss to the standard objective.
Contrastive Pre-training. Contrastive pre-training uses data aug-
mentations to generate positive pairs or two different augmented
views of a given example, and the loss function encourages a
feature extractor to map positive pairs to similar features. The
key factor in contrastive learning is to generate positive and
negative versions of a given instance xi. SAINT [68] utilizes
cutMix in the input space and mixup in the embedding space to
obtain positive pairs, where other instances xj ̸=i are treated as
negative ones. SCARF [45] generates a view for a given input
by selecting a random subset of its features and replacing them
with random draws from their respective empirical marginal
distributions. STab [163] minimizes the distance between the
representations of the same instance processed by these two
weight-sharing neural networks, with the stop-gradient opera-
tion applied to the target network, ensuring to model invariance
with respect to more complicated regularizations [206], [45].
DoRA [165] incorporates domain knowledge, training by intra-
sample pretext task and inter-sample contrastive learning to
learn contextualized representations. DACL+ [159] uses Mixup
noise to create similar and dissimilar examples by mixing data
differently to overcome the reliance on a particular domain.
Hybrid Methods. [161] explores supervised and unsuper-
vised pre-training strategies, using MLM and multi-label
classification, and finds that supervised pre-training yields
more transferable features. LFR [166] pre-trains models by
reconstructing multiple randomly generated projections, demon-
strating applicability across tabular, vision, and language data.
ReConTab [164] combines self- and semi-supervised learning,
using feature selection and contrastive learning to distill task-
relevant information. [69] investigates whether supervised pre-
training helps with fully labeled tabular data and shows that
target-aware pre-training benefits downstream performance.
[205] provides a systematic review and summarizes the recent

Pre-Trained Knowledge

Data-Specific Knowledge

Pre-Training Fine-Tuning

Fig. 5. Illustration of heterogeneous transferable tabular methods. During
pre-training on one or multiple datasets, most of the parameters in the PTM are
trained. For downstream tasks, only a small subset of parameters is fine-tuned.

progress and challenges of self-supervised learning for non-
sequential tabular data.

B. Heterogeneous Transferable Tabular Model

The main intuition lies in the mapping f and g work
in a similar fashion, i.e., predicting the labels with similar
mechanisms. Therefore, the main idea to transfer knowledge
is to match the target model with the well-trained one, over
the weight space or the prediction space.

Early methods focus on feature-level heterogeneity between
f and g, assuming a shared feature set between the pre-trained
task D′ and the target task D, allowing weight transfer for
shared features [207]. Neural models are advantageous due to
their ability to learn reusable features and adapt to new do-
mains. Deep PTMs can extract generalizable features, enabling
knowledge transfer from vision and language strategies. For
example, most PTM parameters are frozen, and only a small
subset is fine-tuned using techniques like linear probing or
parameter-efficient tuning.
Reuse PTM Pre-trained from One Dataset. These methods
primarily focus on the difference between the pre-trained
and down-streaming datasets. TabRet [70] utilizes masked
autoencoding to make the transformer work in downstream
tasks. To transfer pre-trained large language models to tabular
tasks, ORCA [71] trains an embedder to align the source and
target distributions. TabToken [62] focuses on improving the
quality of the feature tokens, which are an important component
in tabular deep models. TabToken leverages a conditional
contrastive loss to improve the quality of learned embeddings
and demonstrates enhanced transferability of deep learning
models for tabular data. Pseudo-Feature [161] trains separate
models per new feature. It pre-trains on upstream data without
the feature, fine-tunes on downstream data to predict it, then
uses the model to assign pseudo-values in the upstream data.
The enriched data is used for another pre-training round before
transfer. However, this method is computationally costly for
broad feature space adaptation.
Reusing PTMs Pre-trained on Multiple Datasets. XTab [169]
improves transformer transferability by using independent
features and federated learning to handle varying column
types and quantities across tables. Other methods learn shared,
attribute-agnostic components across datasets to provide strong
initialization for downstream tasks. [167] addresses the chal-
lenge of differing attribute spaces by treating the problem
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The age is 30, the education 
is bachelors, xx is xx, …
Is the income > 50K?

Language Model
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Fig. 6. Illustration of transferable tabular methods with a language model. The
language model can be applied at various stages, including feature tokenization,
feature engineering, and textual serialization.

as a meta-learning task. It utilizes a few labeled instances
to infer latent embeddings, then applies them to unlabeled
test instances for predictions, allowing the model to adapt
to new tables with varying dimensions. DEN [168] adopts a
three-block architecture—covariate transformation, distribution
embedding, and classification—and shows that the latter two
blocks can be fixed after pre-training. Meta-Transformer [170]
maps raw inputs from various modalities into a shared space
using a frozen encoder, allowing high-level semantic extraction
without paired multimodal training data [208].

C. Reusing a Pre-trained Language Model

In some cases, the semantic meaning of features is available,
making it natural to leverage pre-trained language models for
tabular data. Typically, two types of semantic information can
be derived from a tabular dataset D. First, attribute names for
each of the d features, A = A1, . . . , Ad, provide useful context.
Additionally, meta-information such as a textual description,
denoted as meta descript, can further enhance understanding.
The learning process is then formulated as:

ŷi = f(xi,A | D,meta descript) (5)

where the semantic information bridges the gap between feature
spaces and facilitates knowledge transfer from pre-trained tasks
to downstream applications.
Language Models for Feature Tokenization. When the feature
space changes, language-based methods assume that semantic
relationships exist between feature descriptions and rely on
large-scale language models to capture these connections. For
example, the feature ”occupation” in one task may share
semantic similarity with the feature ”organization” in another,
allowing feature-label relationships to be reused across different
datasets. By extracting feature embeddings (tokens), tables
of varying sizes can be transformed into a standardized set
of tokens in a shared space. A pre-trained transformer then
encodes transferable knowledge, aiding the fine-tuning process
for downstream tasks.

TransTab [74] trains a tokenizer on column descriptions and
cell values, using them as input to a gated Transformer. It is
pre-trained via self-supervised or contrastive loss and evaluated
on transfer and feature-incremental tasks. PTab [171] follows
a similar approach, learning contextual representations from
tokenized tabular datasets before fine-tuning. UniTabE [116]
encodes column names, data types, and cell values into tokens,
using an encoder-decoder architecture with Transformer and

LSTM. It applies Multi-Cell-Masking and contrastive learning,
treating sub-vectors as positives and other subsets as negatives.

CM2 [76] proposes a cross-table pre-training framework com-
bining attribute names and feature values. It uses transformers
to process feature tokens and applies a prompt-based Masked
Table Modeling (pMTM) objective, where column names
prompt masked feature prediction. TP-BERTa [75] adopts a
similar approach with numerical discretization and magnitude
tokenization, fine-tuning smaller PLMs like RoBERTa [209].
CARTE [172] models tabular data as a graph, embedding
textual column names and entries. CARTE is pre-trained on
YAGO3 [210] with contrastive loss on graphlets, where original
and truncated variants as positives, others as negatives. Then
pre-trained CARTE model is fine-tuned for downstream tasks.
Language Models for Feature Engineering. Discriminative
features enhance the effectiveness of subsequent tabular learn-
ing models. Binder [173] uses LLMs to generate auxiliary
features for knowledge grounding by identifying task inputs not
directly answerable by the model. Since discriminative features
are often manually designed, CAAFE [211] employs LLMs
to generate auxiliary features from task and feature semantics,
evaluating their quality with TabPFN [85]. FeatLLM [212] uses
example-based prompting for LLMs to create new features
from textual descriptions. TaPTaP [175], through large-scale
pre-training on real-world tabular data, aims to capture generic
tabular distributions and generate high-quality synthetic tables
for various applications.
Language Models for Textual Serialization. A direct way
to use pre-trained language models is converting tabular data
into text, letting LLMs infer feature-label relationships from
embedded expert knowledge, as shown in semantic parsing
tasks [213]. LIFT [176] and TabLLM [77] serialize tables by
combining feature names and task descriptions, treating pre-
diction as text generation. LIFT fine-tunes on the full training
set, while TabLLM uses few-shot learning. UniPredict [177]
builds prompts from metadata, sample serialization, and task
instructions, fine-tuning with confidence-weighted labels from
an external model, validated on multiple datasets. CoT2 [214]
uses nearest neighbors and external models to guide LLMs in
multi-step reasoning, advancing toward expert-level prediction.

Despite their advantages, textual serialization methods strug-
gle as feature numbers grow, since prompts can exceed the
model’s context window. LLM effectiveness on tabular tasks is
limited by available semantic information and external tabular
model capabilities. Further discussion of LLM-based methods
appears in the general tabular models in Section VII.

D. Reusing a Pre-trained Vision Model

Given the success of deep neural networks (DNNs) in
visual tasks, it is natural to leverage pre-trained vision models
for tabular data. Data augmentation techniques from image
processing can also be applied after converting tabular data into
visual formats. Similar ideas have been explored in time series
forecasting [215] and irregular time series classification [216].
The main challenge is representing tabular instances as images.
Unlike natural images, where neighboring pixels share semantic
relationships, tabular features are permutation-invariant and
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lack spatial structure. Various methods have been proposed
to transform tabular data into images, enabling the use of
pre-trained vision models fine-tuned for tabular tasks. This
subsection reviews these transformation strategies.

Various transformation strategies have been proposed to
enable such reuse. One line of work uses dimensionality
reduction techniques such as t-SNE [178] or Bayesian Metric
Multidimensional Scaling [179] to project high-dimensional
tabular features into 2D spaces, generating image-like rep-
resentations. Another direction restructures tabular data into
grid-like formats to introduce spatial relationships, as in
TAC [180], IGTD [72], TablEye [73], and LM-IGTD [181].
Other approaches encode feature values as visual markers, such
as fixed-position text [182] or colored bars [183], allowing
CNNs to interpret tabular instances as images.

By transforming tabular data into images, these methods
enable the application of powerful pre-trained vision models for
tabular prediction tasks, leveraging established deep learning
techniques to enhance tabular model performance.

VII. FROM TRANSFERABLE TO GENERAL MODEL

The general model (also referred to as the tabular foundation
model) represents an advancement over the transferable model.
It extends the generalization capabilities of a PTM to a variety
of heterogeneous downstream tabular tasks, regardless of their
diverse feature and class spaces, without requiring additional
fine-tuning. In other words, given a pre-trained model gΘ, it
can be directly applied to a downstream tabular task D to
predict the label of a test instance x∗ as follows:

ŷ∗ = gΘ(x∗ | D) . (6)

Thus, the general model shares similarities with the transferable
tabular model, but with a greater emphasis on the “zero-
shot” ability, aims to construct highly adaptive architectures
capable of handling a wide array of heterogeneous datasets
simultaneously. Importantly, it does not require an Adapt
function, which further reduces the computational cost. General
models aim to overcome the lack of spatial relationships,
sensitivity to perturbations, and model selection constraints by
enforcing a standardized input format or adapting architectures
to handle arbitrary tabular structures.

Pre-training has transformed fields like vision and lan-
guage [80], but its use in tabular data remains limited due
to the inherent heterogeneity of tabular datasets. The tabular
data vary greatly in the dimensionality and semantic meaning
of each feature, even within the same domain. There are
two main strategies to address the inherent heterogeneity
in tabular datasets: improving the model’s adaptability or
homogenizing the diverse tabular formats. We categorize
general tabular models into three parts based on their strategies
for generalizability. The first focuses on raw-feature-based
approaches, among which TabPFN variants represent a rapidly
evolving branch and are thus discussed separately. The third
category encompasses semantic-based methods that leverage
attribute and task semantics to unify heterogeneous tasks.

Adaptive Model

LLM

The Age is 30. The Race is 
Asian-Pac-Islander. The Sex 
is Female…
Does this person earn more 
than 50000 dollars per year?

The median income is 3.2377. 
The median age is 32. The total 
rooms is 6597…
Is this house block valuable?

?

?

Homogenization

Task 1

Task 2

Adaptive weights for Task 1

Adaptive weights for Task 2

Task 1

Task 2

…

?

?

Fig. 7. Illustration of general methods. These methods handle inherent
heterogeneity by improving the model’s adaptability or homogenizing the
diverse tabular formats. Once pre-trained, they can be directly applied to
downstream tasks without fine-tuning.

A. Raw-Feature-based General Models

To adapt general tabular models to heterogeneous datasets,
two main strategies are adopted: data-centric and model-
centric. From the data-centric perspective, models standardize
tabular datasets into a homogeneous format. For example,
TabPTM [82] uses meta-representations to transform all datasets
into a uniform format, enabling pre-training. The resulting
model can be directly applied or fine-tuned on downstream tasks
without extra parameters. From the model-centric perspective,
models are tailored to specific tasks for better adaptability.
HyperFast [83] employs a Hyper Network [217] in meta-
learning [218], learning a mapping from datasets to classifier
weights. To handle varying input dimensions, it uses random
projections. MotherNet [84] accelerates weight generation
by enhancing HyperFast’s architecture with Transformer-like
modules. iLTM [184] further unifies tree-derived embeddings,
dimensionality-agnostic representations, a metatrained hyper-
network, MLPs, and retrieval within a single architecture.

B. TabPFN Variants

The TabPFN family of models [85], [87], [185] leverages
the in-context learning capabilities of transformers, directly
predicting labels by adapting test instances according to the
context of training examples. In the first version of TabPFN, an
instance xi is padded to a fixed dimension (e.g., 100), and the
features are projected to a higher dimension (e.g., d′) for further
processing. The label yi is processed similarly and added to
the instance embeddings. These embeddings are processed
through several layers of a Transformer, and the output token
corresponding to the test instance is further predicted using
a 10-way classifier. TabPFN is pre-trained over synthetically
generated datasets with structured causal models (SCM) [219]
and Bayesian Neural Networks (BNNs) [220]. Due to the high
complexity of transformers, TabPFN is limited to small-scale
tasks, with N < 1000, d < 100, and C < 10.

TabPFN v2 introduces a specialized feature tokenizer to
better handle heterogeneity. Specifically, each cell in the table
is projected to a k-dimensional vector using a shared mapping,
and random position encoding vectors are added to differentiate
features [190]. A two-way attention mechanism is used, with
each feature attending to the other features in its row and
then attending to the same feature across its column [221].
Several improvements have been made in TabPFN v2, including
increased context size (N < 10000, d < 500), automatic
feature engineering, and post-hoc ensemble methods. TabPFN
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v2.5 [185] further extends with up to 50000 data points and
2000 features, and introduces a new distillation engine that con-
verts into a compact MLP or tree ensemble. Various applications
have also been explored, including tabular data generation [222],
anomaly detection [223], data augmentation [224], and time
series forecasting [225].

The improvements of TabPFN stem from several aspects.1

Pre-training Improvements. TabForestPFN[189] extends
TabPFN by pre-training ICL-transformers on synthetic for-
est datasets with complex decision boundaries. TabDPT[41]
leverages real-world datasets and self-supervised objectives
for pre-training, supporting both classification and regres-
sion. APT[226] enhances generalization by using adversar-
ial synthetic data generated through adaptive agents that
modify the data distribution. TabICL[40] incorporates tree-
based SCMs via XGBoost and adopts curriculum learning
with progressively larger synthetic datasets. Building upon
masked joint-distribution modeling with an episodic, context-
conditional objective, LimiX [94] introduces two scalable
instantiations (LimiX-16M and LimiX-2M) of large structured-
data models (LDMs) that complement language and physical
world foundation models toward achieving general intelligence.
Scalable Improvements. The efficiency of TabPFN is highly
sensitive to context size, prompting strategies to enhance
scalability and performance [35]. These include compressing
training data into a compact learned representation using
sketching [188] or prompt tuning techniques [227], [187],
employing adaptive data selection methods to identify the most
pertinent training examples for each test instance [228], [86],
[41], [229], and replacing traditional quadratic attention with
computationally efficient linear attention mechanisms [230]
and state-space models (SSMs) [231].
Adaptation Improvements. Some approaches improve
TabPFN’s performance on downstream tasks by adapting the
context [86] or fine-tuning specific parts of the model [39],
[189], [228], [187]. TabICL [40] employs a column-then-
row attention mechanism to construct fixed-dimensional em-
beddings of rows, which are subsequently processed by a
transformer like TabPFN v1 to facilitate efficient in-context
learning. EquiTabPFN [191] introduces self-attention across
target components, ensuring that the arbitrary ordering of target
dimensions does not influence model predictions, enhancing
the performance of TabPFN v1 to some extent. [190] adapts
TabPFN v2 to multi-class, high-dimensional, and large-scale
data scenarios via post-processing techniques. [192] investigates
various fine-tuning strategies for TabPFN and concludes that
full-model fine-tuning yields the optimal performance.

C. Semantics-based General Models

By leveraging the semantic structure of tabular data, such
as column names, heterogeneous tasks can be projected into a
shared language space. This allows a single language model,
pre-trained on diverse tabular datasets, to handle unseen tasks

1Some variants of TabPFN are not considered general tabular models,
especially the latter parts, as they require additional fine-tuning steps. We
place them in this subsection due to their strong relationship with TabPFN.

in a unified manner. TabuLa-8B [88] fine-tunes a Llama 3-
8B LLM for tabular data prediction (classification and binned
regression) using a novel packing and attention scheme for
tabular prediction. GTL [89] transforms tabular datasets into an
instruction-oriented language format, facilitating the continued
pre-training of LLMs on instruction-oriented tabular data, which
demonstrates strong performance in few-shot scenarios. GTL-
S [232] unlocks the potential of GTL from a scaling perspective,
revealing that scaling datasets and prediction tasks enhance
generalization. [90] extends GTL by incorporating retrieval-
augmented LLMs for tabular data, combined with retrieval-
guided instruction-tuning for LLMs. MediTab [193] uses a data
engine that leverages LLMs to consolidate tabular samples
to overcome the barrier across tables with distinct schema.
MediTab aligns out-domain data with the target task using a
“learn, annotate, and refinement” pipeline for arbitrary tabular
input in the domain without fine-tuning.

VIII. TABULAR ENSEMBLE METHODS

Ensemble learning enhances generalization by combining
diverse base learners. Classical methods like Random Forest
and AdaBoost use bagging and boosting to ensemble decision
trees. In deep tabular learning, ensembles are either joint-
training ensembles that aggregate sub-networks during training
or post-hoc ensembles that combine predictions from multiple
pre-trained models. A major challenge is the high computational
cost of training multiple models or submodels.
Joint-Training Ensembles. Joint-training ensembles integrate
diverse model architectures within a single training process
to improve performance and efficiency. These often combine
different models, such as linear and non-linear [233] or tree-
based and deep neural networks [61], and tree-mimic methods
mix predictions from multiple tree nodes [57], [126].

To balance efficiency and predictive power, parameter-
efficient ensembles have been proposed. For example,
TabM [112] uses MLPs with batchEnsemble to generate diverse
base learners without greatly increasing parameters. Similarly,
BETA applies additional tuning on pre-trained TabPFN by
learning multiple feature projections and aggregating results
with BatchEnsemble to reduce parameter overhead [39]. Hybrid
methods like LLM-Boost and PFN-Boost integrate large
language models and TabPFN with gradient-boosted decision
trees [234], where LLMs and PFN serve as initial learners and
additional base learners are trained via boosting, combining
priors with scalability.
Post-Hoc Ensembles. Post-hoc ensemble (PHE) methods
combine multiple trained models to enhance robustness and
accuracy. Bagging ensembles aggregate models trained with
different random seeds [29], [67], improving robustness at
the cost of increased computation. Recent studies show LLM-
based methods produce predictions complementary to deep
tabular models without attribute names [90], making them
promising ensemble candidates. Perturbation-based ensembles
generate diversity from a single pre-trained model without
retraining. For example, TabPFN exploits feature permutation
sensitivity by randomly shuffling feature order [85]. TabPFN
v2 further increases diversity via random transformations such
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as varied feature encoding, quantization, categorical shuffling,
SVD compression, outlier removal, and Yeo–Johnson power
transforms [87], enabling effective ensemble learning without
extra training. Other methods adapt ensemble ideas to TabPFN
v1 for scalability: TabPFN-Bagging splits large datasets into
context groups and averages predictions [39], [235], while
BoostPFN treats TabPFN v1 as weak learners trained on data
subsets, outperforming standard PFNs on large-scale data [235].

IX. EXTENSIONS

In this section, we briefly introduce some extensions on deep
tabular methods across different complex tasks.
Anomaly Detection. Anomaly detection in tabular data
identifies irregularities such as fraud or failures. Classical
methods include Isolation Forest [236] and Local Outlier
Factor [237]. Recent methods capture contextual relationships
in high-dimensional data [238], [239]. For example, [240]
maximizes mutual information between samples and masked
parts. ADBench [241] benchmarks 30 algorithms on 57 datasets.
LLMs have also been applied [242].
Tabular Generation. Synthetic tabular data generation ad-
dresses privacy and data scarcity. Traditional methods like
Bayesian networks and GANs capture marginal distributions;
newer approaches preserve complex feature dependencies.
Diffusion models [243] refine synthetic data iteratively. [244]
incorporates structural causal priors and benchmarks synthesis
models. To balance realism and privacy, neuro-symbolic models
improve trustworthy data generation [245].
Interpretability. Traditional GBDTs offer interpretability via
feature importance and decision path visualization [143], [145].
The additive nature of GBDTs enables partial dependence
plots [246] to visualize feature effects. NeC4.5 [200] integrates
decision tree interpretability with neural network ensembles to
improve performance while maintaining clarity. Recent deep
tabular models also focus on interpretability. NAMs [204]
combine DNN expressivity with additive model intelligibility
by learning feature-specific networks. TabNet [142] employs
sequential attention with feature masks for global interpretabil-
ity. Variants like TabTransformer [61] visualize cross-feature
attention. NODE [58], NODE-GAM [59], and DOFEN [247]
generalize ensembles of oblivious trees with gradient-based
optimization and hierarchical representations.
Open-Environment Tabular Machine Learning. Real-world
deployments often face distribution shifts where test data differs
from training distributions. Research typically categorizes these
into domain-to-domain shifts [248], handling scenarios with
or without accessible target data via transfer learning [249] or
domain generalization techniques [250]. A more challenging
setting is temporal shift, common in financial or climate
data, where patterns evolve over time. Benchmarks like
TableShift [248] and TabReD [149] highlight that most standard
models degrade significantly in these settings. Recent solutions
focus on temporal-aware evaluation protocols [251], drift-
resilient architectures [110], and robust ensemble strategies [91]
to maintain performance in the context of data streams.
From Tabular Data to Structured Data. Tabular data
often serves as the underlying format for more complex

structured domains. Time Series can be modeled as tabular
data with temporal indices, where recent studies apply tabular
methods using sliding windows or time-aware embeddings
for forecasting [149], [252]. Similarly, Relational and Graph
Data are naturally stored as linked tables. Approaches like
CARTE [172] bridge this gap by modeling tables as graphs
to capture entity relationships, while Graph Neural Networks
(GNNs) are increasingly adapted to model interactions between
rows and columns in standard tabular tasks [253].
Multi-modal Learning with Tabular Data. Text, such as
feature names, enhances tabular learning (see Section VI). We
focus here on tabular–image interactions, e.g., in healthcare
where medical images require expert knowledge often encoded
as tabular data [254]. MMCL [133] and CHARMS [131]
improving predictions without tables during inference, reducing
annotation needs while TIP [255] proposes a self-supervised
tabular encoder for multimodal joint representation learning.
Tabular Understanding. Tabular understanding includes tasks
such as Table Detection (TD) [256], [257], which locates
tables in images, and Table Structure Recognition (TSR) [258],
[259], which extracts cell coordinates and spanning info. Table
Question Answering (TQA) [260], [261], [262] answers user
queries from tables. Traditional OCR-based [263] and OCR-
free [264] methods have advanced TD and TSR, which are
simpler tasks. More complex TQA tasks have also progressed
with the help of LLMs [265]. Please refer to [260], [266] for
more details.

X. CONCLUSION

Tabular data remains a cornerstone of real-world machine
learning applications, and the advancement of deep learning has
opened new possibilities for effective representation learning
in this domain. In this survey, we present a comprehensive
overview of deep tabular representation learning, covering its
background, challenges, evaluation benchmarks, and the discus-
sion between tree-based models and DNNs. We systematically
categorize existing methods into three categories—specialized,
transferable, and general models—based on their generalization
capabilities. In addition, we discuss ensemble techniques,
extensions, and some promising future directions, such as
open-environment and multimodal tabular learning. We hope
this survey serves as a valuable reference for understanding
the current state of the field and inspires further progress for
more robust and generalizable tabular learning methods.
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