
Journal of Machine Learning Research 26 (2025) 1-16 Submitted 3/25; Revised 8/25; Published 8/25

Talent: A Tabular Analytics and Learning Toolbox

Si-Yang Liu liusy@lamda.nju.edu.cn

Hao-Run Cai caihr@lamda.nju.edu.cn

Qi-Le Zhou zhouql@lamda.nju.edu.cn

Huai-Hong Yin yinhh@lamda.nju.edu.cn

Tao Zhou zhout@lamda.nju.edu.cn

Jun-Peng Jiang jiangjp@lamda.nju.edu.cn

Han-Jia Ye yehj@lamda.nju.edu.cn

School of Artificial Intelligence, Nanjing University, China

National Key Laboratory for Novel Software Technology, Nanjing University, 210023, China

Editor: Zeyi Wen

Abstract

Tabular data is a prevalent source in machine learning. While classical methods have proven
effective, deep learning methods for tabular data are emerging as flexible alternatives due to
their capacity to uncover hidden patterns and capture complex interactions. Considering
that deep tabular methods exhibit diverse design philosophies, including the ways they
handle features, design learning objectives, and construct model architectures, we introduce
Talent (Tabular Analytics and LEarNing Toolbox), a versatile toolbox for utilizing,
analyzing, and comparing these methods. Talent includes over 35 deep tabular prediction
methods, offering various encoding and normalization modules, all within a unified, easily
extensible interface. We demonstrate its design, application, and performance evaluation
in case studies. The code is available at https://github.com/LAMDA-Tabular/TALENT.

Keywords: Tabular Data, Deep Learning, Deep Tabular Prediction, Machine Learning

1 Introduction

Machine learning has achieved significant success across a wide range of domains. Tabular
data, characterized by datasets arranged in a table format, represents one of the most
prevalent types of data applied in machine learning applications such as click-through rate
(CTR) prediction (Guo et al., 2017), cybersecurity (Buczak and Guven, 2016), medical
analysis (Schwartz et al., 2007), and identity protection (Liu et al., 2022). In these datasets,
each row typically represents an individual instance, while each column corresponds to a
specific attribute or feature. In the context of supervised learning, each training instance
is paired with a label, which can be discrete for classification tasks and continuous for
regression tasks. Machine learning models are designed to learn a mapping from the input
instances to their corresponding labels using the training data, with the goal of generalizing
this mapping to unseen data from the same distribution.

Methodologies for analyzing tabular datasets have evolved substantially. Classical tech-
niques such as Logistic Regression, Support Vector Machine, Multi-Layer Perceptron, and
decision trees have long served as the foundation for numerous algorithms (Bishop, 2006).

©2025 Si-Yang Liu, Hao-Run Cai, Qi-Le Zhou, Huai-Hong Yin, Tao Zhou, Jun-Peng Jiang, and Han-Jia Ye.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v26/25-0512.html.

https://github.com/LAMDA-Tabular/TALENT
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v26/25-0512.html

Liu, Cai, Zhou, Yin, Zhou, Jiang,Ye

In practical applications, tree-based ensemble methods—including XGBoost (Chen and
Guestrin, 2016), LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2018)—
have demonstrated substantial performance improvements. Inspired by the success of Deep
Neural Networks in visual and linguistic tasks (Simonyan and Zisserman, 2015; Vaswani
et al., 2017; Devlin et al., 2019), researchers have developed deep learning models tailored
for tabular data (Zhang et al., 2016; Borisov et al., 2022). The advanced deep tabular
models excel at uncovering hidden patterns and improving predictive performance (Chen
et al., 2023b; Gorishniy et al., 2024; Ye et al., 2024b). These methods offer several key
advantages, such as seamless integration into multi-modal pipelines (Gorishniy et al., 2021;
Jiang et al., 2024a), efficient modeling of complex feature interactions (Wang et al., 2017),
and flexibility in gradient-based optimization (Borisov et al., 2022). These strengths make
them especially well-suited for tasks involving diverse data types or multi-task learning,
where shared representations across related tasks can further enhance both performance
and efficiency (Zhou et al., 2023; Yan et al., 2024; Ye et al., 2023).

Although deep learning offers significant benefits for analyzing tabular data, its practical
application is often hindered by the lack of consistent interfaces and varying preprocess-
ing requirements among different methods. We introduce a versatile and comprehensive
toolbox, Talent (Tabular Analytics and LEarNing Toolbox), designed for tabular data
prediction. Talent integrates both classical and advanced deep methods into a unified
architecture, standardizing interfaces, streamlining preprocessing steps, and enabling fair,
consistent evaluation across diverse scenarios. Additionally, the toolkit supports the compo-
sition of effective deep learning modules for tabular data, offering scalable solutions tailored
to various complexities and data-specific needs.

2 Advantages and Comparison to Existing Toolkits

To highlight the advantages of Talent, we compare it against several widely used toolk-
its, including RTDL (Gorishniy et al., 2021), Pytorch tabular (Joseph, 2021), DeepTa-
bles (Jian Yang, 2022), Pytorch widedeep (Zaurin and Mulinka, 2023), and Pytorch frame(Hu
et al., 2024), as shown in Table 1.

Model Diversity. As outlined in Appendix A.1, Talent offers over 35 deep tabular
methods, significantly exceeding the model diversity of other toolkits, allowing users to
select the best-fit model based on the complexity and specifics of their tasks. More than

Table 1: The main differences between Talent and other tabular deep learning toolkits.

Toolkit
Deep

Methods
Methods in
Three Years

Datasets
Encoding

Technologies
General
Models

RTDL 9 0 11 ✓ ✗

Pytorch tabular 11 1 0 ✗ ✗

DeepTables 15 0 9 ✗ ✗

Pytorch widedeep 12 0 8 ✗ ✗

Pytorch frame 8 2 55 ✗ ✗

Talent 35+ 25+ 300 ✓ ✓

2

Talent: A Tabular Analytics and Learning Toolbox

60% of these methods have been introduced within the last three years, ensuring they
are cutting-edge and relevant to modern research challenges. Moreover, Talent uniquely
includes general tabular models—pretrained models ready for direct use on downstream
tasks—which are absent in other toolkits. These general models enhance the toolbox’s
versatility, supporting a broader range of tasks and offering greater flexibility across various
data types and prediction scenarios.

Encoding Techniques. In addition to supporting a wide variety of encoding strategies
for categorical features, Talent provides eight distinct techniques for encoding numerical
features, as detailed in Appendix A.2, offering a more comprehensive approach to data pre-
processing. This versatility in encoding allows users to customize their data representations
to suit specific analytical and modeling requirements, enhancing both the adaptability and
performance of their models across diverse tasks.

Extensibility. The modular architecture of Talent is specifically designed for both
flexibility and scalability. Users can effortlessly incorporate new models and methods fol-
lowing the guidance provided in Appendix C, enabling the toolkit to adapt to evolving
research demands and practical applications. Whether enhancing its functionality or intro-
ducing innovative approaches, the framework’s extensible design ensures that it remains a
powerful and up-to-date resource in the rapidly evolving field of tabular deep learning.

3 Toolbox Usage

In this section, we introduce the dependencies and workflow for using Talent.

3.1 Dependencies

Talent leverages open-source libraries to support its advanced data processing and machine
learning functionalities, following the organized code structure introduced by RTDL (Gor-
ishniy et al., 2021). For model optimization and hyperparameter tuning, it utilizes Op-
tuna (Akiba et al., 2019). These carefully chosen dependencies offer users a powerful,
flexible, and efficient toolkit for addressing various challenges in tabular data analysis.

Only need to implement a
simple forward function to

integrate a new method!
 cat
enc

Preprocessing

 cat
nan

 num
enc

 num
nan

label
enc

no
rm

al
iz

at
io

n
da

ta
 lo

ad
er

 p
ro

ce
ss

fit

tunerconfig

test
loader

train
loader

predict & evaluate

configconfig

model
(forward)

libs

Methods

Models

Tuning

300 datasets, each storing numerical (num) and
categorical (cat) features, divided into training,

validation, and test sets.

The config records the default parameters and hyperparameter
search space for each method. After tuning, the optimal

hyperparameters for each experiment are recorded.

Datasets

num testnum valnum train

cat testcat valcat train

label testlabel vallabel train

Allows users to customize various missing value (nan) methods,
encoding (enc) methods, and normalization methods, ultimately

generating data loader for training and testing.

Decoupled the shared components (e.g.,
optimizer, training epochs, validation, etc.)
and provided a unified training framework.

Figure 1: Flowchart depicting the data prediction process with Talent.

3

Liu, Cai, Zhou, Yin, Zhou, Jiang,Ye

3.2 The workflow of Talent

The flowchart in Figure 1 visually illustrates the streamlined workflow enabled by our
toolbox. It begins with data loading, followed by preprocessing, hyperparameter tuning,
model training, prediction, and ultimately evaluation. This structured workflow ensures a
smooth transition from raw data to meaningful results.

The following example demonstrates how to use the toolbox to run experiments across
multiple seeds, ensuring a robust evaluation of method performance:

1 from tqdm import tqdm

2 from TALENT.model.utils import (

3 get_deep_args,show_results,tune_hyper_parameters, get_method,set_seeds)

4 from TALENT.model.lib.data import get_dataset

5 args, default_para, opt_space = get_deep_args()

6 train_val_data, test_data, info = get_dataset(args.dataset, args.dataset_path)

7 if args.tune:

8 args = tune_hyper_parameters(args, opt_space, train_val_data, info)

9 for seed in tqdm(range(args.seed_num)):

10 args.seed = seed

11 method = get_method(args.model_type)(args, info["task_type"] == "regression")

12 time_cost = method.fit(train_val_data, info, train=True)

13 vres, metric_name, predict_logits = method.predict(test_data, info)

• The get args function retrieves and parses the arguments, default hyperparameters, and
the optimization space for hyperparameter tuning.

• The get dataset function loads the specified dataset from the provided path, splits it into
training/validation and test sets, and provides additional information about the dataset.

• If hyperparameter tuning is enabled, the tune hyper parameters function adjusts the
arguments based on the optimization space and the training/validation data.

• The get method function selects the appropriate model class based on the model type
specified in args.model type.

• The seed is updated for each iteration, and the performance metrics and predictions
are recorded for each seed, enabling a comprehensive evaluation of the model across
different initializations. Classification tasks are evaluated using metrics like Accuracy,
F1-Score, Log Loss, and AUC, while regression tasks are assessed with MAE, RMSE,
and R2 (Lewis-Beck, 2015). As an application of Talent, we conducted fair comparisons
of representative methods on 300 benchmark datasets (Ye et al., 2024a), as detailed in
Appendix D.

4 Conclusion

We introduce Talent, a machine learning toolbox designed for tabular data prediction
tasks. Talent incorporates both classical and deep tabular methods and includes modules
for hyperparameter tuning and preprocessing, aiming to improve learning efficiency and
performance on tabular datasets. Additionally, we use Talent to conduct fair comparisons
of recent deep tabular methods across a wide range of datasets. The toolbox is designed
to be user-friendly and accessible to practitioners across diverse fields, providing a unified
interface that is flexible and easily adaptable for integration with newly designed methods.

4

Talent: A Tabular Analytics and Learning Toolbox

Acknowledgments

This work is partially supported by NSFC (62376118), Key Program of Jiangsu Science
Foundation (BK20243012), the Fundamental Research Funds for the Central Universities
(14380018), Collaborative Innovation Center of Novel Software Technology and Industri-
alization. Thanks to Hengzhe Zhang for providing a Scikit-Learn compatible wrapper
for Talent, and to Chen-Ming Xu and Han Li for improving the documentation pre-
sentation of Talent.

References

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
Optuna: A next-generation hyperparameter optimization framework. In KDD, pages
2623–2631, 2019.

Sercan Ö. Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In
AAAI, pages 6679–6687, 2021.

Sarkhan Badirli, Xuanqing Liu, Zhengming Xing, Avradeep Bhowmik, and Sathiya S.
Keerthi. Gradient boosting neural networks: Grownet. CoRR, abs/2002.07971, 2020.

Christopher Bishop. Pattern recognition and machine learning. Springer, 2006.

David Bonet, Daniel Mas Montserrat, Xavier Giró-i-Nieto, and Alexander G. Ioannidis.
Hyperfast: Instant classification for tabular data. In AAAI, pages 11114–11123, 2024.

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk,
and Gjergji Kasneci. Deep neural networks and tabular data: A survey. CoRR,
abs/2110.01889, 2022.

Anna L. Buczak and Erhan Guven. A survey of data mining and machine learning methods
for cyber security intrusion detection. IEEE Communications surveys & tutorials, 18(2):
1153–1176, 2016.

Jintai Chen, Kuanlun Liao, Yao Wan, Danny Z. Chen, and Jian Wu. Danets: Deep abstract
networks for tabular data classification and regression. In AAAI, pages 3930–3938, 2022.

Jintai Chen, KuanLun Liao, Yanwen Fang, Danny Chen, and Jian Wu. Tabcaps: A capsule
neural network for tabular data classification with bow routing. In ICLR, 2023a.

Jintai Chen, Jiahuan Yan, Danny Ziyi Chen, and Jian Wu. Excelformer: A neural network
surpassing gbdts on tabular data. CoRR, abs/2301.02819, 2023b.

Kuan-Yu Chen, Ping-Han Chiang, Hsin-Rung Chou, Ting-Wei Chen, and Tien-Hao Chang.
Trompt: Towards a better deep neural network for tabular data. In ICML, pages 4392–
4434, 2023c.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In KDD,
pages 785–794, 2016.

5

Liu, Cai, Zhou, Yin, Zhou, Jiang,Ye

Yi Cheng, Renjun Hu, Haochao Ying, Xing Shi, Jian Wu, and Wei Lin. Arithmetic feature
interaction is necessary for deep tabular learning. In AAAI, pages 11516–11524, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. In NAACL-HLT, pages
4171–4186, 2019.

Jacob Goldberger, Sam T. Roweis, Geoffrey E. Hinton, and Ruslan Salakhutdinov. Neigh-
bourhood components analysis. In NIPS, pages 513–520, 2004.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep
learning models for tabular data. In NeurIPS, pages 18932–18943, 2021.

Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features
in tabular deep learning. In NeurIPS, pages 24991–25004, 2022.

Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and
Artem Babenko. Tabr: Tabular deep learning meets nearest neighbors in 2023. In ICLR,
2024.

Yury Gorishniy, Akim Kotelnikov, and Artem Babenko. Tabm: Advancing tabular deep
learning with parameter-efficient ensembling. In ICLR, 2025.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: A
factorization-machine based neural network for CTR prediction. In IJCAI, pages 1725–
1731, 2017.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A
transformer that solves small tabular classification problems in a second. In ICLR, 2023.

Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer,
Shi Bin Hoo, Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on
small data with a tabular foundation model. Nature, 637(8045):319–326, 2025.

David Holzmüller, Léo Grinsztajn, and Ingo Steinwart. Better by default: Strong pre-tuned
mlps and boosted trees on tabular data. CoRR, abs/2407.04491, 2024.

Weihua Hu, Yiwen Yuan, Zecheng Zhang, Akihiro Nitta, Kaidi Cao, Vid Kocijan, Jure
Leskovec, and Matthias Fey. Pytorch frame: A modular framework for multi-modal
tabular learning. CoRR, abs/2404.00776, 2024.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar S. Karnin. Tabtransformer: Tab-
ular data modeling using contextual embeddings. CoRR, abs/2012.06678, 2020.

Alan Jeffares, Tennison Liu, Jonathan Crabbé, Fergus Imrie, and Mihaela van der Schaar.
Tangos: Regularizing tabular neural networks through gradient orthogonalization and
specialization. In ICLR, 2023.

Haifeng Wu Jian Yang, Xuefeng Li. DeepTables: A Deep Learning Python Package for
Tabular Data. https://github.com/DataCanvasIO/DeepTables, 2022. Version 0.2.x.

6

Talent: A Tabular Analytics and Learning Toolbox

Jun-Peng Jiang, Han-Jia Ye, Leye Wang, Yang Yang, Yuan Jiang, and De-Chuan Zhan.
Tabular insights, visual impacts: Transferring expertise from tables to images. In ICML,
pages 21988–22009, 2024a.

Xiangjian Jiang, Andrei Margeloiu, Nikola Simidjievski, and Mateja Jamnik. Protogate:
Prototype-based neural networks with global-to-local feature selection for tabular biomed-
ical data. In ICML, pages 21844–21878, 2024b.

Manu Joseph. Pytorch tabular: A framework for deep learning with tabular data. CoRR,
abs/2104.13638, 2021.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye,
and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In NIPS,
pages 3146–3154, 2017.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks. In NIPS, pages 971–980, 2017.

Ron Kohavi and Mehran Sahami. Error-based and entropy-based discretization of contin-
uous features. In KDD, pages 114–119, 1996.

Michael S. Lewis-Beck. Applied regression: An introduction, volume 22. Sage publications,
2015.

Ling Li and Hsuan-Tien Lin. Ordinal regression by extended binary classification. In NIPS,
pages 865–872, 2006.

William H. Libaw and Leonard J. Craig. A photoelectric decimal-coded shaft digitizer.
Transactions of the IRE Professional Group on Electronic Computers, 2(3):1–4, 1953.

Bo Liu, Ming Ding, Sina Shaham, Wenny Rahayu, Farhad Farokhi, and Zihuai Lin. When
machine learning meets privacy: A survey and outlook. ACM Computing Surveys, 54(2):
31:1–31:36, 2022.

Sascha Marton, Stefan Lüdtke, Christian Bartelt, and Heiner Stuckenschmidt. GRANDE:
gradient-based decision tree ensembles for tabular data. In ICLR, 2024.

Duncan C. McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C., Ganesh
Ramakrishnan, Micah Goldblum, and Colin White. When do neural nets outperform
boosted trees on tabular data? In NeurIPS, pages 76336–76369, 2023.

Daniele Micci-Barreca. A preprocessing scheme for high-cardinality categorical attributes
in classification and prediction problems. ACM SIGKDD explorations newsletter, 3(1):
27–32, 2001.

Youssef Nader, Leon Sixt, and Tim Landgraf. DNNR: differential nearest neighbors regres-
sion. In ICML, pages 16296–16317, 2022.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles
for deep learning on tabular data. In ICLR, 2020.

7

Liu, Cai, Zhou, Yin, Zhou, Jiang,Ye

Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika
Dorogush, and Andrey Gulin. Catboost: unbiased boosting with categorical features.
In NeurIPS, pages 6639–6649, 2018.

Jingang Qu, David Holzmüller, Gaël Varoquaux, and Marine Le Morvan. TabICL: A tabular
foundation model for in-context learning on large data. In ICML, 2025.

Matteo Rizzo, Ebru Ayyurek, Andrea Albarelli, and Andrea Gasparetto. Leveraging peri-
odicity for tabular deep learning. Electronics, 14(6), 2025.

Lisa M Schwartz, Steven Woloshin, and H Gilbert Welch. The drug facts box: providing
consumers with simple tabular data on drug benefit and harm. Medical Decision Making,
27(5):655–662, 2007.

Deval Shah, Zi Yu Xue, and Tor M. Aamodt. Label encoding for regression networks. In
ICLR, 2022.

David J Sheskin. Handbook of parametric and nonparametric statistical procedures. Chap-
man and hall/CRC, 2003.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In ICLR, 2015.

Gowthami Somepalli, Avi Schwarzschild, Micah Goldblum, C. Bayan Bruss, and Tom Gold-
stein. SAINT: Improved neural networks for tabular data via row attention and con-
trastive pre-training. In NeurIPS Workshop, 2022.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian
Tang. Autoint: Automatic feature interaction learning via self-attentive neural networks.
In CIKM, pages 1161–1170, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click
predictions. In ADKDD, 2017.

Ruoxi Wang, Rakesh Shivanna, Derek Zhiyuan Cheng, Sagar Jain, Dong Lin, Lichan Hong,
and Ed H. Chi. DCN V2: improved deep & cross network and practical lessons for
web-scale learning to rank systems. In WWW, pages 1785–1797, 2021.

Kilian Q. Weinberger, Anirban Dasgupta, John Langford, Alexander J. Smola, and Josh
Attenberg. Feature hashing for large scale multitask learning. In ICML, pages 1113–1120,
2009.

Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to
efficient ensemble and lifelong learning. In ICLR, 2020.

Jing Wu, Suiyao Chen, Qi Zhao, Renat Sergazinov, Chen Li, Shengjie Liu, Chongchao Zhao,
Tianpei Xie, Hanqing Guo, Cheng Ji, Daniel Cociorva, and Hakan Brunzell. Switchtab:
Switched autoencoders are effective tabular learners. In AAAI, pages 15924–15933, 2024.

8

Talent: A Tabular Analytics and Learning Toolbox

Chenwei Xu, Yu-Chao Huang, Jerry Yao-Chieh Hu, Weijian Li, Ammar Gilani, Hsi-Sheng
Goan, and Han Liu. Bishop: Bi-directional cellular learning for tabular data with gener-
alized sparse modern hopfield model. In ICML, pages 55048–55075, 2024.

Jiahuan Yan, Jintai Chen, Yixuan Wu, Danny Z. Chen, and Jian Wu. T2G-FORMER: or-
ganizing tabular features into relation graphs promotes heterogeneous feature interaction.
In AAAI, pages 10720–10728, 2023.

Jiahuan Yan, Bo Zheng, Hongxia Xu, Yiheng Zhu, Danny Z. Chen, Jimeng Sun, Jian Wu,
and Jintai Chen. Making pre-trained language models great on tabular prediction. In
ICLR, 2024.

Han-Jia Ye, Qi-Le Zhou, and De-Chuan Zhan. Training-free generalization on heterogeneous
tabular data via meta-representation. CoRR, abs/2311.00055, 2023.

Han-Jia Ye, Si-Yang Liu, Hao-Run Cai, Qi-Le Zhou, and De-Chuan Zhan. A closer look at
deep learning on tabular data. CoRR, abs/2407.00956, 2024a.

Han-Jia Ye, Huai-Hong Yin, and De-Chuan Zhan. Modern neighborhood components anal-
ysis: A deep tabular baseline two decades later. CoRR, abs/2407.03257, 2024b.

Hangting Ye, Wei Fan, Xiaozhuang Song, Shun Zheng, He Zhao, Dan dan Guo, and
Yi Chang. Ptarl: Prototype-based tabular representation learning via space calibration.
In ICLR, 2024c.

Javier Rodriguez Zaurin and Pavol Mulinka. pytorch-widedeep: A flexible package for
multimodal deep learning. Journal of Open Source Software, 8(86):5027, June 2023.

Weinan Zhang, Tianming Du, and Jun Wang. Deep learning over multi-field categorical
data - - A case study on user response prediction. In ECIR, pages 45–57, 2016.

Qi-Le Zhou, Han-Jia Ye, Leye Wang, and De-Chuan Zhan. Unlocking the transferability of
tokens in deep models for tabular data. CoRR, abs/2310.15149, 2023.

Appendix A. Supported Methods and Encoding Techniques

We provide an overview of the tabular prediction methods and encoding techniques sup-
ported by Talent.

A.1 Supported Methods

In Talent, we implement a comprehensive range of models that implement the mapping
f from features to outputs, all with a unified interface. These models encompass classical
methods, tree-based methods, and advanced deep learning techniques for tabular data.

Classical models in Talent include K-Nearest Neighbors (KNN) and Support Vector
Machines (SVM) for various tasks, as well as Linear Regression (LR) for regression tasks.
For classification tasks, it supports Logistic Regression (LogReg), Naive Bayes, and Nearest
Class Mean (NCM).

9

Liu, Cai, Zhou, Yin, Zhou, Jiang,Ye

Tree-based methods in Talent incorporate powerful algorithms such as Random Forest,
XGBoost (Chen and Guestrin, 2016), CatBoost (Prokhorenkova et al., 2018), and Light-
GBM (Ke et al., 2017). These algorithms are well-known for their high efficiency and strong
predictive performance across diverse datasets.

Our toolbox provides a comprehensive selection of state-of-the-art deep tabular pre-
diction methods, each meticulously designed to address specific challenges in tabular data
analysis.

• MLP: A multi-layer neural network, implemented based on Gorishniy et al. (2021).
• ResNet: A deep neural network that employs skip connections across multiple layers,

which is implemented as described in Gorishniy et al. (2021).
• MLP PLR (Gorishniy et al., 2022): An improved multilayer perceptron (MLP), which

utilizes periodic activations.
• RealMLP (Holzmüller et al., 2024): An improved version of multilayer perceptron.
• SNN (Klambauer et al., 2017): An MLP-like architecture utilizing the SELU activation,

which facilitates the training of deeper neural networks.
• TabM (Gorishniy et al., 2025): A model based on MLP and variations of BatchEnsem-

ble (Wen et al., 2020).
• DANets (Chen et al., 2022): A neural network designed to enhance tabular data pro-

cessing by grouping correlated features and reducing computational complexity.
• TabCaps (Chen et al., 2023a): A capsule network that encapsulates all feature values of

a record into vectorial representations.
• BiSHop (Xu et al., 2024): An end-to-end framework for deep tabular learning which

leverages a sparse Hopfield model with adaptable sparsity, enhanced by column-wise and
row-wise modules.

• DCNv2 (Wang et al., 2021): A method that combines an MLP-like module with a
feature crossing module, incorporating both linear layers and multiplicative interactions.

• NODE (Popov et al., 2020): A tree-mimic method that generalizes oblivious decision
trees, combining gradient-based optimization with hierarchical representation learning.

• GrowNet (Badirli et al., 2020): A gradient boosting framework utilizing shallow neural
networks as weak learners.

• TabNet (Arik and Pfister, 2021): A tree-mimic method employing sequential attention
for feature selection, with interpretability and self-supervised learning capabilities.

• GRANDE (Marton et al., 2024): A tree-mimic method for learning hard, axis-aligned
decision tree ensembles using end-to-end gradient descent.

• ProtoGate (Jiang et al., 2024b): A prototype-based model for high-dimensional, low-
sample-size biomedical data, which adapts global and local feature selection for improved
prediction accuracy and interpretability.

• TabR (Gorishniy et al., 2024): A deep learning model that integrates a KNN component
to enhance tabular data predictions via an efficient attention-like mechanism.

• ModernNCA (Ye et al., 2024b): A deep tabular model inspired by traditional Neighbor
Component Analysis (Goldberger et al., 2004), which makes predictions based on the
relationships with neighbors in a learned embedding space.

• DNNR (Nader et al., 2022) enhances KNN predictions by using local gradients and
Taylor approximations for more accurate and interpretable predictions.

10

Talent: A Tabular Analytics and Learning Toolbox

• AutoInt (Song et al., 2019): A token-based method that leverages a multi-head self-
attentive neural network to automatically learn high-order feature interactions.

• TabTransformer (Huang et al., 2020): A token-based method that transforms categor-
ical features into contextual embeddings to enhance tabular data modeling.

• FT-Transformer (Gorishniy et al., 2021): A token-based method which transforms
features to embeddings, followed by a series of attention-based transformations.

• Saint (Somepalli et al., 2022): A token-based method using row and column attention
mechanisms for tabular data.

• Trompt (Chen et al., 2023c): A prompt-based deep neural network for tabular data,
designed to separate learning into intrinsic column features and sample-specific feature
importance.

• T2G-former (Yan et al., 2023): A token-based method that processes data guided by
relation graphs and uses a Cross-level Readout for global semantics in prediction.

• ExcelFormer (Chen et al., 2023b): A token-based model featuring a semi-permeable
attention module for tabular data prediction, with tailored data augmentation and an
attentive feedforward network.

• AMFormer (Cheng et al., 2024): A token-based method which improves the transformer
architecture for tabular data by incorporating parallel addition and multiplication atten-
tion mechanisms, and uses prompt tokens to constrain feature interactions.

• TANGOS (Jeffares et al., 2023): A regularization-based model that uses gradient attri-
butions to promote neuron specialization and orthogonalization for tabular data.

• SwitchTab (Wu et al., 2024): A self-supervised method tailored for tabular data that
improves representation learning through an asymmetric encoder-decoder framework.

• PTaRL (Ye et al., 2024c): A regularization-based framework that enhances prediction
by constructing and projecting into a prototype-based space.

• TabPTM (Ye et al., 2023): A general method for tabular data that standardizes hetero-
geneous datasets using meta-representations, allowing a pre-trained model to generalize
to unseen datasets without additional training.

• TabPFN (Hollmann et al., 2023): A general model which involves the use of pre-trained
deep neural networks that can be directly applied to other tabular classification tasks.

• HyperFast (Bonet et al., 2024): A meta-trained hypernetwork that generates task-
specific neural networks for instant classification of tabular data.

• TabPFN v2 (Hollmann et al., 2025): An improved version of TabPFN.
• TabICL (Qu et al., 2025): A pretrained model similar to TabPFN v2, but with faster

processing speed and better performance on large-scale datasets.
• TabAutoPNPNet (Rizzo et al., 2025): A tabular model based on periodicity, partic-

ularly the Fourier transform and Chebyshev polynomials, with performance on par with
or superior to FT-Transformer.

A.2 Encoding Techniques

According to Gorishniy et al. (2022), embeddings for numerical features significantly im-
prove the performance of deep learning models on tabular data by providing more expres-
sive and powerful initial representations. This approach is beneficial for both MLPs and
advanced Transformer-like architectures. In Talent, we integrate various numerical en-

11

Liu, Cai, Zhou, Yin, Zhou, Jiang,Ye

coding techniques, improving the input quality for machine learning models. The diverse
selection of encoding methods ensures effective and customized data preprocessing for dif-
ferent analytical needs. Here are the encoding methods included in Talent:
• Quantile-based Binning (Q bins) constructs bins by dividing value ranges according

to the quantiles of the individual feature distributions, replacing the original values with
their corresponding bin indices.

• Target-aware Binning (T bins) creates bins using training labels to correspond to
narrow ranges of possible target values. This approach is similar to the “C4.5 Discretiza-
tion” algorithm (Kohavi and Sahami, 1996), which splits the value range of each feature
using the target as guidance.

• Quantile-based Unary Encoding (Q Unary) (Li and Lin, 2006) converts numerical
values into unary binary-encoded bin indices based on quantiles.

• Target-aware Unary Encoding (T Unary) (Li and Lin, 2006) generates unary binary-
encoded bin indices using target-aware transformations.

• Quantile-based Johnson Encoding (Q Johnson) (Shah et al., 2022) encodes numer-
ical data based on quantile intervals using Johnson distribution transformations (Libaw
and Craig, 1953), replacing original values with Johnson binary-encoded bin indices.

• Target-aware Johnson Encoding (T Johnson) (Shah et al., 2022) applies Johnson
transformations with target-aware bins, replacing original values with Johnson binary-
encoded bin indices (Libaw and Craig, 1953).

• Quantile-based Piecewise Linear Encoding (Q PLE) (Gorishniy et al., 2022) seg-
ments numerical data based on quantiles and applies piecewise linear transformations.

• Target-aware Piecewise Linear Encoding (T PLE) (Gorishniy et al., 2022) builds
target-aware bins and applies piecewise linear transformations.

Additionally, Talent incorporates various categorical encoding techniques, including
Ordinal encoding, One-Hot encoding, Binary encoding, Hash encoding (Weinberger
et al., 2009), Target encoding (Micci-Barreca, 2001), Leave-One-Out encoding, and Cat-
Boost encoding (Prokhorenkova et al., 2018).

Appendix B. Usage Example with scikit learn-style Interface

We are pleased to note that the community has contributed an extension named scikit talent1,
which provides a scikit-learn-style interface for using models in the Talent framework.
This interface supports custom data loading and seamless integration with common Python
libraries such as pandas, numpy, and scikit-learn.

Below is a simple usage example of scikit talent that demonstrates how to load a
dataset from OpenML, split it into training and testing sets, and evaluate a deep tabular
model using balanced accuracy score:

1 import numpy as np

2 import openml

3 from sklearn.metrics import balanced_accuracy_score

4 from sklearn.model_selection import train_test_split

5 from scikit_talent.talent_classifier import DeepClassifier

6

7 model = "modernNCA"

1. https://github.com/hengzhe-zhang/scikit-TALENT

12

Talent: A Tabular Analytics and Learning Toolbox

8 M = DeepClassifier(model_type=model)

9

10 dataset = openml.datasets.get_dataset(3, download_data=True)

11 X, y, categorical_indicator, _ = dataset.get_data(target=dataset.

default_target_attribute, dataset_format="dataframe"

12)

13 X, y = np.array(X), np.array(y)

14

15 dataset_size = 100 # Define training size

16 X_train_pre, X_test, y_train_pre, y_test = train_test_split(X, y, train_size=

dataset_size)

17

18 M.fit(X_train_pre, y_train_pre, categorical_indicator)

19 predictions = M.predict(X_test)

20 score = balanced_accuracy_score(y_test, predictions)

21 print(f"{model}: Balanced Accuracy Score = {score}")

This example illustrates how users can rapidly prototype and evaluate models using
familiar tools and APIs, thereby enhancing the usability and accessibility of the Talent
framework for researchers and practitioners alike.

Appendix C. Adding New Methods

Talent is designed to be highly customizable, allowing users to integrate new machine
learning methods effortlessly. Whether users are adding a well-known algorithm or experi-
menting with a novel approach, follow these steps to expand the capabilities of the toolbox,
as illustrated in Figure 2:

1. Register the Model: Start by registering the new model class in the model/models

directory. Ensure that this class defines the architecture of the model, specifying how
the model will be constructed.

2. Create the Method Class: Create a new method class within the model/methods

directory. This class should inherit from the base class provided in base.py. Implement
the necessary components of the machine learning method in this class, including the
training and prediction processes.

3. Method Integration: Integrate the new method into the workflow of Talent by
adding its name to the get method function located in model/utils.py. This function
maps model types to their respective classes, enabling the toolbox to instantiate the
correct model.

4. Configure Parameters: Update the JSON files in the configs/default and
configs/opt space directories to include default hyperparameters and hyperparameter
search spaces for the new method.

5. Adjust Training Processes: If the method requires a unique training procedure,
modify the relevant functions in model/methods/base.py. Tailor these functions to
accommodate any special optimization strategies that the method requires.

By following these steps, researchers can add new algorithms to Talent, adapting it
to meet diverse research needs. For detailed examples and additional guidance, refer to the
implementation of existing methods in the model/methods directory.

13

Liu, Cai, Zhou, Yin, Zhou, Jiang,Ye

For contributors who wish to contribute to Talent, please refer to our contribution
guidelines2 for more information on how to submit your contributions. We welcome and
appreciate all forms of contributions to the project.

Train ModelTune Hyperparameters

Define Method Class Register Model

Method Integration

Configure Parameters

Figure 2: Workflow for Adding a New Method to Talent.

Appendix D. Preliminary Experiments

We provide comprehensive evaluations of classical and deep tabular methods based on
our toolbox in a fair manner, as shown in Figure 3. The benchmark covers 300 tabular
datasets Ye et al. (2024a) drawn from diverse domains such as finance, education, and
physics, encompassing binary classification, multi-class classification, and regression tasks.
These datasets exhibit substantial variability in both the number of samples and the number
of features, ensuring a broad assessment across different data characteristics. The detailed
statistics are provided in Figure 4. The evaluations cover three tabular prediction tasks:
binary classification, multi-class classification, and regression, with each subfigure repre-
senting a different task type. The datasets are available at Google Drive.

We use accuracy and RMSE as the metrics for classification and regression, respectively.
To calibrate the metrics, we choose the average performance rank to compare all methods,
where a lower rank indicates better performance, following Sheskin (2003). Efficiency is
calculated by the average training time in seconds, with lower values denoting better time
efficiency. The model size is visually indicated by the radius of the circles, offering a quick
glance at the trade-off between model complexity and performance.

2. https://github.com/LAMDA-Tabular/TALENT/blob/main/CONTRIBUTING.md

14

https://drive.google.com/file/d/18RHGSA1nASbsF1KAHCqLJasYsZIBXJ8D/view?usp=sharing
https://github.com/LAMDA-Tabular/TALENT/blob/main/CONTRIBUTING.md

Talent: A Tabular Analytics and Learning Toolbox

Bin-Class

FT-T
T

im
e

100

1

101

10−1

102

103

3 1311975 15
Average Rank

TabPFNOptimal

CatBoost

XGBoost
KNN

SVM

LR

ModernNCA
TabR ResNet

MLP
DCNv2

Dummy

MLP-PLRRealMLP

RForest

(a) Binary Classification

Multi-Class

FT-T

T
im

e

100

1

101

10−1

102

103

3 1311975 15
Average Rank

TabPFNOptimal

CatBoost

XGBoost

KNN

SVM
LR

ModernNCA

TabR

ResNet MLP
DCNv2

Dummy

MLP-PLR
RealMLP

RForest

(b) Multi-Class Classification

Regression

FT-T

T
im

e

100

1

101

10−1

102

103

3 1311975 15
Average Rank

Optimal

CatBoost

XGBoost KNN SVM
LR

RForest

ModernNCA

TabR

ResNet

MLP
DCNv2

Dummy

MLP-PLR

RealMLP

(c) Regression

RealMLP

MLP-PLR

KNN

Full Benchmark

FT-T

T
im

e

100

1

101

10−1

102

103

3 1311975 15
Average Rank

Optimal

CatBoost

XGBoost
SVM

LR

ModernNCA

TabR

ResNet

MLP
DCNv2

Dummy

RForest

(d) All Tasks

Figure 3: Performance-Efficiency-Size comparison of representative tabular methods on our
toolbox for (a) binary classification, (b) multi-class classification, (c) regression
tasks, and (d) all task types. The performance is measured by the average rank
of all methods (lower is better). We also consider the dummy baseline, which
outputs the label of the major class and the average labels for classification and
regression tasks, respectively.

From the comparison, we observe that CatBoost achieves the best average rank in most
classification and regression tasks, aligning with findings in McElfresh et al. (2023). Among
all deep tabular methods, ModernNCA and RealMLP perform best in most cases while
maintaining acceptable training costs. These visualizations serve as an effective tool for
quickly and fairly assessing the strengths and weaknesses of various tabular methods across
different task types, enabling researchers and practitioners to make informed decisions when
selecting suitable modeling techniques for their specific needs.

15

Liu, Cai, Zhou, Yin, Zhou, Jiang,Ye

Binary Multiclass Regression

120

80

100

(a) Statistics over task types

B
us

in
es

s
&

 M
ar

ke
tin

g

So
ci

al
 S

ci
en

ce

Fi
na

nc
e

Te
ch

no
lo

gy
 &

 In
te

rn
et

M
ed

ic
al

 &
 H

ea
lth

ca
re

M
ul

tim
ed

ia

Ph
ys

ic
s

&
 A

st
ro

no
m

y

In
du

st
ry

 &
 M

an
uf

ac
tu

ri
ng

B
io

lo
gy

 &
 L

ife
 S

ci
en

ce
s

C
he

m
is

tr
y

&
 M

at
er

ia
l S

ci
en

ce

E
nv

ir
on

m
en

ta
l S

ci
en

ce
 &

 C
lim

at
e

E
du

ca
tio

n

H
an

dc
ra

ft
ed

O
th

er
s

45

32 30 28 26 26
20 17 14 14 12

6

14 16

(b) Statistics over domains

[50
0,1

00
0)

[10
00

,20
00

)

[20
00

,40
00

)

[40
00

,80
00

)

[80
00

,16
00

0)

[16
00

0,3
20

00
)

[32
00

0,6
40

00
)

[64
00

0,
inf

)

12

64

50
56

48

28 30

12

(c) Statistics over numbers of samples

[3,
5]

[6,
8]

[9,
12

]

[13
,16

]

[17
,20

]

[21
,25

]

[26
,30

]

[31
,40

]

[41
,50

]

[51
,60

]

[61
,80

]

[81
,10

0]

[10
1,

inf
)

19

51

58

28 30

23 21
16

9 7
12

7

19

(d) Statistics over numbers of features

Figure 4: Statistics of the benchmark datasets. (a) Distribution of datasets across task
types: binary classification, multi-class classification, and regression. (b) Distri-
bution across application domains such as finance, education, and physics. (c)
Distribution of datasets by the number of samples. (d) Distribution of datasets
by the number of features. These statistics highlight the diversity of the bench-
mark in terms of task type, application domain, and data scale.

16

	Introduction
	Advantages and Comparison to Existing Toolkits
	Toolbox Usage
	Dependencies
	The workflow of Talent

	Conclusion
	Supported Methods and Encoding Techniques
	Supported Methods
	Encoding Techniques

	Usage Example with scikit_learn-style Interface
	Adding New Methods
	Preliminary Experiments

