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Abstract

While tabular machine learning has achieved remarkable success, temporal distribu-
tion shifts pose significant challenges in real-world deployment, as the relationships
between features and labels continuously evolve. Static models assume fixed map-
pings to ensure generalization, whereas adaptive models may overfit to transient
patterns, creating a dilemma between robustness and adaptability. In this paper,
we analyze key factors essential for constructing an effective dynamic mapping for
temporal tabular data. We discover that evolving feature semantics—particularly
objective and subjective meanings—introduce concept drift over time. Crucially,
we identify that feature transformation strategies are able to mitigate discrepancies
in feature representations across temporal stages. Motivated by these insights, we
propose a feature-aware temporal modulation mechanism that conditions feature
representations on temporal context, modulating statistical properties such as scale
and skewness. By aligning feature semantics across time, our approach achieves
a lightweight yet powerful adaptation, effectively balancing generalizability and
adaptability. Benchmark evaluations validate the effectiveness of our method in
handling temporal shifts in tabular data.

1 Introduction

Tabular data, structured in rows and columns, forms the foundation of critical decision-making across
diverse domains such as healthcare [39], finance [42], and e-commerce [33]. Traditional machine
learning models for tabular data—including tree-based methods [} [7} 22} [36]] and modern deep
architectures [2| [10H13} [16-18l [52]—commonly assume independent and identically distributed
(i.i.d.) data [3l[30]. However, in real-world scenarios [54], temporal distribution shifts [6} 41]],
characterized by evolving relationships between features and labels, present significant challenges.
For instance, latent factors such as economic fluctuations, policy changes, or evolving user behaviors
can render static models ineffective, as previously learned mappings quickly become obsolete.

Most existing approaches assume i.i.d. data and primarily focus on improving generalization based
on a fixed mapping from the feature space to the label space. Static models, although easy to train
and capable of reasonable generalization, fundamentally lack the capacity to adapt to evolving data
patterns without explicit temporal awareness, as depicted in Figure I} For example, ensemble meth-
ods [13] and classical gradient boosting decision trees (GBDTs) [7, 22| 36]] exhibit robustness across
diverse distributions [6} 41]], but they lack mechanisms to capture evolving temporal dependencies.

To better understand learning under temporal shift and the limitations of existing approaches, we begin
by examining the nature of evolving distribution in real-world temporal tabular datasets. Beyond the
classical notions of covariate shift, label shift, and concept shift—referring respectively to changes in
p(x), p(y), and p(y|x) over time [31}, 38]—temporal shifts involve additional complexities, such as
dynamic transformations within the feature space X and the label space ) themselves [6]]. These
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Figure 1: Left: Static models assume a time-invariant mapping f for all temporal subset D;, while
adaptive model f; dynamically adjust to each temporal stage. Right: Raw salary and location
values (top) encode shifting subjective concepts like “high income” or “prime location,” which vary
across time. Our method aligns these semantics (bottom) by modulating feature distributions—using
temporal statistics (e.g., mean, std, skewness)—to preserve concept consistency over time.

challenges necessitate learning an adaptive model with distributional extrapolation capability,
enabling effective generalization to previously unseen distributions.

However, learning such adaptive models is inherently difficult. Limited samples at specific time
points hinder the accurate estimation of instantaneous distributions. Moreover, naive adaptive
implementations often fail to leverage temporal context effectively, limiting their ability to transfer
knowledge from historical data to future deployment stages [14]]. These limitations impede the
development of models with temporal extrapolation capability, increasing the risk of overfitting to
short-term patterns. This situation creates a dilemma: static models achieve strong generalization
but ignore temporal dynamics, whereas adaptive models focus on immediate adjustments at the cost
of long-term stability. Therefore, establishing a principled balance between generalizability and
adaptability is essential for effectively learning from temporally evolving tabular data.

In this paper, we aim to develop an adaptive model to address temporal shifts in tabular data. We
first identify a key factor in temporal generalization: the evolving semantics of features. Specifically,
a feature’s meaning can be interpreted either based on its absolute value (objective semantics)
or in relation to the data distribution (subjective semantics). For example, a person’s salary or a
house’s coordinates carry objective semantics tied to fixed numerical values. In contrast, identifying
someone as part of a “high-income group” or a location as a “prime area” depends on subjective
semantics, which are context-dependent and can shift over time. Thus, even if raw feature values
remain unchanged, their implied meaning may evolve. Conversely, values may change while the
concept remains stable. For instance, average salaries may rise over time, but the threshold for being
considered “high income” is defined relative to the distribution. Similarly, coordinates remain fixed,
but the concept of a “prime location” may evolve due to urban development, as illustrated in Figure
(right top). These evolving semantics challenge static models, which fail to interpret such changes.

Based on these insights, we propose a feature-aware temporal modulation mechanism that adjusts
feature representations based on temporal context. We observe that the distributional statistics of
features—specifically, their mean, std, and skewness—play a critical role in shaping semantics,
corresponding to bias, scale, and distributional shape, as shown in Figure 2} We introduce a learnable
transformation that modulates features according to these statistics, allowing the model to align
semantics across temporal stages (Figure[T] right). This alignment helps maintain a stable relational
structure among features, which is essential for learning generalizable representations under temporal
shifts. As a result, the model gains distributional extrapolation capability to mitigate concept drift,
and temporal extrapolation capability by leveraging similarity across time to generalize to previously
unseen or sparsely observed periods. Experiments demonstrate the effectiveness of our approach in
handling temporal shifts across real-world datasets. The contributions are summarized as follows:

* We analyze the challenge of temporal distribution shifts in tabular data and highlight the role of
evolving feature semantics.

* We propose a novel feature-aware temporal modulation mechanism that leverages distributional
statistics (mean, std, skewness) to conditionally align feature representations over time.

* Our method achieves a balance between generalization and adaptability, enabling both distributional
and temporal extrapolation with low cost.



2 Related Work

2.1 Tabular Machine Learning

Tabular data is a widely-used format across various real-world applications [19H21], including
healthcare [39]], finance [42], and e-commerce [33]]. Classical tree-based methods, such as Random
Forest [3]], XGBoost [7]], LightGBM [22], and CatBoost [36], remain competitive due to their robust-
ness, interpretability, and high performance in practice. In recent years, deep learning approaches for
tabular data have gained significant attention. Notably, FT-Transformer (FT-T) [10] leverages the
Transformer architecture to model feature interactions, while retrieval-based methods like TabR [12]
and ModernNCA [52] predict labels by retrieving neighbors in the learned representation space.
TabM [13]] introduces an ensemble strategy that integrates multiple MLPs, while other methods,
such as SNN [24], DCNv2 [50], MLP-PLR [11]], and ReaIMLP [18]], enhance the MLP architecture
itself. Additionally, general-purpose approaches like TabPFN and its variants [[16} [17} 26} 137]] have
shown remarkable versatility and generalization across various tabular tasks. Despite significant
progress and strong results on established benchmarks [29] I51]], the challenge of deploying these
models effectively in dynamic, non-stationary environments is increasingly critical [6} 19, 141} 154].

2.2 Distribution Shift in Tabular Data

Existing methods for addressing distribution shift in tabular data can be broadly categorized into
two groups: static methods, which aim to learn robust and generalizable representations across
distributions, and adaptive methods, which adjust dynamically to distributional changes. In static
methods, Rubachev et al. [41]] observe that TabM [13]] performs well under temporal shift, while Cai
& Ye [[6] show that GBDTs [[7, 22} [36] remain competitive when using refined training protocols.
Adaptive methods, on the other hand, focus primarily on domain shifts from a source domain to a
target domain [18| 9, 23| 25| 43| [45H47]]. However, these methods typically require access to target
domain data in advance and are often designed to handle static domain-to-domain shifts, which are ill-
suited for capturing the intra-domain dynamics common in temporal distribution shifts. Cai & Ye [6]
propose incorporating temporal embedding to capture trends and periodicities, introducing temporal
adaptivity into the model to some extent. In contrast, we identify key factors that contribute to model
adaptability and condition feature representations on temporal embeddings through a feature-aware
modulation mechanism. Our approach facilitates semantic alignment across time, overcoming the
limitations of previous methods.

2.3 Hypernetwork

Hypernetworks, which generate the weights for another neural network [14], have become an
effective strategy for making model behavior adaptive. This concept has been further developed
in recent years, with specialized architectures achieving impressive results on tabular data [4} [32]].
However, when applied to tabular data with temporal shifts, the conventional hypernetwork approach
is considered computationally prohibitive and data-inefficient [49]. Feature-wise Linear Modulation
(FiLM) approach [35]] proposes a lightweight alternative, using hypernetworks for feature modulation
rather than generating complete weights. FILM has shown promising results in visual reasoning.
Inspired by this, we explore effective modulation mechanisms for temporal tabular data, introducing
a feature-aware temporal modulation approach that preserves the adaptive benefits of hypernetworks
while ensuring computational efficiency for handling time-varying distributional shifts.

3 Preliminaries

3.1 Learning from Tabular Data with Temporal Shift

A tabular dataset with n examples is generally represented as {(z;, y;)},, where X and ) denote
the feature space (e.g., R?) and the label space (e.g., classes or real values for classification or
regression tasks), respectively. The goal is to learn a mapping f : X — ) from the n examples,
where f(x;) = 9; =~ y;. Typically, we assume that the pairs (x;, y;) are sampled i.i.d. from the joint
distribution of (X', ), and expect f to predict the label of an unseen instance «* sampled from the
same distribution. The prediction model f can be implemented using tree-based models [5} (7, 22} [36]
or deep neural networks [[10} [12, {13} 117,18} 152].



In real-world applications, tabular datasets are often collected sequentially over time, meaning the
underlying data distribution evolves over time. We define a femporal tabular dataset as D = | J, Dy,
which represents a union of subsets D, = {(x;, y;, t) };-*,, where n, denotes the number of instances
collected at time ¢. Each subset D, is attached with a timestamp t. The goal remains to learn a
mapping f from | J, D; to predict the label for a future instance x* collected at time ¢*. However,
since the i.i.d. assumption no longer holds in this case, temporal shift arises both within training
datasets and between test instances [6].

Moreover, for two different timestamps ¢ # ¢/, there may be changes in covariant distributions (i.e.,
p(x:) # p(xy)), label distributions (i.e., p(y:) # p(yw)), posterior distributions (i.e., p(y:|x:) #
p(yy |z )) [31138], and even in the feature space (i.e., X; # Xy/) and label space (i.e., Vi # Vy) [6].
These complexities in temporal distribution shifts lead to prediction deviations in the learned mapping
f, making it difficult to predict labels for future instances accurately.

3.2 Basic Solutions to Deal with Temporal Shift

We categorize methods addressing temporal shift in tabular data into two categories: static and
adaptive methods. The static method learns a mapping f that is agnostic to the time index ¢ from D,
often using empirical risk minimization [48]]:

min S wi by, 6 = f(=)) - 1

(zi,y:)€D

Here, {(-,-) measures the discrepancy between the target and the predicted labels, such as cross-
entropy for classification or mean squared error for regression, and w; represents the instance-specific
weight to emphasize important training examples. The static mapping f is trained to generalize across
temporal shifts among training examples, with the expectation of being robust to future instances
with varying shifts. Rubachev et al. [41]] investigate the generalization ability of representative tabular
models trained using this static approach.

An alternative solution is to learn a sample reweighting scheme to align the training distribution with
the distributions of future instances. Various reweighting strategies have been proposed in [25, 43,
45| 146l, where training sample weights are derived from test instances available during training to
minimize the distribution gap between source and target domains. However, these methods assume
access to target domain data during training, and are primarily designed to adapt to static domain
shifts, failing to account for the dynamic and continuous nature of temporal shifts.

In contrast to fixed models, the adaptive method conditions the model f on the timestamp, allowing
the model to behave differently based on the given time. For example, [40} 44] learn adaptive weights
w; in Equation solely based on the training set D, while still maintaining uniform behavior
across test instances. Recently, Cai & Ye [6] proposed a temporal embedding approach, which
concatenates a temporal embedding ¢ (¢) to the model input, enabling the model to learn temporal
patterns in an end-to-end manner and incorporating temporal adaptability. Specifically, ¢ (t) maps
the timestamp ¢ to a vector, making the mapping f(x;) become f(x;,¥(t)), thereby incorporating
temporal information. While this approach has been validated, the limited encoding dimension of the
temporal embedding restricts the model’s ability to extract fine-grained temporal features, and it is
often affected by covariate and label shifts, resulting in fragmented feature concept alignment.

3.3 Challenges of the Adaptive Model for Temporal Shift

To address temporal shifts in tabular data, we aim to learn an adaptive model f; from D. A straight-
forward approach is to make the parameters of f dependent on the timestamp. Define an auxiliary
mapping h that maps the subset D; to the parameters of the model f, and then use the generated
weights for making predictions for a given input. We can express this process as ft = h(Dy).
However, generating all parameters of f makes the output space of h large, making i computationally
prohibitive, data-inefficient, and prone to overfitting [4} [14} 15/ 132]. To address this, we focus on a
lightweight hypernetwork-based solution.
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Figure 2: Top: Empirical feature distributions over time, with colors ranging from dark (early
periods) to bright (recent periods), exhibit clear non-stationarity in bias (left), scale (middle), and
skewness (right). Bottom: Schematic illustration of learnable transformations applied to feature
distributions: shifting the mean () aligns bias (left), adjusting standard deviation () alters scale
(middle), and modulating asymmetry (\) reshapes skewness (right). These transformations enable
semantic alignment across temporal stages, thereby strengthening both generalization and adaptability.

4 Aligning Feature Concept under Temporal Shift

Given the evolving nature of feature semantics under temporal shifts, a central question arises: how
can we align feature representations across time to maintain semantic consistency? Traditional
approaches treat features as fixed entities, assuming their concept remain stable throughout the
dataset. However, as we have observed, features with subjective semantics, those defined relative to
the current data distribution, can shift in meaning even when their raw values remain unchanged, as
discussed in Section[T]and Figure[T} This phenomenon invalidates the i.i.d. assumption that underpins
most standard learning algorithms and motivates a feature-aware semantic modeling approach.

From a theoretical standpoint, the challenge can be viewed through the lens of representation learning
under distribution shift. Suppose we denote the representation function as ¢(x; #), parameterized by
6. When the semantics of x shift over time, e.g., the notion of “high income” changes due to inflation,
the optimal mapping ¢ should adapt such that semantically equivalent inputs under different D; are
mapped to similar representations. In other words, we seek semantic invariance:

o(xz;0;) = ¢p(x';0y), ifxe~ Dy, ' ~ Dy, and z, " are semantically equivalent.

This highlights the need for temporal modeling at the feature level, where each feature x; € =
may experience unique semantic shifts, and the model must dynamically adjusts its interpretation
accordingly over temporal context.

Furthermore, the subjective nature of many real-world features suggests that distributional statistics,
such as the mean, standard deviation, and skewness, can act as proxies for semantic context. Figure |Z|
illustrates the temporal distributions of selected features from real-world datasets within the TabReD
benchmark [41]]. Our analysis demonstrates that adjustments to the three aforementioned distributional
statistics can effectively characterize the majority of temporal distribution shifts observed. Inspired
by this, we hypothesize that semantic alignment can be achieved by recalibrating features informed
by their temporal distributional profile. Such an approach enables the model to restore temporal
invariances while embedding inductive biases conducive to extrapolation beyond observed periods.

In the following section, we operationalize this intuition by introducing a feature-aware temporal
modulation mechanism. This mechanism conditions feature representations on temporal information
through the modulation of distributional statistics computed at each timestamp. By explicitly adapting
these statistical summaries, it offers a lightweight and interpretable way to align feature semantics
over time, thereby improving the model’s generalization under non-stationary conditions.
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Figure 3: Overview of our feature-aware temporal modulation framework. Temporal modulation
can be applied on raw feature input, intermediate representation, and output logits. The modulator
conditions temporal context 1 (t) to predict parameter -y, 5, A for modulation based on Equation .

5 Feature-aware Temporal Modulation

To achieve semantic alignment across temporal stages, we introduce a feature-aware temporal
modulation mechanism that conditions feature transformations on learned representations of time.
The core idea is to explicitly reparameterize each input feature according to the evolving distributional
context, thereby enabling the model to interpret feature values in a temporally consistent manner.

Let t € R denote the timestamp associated with a given instance, and v(t) € R represent the
temporal embedding [6]], which captures both short-term and long-term temporal dynamics. This
embedding serves as a contextual signal, and is used as input to a lightweight modulator that outputs
a set of modulation parameters for each feature dimension.

Concretely, for each feature x € R™ and ¢ € R, the modulator produces three parameter vectors
v (1)), B (), A((t)) € R™, which correspond to scale, bias, and a nonlinear transformation
coefficient, respectively. We define the temporal modulation function as follows:

i = 7 () - YI(@i; \((1)) + Bi(w (L), &

where YJ(x;; \;) denotes the Yeo-Johnson transformation [33], defined as:

o (@i )M 1) /N, ifx; >0,

This transformation allows the model to dynamically adjust the distribution of features by applying
a smooth, nonlinear transformation that adapts to both skewed and heavy-tailed distributions. The
inclusion of the Yeo-Johnson transformation enables nonlinear reshaping of feature distributions,
which is critical for adapting to the temporal shifts in feature semantics. By leveraging the temporal
context ¢ (t), this design provides a feature-wise, time-dependent transformation, where the same
raw input &; can be interpreted differently depending on the temporal context 1 (¢), thus capturing
the evolving semantics of each feature. Unlike linear modulation schemes [35]], our method explicitly
accommodates the nonlinear evolution of feature semantics, facilitating semantic extrapolation over
time. Our temporal modulation mechanism applied to an MLP is illustrated in Figure [3] The
modulation can be flexibly applied to the raw feature, within the intermediate representations, or to
the predicted logits, offering enhanced adaptability across different stages of the network.

As demonstrated in the pilot study in Section [6.3] and Figure ] the temporal adaptivity enabled
by our modulation approach is grounded in a unified feature semantics. After a single modulation
applied to the raw input features, the model is able to learn a stable and consistent decision boundary
over the modulated representations. This explains why our method achieves superior performance
without explicitly injecting temporal information into the model architecture. Moreover, while our
modulation servers as an approach to handle concept drift, the covariant and label shifts inherently
embedded in the temporal dimension—i.e., the changes in p(z) and p(y) over time—are naturally
mitigated through the alignment of feature semantics. Once the model learns a temporally coherent
representation space, it can extract generalizable knowledge across different temporal phases, rather
than overfitting to the local variations at specific timestamps.
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Table 1: Main results on the TabReD benchmark [41]. The best performance is shown in bold,
with the 2nd to 4th best results [boxed]. Metrics reported are averaged AUCT and RMSE] over
15 runs, along with the corresponding standard deviation and the average rank across all datasets.
The results demonstrate that our temporal modulation approach consistently improves performance,
surpassing both static models and temporal embedding baselines [6]. Our approach also enhances
stability, as it naturally decouples the temporal modality from the input modality.

The ablation study in Section[6.4]and Table[2|further confirms the effectiveness of applying modulation
at multiple levels of the MLP. Specifically, modulating the input features, intermediate representations,
and predicted logits all contribute positively to performance. This highlights the complementary role
of each modulation layer and suggests that multiple levels of temporal modulation are beneficial for
capturing complex temporal dynamics.

Additionally, by sharing the temporal embedding across all instances and modulators, our method
ensures both parameter efficiency and temporal coherence, enabling the model to generalize effec-
tively across time while avoiding overfitting to specific timestamps. As we demonstrate later in our
experiments, this modulation mechanism improves both predictive performance and robustness in the
presence of temporal distribution shifts.

A current limitation of full-stage modulation lies in its incompatibility with PLR embedding [[11]],
which is commonly integrated into state-of-the-art tabular models [11-13}52]. PLR embedding
transform numerical features into combinations of sine and cosine, resulting in an expected arc-
sine distribution rather than the semantically interpretable distributions discussed in Section[I]and
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Figure 4: Pilot study on aligning feature semantics. The left plot illustrates the decision boundary
learned by a static MLP, highlighting that such methods struggle to capture separability under
temporal shifts. The top panel visualizes the evolving decision boundaries learned by an MLP with
our temporal modulation, where modulation is applied once at the input layer. Each of the five
subplots corresponds to a different temporal segment, revealing how the model adapts its decision
boundary in response to temporal dynamics. The middle panel displays feature distributions after
modulation, which are better aligned across time. This alignment enables the model to form a
consistent decision boundary, as shown in the bottom panel. These results demonstrates that our
lightweight modulation mechanism effectively aligns feature semantics, allowing the backbone
network to operate within a unified conceptual space over time.

Section[d] This mismatch can undermine the effectiveness of our modulation strategy. Nevertheless,
inspired by the ablation study, we find that applying the modulation once at the raw feature level still
effective for models using PLR embedding, partially mitigating this limitation.

6 Experiments

6.1 Setup

We conduct experiments on the TabReD benchmark proposed by Rubachev et al. [41]], using the
refined training protocol introduced by Cai & Ye [6]]. Our preprocessing, training, evaluation, and
hyperparameter tuning setup follows the practices established in Cai & Ye [6]. Detailed experimental
setup is provided in Section B]

6.2 Results

Our main results on the TabReD benchmark [41] are summarized in Table Among static models,
we compare classical baselines including Linear, XGBoost [7], CatBoost [36]], LightGBM [22]], and
Random Forest [3], as well as deep tabular models such as MLP, MLP-PLR [11], FT-Transformer
[10], TabR [12], ModernNCA [52], and TabM [13]]. While these methods lack temporal adaptation
capabilities, ensemble-based models still demonstrate strong performance due to their robustness
and generalization ability. For adaptive models, we follow the approach from Cai & Ye [6] by
concatenating a temporal embedding to the input features of the six aforementioned deep tabular
models. This serves as a simple yet effective baseline. Most of these models benefit from this
temporal input, underscoring the importance of dynamic modeling in the presence of temporal shifts.

Building on this, we apply our temporal modulation approach to MLP, MLP-PLR, and TabM. The
MLP uses full modulation across all stages, while MLP-PLR and TabM employ single-step mod-
ulation on raw features, as mentioned in Section [5] Our method yields consistent performance
improvements, significantly outperforming static baselines and surpassing the temporal embedding
baselines across the board, as shown in Figure 5| Notably, although our method does not explicitly
feed temporal information into the model, it still achieves robust gains, highlighting the effectiveness
of our design. More specifically, we observe that even the simplest MLP achieves superior perfor-
mance over most deep learning methods when equipped with full temporal modulation. TabM with
our modulation achieves the highest average rank (3.50) among all methods. To the best of our
knowledge, this is the first instance where a deep tabular method consistently outperforms GBDT-
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based models under temporal distribution shifts. In summary, these results collectively demonstrate
the strong effectiveness and generalizability of our proposed temporal modulation approach.

6.3 Pilot Study

The results of our pilot study, presented in Figure ] are designed to evaluate whether our proposed
modulation effectively aligns model representations. We use an MLP as the backbone and apply a
single modulation on raw features to clearly separate and visualize the model’s learned representations.
To this end, we construct a synthetic dataset with a temporal distribution shift. Under the i.i.d.
assumption, the dataset is non-separable, causing static models to fail in learning a valid decision
boundary, as shown in Figure [ (left). After applying our temporal modulation, the model is able to
adaptively adjust its decision boundaries at each temporal stage, as illustrated in Figure 4] (right top).

We further visualize the feature distributions before and after modulation (Figure [4] right middle),
and observe that the temporal shift in the input space is effectively corrected. While the post-
modulation feature distributions are still non-i.i.d., they become aligned enough to enable consistent
and separable decision boundaries, as shown in Figure[d] (right bottom). These results demonstrate that
the modulated model learns in a unified representation space and can capture temporally generalizable
knowledge, thus validating our motivation of aligning feature semantics through temporal modulation.

6.4 Ablation Study

The results of our ablation study, presented in Table 2] investigate the relationship between model
performance and the location of temporal modulation. We conduct this analysis using an MLP back-
bone, evaluating all combinations of the three modulation positions: raw feature input, intermediate
representation, and output logits. As expected, applying modulation at all three stages yields the best
performance on the TabReD benchmark, with an average improvement over the baseline MLP of
2.09%. Notably, all combinations outperform the baseline MLP without modulation, indicating that
each modulation layer contributes positively to temporal generalization. These findings validate the
design choice of multi-level modulation and demonstrate the complementary benefits of applying
temporal adaptation throughout the network.

Beyond overall performance, we also observe several interesting findings. Applying a single mod-
ulation layer only at the raw feature level achieves 87.4% of the performance gain obtained by the
full modulation setup. In contrast, removing the modulation at the raw feature layer reduces the
performance gain to just 56.8% of the full modulation. This highlights the critical importance of
early-stage modulation. At the raw input level, the model has access to the most complete and
unaltered information, making it the most effective stage for semantic alignment. If modulation is
omitted at this stage, subsequent modulations are less effective, as the model may have already inter-
nalized misaligned representations. Although any modulation applied at deeper layers of a sufficiently
expressive network can approximate the optimal transformation based on the universal approximation
property of neural networks in theory [34], our method achieves competitive performance with only a
single modulation at the input level. This efficiency is particularly encouraging, as it enables seamless



integration of our modulation mechanism into existing models by simply adding a modulation layer
at the input, without requiring changes to the internal structure of the backbone.

7 Conclusion

In this paper, we address temporal distribution shifts in tabular data by identifying evolving feature
semantics as a core challenge. We show that conventional static and adaptive models face a trade-off
between generalization and adaptability. To bridge this gap, we propose a feature-aware temporal
modulation mechanism that conditions feature representations on temporal context through learnable
transformations of distributional statistics. This enables the model to align semantics across time,
facilitating both distributional and temporal extrapolation. This lightweight yet effective strategy
enables stable learning under temporal shift and improves generalization to future data. Extensive
experiments validate the robustness and adaptability of our method in temporal tabuar learning.
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A Code and Data Availability

We release the complete implementation of our method at the following repository: https://
github.com/LAMDA-Tabular/Tabular-Temporal-Modulation|

We use the TabReD [41] benchmark to evaluate the performance of our models. Furthermore, we
adopt the refined training protocol and the data preprocessing procedures proposed by Cai & Ye [6].

B Detailed Experimental Setup

Our experiments are run under Linux using Python 3.10 and PyTorch 2.0.1. We adopt the training,
evaluation, and hyperparameter tuning setups from Cai & Ye [6], Ye et al. [51], and Liu et al. [27].
Hyperparameter optimization is performed using Optuna [1], with 100 trials for most methods.
Due to computational constraints, FT-Transformer and TabR are tuned with 25 trials. The search
space strictly follows the configurations used in Cai & Ye [6] and Rubachev et al. [41]], and is also
documented in our source code (available in the config/ folder).

Once optimal hyperparameters are identified, each method is trained using 15 random seeds, and
we report the average performance across these runs. For all deep learning methods, we use a batch
size of 1024 and the AdamW optimizer [28]]. Classification tasks are evaluated using AUC (higher is
better), while regression tasks are evaluated using RMSE (lower is better). Model selection is based
on the best performance on the validation set. Following Rubachev et al. [41] and Cai & Ye [6], we
adopt an early stopping strategy with a patience of 16 epochs based on validation performance.

Regarding temporal embedding, Table [3|compares the hyperparameter search spaces used in Cai &
Ye [[6] and in our work. While Cai & Ye [6] conducted separate hyperparameter searches for each
periodic component and the trend, we adopt a unified design with a fixed embedding dimension of 128
across all periodic priors while retaining the trend component, resulting in a single hyperparameter
d_embedding to be tuned. Unlike prior work that relies on delicate hyperparameter balancing, our
formulation explicitly disentangles the input modality from the temporal modality. This separation
mitigates mutual interference and alleviates the scaling issue commonly observed in temporal
embeddings—where increasing dimensionality often leads to degraded performance. By contrast,
our design maintains stable improvements as d_embedding grows, demonstrating more robust and
effective modeling of temporal patterns. We further provide an ablation study in Table f]to validate
the scalability of d_embedding.

Parameter Distribution Parameter Distribution
year_order {0, PowerInt[1, 7]} year_order Fixed 128
month_order {0, PowerlInt[1, 7]} month_order  Fixed 128
day_order {0, PowerInt[1, 7]} day_order Fixed 128
hour_order {0, PowerInt[1, 7]} hour_order Fixed 128

trend {True, False} trend Fixed True
d_embedding {0, PowerInt[1, 5]} d_embedding {0, PowerInt[3,11]}

Table 3: Left: Temporal embedding hyper-parameter search space in Cai & Ye [6]. Right: Hyper-
parameter search space in this work. Here, PowerlInt[a, b] denotes the set of integer powers of two in

the range [2¢,2°] — e.g., PowerInt[1, 5] = {2, 4, 8,16, 32}.

C Additional Experimental Results

In this section, we include additional analyses and validations to complement the results presented in
the main paper. Specifically, we provide: (1) an ablation study on the temporal embedding dimension,
(2) statistical significance tests, and (3) additional pilot visualizations. Furthermore, we report the
complete numerical results with standard deviations, and verify the robustness of our conclusions
under alternative training protocols.

We conduct an ablation study on the temporal embedding dimension (Table[d), which shows that con-
ventional temporal embeddings deteriorate with increasing dimensionality, whereas our modulation
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Methods demy HIt EOt HDt SH, CT, DE, MR/ WE| Imp.
MLP (sutio) — 09360 0.6220 0.5508 0.2641 0.4821 05515 0.1619 15362 -

8 09394 0.6245 0.5515 0.2558 0.4800 0.5605 0.1621 1.5529 +0.21%
32 09400 0.6194 0.5514 0.2497 0.4805 0.5607 0.1620 1.5448 +0.45%
128 0.9442 0.6200 0.5529 0.2459 0.4799 0.5605 0.1622 1.5422 +0.76%
512 0.9491 0.6260 0.5536 0.2584 0.4806 0.5591 0.1618 1.5439 +0.40%

8 09439 0.6249 0.5423 0.2471 0.4786 0.5622 0.1618 1.5342 +0.65%
32 09439 0.6255 0.5400 0.2507 0.4785 0.5579 0.1615 1.5317 +0.58%
128 0.9468 0.6242 0.5547 0.2399 0.4785 0.5624 0.1617 1.5314 +1.33%
512 0.9563 0.6213 0.5558 0.2415 0.4779 0.5589 0.1616 1.5276 +1.48%

MLP (+Embedding)

MLP (+Modulation)

Table 4: Ablation on the embedding dimension d,,;,. The results may be suboptimal due to the
restricted hyperparameter search space. Performance of conventional temporal embeddings [6] tends
to deteriorate at higher dimensions, whereas our modulation approach maintains consistent gains,
demonstrating scalability and a stronger capacity to capture fine-grained temporal dependencies.

approach exhibits stable and scalable performance. The statistical significance analysis in Table[3]
further confirms that our method significantly outperforms static approaches, while prior temporal
embedding methods fail to achieve comparable improvements.

Additional pilot visualizations in Figure [f] analyze the behavior of our method under different types
of distribution shifts. While temporal shifts are primarily concept shifts and our approach is explicitly
designed to handle such cases, we observe that, in the presence of sample noise, the proposed
modulation further aligns feature distributions across various shift types, enabling the backbone
network to learn more stable and robust decision boundaries.

MLP (Static)  (+Embedding)  (+Modulation) TabM (Static) (+Embedding) (+Modulation)
(Static) 1.0000  0.4237 0.0033 (Static) 1.0000 0.7336  0.0631
(+Embedding)  0.4237  1.0000 0.1122 (+Embedding) 0.7336  1.0000  0.2909
(+Modulationy 0.0033  0.1122 1.0000 (+Modulation) 0.0631  0.2909 1.0000

Table 5: Statistical significance analysis using Nemenyi post-hoc tests for MLP and TabM variants.
The proposed modulation mechanism significantly outperforms the static baselines, whereas simply
concatenating temporal embeddings [6] does not yield significant gains, demonstrating the effective-
ness of our approach.

Given the absence of a standardized training protocol for temporal tabular data, we further conduct
a comparative analysis of model performance under different training setups. Table[7]reports the
results of each method when trained and evaluated on randomly split training and validation sets,
instead of the temporal training protocol proposed by Cai & Ye [6]]. In addition, Table [§|presents the
results obtained under the original protocol proposed by Rubachev et al. [41]]. These results show
that our temporal modulation approach achieves generally competitive performance across different
training protocols, highlighting its robustness to various data splitting strategies. Furthermore, we
argue that the effects of temporal adaptivity and validation splitting strategies are largely orthogonal:
while temporal adaptation techniques enable distributional and temporal extrapolation, the choice of
validation splitting mainly determines the foundation of effective model learning.

Table[6|reports the numerical results from the ablation study discussed in the main text. We observe
that the best performance on each task is consistently achieved when input-level modulation is applied,
highlighting its importance for capturing temporal dynamics effectively.
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Figure 6: Additional pilot study under different types of shifts. While temporal shifts in tabular
data predominantly manifest as concept shifts (i.e., changes in p(y|x)), we further analyze our method
under other types of shifts, including covariate shift (i.e., changes in p(x)) and label shift (i.e., changes
in p(y)), as well as a no-shift scenario. Each subfigure follows the same visualization scheme as
Figure[d] illustrating the evolving decision boundaries and feature alignments over time in our method
compared to a static baseline. The results show that our temporal modulation, though primarily
designed to mitigate concept shift, also promotes temporal alignment of feature distributions under
covariate and label shifts, leading to more stable decision boundaries. Moreover, under the no-shift
setting, it introduces no adverse effect, confirming that the modulation mechanism remains neutral
when no temporal shift is present.
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In. Rep. Out. HIf EOt HDt SH, CT, DE} MR/ WE| Imp. Rank

0.9360 0.6220 0.5508 0.2641 0.4821 0.5515 0.1619 1.5362 0.00% 7.000
0.9468 0.6126 0.5524 0.2460 0.4820 0.5512 0.1619 1.5176 1.02% 5.125
0.9400 0.6221 0.5533 0.2640 0.4814 0.5514 0.1620 1.5206 0.26% 5.250
0.9463 0.6185 0.5525 0.2439 0.4819 0.5508 0.1621 1.5211 1.19% 5.500
0.9565 0.6241 0.5519 0.2388 0.4779 0.5495 0.1623 1.5162 1.83% 3.250
0.9574 0.6242 0.5559 0.2392 0.4781 0.5600 0.1620 1.5355 1.54% 3.625
0.9567 0.6272 0.5515 0.2418 0.4782 0.5502 0.1615 1.5365 1.62% 3.750
0.9593 0.6230 0.5532 0.2345 0.4782 0.5502 0.1616 1.5179 2.09% 2.500

NN
WA X X NN X X%
WX A XA XA X%

Table 6: Detailed results for ablation study on the TabReD benchmark [41] as an extension to
Table @ The best performance is shown in bold, with the 2nd best results underlined.

Methods HIT EOT HDt SH| CTJ DE| MR| WE| Rank
Classical Baselines
i 0.9397 0.5895 0.8235 0.2458 0.4867 0.5591 0.1685 1.7425
Linear +0.0009 +0.0040 +0.0018 +0.0072 +0.0003 +0.0004 +0.0073 +0.0029 15125
XCBoost 09623 06200 [0S 02298 04306 03468 [OI6IT) (LG8 (5350
0.9639 0.6213 0.8580 0.2340 0.4805 [0.5471] 0.1613 [1.4556]
CatBOOSt +0.0008 +0.0025 +0.0022 +0.0017 +0.0003 +0.0002 +0.0001 +0.0021 5375
i 09616 0.6136 0.8334 0.2322 0.4807 [0.5469| 0.1616 1.4471
% nghtGBM +0.0005 +0.0045 +0.0081 40.0015 +0.0003 +0.0003 +0.0004 40.0042 7500
2 0.9580 0.6254 0.8142 0.2427 0.4846 0.5588 0.1649 1.5694
g RandomForest 40.0002 +0.0029 +0.0017 40.0024 40.0001 40.0003 +0.0000 40.0004 13.250
% Deep Methods
£ MLP 0.9383  0.6225 0.5532 0.2509 0.4814 0.5521 0.1619 1.5252 {3750
ﬁ +0.0042 +0.0031 +0.0011 +0.0119 +0.0004 +0.0006 +0.0001 +0.0059
0.9599 0.6225 0.8208 0.2406 0.4800 0.5507 0.1616 1.5097
MLP-PLR +0.0014 +0.0055 +0.0102 +0.0131 +0.0003 +0.0010 +0.0002 +0.0163 9875
FL.T 0.9616 0.6268] 0.5846 0.2369 0.4804 0.5503 0.1622 1.5001 9375
0.0036 0.0095 +0.0391 +0.0082 +0.0007 0.0014 0.0002 +0.0084
TabR 0.9543 0.6206 0.8147 0.2384 0.4880 0.5548 0.1622 [1.4629] 12250
+0.0052 +0.0055 +0.0165 +0.0068 +0.0037 +0.0033 +0.0003 +0.0067
0.9617 0.6246 [0.8399| 10.2299| 0.4806 0.5510 0.1621 1.4773
ModernNCA +0.0007 +0.0110 +0.0005 +0.0015 40.0004 +0.0101 7750
TabM 0.9629] 0.6332 0.8282 |0.2305| 0.4794 0.5495 0.1607 1.4681 17100
+0.0014 +0.0030 +0.0128 +0.0033 +0.0007 +0.0013 +0.0002 +0.0047 -
Deep Methods with Temporal Embedding [6]
MLP 09451 0.6267 0.5530 0.2610 0.4796 0.5569 0.1618 1.5333 12375
@ +0.0022 0.0025 +0.0009 +0.0189 +0.0002 0.0008 +0.0001 +0.0076
= 0.9600 0.6252 0.8210 0.2368 0.4798 0.5528 0.1612 1.5048
% MLP-PLR +0.0009 +0.0067 +0.0079 +0.0044 +0.0020 +0.0017 +0.0001 +0.0043 8625
S 0.9636| [0.6299] [0.8427| 0.2317 0.4784 0.5492 |0.1609| 1.4891
% TabM [ :().(l(l(h\l [ :(),()‘)11[ [ i(),(l()(\’ll +0.0040 +0.0014 +0.0029 +0.0003 +0.0053 3750
'é Deep Methods with Temporal Modulation (Ours)
< MLP 0.9567 0.6267 0.5562 0.2499 [0.4786] 0.5594 0.1618 1.5122 11500
< +0.0004 +0.0028 +0.0011 +0.0068 +0.0003 +0.0012 +0.0001 +0.0052
MLP-PLR 0.9607 0.6237 0.8104 0.2365 [0.4792] 0.5564 0.1613 1.5314 9750
0.0010 0.0041 +0.0082 +0.0027 +0.0003 0.0010 0.0001 +0.0078
TabM [0.9633] [0.6319] [0.8380] [0.2306] [0.4785] [0.5491] [0.1608] 1.4717  3.500

+0.0008 +0.0020 +0.0090 +0.0034 +0.0006 +0.0012 +0.0002 +0.0074

Table 7: Main results on the TabReD benchmark [41] using random split, results are averaged
over three distinct partitions, with 15 seeds per partition. The best performance is shown in bold,
with the 2nd to 4th best results [boxed]. Metrics reported are averaged AUCT and RMSE/, along with
the corresponding standard deviation and the average rank across all datasets. We follow the random
splits used in Cai & Ye [6].
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Methods HIt EOf HD{t SH, CT, DE/ MR| WE|/ Rank

Classical Baselines

i 0.9388 0.5731 0.8174 0.2560 0.4879 0.5587 0.1744 1.7465
Linear +0.0005 +0.0058 +0.0008 +0.0134 +0.0004 +0.0008 +0.0107 +0.0031 14.750
XGBoost 0.9609] 0.5764 0.8627 0.2475 0.4823 0.5459 0.1616 1.4699 (5575
0.0002 0.0005 +0.0005 +0.0004 +0.0001 0.0001 0.0000 +0.0008 =
[0.9612] 0.5671 [0.8588] 0.2469 0.4824 [0.5464] 0.1619 [1.4715
CatBOOSt +0.0003 +0.0110 +0.0005 +0.0014 +0.0001 +0.0002 +0.0000 +0.0016 7000
LightGBM 0.9600 0.5633 [0.8580] 0.2452 0.4826 [0.5474] 0.1618 [1.4723] 7375
% +0.0002 +0.0008 40.0004 +0.0004 +0.0001 +0.0002 +0.0000 +0.0013
S 0.9537 0.5755 0.7971 0.2623 0.4870 0.5565 0.1653 1.5839
% RandOmForeSt +0.0001 +0.0008 +0.0008 +0.0006 +0.0001 +0.0001 =40.0000 +0.0004 14000
% Deep Methods
£ MLP 0.9404 0.5866 0.4730 0.2802 0.4820 0.5526 0.1624 15331 12125
;} +0.0026 +0.0033 40.0006 +0.0281 +0.0005 +0.0012 +0.0001 +0.0050
0.9592 0.5816 0.8448 |0.2412] 0.4811 0.5533 |0.1616] 1.5185
MLP-PLR +0.0005 +0.0035 +0.0028 +0.0043 +0.0004 +0.0014 =+0.0001 +0.0046 7.250
FL.T 0.9562 0.5791 0.5301 0.2600 0.4814 0.5534 0.1627 15155 11.125
0.0092 +0.0061 +0.0278 +0.0142 +0.0004 +0.0028 0.0005 +0.0058
TabR 0.9527 0.5727 0.8442 0.2676 0.4818 0.5557 0.1625 [1.4782] 11625
+0.0024 +0.0065 +0.0041 +0.0170 +0.0003 +0.0016 +0.0005 +0.0062
09571 0.5712 0.8487 0.2526 0.4817 0.5523 0.1631 1.4977
MOdernNCA 0.0060 +0.0037 +0.0018 +0.0089 +0.0007 +0.0018 0.0001 +0.0052 10000
0.9590 [0.5952] 0.8549 0.2465 [0.4799] [0.5522] 0.1610 1.4852
TabM +0.0018 +0.0057 +0.0024 +0.0092 +0.0007 +0.0014 +0.0001 +0.0046 4.625
Deep Methods with Temporal Embedding [6]
MLP 0.9399 |0.5877] 0.4740 0.2795 0.4815 0.5589 0.1625 1.5363 13000
v 0.0021 0.0042 +0.0000 +0.0201 +0.0002 0.0012 0.0001 +0.0051
=
0.9593 0.5807 0.8472 |0.2356| [0.4796| 0.5548 0.1617 1.5137
% MLP-PLR +0.0005 +0.0035 +0.0025 +0.0022 +0.0003 +0.0027 +0.0002 +0.0042 6.750
]
0.9616] [0.5951] 0.8548 0.2469 0.4795 0.5528 [0.1615] 1.4788
% TabM +0.0016 +0.0043 40.0045 +0.0128 +0.0005 +0.0013 +0.0003 +0.0039 4.250
>
S Deep Methods with Temporal Modulation (Ours)
S 0. 9538 0.5832 0.4753 0.2658 04811 0.5587 0.1623 1.5157
2 MLP ).0005 +0.0030 +0.0010 +0.0156 +0.0003 +0.0014 +0.0001 +0.0022 11.250
0.9576 0.5824 0.8434 0.2353 0.4805 0.5605 0.1616 1.5188
MLP_PLR +0.0010 +0.0102 40.0029 +0.0019 40.0004 +0.0016 +0.0001 +0.0054 8625
TabM 0.9634 0.5978 [0.8557] [0.2415] [0.4796] [0.5533] [0.1615] 1.4813 3625

+0.0004 +0.0046 +0.0019 +0.0025 +0.0006 +0.0028 +0.0003 +0.0125

Table 8: Main results on the TabReD benchmark [41] using original temporal splits. The best
performance is shown in bold, with the 2nd to 4th best results [boxed|. Metrics reported are averaged
AUC?T and RMSE| over 15 runs, along with the corresponding standard deviation and the average
rank across all datasets.

D Computational Resources

All deep learning methods were trained on 20 NVIDIA RTX 4090 (24 GB) GPUs. Classical machine
learning methods were executed on 4 Intel Xeon Platinum 8352S CPUs. All experiments were run in
parallel, and the total wall-clock time for all reported experiments was approximately 14 days.

E Societal Impact Discussion

This work studies temporal distribution shifts in tabular data and proposes methods for improving
model robustness and adaptability over time. As tabular data is widely used in high-stakes domains
such as healthcare, finance, and public policy, understanding and addressing temporal shifts is critical
for ensuring long-term model reliability and fairness.

Our contributions are primarily methodological and empirical. We do not use sensitive personal data,
and the benchmark datasets employed in our experiments are publicly available and anonymized.
While improved temporal adaptation techniques may enhance performance in real-world systems, we
believe that our work supports the development of more trustworthy machine learning systems by
providing tools and insights for coping with real-world temporal dynamics. We encourage future
work to further investigate responsible deployment practices.
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