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Summary Feature-aware Temporal Modulation Experiments

We conduct experiments on the TabReD benchmark proposed by Rubachev et al. (2025), using the refined training protocol introduced

= Challenge: Static models fail under temporal shifts because feature semantics evolve.
by Cai & Ye (2025).

= Insight: Distributional statistics (mean, std, skewness) act as effective proxies.

Modulation Scheme
Concretely, for each feature & € R™ and t € R, the modulator produces (¥ (t)), B(w(t)), M1 (t)) € R™, which correspond to scale,

» Method: Feature-aware modulation conditioned on temporal context. bias, and a nonlinear transformation coefficient, respectively. We define the temporal modulation function as follows: Methods HIt EO? HD?T SH{ CTL DEJ MR WE| Rank
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Time Salary (modulated) Coordinate (modulated) Table 1. Main results on the TabReD benchmark (Rubachev et al., 2025).
Figure 1. Static model f vs. adaptive model f;. Figure 2. Modulating feature distributions for concept consistency. , , , , ,
° / g Ji 5 5 P Y Figure 4. Overview of our temporal modulation framework. Parameters ~, 8, A are used for modulation defined in eq. (1).
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Figure 3 illustrates the temporal distributions of selected features from real-world datasets in TabReD benchmark (Rubachev et al, MLP MLPPLR TabM MIP MLP-PLR TabM L o > 500

2025). Distributional statistics €.9. mean, std, skewness can effectively characterize the majority of temporal distribution shifts observed.

= Modulated View: In our aligned representation, the decision boundary becomes stable and unified.

Figure 6. Improvement in relative performance.

Table 2. Ablation study on modulation placement.
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Figure 3. Empirical feature distributions over time, and schematic illustration of learnable transformations applied to feature distributions. Figure 5. Pilot study on aligning feature semantics. Rubachev, 1., Kartashev, N., Gorishniy, Y., and Babenko, A. Tabred: A benchmark of tabular machine learning in-the-wild. In ICLR, 2025.
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