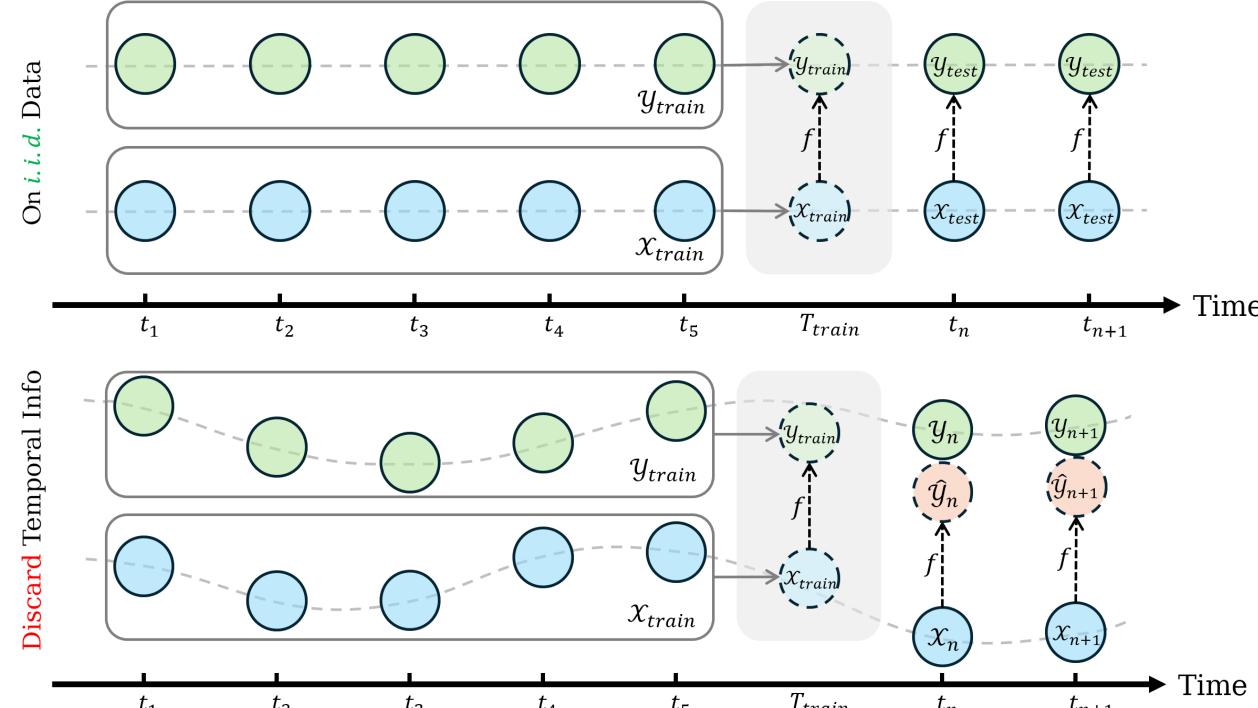


Challenges in Learning from Temporal Tabular Data

Most machine learning approaches are built on the **assumption of i.i.d. data**. However, tabular data are often **collected over time**, resulting in **temporal shifts** at each time point.

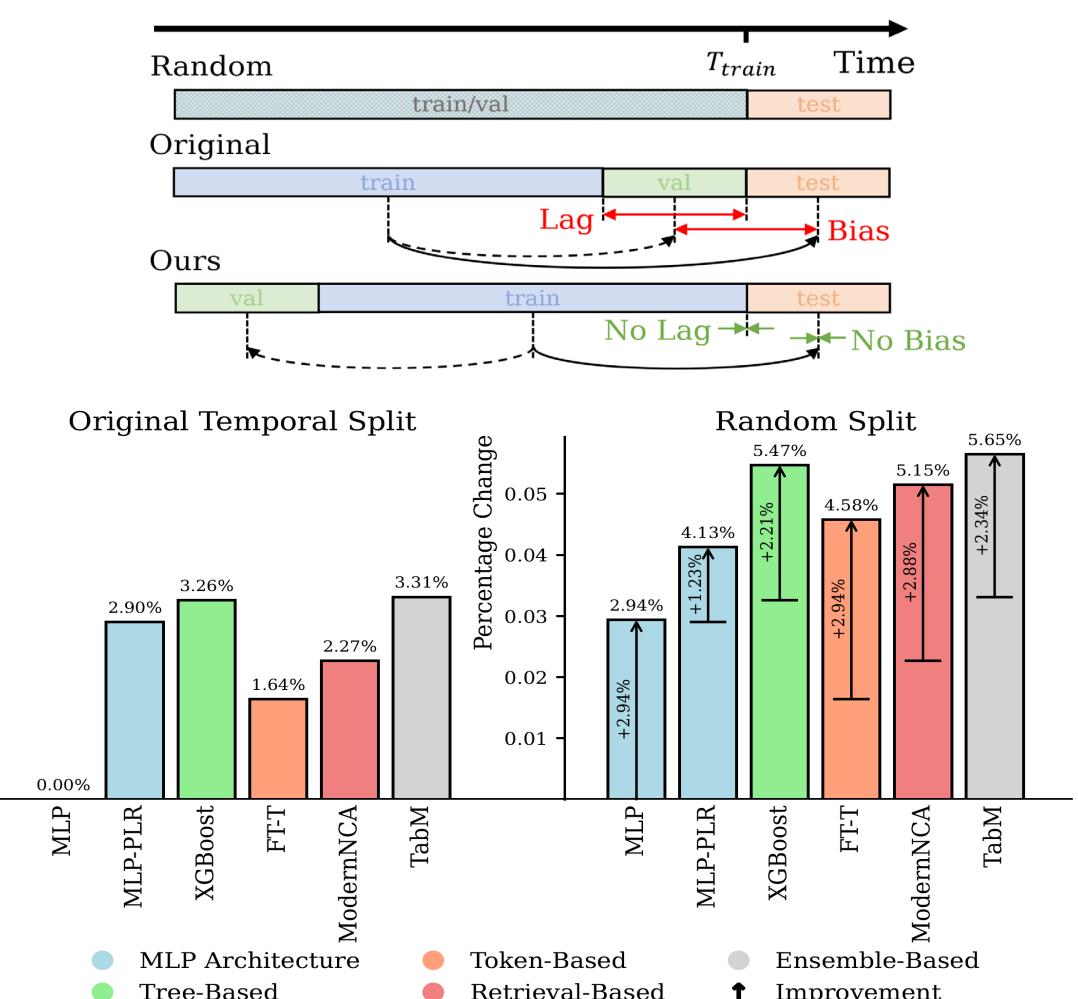


- How can existing models **be better trained** under temporal shifts?
- How can models be equipped with **temporal adaptability**?

Why Temporal Splits Fail?

TabReD [Rubachev et al., ICLR'25] employs a **temporal validation split**, utilizing earlier data for training and later data for model selection.

We discovered that even when **randomly splitting** the training and validation sets, the model outperformed the temporal split.

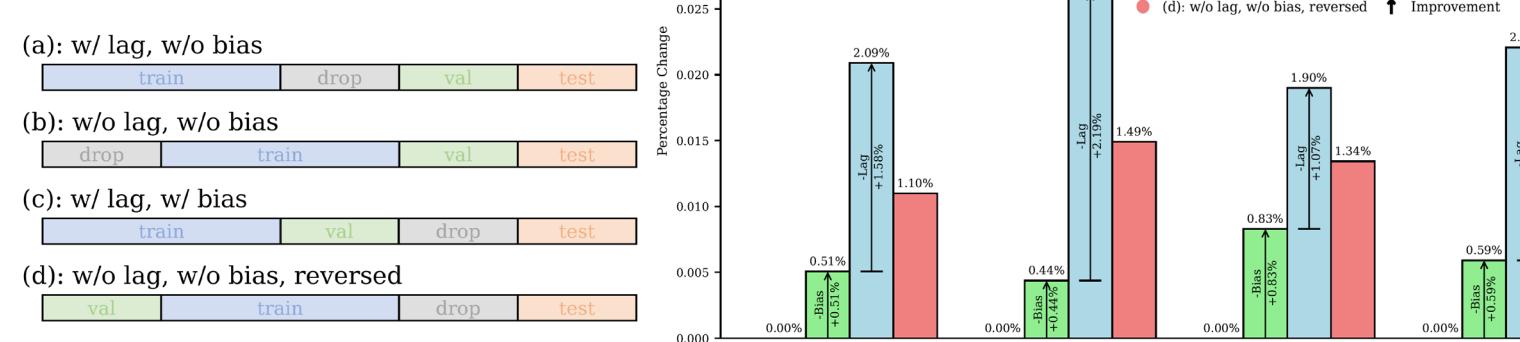


Start from the most intuitive difference:

- **Training lag:** the training-available data closest to the test time are not used for training.
- **Validation bias:** the shift degree of test set relative to validation set is more significant in temporal splits.

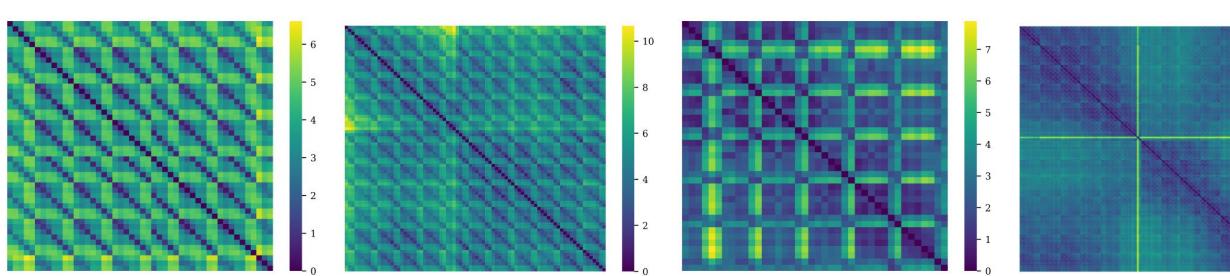
Comparable performance with better stability.

Ablation studies & loss distribution: the effectiveness in reducing training lag and validation bias.



- Training lag↓: better *test-time* performance.
- Validation bias↓: better generalization.

MMD visualization confirms the empirical uniformity of temporal shifts across time slices.



Training Protocol

We introduce the following **training protocol** for temporal data:

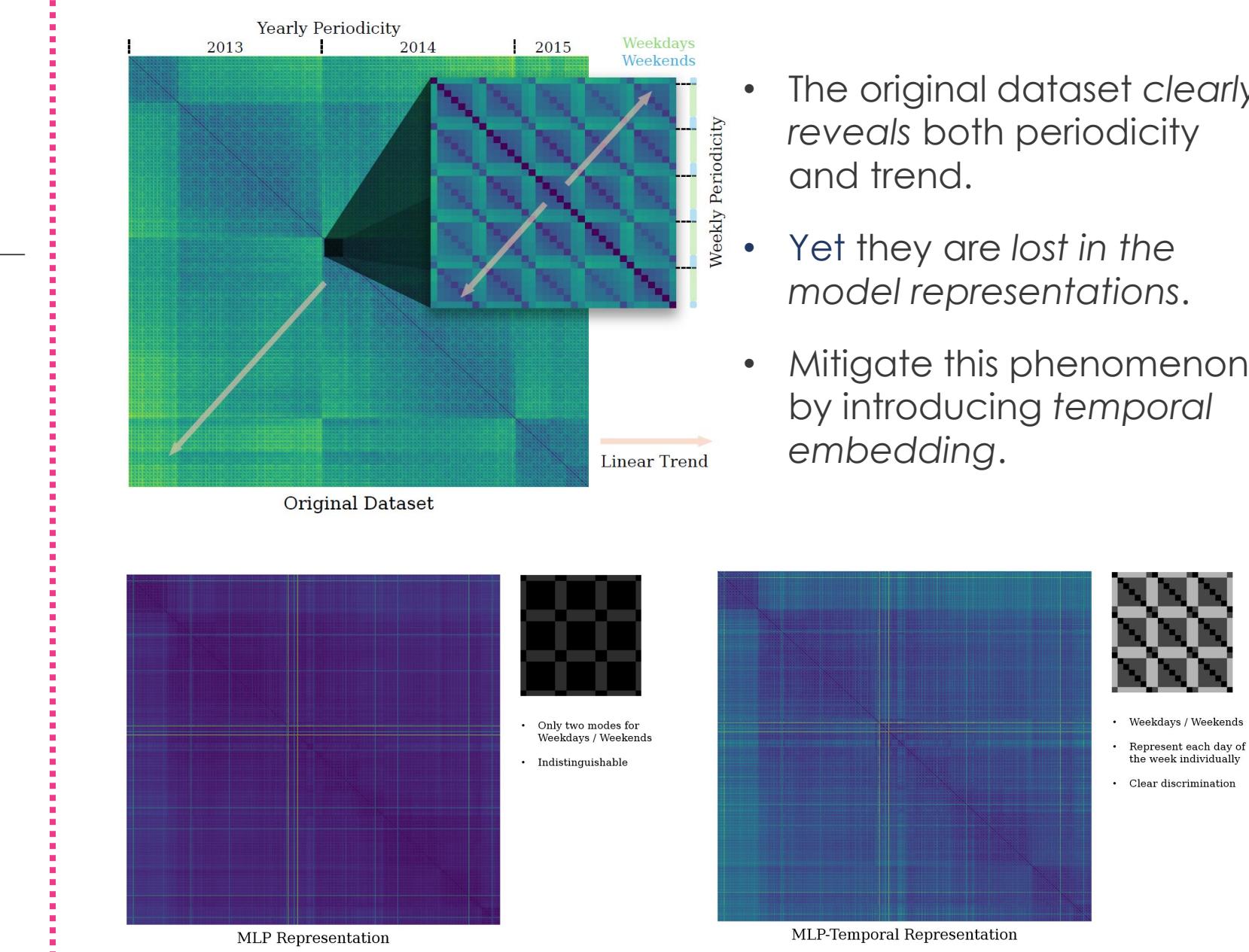
1. The **lag** between **training** and **test** set should be minimized.
2. The **validation bias** should be minimized.
3. Effective validation can be achieved in the **reverse temporal direction** by aligning the shift in the validation set with the actual shift between training and testing data.

	Splits	Avg. Imp.
Mean Performance ↑	Original	-
	Random	+2.17%
	Ours	+2.18%
Standard Deviation ↓	Original	-
	Random	+154%
	Ours	+16.7%

Comparable performance with better stability.

Model Representation

The **loss of the rich temporal information** during training.



Temporal Embedding

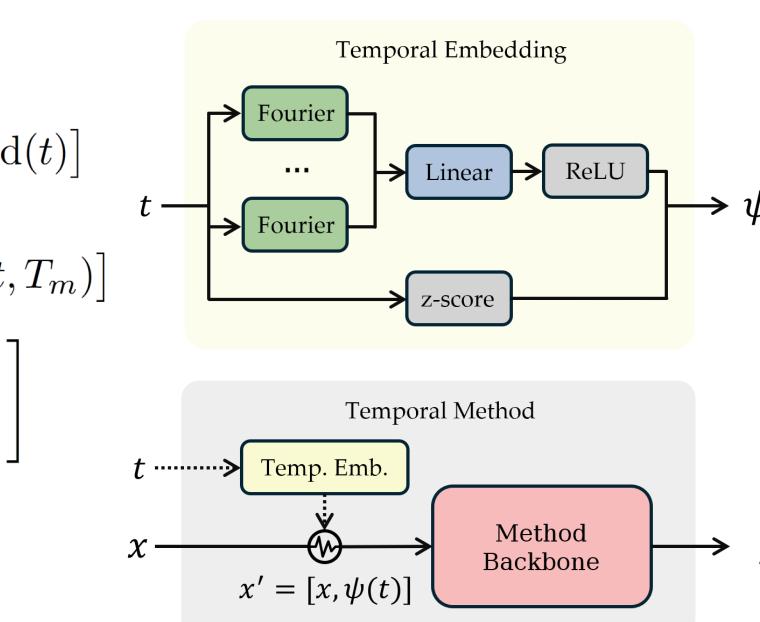
Compensate for temporal information via **temporal embedding**.

$$\psi(t) = [\text{ReLU}(\text{Linear}(\text{Periodic}(t))), \text{Trend}(t)]$$

$$\text{Periodic}(t) = [\text{Fourier}(t, T_1), \dots, \text{Fourier}(t, T_m)]$$

$$\text{Fourier}(t, T) = \left[\sin\left(\frac{2\pi kt}{T}\right), \cos\left(\frac{2\pi kt}{T}\right) \right]$$

$$\text{Trend}(t) = \text{z-score}(t)$$



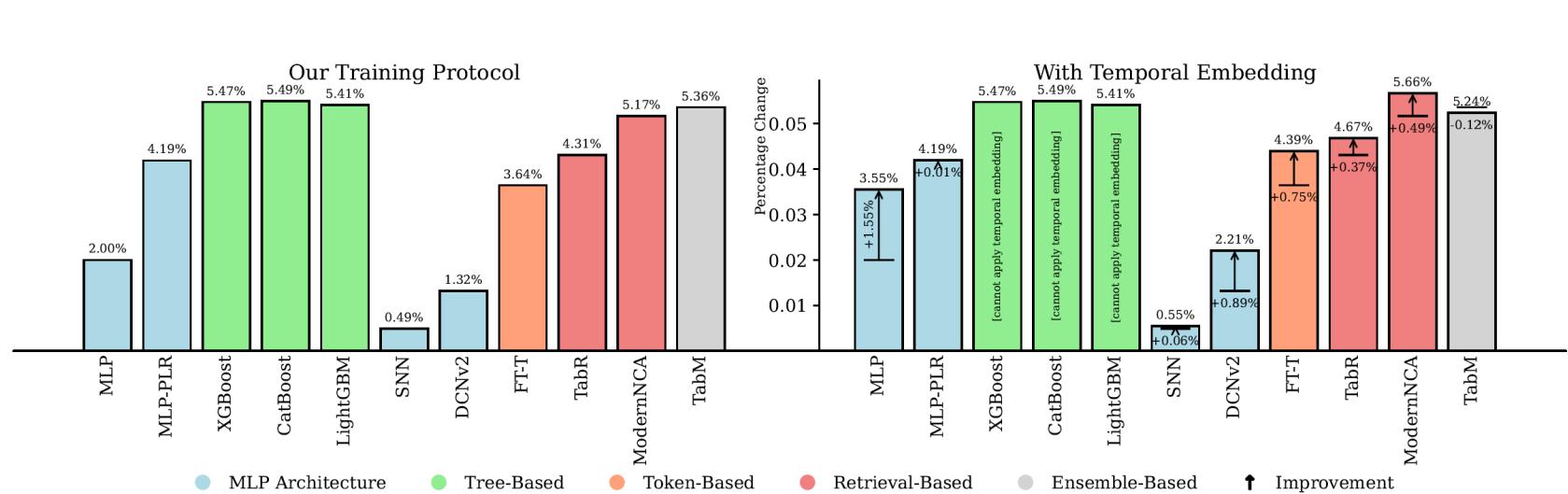
The states in the temporal cycles may exhibit a **square wave** form, e.g., weekdays and weekends, requiring higher-order sine and cosine terms for precise representation.

Emb.	MLP	MLP-PLR	ModernNCA	Avg. Imp.
Num	-	-	-	-0.04%
Time	-	-	-	-0.32%
TabPFN-TS [Hoo et al., NeurIPS'24 WS]	+0.25%	-	-	-0.43%
PLR [Gorishniy et al., NeurIPS'22]	+0.70%	+0.01%	+0.02%	+0.25%
Ours	+1.31%	+0.01%	+0.30%	+0.54%

- **Learnable & scalable.**
- Fourier expansion for precisely capture **periodicity**.
- Uses normalized timestamps as a **trend** feature.
- Leads to a further 0.74% gain in performance.

Results

Performance comparison before and after adopting our temporal embedding into our training protocol on TabReD benchmark.



Performance rankings of original temporal split, random split, and our temporal split with and without our temporal embedding.

Splits	MLP	PLR	FT-T	SNN	DCNv2	TabR	MNCA	TabM	XGBoost	CatBoost	LightGBM	SNN	DCNv2	FFT	TabR	ModernNCA	TabM
TabReD	7.750	4.375	6.875	9.375	8.250	7.375	6.500	3.125	3.375	4.250	4.750						
Random	8.250	5.625	5.625	10.250	9.625	8.000	4.750	2.750	3.125	3.125	4.875						
Ours	8.000	5.750	7.500	9.500	8.375	8.125	4.875	4.000	3.375	2.125	4.375						
Ours + temporal embedding	7.875	6.625	6.250	9.625	9.250	6.250	4.625	3.125	4.500	2.875	5.000						

Contact

