Nearest Neighbor Ensembles: An Effective Method
for Difficult Problems in Streaming Classification
with Emerging New Classes

Xin-Qiang Cail2, Peng Zhao'2, Kai-Ming Ting®, Xin Mu®2, Yuan Jiang!>
!National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
2Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210023, China
3School of Engineering and Information Technology, Federation University, Australia
Email: 1'?{caixq, zhaop, mux, jiangy} @lamda.nju.edu.cn *kaiming.ting @federation.edu.au

Abstract—This paper re-examines existing systems in stream-
ing classification with emerging new classes (SENC) problems,
where new classes that have not been used to train a classifier
may emerge in a data stream. We identify that existing systems
have an unspecified assumption that emerging new classes are
geometrically far from known classes, or instances of known
classes are densely distributed, in the feature space. Using a class
separation indicator «, we refine the SENC problem into an a-
SENC problem, where « indicates a geometric distance between
two classes in the feature space. We show that while most existing
systems work well in high-o SENC problems (i.e., a new class
is geometrically far from a known class or instances of known
classes are densely distributed), they perform poorly in low-
a SENC problems. To solve low-a SENC problems effectively,
we propose an approach using nearest neighbor ensembles or
SENNE. We demonstrate that SENNE is able to handle both the
low-a and high-a SENC problems which can appear at different
times in a single data stream.

Index Terms—classification, data stream, new class, ensemble
method, open and dynamic environments

I. INTRODUCTION

In many real-world applications, data are often gathered
over time, and thus one cannot access the whole dataset and
then train the model. Meanwhile, in open and dynamic envi-
ronments, there may continuously emerge instances belonging
to previously unseen new classes in the data stream [1], [2],
[31, [4]. Therefore, the Streaming classification with Emerging
New Classes (SENC) problem has drawn much attention
recently [5], [6]. In the literature, there are many studies that
propose different algorithms to handle SENC problems, and
some representatives are ECSMiner [5], SENCForest [6], and
SENCMaS [7].

While existing approaches have shown promising results,
one key weakness is that the SENC problem is assumed to
have instances of new classes which are geometrically far
from those of known classes, and instances of known classes
are densely distributed—thus easy to detect. In this paper,
we show that the SENC problem has different degrees of
difficulty. If the emerging new class is significantly different
from known classes, then detecting the new class would be
easy. On the contrary, it would be much harder if the new class
is similar to known classes (in terms of feature characteristics).

Fig. 1: Illustrative examples in detecting new emerging digits in data
streams A and B using images in the MNIST dataset.

Figure 1 gives a digit identification example of two streams.
For the known classes of digits 2 and 3 in stream A, detecting
the emerging new class of digit O is easy because the feature
characteristics of new class and known classes are significantly
different. By contrast, for known classes of digits 4 and 7 in
stream B, it is much harder to detect the emerging new class
of digit 9 because there are a lot of similarities within each of
the two pairs: 4-9 and 7-9.

To measure the difficulty of SENC problems, we propose
a new indicator «, and refine the SENC problem into an a-
SENC problem (« is defined in Section II-B). We remark that
both low-« and high-a new classes may occur in the same data
stream in different time periods, where low-a new classes are
more similar to known classes than high-o new classes.

The emerging low-a new classes poses two challenges:
First, it becomes more difficult to distinguish low-a new
classes from known classes. This makes it challenging for both
new class detection and known classes classification. Second,
the occurrence of both low-a and high-a new classes in the
same stream imposes complications in updating models along
the stream that can lead to poor performance.

To address these issues, we propose to handle the a-SENC
problem by using a nearest neighbor ensemble approach, or
SENNE. It has dual functions: a classifier for the known
classes and a detector for the new class; and it is capable of
detecting both high-a new class and low-a new class which
may appear in close succession in a data stream.

The main contributions are summarized as follows:

1) Introducing a class separation indicator o to measure the
degree of difficulty in detecting an emerging new class;
and leading to the a-SENC problem;

2) Proposing an effective approach to address the a-SENC
problem by using nearest neighbor ensembles;

3) Conducting comprehensive experiments to validate the
effectiveness of the proposed approach in both low-a and
high-a SENC scenarios.

The rest of the paper is organized as follows. Section II
introduces the a-SENC problem. Section III proposes our
approach. Section IV provides key differences between the
proposed approach and closely related methods. Sections V
describes experimental settings and Section VI reports the
results. Finally, Section VII concludes the paper.

II. SENC PROBLEM AND a-SENC PROBLEM

We first review preliminary concepts in SENC [6]. Then,
we refine it as the a-SENC problem.

A. SENC Problem

Definition 1 (Streaming Emerging New Classes, SENC).
Given the training data D = {(x;,;)}™,, where x; € R?
is an instance and y; € Y = {1,2,... K} is the associated
class label; data stream S = {(x},y,)}5°,, where x;, € R?
and y; € Y ={1,2,...,. K, K+ 1,...,M} with M > K.
The goal is to learn an initial model f from the training
data D; then f is used as a detector for emerging new class
and a classifier for known classes. The model f is updated
timely such that it maintains accurate predictions for known
and emerging new classes on the data stream S.

Most of existing approaches for the SENC problem [5],
[6] assume that the data space can be partitioned into three
regions, i.e., region of known classes A, region of anomalies of
known classes B, and region of new classes Q. An illustration
of these regions is given in Figure 2(a), where the intuition is
that differences between new classes and known classes are
larger than that between anomalies and known classes.

B. a-SENC Problem

Here we refine the SENC problem as the a-SENC problem,
where « is an indicator reflecting the separation between
known classes and a new class of the problem.

For an instance x, let 7)x be its nearest neighbor in the same
class, and let 7(x) denote their distance, i.e., 7(x) = ||x—nx]|-
We define the class separation indicator o as follows.

Definition 2 (Class Separation Indicator). The class separation
indicator «« of a known class dataset Dy and the new
class dataset Dy is the ratio of the following two terms:
M(Dg, Dy): the minimum distance of the two datasets; and
C(Dg): the compactness of the known class dataset Dy,
namely,

M(Dg,Dy)
Dyg,Dy)= ————— 1
a(Dr, Dy) C(Dx) ey
here M (Dg,Dy) = -x d
where M (Dg, D) xeDgBeDNHx x'|| an

C(D) = by Yep ().

. . 0
T A
5]

Fig. 2: The left figure shows three regions of data space: region of
the known class 4, region of the anomalies of known classes B,
and region of the new classes Q; and the right figure represents
an example SENNE model with two known classes (blue circle
and orange triangle) and its predictions on two instances (green
rectangles) in the data stream.

The indicator « € (0,00) essentially measures the sep-
aration between a known class and the new class: it has
small value if the new class is close to the known class
(i.e., M(Dy, Dg) is small); or instances of the known class
are sparsely distributed (i.e., C(Dk) is large). Therefore, «
quantifies the level of ease in detecting a new class: the smaller
(larger) the value of « is, the harder (easier) the a-SENC
problem will be.

Previous methods ignore scenarios that have (a) close
proximity between new class and known classes (when
M(Dy, Dg) is small); and (b) sparsely distributed instances
of known classes (when C(Dy) is large). Thus, they are only
suitable for a-SENC problems with a large value of «, and
behave poorly in the low-« scenarios.

To handle new classes with high-« as well as low-« in a data
stream, we introduce a new approach called SENNE based on
nearest neighbor ensembles. Note that « is an indicator to
denote the level of difficulty of the SENC problem only, and
it is not used in the proposed approach.

ITII. THE PROPOSED APPROACH: SENNE
SENNE has three major steps:

(1) Building Model: The procedure is based on nearest
neighbor ensembles from a given training set. The same
model is used for both new classes detection and known
classes classification.

(2) Prediction in a Data Stream: Detect the new class and
classify known classes according to the new-class score
and known-class score. A buffer is used to temporarily
store instances detected as the new class.

(3) Model Update: The current model is updated using in-
stances in the buffer when the buffer is full.

A. Building SENNE Model

For the k-th known class dataset D*) with k = 1,..., K
(where K is the number of known classes), we randomly
subsample v instances, and repeat p times to generate subsets
PP satisfying |DF)| = with i = 1,...,p.

SENNE follows the same procedure as that of iNNE [8] in
building a model of K ensembles. Specifically, an ensemble is
defined as p sets of isolation heperspheres derived from D*),
and each set consists of ¢/ isolation heperspheres. The rigor
definitions are presented as follows.

Definition 3 (Isolation Hypersphere). Given the k-th known
class data subset DE), an isolation hypersphere B(c) centered
at ¢ with radius 7(c) = ||c—7|| is defined to be {x : [|x—c]| <
7(c)}, where x € R%; ¢, 7. € Dik ; 1Jc 18 the nearest neighbor
of c in the same class.

Definition 4 (Ensemble for Known Class). Given the k-th
known class dataset D(*), an ensemble B(¥) contains p sets,
and each set consists of 1) hyperspheres. B(*) is defined by

.p} 2)

A SENNE model f initially consists of K ensembles after
training from a dataset of K known classes. An example is
shown in Figure 2(b): the SENNE model with two known
classes is in a two-dimensional scenario, where ¢ = 5 for each
class. Note that the hyperspheres are large in sparse regions
and they are small in dense regions—a characteristic of this
model. In this example, the SENNE model will predict the top
left test instance (green rectangle) as belonging to one of the
known classes, i.e., the blue circle class; and the bottom right
test instance is predicted as a new class instance.

Note that though the model building of SENNE and iNNE
are the same, they differ in the scoring functions, which will
be described later. (The differences are shown in Section IV.)

B® = {{B(c):ceDM} i=1,...

B. Prediction in Data Stream

The predictive function for each instance in a data stream
has two components: one is to detect whether an instance
belongs to the new class; and the other is to classify it into
one of the known classes if it is not a new class instance.

We propose the following new-class score N*) and known-
class score P*) where k =1,..., K.

SENNE classifies a test instance as belonging to a new class
(NC) if all of its new-class scores with respect to all known
classes are larger than a threshold ¢; otherwise, it is categorized
as one of the known classes 1, ..., K, namely,

NC, it NO)(x) >t VE=1,..., K

argmax P*)(x) otherwise
k=1,...,K

fx) =
3)

Definitions of new-class score N(*) and known-class score
P®*) are given as follows.

Definition 5 (New-Class Score). For the k-th known class
dataset D(®)_ the new-class score is defined by

p
N® (x) = % > NP), 4)
=1

where N, -(k)(x) is the new-class score of point x based on
subset Dik), and is defined by

T(Menn(x)) .
1= mL if X € Ugepw Ble)

, otherwise

N (x) =
1

&)

Algorithm 1 SENNE.Detector

Input: Data stream S = {xy,...}; number of known classes
K; buffer B with size s; new-class score threshold ¢.
Output: Prediction for each new instance in the data stream.

1: function PREDICT(S, BB, K, t)
2: Build model f by the dataset with K known classes

3 B+ @ > Initialize buffer
4 while HasNext(.S) do

5: Calculate N*)(x) by Eq. (4) for k=1,..., K

6: if N®)(x) >t Vk=1,...,K then

7 y < NC > New Class
8 B+ BU{x}

9: if |B| = s then

10: f < UPDATEMODEL(K, B, f)

11: B+ @and K + K+1

12: end if

13: else

14: y < PREDICTCLASS(x, K, f, 1)

15: end if

16: end while

17: return y € {1,2,..., K,NC}
18: end function

Algorithm 2 SENNE.PredictClass

Input: Instance x; number of known classes K’; new-class
score threshold ¢; model f.

QOutput: Prediction y.

1: function PREDICTCLASS(X, K, t, f)

2: Calculate P®)(x) for k =1,..., K by Eq. (6)

3: Y < argmaxy_; g P®)(x)

4: return y

5: end function

where cnn(x) = argmin__,w{7(c) : x € B(c)} denotes
the center of the smallest hypersphere covering point x.
Besides, [a]+ equals a if a > 0; and 0 otherwise.

Definition 6 (Known-Class Score). The known-class score is
defined as the probability of Ni(k)(x) <t

1 p
PO (x) = =3TIINP(x) < t], fork=1,...,K, (6)
pz—l

where I[] is the indicator function which takes 1 if - is true,
and O otherwise.

The final prediction of test instance x is assigned to the
known class k with the highest known-class score P(*).

The procedures of SENNE and classification of known
classes are given in Algorithms 1 and 2, respectively.

C. Model Update

We set a buffer to store the test instances that are classified
as new class. When the buffer is full, we need to update
the model to accommodate the new class in the buffer as
a new known class. To this end, we utilize the data therein

Algorithm 3 SENNE. UpdateModel

Input: Number of known classes K; buffer B with size s;
model f.

Output: Updated model f; number of known classes K.

1: function UPDATEMODEL(K, B, f)

2. Build B+ an ensemble of p sets of 1 hyperspheres
with instances in B, as described in Section III-A

3 Label the class of instances in B as K + 1

4 f+ fUBKEHD

5 return f

6: end function

to construct an ensemble of p sets of hyperspheres for the
new class, and then incorporate this ensemble into the existing
model. After that the buffer will be emptied, and the updated
model is ready for the next instance. The procedure of model
update is described in Algorithm 3.

IV. KEY DIFFERENCES WITH CLOSELY RELATED WORK

In this section, we discuss relationships and differences with
related work iNNE [8].

Although both SENNE and iNNE [8] share the same
training process, they employ individual scores due to different
aims. Specifically, iNNE employs the isolation score since it
has the sole purpose of detecting anomalies. On the contrary,
SENNE uses new-class score (cf. Eq. (5)) which is designed
to differentiate emerging new classes from known classes in
the SENC context. The new class detection accuracy would be
low if the isolation score is naively used to detect new classes.
This is because anomalies of known classes could be mistaken
as emerging new classes in a data stream. For example,
iNNE yields 0.723, 0.703, 0.764, 0.701, 0.744 accuracy on the
Forest Cover, HAR, MNIST, Fashion-MNIST, and NYTimes
datasets; but SENNE achieves 0.871, 0.804, 0.784, 0.737,
and 0.768 respectively (see Section VI-B). The win/tie/loss
compares with iNNE is 5/0/0. This is because the isolation
score categorizes anomalies of known classes into new class
(leading to false positives) in this SENC context. In contrast,
the proposed new-class score is designed to reduce this kind
of false positives.

A similar phenomenon occurs in SENClof (which simply
employs local outlier factor or lof [9] in the SENC con-
text), when lof—an anomaly detection approach—is naively
extended to identify new classes. This approach tends to
misclassify anomalies of known classes as belonging to new
class, especially in low-a scenarios. The empirical results,
shown in Section VI, validate that SENClof is not suitable
for the a-SENC problem.

V. EXPERIMENTAL SETTINGS

In this section, we describe experimental settings, including
datasets, simulation, evaluation, and contenders. All exper-
iments are implemented in MATLAB on Intel Core CPU
machine with 24 GB memory and 3.2 GHz clock speed.

Datasets. We adopt three kinds of datasets, i.e., synthetic,
benchmark, and real-world textual data stream.

For synthetic datasets, we simulate data stream with dif-
ferent degrees of difficulty based on various values of a.
Each dataset contains three classes with 2000 two dimensional
instances. For benchmark datasets, we adopt 4 datasets: Forest
Cover [10], HAR [11], MNIST, and Fashion-MNIST [12]. In
addition, we include a real-world data stream, which is crawled
news from the website between 2014 and 2017 using the
New York Times API', and contains 35,000 latest news items.
Each news item is classified into six categories, namely, ‘Arts’,
‘Business Day’, ‘Sports’, ‘U.S.’, ‘Technology’, and “World’.
Each news story is converted into an 100-dim vector using the
word2vec technique [13].

Data characteristics of benchmark and real-world textual
datasets are summarized in the first four columns of Table I.

Stream Simulation. In the training stage, an initial training
set consists of m; instances per known class. In the testing
stage, the simulation is conducted in two periods for all
datasets, except the synthetic datasets which are conducted
in one period. Each period contains one new class, and each
class consists of mo instances. For each of these instances,
the model is to make a prediction, either classifying a known
class or identifying the new class.

There are two setups, including the varying and fixed a-
SENC scenarios, on benchmark and real-world datasets. Also
we set the buffer for all approaches in the comparison with
the same buffer size.

In the varying «-SENC scenario, as the new class is
randomly selected from the whole class set, the data stream
will have a mixture of high and low-a new classes. The initial
dataset has two classes, except the NYTimes dataset contains
five classes. For all the benchmark datasets, m; = 2000
(mq1 = 800 for HAR because it has a small data size),
mgo = 500, and the buffer size s = 300 are conducted. For
real-world dataset NYTimes, m; = 5000, mo = 5000, and
5 = 3000 are set to simulate a long data stream.

In each of the a-SENC experiments with a fixed «, there
is only one period in the whole data stream. We calculate the
values of v between every two classes, and select two known
classes and one new class with the lowest/highest value of «
to simulate the lowest/highest-o« SENC problems. The values
of my, mo and s are the same as that used in the varying a-
SENC experiments. We conduct 10 trials of stream simulation
for each dataset, and report the average result.

Evaluation metric. We use the accuracy to evaluate the
performance of each approach, namely, Acc = (ny + ns)/n,
where n; is the number of known classes instances classified
correctly; no denotes the number of instances belonging to the
new class which are detected successfully in the data stream;
and n is the total number of instances in data stream.

Contenders. We compare SENNE with four contenders:
(a) SENClof, an adaptation of local outlier factor algo-
rithm [9] from the original anomaly detection algorithm to

Thttp://developer.nytimes.com/

http://developer.nytimes.com/

the SENC setting; (b) ECSMiner [5], an approach based
on k-nearest neighbors; (c) SENCForest [6] is based on
completely random trees; (d) SENC-MaS [7] approximates
original information by a dynamic low-dimensional structure
via matrix sketching. For compared approaches, we set default
parameters as suggested in their papers or codes.

VI. EXPERIMENTAL RESULTS

We present results in three subsections: (a) experiments on
synthetic datasets scenario; (b) experiments on benchmark and
real-world datasets; and (c) runtime comparisons.

A. Results on Synthetic Datasets

This experiment highlights performances of different ap-
proaches in o-SENC scenarios with a decreasing value of a.

Figure 3(a) shows accuracies of four approaches as «
decreases. We can observe that SENNE is the most robust
algorithm among all the contenders, in the sense that its
accuracy does not drop much with the decrease of «. In
particular, SENNE significantly outperforms other methods
in the scenarios with the lowest oo. ECSMiner is the second
best, followed by SENClof; and SENCForest has an undesired
performance. Note that since SENCMaS is designed for high-
dimensional data, it is not included on 2D synthetic datasets.

The superiority of SENNE comes from the new-class score,
which is a relative score using test point’s local neighborhood
information, and thus it can detect the appearance of low-
«a new class more effectively. On the contrary, depth of the
trees employed by SENCForest, which does not consider
test point’s local neighborhood, so it fails to detect low-«
new classes. Also it is invalid to apply a similar score to
SENCForest due to different basic models—SENNE employs
isolation hyperspheres while SENCForest uses isolation trees.

B. Results on Real-world Datasets

In this section, we present results on real-world datasets on
both low-a and high-o SENC scenarios.

Table I reports performance comparisons on 5 real-world
datasets. The result shows that SENNE achieves the best
performance on 3 out of 5 datasets. On the other two datasets,
it ranks the second and is competitive with the best one
(SENCForest).

As NYTimes dataset is used as a long data stream simula-
tion, we also plot the accuracy curves regarding time stamps
of different approaches, as reported in Figure 3(b).

The results illustrate that ECSMiner behaves poorly. Mean-
while, SENCForest and SENCMaS achieve a comparably
satisfying performance, and SENNE is always better than the
other approaches. SENClof is a naively extended method from
LOF [9] to solve SENC problems, whose performance is too
poor to present since it tends to treat anomalies of known
classes as new class, so we omit its results here. The empirical
studies on NYTimes dataset validates the efficacy of SENNE
in real-world data stream applications.

In order to examine the effect of high-a and low-a on the
performances of all approaches, and to understand the reason

‘»‘B_e,_a_e._a—a—u—u—u—u—u—e—o—n—n_."_‘

—e—ECSMiner
SENCForest

—=—SENCMaS
SENNE

Accuracy
o
&
Accuracy

08 |—+—SENClof
—e—ECSMiner
075 SENCForest
SENNE

14 12 10 8 6 4 2 0 0.5 1 15 2 25 3 35
@ Data Stream <10

Fig. 3: The left figure reports the accuracy of four approaches as «
decreases.; and the right one denotes accuracy curves on NYTimes
dataset of different approaches. We omit results of SENClof, which
are too poor to be presented.

why SENNE outperforms its contenders, we select specific
known classes and new class in each dataset to simulate high-
a and low-a SENC scenarios.

Table II demonstrates that most approaches are effective
in high-a SENC problems. However, when it comes to the
low-a scenarios, the accuracy of all the methods decreases
in different degrees. SENNE evidently has the least accuracy
degradation and achieves the best performance.

The experiments using two subsets of digits {2, 3, 0} and
{4, 7, 9} on the MNIST dataset are shown in Table II, which
is used as an example of low-a and high-o SENC problems
in Section I. The results validate that the class separation
indicator « indeed has the ability to measure the difficulty
of SENC problems, since the « value of {2, 3, 0} is 1.01,
which is larger than 0.75, the « value of {4, 7, 9}. This also
accords to the intuition that detecting the new class of digit
0 is easy (when known classes are 2 and 3); while detecting
digit 9 is much harder (when known classes are 4 and 7).

Note that SENNE achieves the best performance on MNIST
dataset in the high-« situation. This is mainly because the
highest o on the MNIST dataset is still lower than that on
other datasets. This means that MNIST dataset is more difficult
than others even in the high-oo SENC scenario. On NYTimes
dataset, the accuracies of all approaches do not decrease much
regardless of the « value (SENClof is the exeption). The
reason is that the lowest o value on NYTimes dataset is 1.53,
much higher than those of other datasets. Thus, this dataset is
not that hard even in the low-a scenario.

C. Runtime Comparison

Figure 4 reports runtime comparisons. SENClof and
SENNE run faster than the other approaches, and SENNE
is the only one that ran one order of magnitude faster than
SENCForest on the large-scale dataset (NYTimes). We remark
that SENNE is fast due to the one-step characteristics in the
sense that it directly performs new class detection. This is
in contrast with previous studies including SENCForest and
SENCMaS, as they require detecting anomalies of known
classes first. On the other hand, the procedures of detection and
classification through isolation hyperspheres (the basic model
of SENNE) are faster than that through other models. Note
that the y-axis in Figure 4 is in the logarithmic scale.

TABLE I: Data characteristics and accuracy in the varying a-SENC problem, where new classes are randomly selected from the whole class
set. ® (o) indicates that SENNE is significantly better (worse) than the compared method (paired ¢-tests at 95% significance level).

Dataset #class #attribute #instance SENClof ECSMiner SENCForest SENCMaS SENNE

Forest Cover 7 10 581,012 0.724 + 0.070 ¢ 0.787 + 0.076 ¢ 0.791 + 0.045 ¢ 0.752 + 0.059 ¢ 0.871 + 0.066
HAR 6 561 10,299 0.601 + 0.024 @ 0.654 + 0.055 e 0.755 + 0.043 ¢ 0.736 + 0.044 ¢ 0.804 + 0.032
MNIST 10 784 60,000 0.678 + 0.019 ¢ 0.722 + 0.060 ¢ 0.757 + 0.025 ¢ 0.757 + 0.036 @ 0.784 + 0.032
Fashion-MNIST 10 784 60,000 0.710 + 0.016 @ 0.737 4 0.047 0.745 + 0.035 0 0.716 + 0.047 ¢ 0.737 + 0.027
NYTimes 6 100 156,683 0.398 + 0.023 @ 0.741 4 0.005 ¢ 0.772 + 0.004 0.767 + 0.023 0.768 + 0.025
SENNE w/t /1 — — - 5/0/ 0 4/1/ 0 3/1/1 4/1/ 0 rank first 3/ 5

TABLE II: Accuracy in fixed a-SENC problems. The top and bottom blocks are for high-a and low-a SENC problems on each real-world
dataset, respectively. In the “classes” column, the three digits denote the selected classes, in which the first two digits represent known classes
and the third one is new class. We omit Fashion-MNIST since o values of Fashion-MNIST are similar to those of MNIST.

Dataset classes « SENClof ECSMiner SENCForest SENCMaS SENNE

HAR 1,2,6 2.10 0.769 + 0.013 e 0.813 4+ 0.017 o 0.921 £+ 0.006 0.880 4 0.011 o 0.919 £+ 0.015
Forest Cover 3,4,7 19.0 0.719 4 0.034 o 0.905 £ 0.009 e 0.946 & 0.010 0.952 £+ 0.017 0.947 £ 0.050
MNIST 2,3,0 1.01 0.805 4+ 0.012 o 0.793 4 0.010 e 0.839 4+ 0.008 o 0.847 4+ 0.011 o 0.895 4+ 0.010
NYTimes 53,6 275 0.698 + 0.014 o 0.912 £+ 0.010 0.936 + 0.007 o 0.924 £ 0.007 0.916 4+ 0.018
HAR 5,6, 4 0.89 0.563 + 0.018 e 0.564 4 0.024 o 0.668 + 0.002 o 0.670 4= 0.014 o 0.718 4+ 0.014
Forest Cover 3,4,6 0.58 0.689 + 0.013 e 0.828 4+ 0.010 o 0.766 + 0.012 o 0.743 4 0.009 e 0.840 + 0.013
MNIST 4,7,9 0.75 0.642 & 0.013 e 0.651 4 0.019 o 0.625 + 0.014 o 0.736 4 0.016 o 0.787 £+ 0.009
NYTimes 1,2, 4 1.53 0.341 4 0.009 e 0.875 4 0.016 o 0.904 £ 0.009 e 0.903 & 0.012 o 0.912 £ 0.030
SENNE w/t/1 — — 8/0/0 771/ 0 5/2/1 6/ 2/ 0 rank first 5/ 8

REFERENCES

B SENCIof
B ECSMiner
B8 SENCForest

Time (CPU seconds)

10t = —

Synthetic Forest Cover MNIST Fashion-MNIST NYTimes

Fig. 4: The runtime comparisons.

VII. CONCLUSION

In this paper, we re-examine the SENC problem, namely, the
streaming classification with emerging new classes problem.
We identify that SENC problems have different degrees of
difficulties, and thus refine it as the o-SENC problem by
proposing a class separation indicator o to measure the dif-
ficulty. Then, we introduce a new approach called SENNE to
address this problem effectively by utilizing nearest neighbor
ensembles. The effectiveness and superiority of SENNE are
validated on both synthetic and real-world datasets. We show
that a-SENC problems with high degree of difficulty are com-
mon in real-world applications; and SENNE has comparable
or higher accuracy than three existing state-of-the-art methods
(SENCForest, SENCMaS, and ECSMiner), and it runs up to
one order of magnitude faster.

In reality, both new class and distribution change may occur
simultaneously in the data stream [14], [15], [16], and we will
investigate this more challenging problem in the future work.

Acknowledgment: This research was supported by the
NSFC (61673201).

[1]

[2]
[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

T. Tommasi, F. Orabona, and B. Caputo, “Learning categories from few
examples with multi model knowledge transfer,” IEEE TPAMI, vol. 36,
no. 5, pp. 928-941, 2014.

Y. Zhu, K. M. Ting, and Z.-H. Zhou, “Multi-label learning with emerging
new labels,” in ICDM, 2016, pp. 1371-1376.

Q. Da, Y. Yu, and Z.-H. Zhou, “Learning with augmented class by
exploiting unlabeled data,” in AAAI, 2014, pp. 1760-1766.

Y. Zhu, K. M. Ting, and Z.-H. Zhou, “Discover multiple novel labels
in multi-instance multi-label learning,” in AAAI, 2017, pp. 2977-2984.
M. M. Masud, J. Gao, L. Khan, J. Han, and B. M. Thuraisingham,
“Classification and novel class detection in concept-drifting data streams
under time constraints,” /EEE TKDE, vol. 23, no. 6, pp. 859-874, 2011.
X. Mu, K. M. Ting, and Z.-H. Zhou, “Classification under streaming
emerging new classes: A solution using completely-random trees,” IEEE
TKDE, vol. 29, no. 8, pp. 1605-1618, 2017.

X. Mu, F. Zhu, J. Du, E.-P. Lim, and Z.-H. Zhou, “Streaming classi-
fication with emerging new class by class matrix sketching,” in AAAI
2017, pp. 2373-2379.

T. R. Bandaragoda, K. M. Ting, D. Albrecht, F. T. Liu, Y. Zhu, and
J. R. Wells, “Isolation-based anomaly detection using nearest-neighbor
ensembles,” Computational Intelligence, vol. 34, no. 4, pp. 968-998,
2018.

M. M. Breunig, H. Kriegel, R. T. Ng, and J. Sander, “LOF: identifying
density-based local outliers,” in SIGMOD, 2000, pp. 93—104.

J. Gama, R. Rocha, and P. Medas, “Accurate decision trees for mining
high-speed data streams,” in KDD, 2003, pp. 523-528.

C. C. Aggarwal, “A survey of stream clustering algorithms,” in Data
Clustering: Algorithms and Applications, 2013, pp. 231-258.

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” CoRR, vol.
abs/1708.07747, 2017.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in ICLR, 2013.

J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys, vol. 46,
no. 4, pp. 44:1-44:37, 2014.

Z.-H. Zhou, “Learnware: on the future of machine learning,” Frontiers
Computer Science, vol. 10, no. 4, pp. 589-590, 2016.

P. Zhao, X. Wang, S. Xie, L. Guo, and Z.-H. Zhou, “Distribution-free
one-pass learning,” IEEE TKDE, 2019.

	Introduction
	SENC Problem and -SENC Problem
	SENC Problem
	-SENC Problem

	The Proposed Approach: SENNE
	Building SENNE Model
	Prediction in Data Stream
	Model Update

	Key Differences with Closely Related Work
	Experimental Settings
	Experimental Results
	Results on Synthetic Datasets
	Results on Real-world Datasets
	Runtime Comparison

	Conclusion
	References

