
Imitation Learning from Pixel-Level Demonstrations by
HashReward

Xin-Qiang Cai, Yao-Xiang Ding, Yuan Jiang, Zhi-Hua Zhou

National Key Laboratory for Novel Software Technology

Nanjing University

{caixq,dingyx,jiangy,zhouzh}@lamda.nju.edu.cn

ABSTRACT
One of the key issues for imitation learning lies in making policy

learned from limited samples to generalize well in the whole state-

action space. This problem ismuchmore severe in high-dimensional

state environments, such as game playing with raw pixel inputs.

Under this situation, even state-of-the-art adversary-based imita-

tion learning algorithms fail. Through empirical studies, we find

that the main cause lies in the failure of training a powerful dis-

criminator to generate meaningful rewards in high-dimensional

environments. Although it seems that dimensionality reduction can

help, a straightforward application of off-the-shelf methods cannot

achieve good performance. In this work, we show in theory that

the balance between dimensionality reduction and discriminative

training is essential for effective learning. To achieve this target, we

propose HashReward, which utilizes the idea of supervised hashing

to realize such an ideal balance. Experimental results show that

HashReward could outperform state-of-the-art methods for a large

gap under the challenging high-dimensional environments.

KEYWORDS
Imitation Learning; High-Dimensional Environments; Hashing

ACM Reference Format:
Xin-Qiang Cai, Yao-Xiang Ding, Yuan Jiang, Zhi-Hua Zhou. 2021. Imitation

Learning from Pixel-Level Demonstrations by HashReward. In Proc. of the
20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), Online, May 3–7, 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
In recent years, reinforcement learning (RL) has achieved a great

breakthrough in many domains including robot controlling and

game playing [18, 20]. In spite of remarkable success, there are

two main issues unsolved. First, in common situations, RL algo-

rithms rely so much on the well-specified reward functions and

exploration strategies, which require delicate designs in many com-

plex problems. Second, the sample and computational complexities

for practical RL algorithms are usually large, making it an unac-

ceptable choice in solving many practical problems. On the other

hand, imitation learning (IL), aiming at learning a good policy from

demonstrations, enables the possibility of sample efficient policy

learning without the need of designing rewarding and exploration

strategies by hand.

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

Nevertheless, since collecting expert demonstrations is costly,

the number of expert trajectories for IL is usually limited in prac-

tice. This may significantly increase the risks of over-fitting. One

of the key ideas to improve generalization performance is to learn

a proper reward function from expert demonstrations. The learner

can get high rewards only when it generates behaviors similar to the

demonstrations. Guided by such rewards, the learner is encouraged

to mine out the expert’s policy by RL algorithms, instead of directly

performing behavior cloning [1, 13]. This idea motivates the emer-

gence of adversary-based IL. Under this family of approaches, the

policy and the adversarial discriminator are jointly trained during

learning, in order to force the learner to minimize the discrepancy

between the generated distribution and the demonstrated data. One

representative approaches among them, generative adversarial imi-

tation learning (GAIL) [13], achieves state-of-the-art performance

in many tasks with relatively low-dimensional state spaces. How-

ever, it has been verified that the performance of such approaches,

even deep neural network-based GAIL, degenerates seriously in

tasks with high-dimensional state spaces [26, 29]. On the other

hand, it is well known that deep RL algorithms can achieve even

superhuman performance under these domains [18].

In this work, we propose thorough studies towards understand-

ing why adversary-based algorithms fail in high-dimensional IL

environments. For obtaining a good policy, the discriminator plays

an important role. The cause for performance degeneration in high-

dimensional space can be interpreted by the hardness of properly

dealing with the discrimination-rewarding trade-off in the discrimi-

nator learning process. Because the number of demonstration sam-

ples is limited, under high-dimensional state space, the learned

discriminator may bias towards the discrimination side, providing

meaningless rewarding signals for policy learning. Experimental ob-

servations and theoretical results are provided to support the above

interpretations: They disclose that an ideal balance between per-

forming dimensionality reduction (DR) and discriminative training

is essential for learning.

Based on the above findings, we study a practical approach to

enhance discriminator learning. It is non-trivial to guarantee that

discriminative information in high-dimensional space can be pre-

served after performing DR. This suggests that directly utilizing

off-the-shelf unsupervised DR algorithms, such as unsupervised

autoencoder and hashing, is not the right choice because they make

the processes of DR and discriminator learning totally isolated. As

a result, essential information for discrimination can be heavily

lost due to DR, making discriminator training biased towards dis-

crimination or rewarding only. To address this issue, we propose a

novel IL algorithm named HashReward, which utilizes a supervised

hashing strategy to incorporate DR and discriminator training into

a unified procedure. Experiments show that HashReward achieves

significant improvement comparing to other state-of-the-art IL ap-

proaches under high-dimensional environments, which are broadly

recognized to be challenging for IL algorithms.

The rest of the paper is organized as follows. Section 2 discusses

related work. Section 3 provides preliminaries. Section 4 demon-

strates how to solve the underlying discrimination-rewarding trade-

off problem for adversary-based IL methods, and then introduces

HashReward algorithm. Section 5 reports the experimental setup

and results. Finally, Section 6 concludes the paper.

2 RELATEDWORK
Recently, adversary-based methods have achieved great success

in a wide range of IL scenarios, including robotic control [13],

game playing [12], and simulating environments [22]. As the out-

puts from the discriminator are utilized as reward signals for the

learner, they can be treated as a generalization of the family of

IRL approaches. Among them, GAIL [13] achieves state-of-the-art

performance in handling low-dimensional IL problems, while its

performance degenerates significantly in high-dimensional environ-

ments as discussed in Section 1. Though effective high-dimensional

IL is challenging, there are a few works related to this topic, which

assume additional signals besides provided demonstrations. [12]

and [3] augmented RL to learn from both environment rewards

and expert demonstrations, meanwhile [9], [7] and [14] utilized

human preference to enhance IL. In comparison, we consider pure

IL without using additional environmental signals, which is more

challenging. There are some related works proposed for this sce-

nario, e.g., CNN-AIRL [26], which uses an adversarial IRL method

to play Atari game Enduro with pixels inputs. But it utilizes autoen-

coder as the DR method, whose unsupervised information is not

enough illustrated in the experiments. D-REX [8] improves [7] by

learning a behavior cloning model to generate the ranked samples,

and has achieved promising performance under the IL problems

with suboptimal demonstrations. But in order to train the behav-

ior cloning model efficiently, D-REX requires samples from quite

different experts, which are not available in the settings of most

IL tasks. GIRIL [29] is a non-GAIL method, and deals with the

high-dimensional IL problem from a different angle than DR, which

encodes action signals into VAE and utilizes the mechanism of

curiosity to produce reward signals. But as will be discussed in

subsequent sections, appropriate dimensionality reduction is in-

evitable for solving high-dimensional IL problems. VAIL [19] is the

most closely related work to ours. It improves GAIL by employing

information-theoretic regularization to learn a better feature repre-

sentation as the input to the discriminator, and successfully used

image feature in a continuous domain. Nevertheless, VAIL does not

utilize explicit supervised loss in DR, which is crucial as shown in

our experiments. In summary, the high-dimensional IL problem

remains challenging for existing IL approaches.

Several recent works [5, 23, 24, 28] have shown that the latent

hashing features with unsupervised information learned by au-

toencoder can help address the exploration issue in challenging RL

problems. Through hashing, a high-dimensional state is effectively

discretized to make similar states mapping into the same hashing

code [15], leading to the convenience for utilizing counting-based

exploration. Though unsupervised hashing seems to be promising

for improving IL, we observe that the performance is not that satis-

factory in the experiments. This phenomenon is reasonable since

direct unsupervised hashing may lead to the risk of losing discrimi-

native information in the original state space. This motivates us to

propose HashReward to address this issue.

3 PRELIMINARIES
In policy learning problems, a Markov Decision Process (MDP) can

be represented by a tuple ⟨S,A,P,γ , r ,T ⟩, in which S denotes the

set of states, A denotes the set of actions, P : S × A × S → R de-

notes the transition probability distributions of the state and action

pairs, γ ∈ (0, 1] denotes the discount factor, r : S → R denotes the

reward function, S0 : S → R denotes the initial state distribution

and T denotes the horizon. The objective of RL is to learn a pol-

icy π to maximize the expected total rewards E[
∑∞
t=0 γ

t r (st ,at)]
obtained by π .

Different from RL, in IL, the learner has no access to r . Instead,
there arem expert demonstrations {τE ,1, τE ,2, . . . , τE ,m } available,

where τE ,i , i ∈ [m] is an expert trajectory (a series of state-action

pairs) drawn independently from expert’s trajectory distribution µπE ,
induced by the expert’s policy πE, initial state distribution S0 and
the transition probability distribution P. The goal of the learner is

to generate πG such that the induced learner’s trajectory distribution
µπG matches µπE .

Instead of directly minimizing the discrepancy between trajec-

tory distributions to solve IL problem, existing adversary-based

methods turn to the equivalent goal of minimizing the distance

between the learner and expert occupancy measures d(ρπG , ρπE),
where ρπ : S×A → R is defined as ρπ (s,a) = π (a |s)

∑∞
t=0 γ

tPr (st =
s |π). Based on the idea of generative adversarial training, they per-

form policy learning by solving amin-max optimization problem, i.e.

minπG maxD D(ρπE , ρπG), in which D is the discriminator. Among

these approaches, GAIL [13] achieves state-of-the-art performance

in many task environments. The objective of GAIL is

min

πG
max

D
Eρ∼ρπ

E

[logD(ρ)] + Eρ∼ρπ
G

[log(1 − D(ρ))], (1)

where the discriminatorD : S×A → [0, 1] has the formulation of a

classifier trying to discriminate state-action pairs generated by the

learner and the expert. It is proved that by GAIL, the learned πG can

minimize the regularized version of Jensen-Shannon divergence,

i.e.,

πG = argmin

π ∈Π
−H(π) + d JS (ρπ , ρπE), (2)

where Π denotes the policy set, d JS (ρπ , ρπE) is the Jensen-Shannon
divergence between ρπ and ρπE , and H(π) is the causal entropy
used as a policy regularizer. GAIL solves Equation (1) by alterna-

tively taking a gradient ascent step to train the discriminator D and

a minimization step to learn policy πG based on off-the-shelf RL al-

gorithm which utilizes − logD(s,a) as the pseudo reward function.

4 HIGH-DIMENSIONAL IMITATION
LEARNING BY HASHREWARD

As learning an effective discriminator plays an essential rule in

adversary-based methods, in this section, first we analyze the rea-

son why existing state-of-the-art adversary-based methods fail by

proposing a generalization bound about learning a discriminator

in IL scenarios. Inspired by the theoretical conclusion, then we

propose HashReward to solve the high-dimensional IL problem.

4.1 Balancing the Discrimination-Rewarding
Trade-Off

Intuitively, a well-trained discriminator should balance the follow-

ing two capabilities. On the one hand, the discriminator should

be powerful enough, in order to generate negative rewards on

trajectories that are significantly different from the expert’s demon-

strations. On the other hand, the discriminator should not be too

strong to discriminate trajectories that are sufficiently similar to

the expert’s demonstrations. This will ensure that positive rewards

are generated on these good trajectories, and encourage the pol-

icy to improve in the right direction. We identify this problem

as the discrimination-rewarding trade-off. The reward curves on

Atari game Qbert in Figure 5 evince that the deficiency of state-of-

the-art adversary-based methods (i.e., GAIL) in high-dimensional

environments is due to the tendency of learning too powerful dis-

criminators. Intuitively, this is due to the curse of dimensionality:

We usually cannot collect sufficient expert’s demonstration data

to meet the demand of high-dimensional learning, leading to over-

fitting of discriminator training. In such a case, dimensionality

reduction (DR) alone is not hard to think of, but the key to finding

out a solution is how to do the DR. Thus we start from a theoretical

analysis motivated by the generalization theory of GAN [30] over

the trajectory learning. Let µ̂πE,m be expert’s empirical trajectory

distribution obtained fromm expert trajectories τE ,i , i ∈ [m], over

the trajectory space T . Generally, we assume that a feature trans-

formation ϕ(τE), which is a bijective mapping from T to another

trajectory space T ′
exists. We can see that ϕ plays a crucial role

in the following discussions. For simplicity, we assume that the

learner directly minimizes the neural distance [2] over trajectory

distributions under the mapped feature space, i.e,

min

πG∈G
[dD′(µ̂πE,m , µπG)], (3)

where

dD′(µ̂πE,m , µπG) = sup

D∈D′

{EτE∼µ̂π
E,m

[D(ϕ(τE))]

− EτG∼µπ
G

[D(ϕ(τG)]},
(4)

in which G is the policy hypothesis space, and D ′
is the neural

network based discriminator hypothesis space under trajectory

space T ′
. To proceed the analysis, we utilize D to denote the hy-

pothesis space under the original trajectory space T , which is

different from D ′
only in input dimension. By solving Equation

(3), we expect to obtain a πG that minimizes the expected neu-

ral distance in the original trajectory space, i.e., dD (µπE , µπG) =
supD∈D {EτE∼µπ

E

[D(ϕ(τE))] − EτG∼µπ
G

[D(ϕ(τG)]} by minimizing

dD′(µ̂πE,m , µπG), which would guarantee a good πG when D is

rich enough. In practice, the optimization in Equation (3) may not

be exactly solved, thus we utilize
ˆdD′, π̂G to denote the resulted

neural distance and policy after training. We further introduce the

following assumptions.

Assumption 1. D ′ is a class of neural networks, whose definition
could be found in the supplementary material. Furthermore, D ′ is

even, i.e., D ∈ D ′ implies −D ∈ D ′. Meanwhile ∀D ∈ D ′, ∥D∥∞ ≤

∆, in which ∥D∥∞ = supτ ∈T′ |D(τ)|.

Assumption 2.
ˆdD′(µ̂πE,m , µπ̂G) ≤ η.

Assumption 1 is easily satisfied by general neural network mod-

els. Furthermore, if π̂G is sufficiently trained w.r.t.
ˆdD′ , then η in

Assumption 2 is also small. We then have the following sample

complexity result, whose proof is included in the supplementary

material.

Theorem 1. Let ∆1 = |dD (µπE , µπ̂G) − dD′(µπE , µπ̂G)|, ∆2 =

| ˆdD′(µ̂πE,m , µπ̂G) −dD′(µ̂πE,m , µπ̂G)|. Given expert trajectory data X
which consists ofm trajectories τπE ∈ T , ifm ≥ 3∥ϕ(X)∥FR, then
with probability at least 1 − δ , we have

dD (µπE , µπ̂G) ≤ ∆1 + ∆2 + 6∆

√
log(2/δ)

2m

+
24 ∥ϕ(X)∥

F
R

m
(1 + log

m

3 ∥ϕ(X)∥
F
R
) + η,

(5)

where R denotes the spectral normalized complexity of D ′ as defined
in the supplementary material.

The above result reveals the key factors to learn a good policy.

First, see the sample complexity terms involvingm. Under a prop-

erly chosen D ′
which ensures small R, the key for sharpening

the bound is to control the Frobenius norm of ϕ(X), which can

be achieved by learning a good DR version of ϕ. Furthermore, ∆1

measures the gap of optimal discriminator between D and D ′
.

This shows that ϕ should also be distance-preserving. These two

observations show the advantage of learning a hashing function

as ϕ: It is well-known that hashing mappings usually perform DR

with sparsity as well as distance-preserving property [11], thus fit

for our needs desirably. We should also pay attention to ∆2, which

measures the quality of discriminator training in D ′
. We find this

should be stressed not only for learning the discriminator underD ′

mapped after ϕ, but also for learning ϕ itself. These observations
from Theorem 1 motivate our HashReward approach.

4.2 HashReward
According to Theorem 1, learning ϕ in a proper way is essential

to our task: A good ϕ should reduce the input norm (∥ϕ(X)∥
F
)

meanwhile preserving discrimination properties (∆1 and ∆2). This

particularly shows that directly applying off-the-shelf unsuper-

vised DR, like autoencoder or unsupervised hashing, could lead to

unsatisfying results for risks of losing discriminative information.

To achieve a good balance, we propose HashReward, which is

a novel adversary-based IL approach utilizing supervised hash-

ing for learning effective discriminators to achieve the balance

between discrimination and rewarding. The key idea lies in using

unsupervised reconstructive information to learn the hashing code

(reducing ∥ϕ(X)∥
F
and ∆1) as well as leading supervised discrimi-

native information into the whole DR part (reducing ∆2), so that

the hashing code could obtain the ability to represent the original

high-dimensional states. To generate such effective representation,

the network structure utilized for the autoencoder and discrimi-

nator training is illustrated in Figure 1. We utilize autoencoder to

train the hashing code that maintains reconstructive information

Algorithm 1 HashReward

Input: Expert demonstrations τE ∼ µπE ; Initialized learner’s pol-

icy πG,0.
1: Pretrain autoencoder with samples from expert demonstrations

and the random policy.

2: for iteration t = 1, 2, · · · ,T do
3: Utilize πG,t−1 to generate learner’s trajectories, i.e. τG ∼

µπG .
4: Sample amini-batch of state-action pairs {(s,a)}t from both

τG and τE.
5: Update HashReward network by Equation (6) using

{(s,a)}t , then generate rewards r̂ for all state-action pairs in

{(s,a)}t .
6: πG,t−1 → πG,t using r̂ by RL update.

7: end for

of the original pixels. Meanwhile, the action signal is concatenated

to the hashing code to formulate the input of the discriminator

training. By this way, the supervised discriminative information is

directly propagated back to learn hashing codes. The loss function

for discriminator training is divided into two parts, i.e,

L = LH + LD , (6)

where LH denotes the hashing training loss, which propagates

error for training the autoencoder and hashing code layer, and LD
denotes the discriminator training loss, which is utilized for training

the discriminator layers as well as enhancing the supervision of

DR part. LD is similar to the inner maximization in Equation (1),

except that the input state s is replaced by the binary hashing code

b(s). Inspired by Liu et al. [17], we define the hashing loss LH as

LH ({si ,yi }, {sj ,yj }) =
si − s ′i

2
2
+

sj − s ′j

2
2

+ λ
(
∥1 − |b(si)| ∥

2

2
+ ∥1 −

��b(sj)�� ∥22)
+
1

2

I(yi j)
b(si) − b(sj)

2
2

+
1

2

(1 − I(yi j))max(2l −
b(si) − b(sj)

2
2
, 0),

(7)

in which l denotes the length of the hashing code and I(yi j) is the
indicator function which takes 1 if yi equals to yj , and 0 otherwise.

In Equation (7), (si ,yi), (sj ,yj) denote a pair of state-label instance.
For one state-label instance (s,y), we utilize s to denote a state

sampled from the learner’s policy or a state from the trajectory

generated by the expert. Furthermore, we utilizey to indicate where

s is sampled, such that y = 1 if s is sampled from the demonstration

and y = 0 otherwise. The first two terms of LH represent the recon-

struction error, making the reconstructed states s ′ similar to the

original states s . The next two terms (regularization terms weighted

by λ) are used to enforce b(s) to get close to binary values in {−1, 1},

where b(s) is the logit output of the hashing layer. The last two

terms in LH are essential for introducing the supervision into hash-

ing code training. From these terms, the unbinarized hashing codes

b(si) and b(sj) of two states si , sj will get similar only when they

have the same labels. By this way, the discriminative information

is effectively propagated for the learning hashing representations.

Overall, the output of HashReward network is D(s,a) ∈ (0, 1), and

we utilize −loдD(s,a) as the pseudo reward for the agent. This pro-

cess in all experiments can be compared to the network architecture

in the supplementary material.

It can be seen that by utilizing Equation (7), the separability of

the hashing codes, which are the inputs to the discriminative layers,

can be reliably preserved even when the dimension of hashing layer

is much smaller than the original input dimension. Instead of fixing

the parameters of the hashing code layer in the training process, the

HashReward model and the policy are updated alternatively during

learning. By this way, the training of the hashing code layer and

the discriminator module are coupled together. In order to achieve

faster convergence, a pretraining stage with samples from expert

demonstrations and the random policy for the autoencoder module

is included in learning. The learning procedure of HashReward is

illustrated in Algorithm 1.

5 EXPERIMENT
5.1 Experimental Setup
Environment.We choose 15 games in Arcade Learning Environ-

ment [4] and 5 simulators in MuJoCo [25]. The experiment is im-

plemented in OpenAI Gym platform [6], which contains Atari 2600

video games with high-dimensional observation space (raw pixels),

and pixels of each state in MuJoCo are obtained by a camera. The

input states for the learner are set as low-dim continuous control

inputs in MuJoCo. We train converged DQN-based agents as ex-

perts in Atari, and DDPG-based [16] agents in MuJoCo. 20 expert

trajectories are collected for each game, also 3 trials with different

random seeds are conducted for each environment. All experiments

are conducted on server clusters with NVIDIA Tesla K80 GPUs.

Contenders. There are five basic contenders in the experiment,

i.e., GAIL [13], VAIL [19], GIRIL [29], GAIL with autoencoder (GAIL-

AE) which utilizes only the first two autoencoder loss terms in Equa-

tion (7), and GAIL with unsupervised hashing (GAIL-UH) which

utilizes only the first four unsupervised hashing loss terms in Equa-

tion (7). The codes of GAIL-AE and VAIL are real numbers, while

those of GAIL-UH and HashReward belong to {−1, 1}. We initialize

autoencoder pretraining for 40M frames of updates for GAIL-AE,

GAIL-UH, GIRIL, and HashReward in Atari (1M in MuJoCo). To

find out whether keeping autoencoder stable during training will

increase the performance of GAIL-AE and GAIL-UH, we conduct

experiments of GAIL-AE and GAIL-UH with updating autoencoder

during training as GAIL-AE-Up and GAIL-UH-Up. Besides, to show

the necessity of hashing for HashReward, we remove the third and

fourth terms in Equation (7) as HashReward-AE. The basic RL algo-

rithm is PPO [21], and the reward signals of all methods are scaled

into [0, 1] to enhance the performance of RL part. We set all hyper-

parameters and network architectures of the policy part the same

to [10]. Also, the hyper-parameters of DR and discriminator for all

methods are the same: The DR and discriminator updates using

Adam with a decayed learning rate of 3e-4; the batch size is 256;

λ is 0.01. We implement VAIL and GIRIL with the recommended

hyper-parameters in their paper. The ratio of update frequency

between the learner and discriminator is 3: 1.

Encoder Decoder

learner state

a

binary code

HashReward

expert state

reconstructed
learner state

reconstructed
expert state

Figure 1: Illustration of the HashReward model architecture which contains two modules: the autoencoder module and the discriminator
module. The red solid block represents the concatenation of the hashing code layer and the action signal a. The blue solid block represents
hidden dense layers of the discriminator module.

Table 1: The performance of each method on Atari after 10M timesteps. Boldface numbers indicate the best results. The state
space is 84 × 84 × 4.

Expert Reward GAIL VAIL GIRIL GAIL-AE GAIL-AE-Up GAIL-UH GAIL-UH-Up HashReward-AE HashReward

BeamRider 2139.20 ± 41.60 854.47±220.63 615.63±258.67 2973.27±224.00 638.04±95.95 2182.59±1424.69 1412.91±230.91 2089.55±1232.42 596.00±8.14 1613.68±203.83

Breakout 144.35 ± 29.27 10.48±1.70 24.32±2.60 61.53±17.98 17.32±6.83 28.70±0.22 1.04±0.52 49.85±9.78 32.10±2.84 67.73±13.77
Boxing 95.70 ± 2.63 26.78±3.24 2.47±1.55 -3.64±1.57 26.05±19.83 -5.47±23.43 0.59±1.17 -15.36±15.18 -0.72±1.15 84.71±2.13

BattleZone 23000.00 ± 2549.51 11863.33±767.09 7566.67±1503.43 9070.00±2203.47 11030.00±4734.64 9133.33±5255.45 4670.00±1432.29 11400.00±3559.52 7043.33±1728.01 15623.33±278.61
ChopperCommand 3135.00 ± 145.86 1469.33±135.22 1190.00±37.50 604.67±52.93 1151.67±17.46 1148.00±74.69 1144.33±446.19 995.33±362.83 924.00±107.34 1522.67±78.36

CrazyClimber 95245.00 ± 2477.39 35451.33±1002.73 41170.67±5024.62 5020.00±599.03 10321.00±1539.70 9590.00±5689.36 4049.00±907.23 3159.33±2228.60 44766.67±21591.68 63076.00±1841.86
Enduro 469.85 ± 18.21 26.53±26.35 119.87±10.06 0.00±0.00 70.02±70.66 0.04±0.05 0.00±0.00 0.00±0.00 209.07±19.05 219.88±72.06
Kangaroo 4175.00 ± 94.21 1695.67±87.96 1482.00±427.65 32.00±2.83 935.00±63.90 542.00±44.50 80.00±94.36 26.33±5.31 1352.00±249.99 1925.67±145.11
MsPacman 3163.00 ± 160.88 298.00±22.56 1316.87±182.96 121.23±75.75 711.43±9.19 674.67±3.07 655.00±41.36 701.33±16.21 726.93±42.11 1463.07±52.68

Pong 21.00 ± 0.00 -18.40±0.29 -18.78±0.18 -20.14±0.07 -14.57±5.65 -20.90±0.15 -17.89±0.79 -17.59±0.26 -17.97±0.94 -5.25±4.79
Qbert 4750.00 ± 50.00 3634.42±388.09 3260.62±209.12 1050.33±197.75 1126.25±416.21 1303.62±33.38 360.33±111.00 287.17±67.09 4000.50±327.93 4553.58±155.14

Seaquest 1835.00 ± 23.56 761.13±38.89 826.93±40.99 628.93±52.75 1124.00±400.68 1151.33±628.84 689.93±5.04 664.80±10.47 1339.80±188.92 1400.73±67.41
SpaceInvaders 743.50 ± 26.03 341.67±23.38 346.70±27.42 550.10±12.95 302.23±38.18 318.75±36.39 309.83±74.85 512.32±49.89 496.33±67.44 546.48±42.09

UpNDown 34200.50 ± 2083.35 21086.17±848.61 31637.43±2301.67 24399.07±9663.36 20252.53±10582.64 43972.33±1105.54 4227.27±1264.39 8715.40±4807.56 64648.43±17684.03 36989.70±12739.30

Zaxxon 11190.00 ± 490.82 8130.33±626.00 8473.00±1507.70 2644.33±63.73 8577.67±852.58 9062.00±1336.34 1614.67±64.63 1546.67±28.77 9005.00±1404.70 10068.33±410.69

Table 2: The performance of each method on MuJoCo after 1M timesteps. The state space is 84 × 84 × 1.

Expert Reward GAIL VAIL GIRIL GAIL-AE GAIL-AE-Up GAIL-UH GAIL-UH-Up HashReward-AE HashReward

Humanoid 1029.15 ± 53.95 360.13±9.53 392.69±9.87 207.27±20.07 435.95±7.52 422.90±28.37 424.11±22.36 433.74±9.76 364.61±1.98 370.92±3.65

HalfCheetah 1189.01 ± 140.28 -1198.28±344.95 -138.48±36.00 -280.27±159.74 -488.56±232.77 -706.58±339.33 -402.19±49.28 -420.65±54.38 -149.73±253.05 -78.92±168.05
Hopper 2304.87 ± 287.45 496.31±294.86 2210.22±5.88 975.13±17.02 753.02±60.52 1149.54±309.80 968.16±16.20 943.70±149.26 2116.94±35.24 2216.83±76.57

HumanoidStandup 110722.99 ± 6360.51 67946.69±3690.98 77412.49±2948.07 81217.79±1013.14 79006.35±2857.10 75210.63±2109.55 68248.25±3586.59 70330.63±2901.27 82718.25±2706.36 83423.17±1878.71
Reacher -10.00 ± 2.83 -28.99±5.42 -74.98±13.82 -13.53±1.31 -18.79±1.01 -20.23±0.80 -15.54±0.36 -15.55±0.33 -100.10±25.82 -39.35±12.24

5.2 Results
Experimental results in Atari are reported in Table 1 and Figure 2,

and that of the major methods in MuJoCo are shown in Table 1

and Figure 3. More results including the performances of other

contenders are reported in the supplementary material.

We can observe that VAIL outperforms GAIL on most environ-

ments, and achieves near-expert performance on UpNDown and

Hopper, but still fails compared with HashReward. GIRIL achieves

the best performance in BeamRider, SpaceInvaders and Reacher, but
its behavior is also unsatisfactory in some environments. For vari-

ants of GAIL, GAIL-AE outperform GAIL on several environments,

but fail on most compared with VAIL and HashReward. Meanwhile,

GAIL-UH only achieve satisfactory performance on BeamRider,

Humanoid and Reacher. It also evinces that without supervision,

the change of feature could confuse the discriminator training.

HashReward-AE outperforms GAIL on most games, while remains

a gap compared with HashReward. This demonstrates that hashing

is necessary for HashReward even with supervision. As expected,

HashReward outperform its contenders significantly and achieve

the best performance on most of environments (12/15 in Atari, 3/5

in MuJoCo), meanwhile gains expert-level reward on Boxing, Qbert,
SpaceInvaders, UpNDown, Zaxxon and Hopper.

It can be concluded that GAIL could not be improved with sim-

ple unsupervised DR; also the usage of supervision only from dis-

criminator (regular term of loss in VAIL) to enhance DR part is

not enough; besides, another potential reason for not that satis-

factory results of VAIL on Atari is that its discriminator does not

0 1 2 3 4
Episodes 1e3

0.5

1.0

1.5

2.0

2.5

3.0

1e3

(a) BeamRider

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Episodes 1e4

0

2

4

6

8

R
et

ur
ns

1e1

GAIL
GAIL-AE
GAIL-UH
VAIL
GIRIL
HR

(b) Breakout

0 1 2 3 4
Episodes 1e3

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0 1e2

(c) Boxing

0 1 2 3 4 5 6
Episodes 1e3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
1e4

(d) BattleZone

0 1 2 3 4 5 6 7
Episodes 1e3

0.25

0.50

0.75

1.00

1.25

1.50

1.75

1e3

(e) ChopperCommand

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Episodes 1e4

0

1

2

3

4

5

6

7

R
et

ur
ns

1e4

(f) CrazyClimber

0.0 0.5 1.0 1.5 2.0
Episodes 1e3

0.0

0.5

1.0

1.5

2.0

2.5

3.0
1e2

(g) Enduro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Episodes 1e3

0.0

0.5

1.0

1.5

2.0

1e3

(h) Kangaroo

0 1 2 3 4 5 6 7
Episodes 1e3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1e3

(i) MsPacman

0.0 0.2 0.4 0.6 0.8 1.0
Episodes 1e4

−2.0

−1.5

−1.0

−0.5

0.0

0.5
1e1

(j) Pong

0 1 2 3 4 5 6
Episodes 1e3

0

1

2

3

4

5

R
et

ur
ns

1e3

(k) Qbert

0.0 0.5 1.0 1.5 2.0 2.5
Episodes 1e3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1e3

(l) Seaquest

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Episodes 1e5

1

2

3

4

5

6

7
1e2

(m) SpaceInvaders

0 2 4 6 8
Episodes 1e3

0

1

2

3

4

5

1e4

(n) UpNDown

0.0 0.2 0.4 0.6 0.8 1.0
Episodes 1e4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1e4

(o) Zaxxon

Figure 2: Learning curves of on Atari after 10M timesteps, where shaded regions indicate the standard deviation. The state
space is 84 × 84 × 4.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Episodes 1e4

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1e2

(a) Humanoid

0.0 0.2 0.4 0.6 0.8 1.0
Episodes 1e3

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

1e3

(b) HalfCheetah

0.0 0.2 0.4 0.6 0.8 1.0
Episodes 1e3

0.0

0.5

1.0

1.5

2.0

1e3

(c) Hopper

0.0 0.2 0.4 0.6 0.8 1.0
Episodes 1e3

4

5

6

7

8

9
1e4

(d) HumanoidStandup

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Episodes 1e3

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

1e2

(e) Reacher

Figure 3: Learning curves of on MuJoCo after 1M timesteps, where shaded regions indicate the standard deviation. The state
space is 84 × 84 × 1.

utilize action signal, which is of a great importance signal for these

games [26]; meanwhile, although GIRIL achieves decent perfor-

mance on some environments, it does not solve DR problems di-

rectly, which may limit its performance; and HashReward provides

a powerful approach for tackling high-dimensional IL problems,

which can encourage the learner to generate expert comparable

policies in challenging IL tasks.

5.3 Is HashReward Meaningful?
Comparisons on Pong. To find out whether HashReward has

dug out the expert policy closely, we report the comparisons of

a sequence of expert demonstrations and the sequence generated

by each method during the same period of time on Pong, shown
in Figure 4. We can observe that the expert hits the ball with the

short side of the bar, which is the ‘kill-shot’ and hard to imitate.

For contenders, they try to learn the ‘kill-shot’ but hit the ball by

the long side of the bar instead of the short side, except for GAIL-

AE-Up, GAIL-UH, GAIL-UH-Up, GIRIL, and VAIL which miss the

ball. While the sequence of HashReward is the same as that of

demonstrations, which shows that HashReward has successfully

learned the ‘kill-shot’.

Pseudo Reward Curves. In order to understand why HashRe-

ward outperforms its contenders and whether HashReward tackles

the discrimination-rewarding trade-off, first we analyze the true

reward and pseudo reward (generated by reward function) curves

of five basic methods for a single training process on Qbert, illus-
trated in Figure 5. For GAIL and GAIL-AE, the discriminator seems

to excessively focus on discriminating between the learner’s and

expert’s samples, such that the pseudo reward does not rise even

when the true reward has increased, which verifies our perspective

(a) Expert (b) GAIL (c) VAIL (d) GIRIL (e) AE (f) AE-Up (g) UH (h) UH-Up (i) HR-AE (j) HR

Figure 4: The sequence generated by each approach on Pong, with the comparison of expert demonstrations (the first column),
where ‘AE’, ‘AE-Up’, ‘UH’, ‘UH-Up’, ‘HR-AE’ and ‘HR’ indicate GAIL-AE, GAIL-AE-Up, GAIL-UH, GAIL-UH-Up, HashReward-
AE and HashReward respectively. The timestamp for each row of images and seed for each environment are the same.

0 1 2 3 4 5 6

Episodes ×10
3

6

7

8

9

10

11

12

Ps
eu

do
 R

ew
ar

d

GAIL
PR_agent
PR_expert

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

×10
3

True Reward

0 1 2 3 4 5 6

Episodes ×10
3

6.5

7.0

7.5

8.0

8.5

GAIL-AE

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

×10
3

0 1000 2000 3000 4000 5000 6000

Episodes

7.80

7.85

7.90

7.95

8.00

8.05

8.10

GAIL-UH

1.5

2.0

2.5

3.0

3.5

4.0

4.5

×10
2

0 1 2 3 4 5 6

Episodes ×10
3

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

×10
1 VAIL

0

1

2

3

4

×10
3

0 1 2 3 4 5 6

Episodes ×10
3

5.0

5.5

6.0

6.5

7.0

7.5

HashReward

0

1

2

3

4

5

Tr
ue

 R
ew

ar
d

×10
3

Figure 5: Pseudo reward generated by discriminator and true reward curves of five basic approaches on Qbert. ‘PR_agent’ and
‘PR_expert’ indicate pseudo reward for the agent and expert samples respectively. The blue curve denotes pseudo reward
provided by the discriminator, and the red one denotes the true reward.

Codes0

20

40

60

80

100

St
ep

s

(a) 0 Step

Codes0

20

40

60

80

100

(b) 1e6 Steps

Codes0

20

40

60

80

100

(c) 1e7 Steps

Codes0

20

40

60

80

100

(d) Expert

Figure 6: The 64-bit HashReward codes for samples from different policy steps as well as expert on Qbert game. The samples
are gathered from the same continual period within an episode with a fixed random seed.

on why GAIL (and with unsupervised DR) fails in such tasks. For

GAIL-UH, the discriminator fails to discriminate between learner’s

and expert’s samples, as the pseudo reward curve for learner almost

overlaps with that for the expert in the whole training process. This

indicates that including supervised information in hashing code

training is indeed essential. For VAIL, the change of the pseudo

reward for agent and expert is similar to that of GAIL, which reveals

that the supervision of VAIL in DR is not enough. For HashReward,

we can observe that the change of HashReward ideally reflects

that of the true reward. Furthermore, the over-discrimination of

Figure 7: t-SNE Visualizations of policy samples (blue points) and expert samples (orange points) on Qbert.

pseudo reward is successfully avoided by HashReward. More re-

sults from the rest environments and other methods can be found

in the supplementary material, which reflects similar phenomena.

64-bit Embeddings. Besides, to verify whether HashReward

generates meaningful codes, we train a 64-bit embedding version

of HashReward model on Qbert. Afterward we input samples gen-

erated from policies of different training stages (after 0 steps, 1e6

steps, and 1e7 steps) to the learned HashReward model to compare

their codes. To collect samples, we run each policy for an episode

with a fixed random seed and collect 100 samples within the same

interval of time-steps. The codes are demonstrated in Figure 6. At

0 step and 1e6 step, the codes are clearly different from that of

the expert, showing that the policies are not sufficiently trained.

On the contrary, at 1e7 step, as the learner has dug out the latent

expert policy, their codes are close to each other. This shows that

HashReward learns a meaningful embedding space to reflect the

quality of imitation.

t-SNE for Embeddings. Furthermore, Figure 7 illustrates t-

SNE [27] visualization of the embedding layer outputs from five of

the comparison methods under Qbert, and each figure contains 5000
policy and expert samples respectively. We show how embeddings

of expert demonstrations, as well as policy samples, evolve for the

same learning stages as above. We can observe that for GAIL and

GAIL-AE, the embeddings for individual samples remain isolated

throughout training, thus are easy to be fully discriminated. By

using information bottleneck loss, VAIL partially solves this prob-

lem by generating some local clustered structures, which however

still easy to be distinguished by the discriminator. For GAIL-UH,

even though the embeddings seem to be globally clustered, we can

observe that the policy and expert sample embeddings keep over-

lapping during the whole training process. This means that it fails

to keep high-dimensional discriminative information when per-

forming DR. For HashReward, we can observe that both expert and

policy embeddings are globally clustered. Meanwhile, the overlaps

between the two embedding sets increase along with the learning

process, revealing the improvement of policy learning. This verifies

HashReward could desirably dig out the hidden manifold structure

of input space, which could lead to successful learning.

The above results reveal the close relationship between making

the discriminator provide ground-truth consistent reward signals

and properly dealing with the discrimination-rewarding trade-off.

Meanwhile, they also indicate that effective supervision is essential

for learning a proper discriminator, which is the key leading to the

superior performance of HashReward in high-dim IL problems.

6 CONCLUSIONS
In this paper, we tackle the challenging problem of IL in high-

dimensional environments, under which even state-of-the-art IL al-

gorithms fail. Based on theoretical and empirical studies, we identify

that such failure results from their improper treatment of tackling

the discrimination-rewarding trade-off. Through this finding, we

propose a novel high-dimensional IL method named HashReward,

which utilizes supervised hashing to learn an effective discrimi-

nator, encouraging learners to dig out latent expert policies from

demonstrations by providing efficient and stable reward signals.

Experiments under both Atari and MuJoCo environments verify the

effectiveness of HashReward, which outperforms state-of-the-art

contenders with significant gaps. We expect HashReward can also

provide inspirations in designing other hashing strategies contain-

ing effective semantic information, for solving other challenging IL

problems, e.g., exploration-demanding games like MontezumaRe-
venge. We will explore more on these possibilities.

Acknowledgment: This research was supported by the NSFC

(61673201, 61921006). The authors would like to thank Yang Yu,

Jieping Ye, and the anonymous reviewers for their insightful com-

ments and suggestions.

REFERENCES
[1] Pieter Abbeel and Andrew Y. Ng. 2010. Inverse Reinforcement Learning. In

Encyclopedia of Machine Learning. 554–558.
[2] Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. [n.d.]. General-

ization and Equilibrium in Generative Adversarial Nets (GANs). In Proceedings of
the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017 (Proceedings of Machine Learning Research, Vol. 70),
Doina Precup and Yee Whye Teh (Eds.). 224–232.

[3] Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang, and Nando

de Freitas. 2018. Playing hard exploration games by watching YouTube. In

Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada. 2935–2945.

[4] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. 2013. The

Arcade Learning Environment: An Evaluation Platform for General Agents. J.
Artif. Intell. Res. 47 (2013), 253–279.

[5] Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman,

Joel Z. Leibo, Jack W. Rae, Daan Wierstra, and Demis Hassabis. 2016. Model-Free

Episodic Control. CoRR abs/1606.04460 (2016).

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. CoRR abs/1606.01540

(2016).

[7] Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. 2019.

Extrapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement

Learning from Observations. In Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA.
783–792.

[8] Daniel S. Brown, Wonjoon Goo, and Scott Niekum. 2019. Better-than-

Demonstrator Imitation Learning via Automatically-Ranked Demonstrations. In

Proceedings of the 3rd Conference on Robot Learning.
[9] Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and

Dario Amodei. 2017. Deep Reinforcement Learning from Human Preferences.

In Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA,
USA. 4302–4310.

[10] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plap-

pert, Alec Radford, John Schulman, Szymon Sidor, YuhuaiWu, and Peter Zhokhov.

2017. OpenAI Baselines.

[11] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in

High Dimensions via Hashing. In VLDB’99, Proceedings of 25th International
Conference on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland,
UK. 518–529.

[12] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot,

Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold,

John Agapiou, Joel Z. Leibo, and Audrunas Gruslys. 2018. Deep Q-learning

From Demonstrations. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018.
3223–3230.

[13] JonathanHo and Stefano Ermon. 2016. Generative Adversarial Imitation Learning.

In Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain.
4565–4573.

[14] Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario

Amodei. 2018. Reward learning from human preferences and demonstrations in

Atari. In Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada. 8022–8034.

[15] Qing-Yuan Jiang and Wu-Jun Li. 2018. Asymmetric Deep Supervised Hashing. In

Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the

8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018. 3342–3349.

[16] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control

with deep reinforcement learning. In 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.).

[17] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. 2016. Deep Su-

pervised Hashing for Fast Image Retrieval. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016.
2064–2072.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.

Human-level control through deep reinforcement learning. Nature 518, 7540
(2015), 529–533.

[19] Xue Bin Peng, Angjoo Kanazawa, Sam Toyer, Pieter Abbeel, and Sergey Levine.

2019. Variational Discriminator Bottleneck: Improving Imitation Learning, In-

verse RL, and GANs by Constraining Information Flow. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019.

[20] John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp

Moritz. 2015. Trust Region Policy Optimization. In Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015. 1889–1897.

[21] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).

[22] Jing-Cheng Shi, Yang Yu, Qing Da, Shi-Yong Chen, and Anxiang Zeng. 2019.

Virtual-Taobao: Virtualizing Real-World Online Retail Environment for Rein-

forcement Learning. In The Thirty-Third AAAI Conference on Artificial Intelli-
gence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1,
2019. 4902–4909.

[23] Alexander L. Strehl and Michael L. Littman. 2008. An analysis of model-based

Interval Estimation for Markov Decision Processes. J. Comput. Syst. Sci. 74, 8
(2008), 1309–1331.

[24] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan,

John Schulman, Filip De Turck, and Pieter Abbeel. 2017. #Exploration: A Study of

Count-Based Exploration for Deep Reinforcement Learning. InAdvances in Neural
Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA. 2750–2759.

[25] Emanuel Todorov, Tom Erez, and Yuval Tassa. [n.d.]. MuJoCo: A physics engine

for model-based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2012, Vilamoura, Algarve, Portugal, October 7-12, 2012.
5026–5033.

[26] Aaron Tucker, Adam Gleave, and Stuart Russell. 2018. Inverse reinforcement

learning for video games. CoRR abs/1810.10593 (2018).

[27] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using

t-SNE. Journal of Machine Learning Research 9 (2008), 2579–2605.

[28] Haiyan Yin, Jianda Chen, and Sinno Jialin Pan. 2018. Hashing over Predicted

Future Frames for Informed Exploration of Deep Reinforcement Learning. In

Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. 3026–3032.

[29] Xingrui Yu, Yueming Lyu, and Ivor Tsang. 2020. Intrinsic Reward Driven Imitation

Learning via Generative Model. In International Conference on Machine Learning.
6672–6682.

[30] Pengchuan Zhang, Qiang Liu, Dengyong Zhou, Tao Xu, and Xiaodong He. 2018.

On the Discrimination-Generalization Tradeoff in GANs. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 High-Dimensional Imitation Learning by HashReward
	4.1 Balancing the Discrimination-Rewarding Trade-Off
	4.2 HashReward

	5 Experiment
	5.1 Experimental Setup
	5.2 Results
	5.3 Is HashReward Meaningful?

	6 Conclusions
	References

