
Neural Random Subspace

Yun-Hao Caoa, Jianxin Wua,∗, Hanchen Wangb, Joan Lasenbyb

aNational Key Laboratory for Novel Software Technology, Nanjing University, China
bDepartment of Engineering, University of Cambridge, UK

Abstract

Random subspace is the pillar of random forests. We propose Neural Random

Subspace (NRS), a novel deep learning based random subspace method. In

contrast to previous forest methods, NRS enjoys the benefits of end-to-end,

data-driven representation learning, as well as pervasive support from deep

learning software and hardware platforms, hence achieving faster inference

speed and higher accuracy. Furthermore, as a non-linear component to be

encoded into Convolutional Neural Networks (CNNs), NRS learns non-linear

feature representations in CNNs more efficiently than previous higher-order

pooling methods, producing good results with negligible increase in parameters,

floating point operations (FLOPs) and real running time. We achieve superior

performance on 35 machine learning datasets when compared to random subspace,

random forests and gradient boosting decision trees (GBDTs). Moreover, on

both 2D image and 3D point cloud recognition tasks, integration of NRS with

CNN architectures achieves consistent improvements with negligible extra cost.

Keywords: random subspace, ensemble learning, deep neural networks

1. Introduction

Deep convolutional neural networks (CNNs) have achieved remarkable ad-

vancements in a variety of computer vision tasks [9], such as image classifi-

cation [20, 35, 10], object detection [8], semantic segmentation [23] and 3D

∗Corresponding author
Email addresses: caoyh@lamda.nju.edu.cn (Yun-Hao Cao), wujx2001@nju.edu.cn

(Jianxin Wu), hw501@cam.ac.uk (Hanchen Wang), jl221@cam.ac.uk (Joan Lasenby)

Preprint submitted to Pattern Recognition June 10, 2020

recognition [28]. Despite the rapid development of CNNs, forest methods based5

on random subspaces [11] such as random forests [2] and GBDTs [7] are still the

dominant approaches for dealing with vectorized inputs in real-world applica-

tions 1. Benefiting from ensembling predictors with methods such as bagging

and boosting, forest methods is capable of making more accurate and robust pre-

dictions. However, training these models is computationally expensive, especially10

for large-scale datasets. Further, forest methods are mostly combinatorial rather

than differentiable and they lack the capability of representation learning. On the

other hand, CNNs integrate representation learning and classifier learning in an

end-to-end fashion, with pervasive software (e.g., deep learning frameworks) and

hardware (e.g., GPUs) support, which effectively work on large-scale datasets.15

To sum up, forest methods benefit from various ensemble mechanisms; while the

end-to-end representation learning ability is crucial for deep CNNs. Hence, one

question arises: Can we enable such ensemble methods (e.g., random subspaces)

with end-to-end representation learning to combine the advantages of ensemble

learning and representation learning?20

Another interesting aspect is to examine the non-linearity in CNNs. By

stacking layers of convolution and non-linearity, CNNs effectively learn discrimi-

native representations. As one standard module in deep CNNs, global average

pooling (GAP) summarizes linear statistics of the last convolution layer. Re-

cently, many higher-order pooling (HOP) methods (e.g., [22]) are proposed to25

learn higher-order, non-linear feature representations to replace GAP and have

achieved impressive recognition accuracy. However, these HOP methods suffer

from expensive computing costs because of the covariance calculation of very high

dimensional matrices. Therefore, another question is: Can we add non-linearity

to the linear GAP to achieve both good accuracy and high efficiency?30

In this paper, we take a step towards addressing these two questions jointly.

We propose a model called Neural Random Subspace (NRS), which is a deep

learning based random subspace method. It realizes the random subspace method

1https://www. kaggle.com/amberthomas/kaggle-2017-survey-results

2

in the context ofneural networks, which handles vectorized inputs well (where

CNNs do not apply) and achieves both higher accuracy (by combining ensemble35

and representation learning) and faster inference speed (by support from deep

learning software and hardware) than conventional random subspace based forest

methods, e.g., random subspaces and random forests. We show that such designs

are attractive for many real-world tasks dealing with vector inputs.

Furthermore, NRS can be seamlessly installed after the GAP layer at the40

end of a CNN for image recognition, which non-linearly transforms the output of

GAP. As a non-linear component to be encoded into CNNs, NRS is more efficient

than HOP methods and achieves higher accuracy than standard GAP with neg-

ligible additional cost in terms of model parameters, FLOPs and inference time.

Furthermore, NRS can be installed across all layers in a CNN when integrated45

into Squeeze-and-Excitation (SE) modules [12] and it achieves comparable or

better accuracy with fewer model parameters and FLOPs. Aside from 2D image

recognition task, we also evaluate NRS on 3D classification tasks where it is used

to non-linearly transform the output of the global feature encoders. NRS also

brings consistent improvements under various architectures.50

Experimental results valid the effectiveness of NRS. We achieve superior

performance on 35 machine learning datasets when compared to previous forest

methods. On document retrieval datasets, NRS achieves consistent improve-

ments over various baseline algorithms. For 2D image recognition tasks, on the

fine-grained benchmarks CUB-200-2011 [40], FGVC-aircraft [25] and Stanford55

Cars [18], by combining NRS we achieve 5.7%, 6.9% and 7.8% gains for VGG-16,

respectively, with negligible increase in parameters, FLOPs and real running time.

On ImageNet ILSVRC-12 [33], integration of NRS into ResNet-18 achieves top-

1/top-5 errors of 28.32%/9.77%, which outperforms ResNet-18 by 1.92%/1.15%

with negligible extra cost. For 3D recognition task on ModelNet40 [42], NRS60

arises accuracy by 1.1% for PointNet [28] with minor extra complexities.

3

2. Related Work

2.1. Forest Learning

Forest learning is a powerful learning paradigm which often uses decision

trees as its base learners. Bagging and boosting, for instance, are the driving65

forces of random forests [2] and GBDTs [7], respectively. Random subspaces-

based forests [11] select random subsets of features for base learners to construct

decision forests. They have become the choices for many industrial applica-

tions and data science projects, ranging from face recognition [44] to numerous

data science competitions in Kaggle and beyond. Note that the input to such70

models are vectors rather than images, therefore it might not be suitable to use

methods such as CNNs to process the data. To accelerate the learning process,

ThunderGBM [41] proposes a GPU-based software to improve the efficiency of

random forests and GBDTs, especially for large and high dimensional problems.

However, they are designed for specific algorithms and hardware, which is lack75

of generality in comparison with our NRS. With the rapid development of deep

learning, there have also been deep forest methods. [45] proposes gcForest,

which is a deep forest ensemble with a cascade structure. mGBDTs [6] learn

hierarchical distributed representations by stacking several layers of regression

GBDTs. However, these methods are not end-to-end trained and thus cannot be80

accelerated by the deep learning platforms. In contrast, our method integrates

random subspace method with end-to-end, data-driven representation learning

capabilities with support from existing deep learning software and hardware

platforms. Moreover, we train all base learners end-to-end jointly rather than

separately as in previous similar method NDF [17]. NDF combines a single deep85

CNN with a random forest for image classification, where the outputs of the

top CNN layer are considered as nodes of the decision tree and prediction loss

is computed at each split node of the tree. Our work differs as follows: (i) We

implement random subspaces rather than random forests in a novel and easy

way, which will be introduced in the next section. (ii) Our method is light-weight90

and more easily integrated into existing deep learning frameworks.

4

2.2. Non-linear representations in CNNs

Statistics higher than first-order ones have been successfully used in both

classic and deep learning based classification scenarios. The Vectors of Locally

Aggregated Descriptors (VLAD) [15] and Fisher Vectors (FV) [27] use non-linear95

representations based on hand-crafted features. By replacing handcraft features

with outputs extracted from CNNs pre-trained on ImageNet [33], these models

achieve state-of-the-art results on many recognition tasks [5]. In these designs,

representation and classifier training are not jointly optimized and end-to-end

training has not been fully studied. [22] proposes a bilinear CNN (B-CNN) that100

aggregates the outer products of convolutional features from two networks and

allows end-to-end training for fine-grained visual classification. [21] proposes an

iterative matrix square root normalization (iSQRT) method for fast training

of global covariance pooling networks. These works have shown that higher-

order, non-linear feature representations based on convolution outcomes achieve105

impressive improvements over the classic linear representations. However, they

suffer from the expensive computational overhead because these methods depend

heavily on spectral decomposition or singular value decomposition of very high

dimensional covariance matrices. Contrary to previous higher-order methods,

our NRS learns non-linear feature representations with only negligible increase110

in parameters, FLOPs and real running time while achieving higher accuracy.

3. Neural Random Subspace

In this section, we propose the NRS module, which mainly consists of random

permutations and group convolutions. We show that it resembles an ensemble of

one-level decision trees where each tree learns from a random subset of features115

(i.e., a random subspace), hence we name it Neural Random Subspace (NRS).

3.1. Network architecture

We first describe the notations in the following and use them consistently

in the rest of the paper. We use x ∈ Rd to represent a d-dimensional feature

5

feature vector

concat

reshape

random

permutations

group

convolution

!

…

!"

!# 1

1

$

$

ReLU

1

1

$
…

reshaped tensor %permuted vectors &
tensor ' tensor (

Figure 1: NRS architecture with one group convolution layer.

vector and xi to represent its i-th element (i = 1, . . . , d). We denote the depth120

expansion rate as nMul, the expansion height as dH, the expansion width as

dW and the number of channels per group in the group convolution as nPer.

Our goal is to build a neural classifier based on random subspace, which

combines the advantages of both ensemble learning and deep learning. We

propose a novel NRS architecture to achieve this goal, as shown in Figure 1.125

For a d-dimensional feature vector x, we first generate m random permutations

σ1, . . . ,σm by reordering the elements in x, where m = dH×dW ×nMul. This

results in a set of randomly permuted vectors Z = {zt} from x correspondingly,

where zt is generated by t-th permutation σt:

zt = (xσt
1
, . . . , xσt

d
), t = 1, . . . ,m . (1)

Then, we concatenate these d-dimensional features into a vector U of m × d130

dimensions and reshape it into a 3D I ∈ RdH×dW×c, where c = nMul × d. We

denote the entry at the i-th row, j-th column and k-th channel in I as I(i, j, k).

it is essentially generated by t-th random permutation σt:

t = bk/dc × dH × dW + (i− 1)× dW + j . (2)

Hence, I(i, j, k) corresponds to the s-th element in zt:

I(i, j, k) = xσt
s
, (3)

where s = k mod d, and t is calculated by Equation (2). Then, we send the135

tensor I into a group convolution layer of kernel size (kH, kW), out channel

numbers c and group numbers bc/nPerc without padding, obtaining a new

6

order-3 tensor S of size (oH, oW, c) followed by ReLU non-linearity. By default

we directly use only one group convolution layer with kH = dH and kW = dW ,

thus achieving S of size (1, 1, c), as is done in Figure 1. Further, we can combine140

multiple group convolution layers with kH < dH and kW < dW to make it

deeper, which will be studied in Sec 4.2.1. Then, we add ReLU non-linearity upon

S and obtain tensor T of size (1, 1, c). Finally, we feed T into fully connected

(FC) layers plus a softmax layer for classification tasks.

3.2. Neural random subspace via CNN implementation145

A d-dimensional input vector, can be either a handcraft feature in traditional

machine learning or pattern recognition tasks or a learned representation gener-

ated by CNNs (e.g., the output of a GAP layer). In our NRS, we first transform

it into a tensor I by random permutations.

I includes a set of 2D feature maps I = {Ik}(k = 1, . . . , c). Ik, of size150

dH × dW , is the k-th feature map of the corresponding channel (the k-th

channel). For each feature map Ik, it consists of dH × dW features, which are

randomly selected from the original features. In other words, each feature map

Ik corresponds to a random subset of features, that is, a random subspace. Then,

each group convolution filter which randomly chooses kH × kW ×nPer features155

and the subsequent ReLU layer which acts upon an attribute (i.e., a linear

combination of these randomly selected features) can be considered as a one-level

oblique decision tree [26]. In Figure 2, we take a group convolution layer with

nPer = 1 (i.e., a depthwise convolution) as an example for the illustration. We

use W k to denote the k-th depthwise convolution filter, Sk and T k to denote160

the k-th channel of S and T (k = 1, . . . , c) respectively. Then from Equation (3)

7

 ! = "
#
"
$
%! &, ' (!)&, '*

= +- . (! 1, 1 / +0 . (! 1, 2
/ +3 . (! 2, 1 / +4 . (!)2, 2*

 - = "
#
"
$
%- &, ' (-)&, '*

= +5 . (- 1, 1 / +- . (- 1, 2
/ +4 . (- 2, 1 / +3 . (-)2, 2*

.
.
.
.

%

 6 = "
#
"
$
%6 &, ' (6)&, '* , 7 = 1,� , 8

(

19: tree

7:; tree

8:; tree

Figure 2: Group convolution makes an ensemble of one-level trees. Each square in different

color corresponds to different feature in input feature vector x of 5 dimensions in Figure 1,

e.g., the red square corresponds to x1, etc.

we now have:

Sk =
∑
i

∑
j

Ik(i, j)W k(i, j)

=
∑
i

∑
j

I(i, j, k)×W (i, j, k)

=
∑
i

∑
j

xσt
s
×W (i, j, k) .

(4)

Let f(·) denote the ReLU function, T k can be computed as:

T k = f(Sk) =

 Sk Sk ≥ 0

0 Sk < 0
(5)

Then, from Equation (5) and Figure 2 we can see that each convolution filter

W k plus the subsequent ReLU resembles a one-level tree which outputs a linear165

combination of randomly selected features and then a decision based on it.

Hence, all convolution filters form an ensemble with c different one-level trees.

Actually, if we use 1× 1 depthwise group convolution where kH = kW = 1, each

base learner reduces to a decision stump which learns with a single feature. In

conclusion, the random permutation operation acts as resampling and group170

8

convolution is used for aggregation in the random subspace. These operations

in effect construct random spaces in the context of deep neural networks where

each base learner learns from one random subspace. Finally, outputs from those

random subspaces are combined for final classification through a combination

function and we use FC layers in our NRS.175

It is worth noting that decision forests based on random subspaces use

bootstrapping to generate feature subsets, in which there is chance that not all

features will be utilized [1]. Instead, every feature occurs for the same number

of times (exactly m times) in NRS and there is a natural guarantee that every

feature will be utilized in the final ensemble. Meanwhile, the injected randomness180

in NRS guarantees the difference of each random subspace.

Also, when we increase nMul, the number of channels c gets larger and we

get more group convolution filters. Hence, from Equation (4), more random

subspaces are integrated into our ensemble correspondingly. Furthermore, we

can increase nPer, dH and dW to explicitly increase the number of features185

utilized in each random subspace, thus increasing the capacity of each base

learner. Finally, by stacking more group convolution layers, we can make our

network deeper. In all our experiments, we set dH = dW for simplicity, denoted

as dH/dW in the rest of this paper. We conduct studies about nMul, nPer,

dH/dW as well as the number of group convolution layers in Sec 4.2.1 .190

4. Experimental Results

In the following section, We will empirically evaluate the effectiveness of

our NRS module. On one hand, for vectorized inputs, we compare our method

with other competitive forest methods on 34 machine learning classification

datasets as well as 1 multivariate regression dataset SARCOS [39] in Sec 4.2.195

Moreover, we also evaluate our NRS on the challenging document retrieval task

Microsoft 10K and Microsoft 30K [30] in Sec 4.3. On the other hand, NRS

can be integrated into CNNs for improving non-linear capability either at the

end of or across all layers in the network. We conduct experiments on CIFAR-

9

10 [19], CIFAR-100 [19], fine-grained visual categorization benchmarks and the200

large-scale ImageNet ILSVRC-12 [33] task with five widely used deep models:

MobileNetV2 [34], VGG [35], ResNet [10], Inception-v3 [37] and SENet [12].

Aside from 2D image recognition tasks, we also evaluate our NRS on the 3D

recognition task on ModelNet40 [42] in Sec 4.5 with two widely used baselines:

PointNet[28] and PoinetNet++[29]. All our experiments were conducted using205

PyTorch on Tesla M40 GPUs and we will make our code publicly available soon.

4.1. Overview

For machine learning classification and regression datasets, a brief description

of them including the train-test split, the number of categories and feature

dimensions is given in Table 1. For document retrieval datasets, we use the210

popular benchmark Microsoft 10K and Microsoft 30K [30] and a brief description

is given in Table 5.

For image datasets, CIFAR-10 [19] consists of 50,000 training images and

10,000 test images in 10 classes and CIFAR-100 [19] is just like the CIFAR-10,

except it has 100 classes containing 600 images for each class. For fine-grained215

categorization, we use three popular fine-grained benchmarks, i.e., CUB-200-2011

(Birds) [40], FGVC-aircraft (Aircraft) [25] and Stanford Cars (Cars) [18]. The

Birds dataset contains 11,788 images from 200 species, with large intra-class but

small inter-class variations. The Aircraft dataset includes 100 aircraft classes

and a total of 10,000 images with small background noise but higher inter-class220

similarity. The Cars dataset consists of 16,185 images from 196 categories. For

large-scale image classification, we adopt the ImageNet ILSVRC-12 dataset [33]

with 1,000 object categories. The dataset contains 1.28M images for training,

50K images for validation and 100K images for testing. As in [10], we report the

results on the validation set.225

For the 3D object recognition task, we use ModelNet40 [42] as the benchmark

dataset. It contains 40 classes of synthesized CAD models, where the training

set has 9,823 objects and the testing set has 2,464 objects. We randomly sample

1,024 points from the mesh faces as the point cloud representation for each

10

object.230

4.2. Machine learning datasets

We compare NRS with forest methods, e.g., decision forests based on random

subspaces (RSs) [11], random forests (RFs) [2] and GBDTs [7] in terms of

accuracy, training/testing time and model size. Furthermore, because we use

NRS with 2 FC layers on these machine learning datasets, we also compare it235

with multi-layer perceptrons (MLP). Our NRS has one more convolution layer

than MLP with 2 FC layers (denoted as MLP-2) and hence for fair comparisons

we compare with both MLP with 2 FC layers and MLP with 3 FC layers (denoted

as MLP-3). Notice that when using dropout [36] at the input layer in MLP

(denoted as MLP-D), it can be considered as an ensemble of neural networks240

trained from different subsets of features and we also compare with it.

Implementation details: We build NRS by 1 group convolution layer and

2 FC layers with batch normalization (BN) in all datasets. We construct MLP-2

and MLP-3 with BN in the same way. For MLP-D, we add dropout at the

input layer with p = 0.8 as is done in [36] and other settings remain the same245

as MLP-2 and MLP-3. We split 10% of the training data for validation to

determine the total epochs separately for each dataset. We train all networks

for 20∼50 epochs, using Adam [16] as optimizer and initializing learning rate to

1e-4. In Table 1, We set nPer to 1 and dH/dW to 3 for all these datasets for

simplicity. Considering feature dimensionalities among different datasets, we set250

different nMul for these datasets to ensure that the product of dimensionalities

and nMul is within a relative reasonable interval to save computing resources,

as shown in Table 1. For MLP-2, MLP-3, MLP-D, RSs, RFs and GBDTs, we

carefully tune the parameters through 5-fold cross-validation on the training set

and choose the best parameters for them in each dataset. We report the mean255

accuracy and standard deviation of 5 trials for all datasets except yeast, which

is evaluated by 10-fold cross-validation.

We choose the first 6 datasets satimage, GISETTE, MNIST, letter, USPS

and yeast to compare the performance of NRS and several MLP variants, namely

11

Table 1: Statistics of the machine learning datasets reported in the paper. The above 34

datasets are classfication datasets and SARCOS is a regression dataset.

Datasets
Statistics NRS setting

Category # Training # Testing # Dim nMul nPer dH/dW
satimage 6 4435 2000 36 20 1 3
GISETTE 2 6000 1000 5000 10 1 3
MNIST 10 60000 10000 780 16 1 3
letter 26 15000 5000 16 100 1 3
USPS 10 7291 2007 256 30 1 3
yeast 14 1500 917 8 20 1 3
dna 3 1400 1186 180 5 1 3
ijcnn1 2 35000 91701 22 10 1 3
pendigits 10 7494 3498 16 20 1 3
poker 10 25010 1000000 10 50 1 3
protein 3 14895 6621 357 2 1 3
segment 7 1617 693 19 30 1 3
SVHN 10 73257 26032 3072 1 1 3
CIFAR-10 10 50000 10000 3072 1 1 3
connect-4 3 47289 20268 126 5 1 3
SensIT 3 78823 19075 50 20 1 3
splice 2 1000 2175 60 10 1 3
a1a 2 1605 30956 123 10 1 3
a9a 2 32561 16281 123 10 1 3
aloi 1000 75600 32400 128 10 1 3
cod-rna 2 59535 271617 8 50 1 3
covtype 2 406708 174304 54 20 1 3
SUSY 2 3500000 1500000 18 20 1 3
australian 2 483 207 14 20 1 3
breast-cancer 2 478 205 10 50 1 3
fourclass 2 603 259 2 50 1 3
german 2 700 300 24 30 1 3
diabetes 2 537 231 8 50 1 3
heart 2 189 81 13 30 1 3
vehicle 4 592 254 18 30 1 3
sonar 2 145 63 60 10 1 3
glass 6 149 65 9 50 1 3
ionosphere 2 245 106 34 20 1 3
phishing 2 7738 3317 68 10 1 3
SARCOS - 44484 4449 21 40 1 3

MLP-2, MLP-3 and MLP-D, as shown in Figure 3. For model size, speed and260

accuracy comparisons, we choose the highest dimensional dataset and the 2

largest dataset among those 6 and we use some different experimental settings

for algorithms in Table 3 . It is hard to make an absolutely fair comparison

and for better trade-off between model size, speed and accuracy, we reduce the

number of trees for random subspaces (RSs), random forests (RFs) and GBDTs265

and the parameter nMul for NRS correspondingly. In Table 3, we use the same

settings as in Table 2 except that we set nMul to 1, 5 and 50 for NRS for

12

satimage GISETTE MNIST letter USPS yeast
Datasets

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)
91.52 90.01 90.37

82.05

98.26 98.08 98.1 97.3 98.57 98.17 98.24 97.46 97.85 97.23 97.36

39.09

95.71 95.13 95.19 93.65

62.81
60.57 60.31

30.19

Comparisons between NRS and different MLP models

NRS
MLP-2 (2 layers)
MLP-3 (3 layers)
MLP-D (feature dropout)

Figure 3: Comparison between NRS and several MLP variants on satimage, GISETTE, MNIST,

letter, USPS and yeast. We plot the average accuracy and standard deviation of 5 trails at

each bar.

GISETTE, MNIST and letter, respectively, for better model size, speed and

accuracy trade-off. Correspondingly, we reduce the number of trees from 500

to 100 for RSs, RFs and GBDTs for faster speed and smaller size. We also270

use 5-fold cross validation on the train set and choose the best value for other

parameters. We record total training time on the train set and inference time

on the test set in seconds.

Comparison among different algorithms: Figure 3 shows that MLP-3

achieves comparable performance with MLP-2 and our NRS achieves higher275

accuracy than both MLP-2 and MLP-3 on all the 6 datasets. Notice that MLP-3

has even more parameters than our NRS and it demonstrates that it is the

underlying neural random subspace method rather than the introduced more

free parameters to achieve improved performance. In contrast to MLP-D which

is inconsistent between training and inference by using a simple approximate280

average during inference, NRS matains the same structure during both stages

and meanwhile achieves consistently better performance. Notice that MLP-D

gets very poor results on satimage, letter, yeast and SARCOS which have low

feature dimensions (c.f. Table 1) and it indicates that using dropout at the

input layer is not suitable for low-dimensional inputs. Also, MLP-2 outperforms285

MLP-D owing to BN, as pointed out in [13].

13

Table 2: Accuracy(%) on machine learning benchmarks. We report the average accuracy and

standard deviation of 5 trails. NRS and MLP are the results of last epoch. •/◦ indicates

that our NRS is significantly better/worse than the corresponding method (pairwise t-tests at

95% significance level). ‘N/A’ means that no results were obtained after running out 250000

seconds (about 3 days). The last row is the results on the regression dataset SARCOS and *

denotes that [38] didn’t report the standard deviation.

Datasets NRS (ours) MLP NDF [17] RSs RFs GBDTs

satimage 91.52±0.31 90.01±0.31• 89.71±0.31• 90.97±0.08• 91.01±0.35• 89.26±0.04•

GISETTE 98.26±0.05 98.08±0.12• 97.24±0.29• 95.72±0.12• 96.98±0.13• 97.18±0.04•

MNIST 98.57±0.03 98.17±0.07• 97.29±0.12• 96.83±0.03• 96.96±0.08• 96.56±0.07•

letter 97.85±0.10 97.23±0.17• 97.08±0.17• 96.94±0.11• 96.14±0.10• 94.66±0.01•

USPS 95.71±0.17 95.13±0.26• 94.99±0.24• 92.81±0.04• 93.80±0.19• 92.83±0.03•

yeast 62.81±2.61 60.57±3.45 60.31±3.37• 58.40±2.90 62.81±3.47 60.71±2.35

dna 94.91±0.22 92.56±0.44• 93.12±0.20• 94.60±0.11• 93.64±0.27• 95.53±0.00◦

ijcnn1 98.34±0.11 98.55±0.16◦ 98.51±0.19 97.15±0.06• 96.76±0.09• 96.17±0.05•

pendigits 98.03±0.19 97.11±0.18• 97.55±0.12• 96.79±0.11• 96.46±0.06• 96.13±0.01•

poker 79.28±1.29 70.13±1.60• 68.43±0.41• 74.29±0.30• 64.97±0.26• 88.13±0.23◦

protein 69.88±0.31 67.65±0.19• 69.47±0.17 68.42±0.20• 68.75±0.25• 68.93±0.01•

segment 97.26±0.27 96.45±0.60• 95.04±0.35• 97.34±0.20 94.29±0.20• 96.97±0.01•

SVHN 82.16±0.29 78.07±3.12• 78.96±0.54• 68.06±0.17• 70.33±0.13• 71.74±0.20•

CIAFR-10 56.11±0.21 46.42±2.28• 54.04±0.41• 47.06±0.35• 48.99±0.07• 54.12±0.01•

connect-4 85.70±0.15 84.95±0.20• 86.32±0.11◦ 83.52±0.09• 82.81±0.11• 80.34±0.01•

SensIT 80.39±0.22 80.03±0.63 70.30±0.73• 80.13±0.03• 79.89±0.06• 80.12±0.01•

splice 93.25±0.50 88.43±0.81• 91.16±0.22• 97.03±0.14◦ 96.68±0.15◦ 96.78±0.01◦

a1a 84.33±0.08 81.86±0.22• 83.18±0.26• 82.13±0.06• 83.06±0.10• 83.61±0.00•

a9a 85.06±0.04 82.54±0.13• 84.84±0.05• 83.52±0.03• 84.77±0.05• 85.36±0.03◦

aloi 95.76±0.09 95.10±0.08• N/A 95.61±0.05• 95.86±0.03◦ N/A

cod-rna 96.71±0.04 96.69±0.05 96.48±0.04• 95.94±0.06• 96.65±0.01• 96.85±0.01◦

covtype 96.08±0.06 94.88±0.13• 93.62±0.15• 97.30±0.03◦ 95.98±0.02• 95.73±0.01•

SUSY 80.47±0.01 80.44±0.01• 79.92±0.01• 79.89±0.02• 80.16±0.01• 80.35±0.00•

australian 87.44±0.75 86.09±0.89• 86.67±1.13 86.09±0.56• 86.86±0.36 87.92±0.00

breast-cancer 97.46±0.57 96.88±0.79 96.10±0.31• 95.51±0.20• 96.20±0.20• 95.61±0.00•

fourclass 99.54±0.45 99.08±0.67 99.61±0.10 97.14±1.70• 95.67±0.15• 98.46±0.00•

german 76.60±0.53 75.20±0.72• 74.00±0.47• 75.33±0.47• 71.40±0.39• 77.33±0.00◦

diabetes 74.89±0.61 74.11±1.76 75.32±1.02 71.86±0.61• 75.84±0.32◦ 71.86±0.00•

heart 84.20±1.21 83.46±2.15 81.98±0.99• 76.79±0.49• 80.99±0.99• 74.07±0.00•

vehicle 87.48±1.07 83.54±1.68• 85.14±0.91• 78.58±0.19• 72.52±0.91• 76.38±0.00•

sonar 92.06±1.42 88.89±1.42• 86.67±2.15• 79.68±0.63• 74.29±1.19• 85.71±0.00•

glass 88.62±1.57 85.23±2.30• 86.46±1.15• 81.85±1.15• 78.46±0.00• 86.15±0.00•

ionosphere 94.53±1.62 94.91±0.96 91.32±1.10• 94.15±0.38 95.28±0.00 94.34±0.00

phishing 96.90±0.14 96.77±0.12 96.19±0.13• 97.05±0.02◦ 94.01±0.05• 96.64±0.01•

win/tie/lose 24/9/1 27/5/1 28/3/3 28/3/3 24/3/6

NRS (ours) MLP ANT [38] RSs RFs GBDTs

SARCOS 1.23±0.05 2.36±0.16 1.38* 2.17±0.02 2.37±0.01 1.44±0.01

14

Table 2 shows that NRS achieves the highest accuracy for the most of times

in all classification datasets and the lowest mean square error (MSE) in the

regression dataset compared with MLP, RSs, RFs, GBDTs, NDF [17] and

ANT [38]. As can be seen, our NRS method significantly outperforms MLP,290

NDF, RSs, RFs and GBDTs, since the win/tie/lose counts show that our NRS

wins for most times and seldom loses and it demonstrate the effectiveness of

NRS across datasets with various dimensionalities and sizes. Moreover, it is

worth noting that although our method introduces randomness due to random

permutations, it achieves a low standard deviation and is very robust, even more295

stable than MLP.

Table 3: Model size (MB), total inference / training time (s) and accuracy (%) comparison.

We report the average results of 5 trails.

Method Model size
Time

AccuracyInference Training

GISETTE

NRS (ours) 35 0.17 62.51 97.82
RSs 6.6 1.87 57.83 95.60
RFs 3.6 0.12 0.67 96.70
ThunderGBM RFs 0.6 2.77 24.96 93.60
GBDTs 0.2 0.01 181.14 96.70
ThunderGBM GBDTs 0.6 2.04 18.78 91.79

MNIST

NRS (ours) 9.6 0.17 194.45 98.42
RSs 115 5.22 196.12 96.65
RFs 137 0.31 2.09 96.85
ThunderGBM RFs 6.1 0.76 19.43 93.16
GBDTs 1.7 0.42 2877.78 94.87
ThunderGBM GBDTs 6.1 0.99 23.66 93.78

letter

NRS (ours) 3.4 0.19 43.49 97.78
Random Subspaces 151 5.03 4.95 96.50
Random Forests 106 0.39 0.38 96.12
ThunderGBM RFs 15.9 0.35 16.03 93.29
GBDTs 4.5 0.27 50.88 92.04
ThunderGBM GBDTs 15.9 0.33 15.20 92.99

In Tabel 3 we compare the speed and size of NRS with RSs, RFs and GBDTs.

Note that although we reduce the number of trees for RFs from 500 to 100 on

MNIST, the accuracy drops slightly (from 96.96% to 96.85%) while the model

size is reduced by 5 times (from 680M to 137M). Table 3 shows that although300

GPU-based ThunderGBM can greatly reduce the training time, especially for

GBDTs, the inference process seems to have no benefit. Compared to these

15

forest methods, NRS achieves the highest accuracy and the fastest inference

speed on MNIST and letter, and also the smallest model size on letter. NRS

achieves the highest accuracy on GISETTE but the model size is larger than305

other forest methods, indicating that NRS may be unfriendly to those datasets

with non-sparse high dimensionalities in terms of model size. Note that although

we use smaller nMul values in Table 3 than the experiments reported in Table 2,

NRS’s accuracy in Table 3 are still similar to those in Table 2 (e.g., 97.85 in

Table 2 vs. 97.78 in Table 3 on letter). Effect of the sensitivity of NRS’s310

hyperparameters such as nMul will be studied in Sec 4.2.1.

4.2.1. Hyperparameters studies

We choose the 4 largest datasets among the first 6 machine learning datasets,

i.e., GISETTE, MNIST, letter and USPS to study the sensitivity of hyperparame-

ters in our method NRS. Hyperparameters studies include three parts: expansion315

rate, number of channels per group, expansion height/width and number of

group convolution layers.

Expansion rate. As is known in RSs, RFs and GBDTs, we can increase

the number of decision trees to boost performance. Similarly, we can increase

nMul in NRS to increase the number of trees in our ensemble and we conduct320

studies about nMul. Here we keep other settings the same as before for all

experiments. The results in Figure 4a show that when nMul grows, the average

accuracy increases and the standard deviation becomes smaller. It indicates that

as nMul grows, more trees (random subspaces) are integrated into our model

and the performance becomes better and our model gets more robust.325

Number of channels per group. We can also increase nPer to increase

the number of features utilized in each random subspace. Here we set nMul to 1

for all experiments and other settings remain the same. The results in Figure 4b

show that when nPer grows, the test accuracy will increase at first and then

it will become stable or slightly decrease. It means that as nPer increases, the330

capacity of each random subspace and hence the whole model will also increase,

thus the accuracy will also increase at first. However, the model is more likely

16

0 2 4 6 8 10
nMul

97.4
97.6
97.8
98.0
98.2

Te
st

 A
cc

ur
ac

y
(%

)

GISETTE
0 4 8 12 16

nMul

98.2
98.3
98.4
98.5
98.6

Te
st

 A
cc

ur
ac

y
(%

)

MNIST

0 20 40 60 80 100
nMul

95.0
95.5
96.0
96.5
97.0
97.5
98.0

Te
st

 A
cc

ur
ac

y
(%

)

letter
0 5 10 15 20 25 30

nMul

94.8
95.0
95.2
95.4
95.6
95.8

Te
st

 A
cc

ur
ac

y
(%

)

USPS

(a) Classification results using different expansion rates nMul.

0 5 10 15 20
nPer

97.4
97.6
97.8
98.0
98.2

Te
st

 A
cc

ur
ac

y
(%

)

GISETTE

0 2 4 6 8 10
nPer

98.35
98.40
98.45
98.50
98.55

Te
st

 A
cc

ur
ac

y
(%

)

MNIST
0 4 8 12 16

nPer
94.8

95.2

95.6

96.0

96.4

Te
st

 A
cc

ur
ac

y
(%

)

letter
0 2 4 6 8

nPer

94.7
94.8
94.9
95.0
95.1
95.2

Te
st

 A
cc

ur
ac

y
(%

)

USPS

(b) Classification results using different number of channels per group nPer.

1 2 3 4 5
dH/dW

60
65
70
75
80
85
90
95

100

Te
st

 A
cc

ur
ac

y
(%

)

GISETTE

1 2 3 4 5
dH/dW

97.9
98.0
98.1
98.2
98.3
98.4
98.5

Te
st

 A
cc

ur
ac

y
(%

)

MNIST
1 2 3 4 5

dH/dW

97.6
97.7
97.8
97.9
98.0

Te
st

 A
cc

ur
ac

y
(%

)

letter
1 2 3 4 5

dH/dW
94.6
94.8
95.0
95.2
95.4
95.6
95.8
96.0

Te
st

 A
cc

ur
ac

y
(%

)

USPS

(c) Classification results using different expansion size dH/dW .

Figure 4: Hyperparameters studies of nMul, nPer and dH/dW on GISETTE, MNIST, letter

and USPS (from left to right in each sub figure). We plot the average accuracy and standard

deviation of 5 trails at each point.

to overfit with large nPer and model capacity and the performance will not

continue to improve. Also, it indicates that we can get better results in Table 2

by choosing appropriate nPer.335

Expansion height/width. We set nMul to 1, 5, 50 and 20 for GISETTE,

MNIST, letter and USPS and we set nPer to 1 for all these datasets. The

results in Figure 4c show that when dH/dW is very small, i.e., equals 1, the

result is bad, especially for GISETTE. When dH/dW grows, the result becomes

better and will not continue to improve when it grows beyond 3. Therefore, 2 or340

3 is a good choice for dH/dW in terms of accuracy and efficiency and we use

dH/dW = 3 in all our experiments in this paper for simplicity.

Number of group convolution layers. We also study the effect of more

group convolution layers and we compare the results of NRS with 1 group

17

convolution layer and 2 group convolution layers. Experimental results show345

that both settings achieve comparable results on these 4 datasets while more

group convolution layers brings more computing overhead. Hence, we use NRS

with 1 group convolution layer in all our experiments in this paper.

4.2.2. Ablation Study

Notice that the random permutation operation is a linear operation and350

can be equivalently implemented by a FC layer with sparse weight matrix

and we conduct ablation studies on this special FC layer. This FC layer has

weight matrix WFC ∈ Rd×md, which maps input x ∈ Rd to y ∈ Rmd, where

m = dH × dW × nMul defined as before. Then we have yj = xi, where

i = σ
bj/mc
j mod m. Correspondingly, the weight matrix is highly sparse with WFC

ij = 1355

(j = 1, · · · ,md) and other weights are set to 0, i.e., each output unit is connected

to one particular input unit with weight 1. Hence, our random permutation

operation can be considered as a FC layer with two special properties: (i)

sparse initialization: the initial weight is highly sparse and specified by the

generated permutation. (ii) freezed weight: the weight matrix of this layer360

is fixed during training. To further validate the effectiveness of our random

permutation operation in NRS, we implement the random permutation by a FC

layer and ablate its two special properties.

We choose 1 large dataset MNIST, 1 medium dataset satimage and 2 small

datasets german and heart. Table 4 shows that the row (d) achieves superior365

performance over other strategies consistently on all the 4 datasets and it shows

that sparse initialization and freezed weight properties in the random permutation

has its effectiveness. Also, it is worth noting that the row (c) achieves higher

accuracy than both (a) and (b) on the 2 small datasets german and heart, which

indicates that the over-parameterization in the FC layer makes the model more370

likely to overfit and the weight freezing strategy is beneficial, especially on small

datasets. Moreover, contrary to the implementation by a FC layer, the random

permutation operation has no parameters and small FLOPs and hence it is

much more efficient than a FC layer. In conclusion, the random permutation

18

operation in NRS achieves both higher accuracy and efficiency than a FC layer375

implementation.

Table 4: Classification results evaluated on satimage, GISETTE, MNIST and letter. Starting

from our baseline, we gradually add sparse initialization and freezed weight scheme in the FC

layer (equivalently implementation of random permutation) in our NRS for ablation studies.

Scheme Accuracy

sparse init. freezed weight MNIST satimage german heart

(a) × × 98.21±0.10 91.01±0.42 72.20±0.78 80.99±0.60
(b) X × 98.18±0.08 91.06±0.16 71.87±1.05 81.73±1.44
(c) × X 98.03±0.05 91.08±0.49 74.60±1.06 82.96±0.92
(d) X X 98.57±0.03 91.52±0.31 76.60±0.53 84.20±1.21

4.3. Document Retrieval Datasets

Aside from the machine learning datasets used before, we apply NRS into

the challenging document retrieval task, which also has vectorized inputs.

Table 5: The characteristics of document retrieval datasets used in our experiments: number

of queries, documents, relevance levels, features and year of release.

Queries Doc. Rel. Feat. Year

Microsoft 10K 10000 1200k {0, 1, 2, 3, 4} 136 2010

Microsoft 30K 31531 3771k {0, 1, 2, 3, 4} 136 2010

Implementation details: In our experiments, we used two widely used380

benchmark datasets, Microsoft 10K and Microsoft 30K [30]. Each query-

document pair is represented with a feature vector. The groundtruth is a

multiple-level relevance judgment, which takes five values from 0 (irrelevant) to

4 (perfectly relevant). The basic statistics of each dataset are listed in Table 5,

which includes the number of queries, the number of documents, the relevance385

level of ground truth, the number of features and the year of release. The metrics

we adopted is nDCG [14] and we report the results with different cutoff values

1, 3, 5, 10 and 20 and 50 to show the performance of each method at different

positions.

19

In our experiments, 4 typical listwise ranking methods ListNet [4], Approx-390

NDCG [31], RankCosine [32], WassRank [43] as well as 1 pariwise ranking

method RankNet [3] are used as our baselines. Following prior work [4, 43], a

simple 1-layer feed-forward neural network (a dropout rate of 0.01) with the

Sigmoid activation function is used as the ranking function. For NRS, we set

nMul to 2, nPer to 1 and dH/dW to 3 in all our experiments in this section.395

Following [43], we used the L2 regularization with a decaying rate of 1e-3 and

the Adam [16] optimizer with a learning rate of 1e-3. In particular, each dataset

has been randomly partitioned into five equal sized subsets. In each fold, three

subsets are used as the training data, the remaining two subsets are used as the

validation data and the testing data, respectively. We use the training data to400

learn the ranking model, use the validation data to select the hyper parameters

based on nDCG@10, and use the testing data for evaluation. Finally, we report

the ranking performance based on the averaged evaluation scores across five

folds with 100 epochs.

Comparison among different algorithms: As can be seen from Table 6405

and Table 7. NRS achieves consistent improvements under various baseline

ranking models on both Microsoft 10K and Microsoft 30K. The experimental

results demonstrate the superior performance of NRS compared with the baseline

methods on document retrieval tasks.

Table 6: Performance of different models on Microsoft 10K. The best result of each setting is

indicated in bold. N denotes our method.

Method
Microsoft 10K

NDCG@1 NDCG@3 NDCG@5 NDCG@10 NDCG@20 NDCG@50

RankNet [3] 0.3061 0.3270 0.3414 0.3699 0.4006 0.4498

RankNet+NRS N 0.3704 0.3701 0.3783 0.4019 0.4306 0.4745

ListNet [4] 0.3482 0.3514 0.3596 0.3805 0.4093 0.4553

ListNet+NRS N 0.3881 0.3849 0.3924 0.4140 0.4421 0.4850

ApxNDCG [31] 0.1328 0.1507 0.1662 0.1961 0.2369 0.3171

ApxNDCG+NRS N 0.3988 0.3906 0.3972 0.4180 0.4449 0.4852

RankCosine [32] 0.3798 0.3874 0.3971 0.4174 0.4435 0.4839

RankCosine+NRS N 0.3990 0.3891 0.3959 0.4177 0.4464 0.4882

WassRank [43] 0.2552 0.2610 0.2715 0.1947 0.3268 0.3877

WassRank+NRS N 0.3917 0.3861 0.3926 0.4138 0.4401 0.4815

20

Table 7: Performance of different models on Microsoft 30K. The best result of each setting is

indicated in bold. N denotes our method.

Method
Microsoft 30K

NDCG@1 NDCG@3 NDCG@5 NDCG@10 NDCG@20 NDCG@50

RankNet [3] 0.2997 0.3211 0.3392 0.3692 0.4008 0.4506

RankNet+NRS N 0.3628 0.3652 0.3767 0.4002 0.4281 0.4733

ListNet [4] 0.3927 0.3904 0.3975 0.4190 0.4439 0.4833

ListNet+NRS N 0.4029 0.3950 0.4023 0.4235 0.4499 0.4912

ApxNDCG [31] 0.1178 0.1405 0.1585 0.1918 0.2340 0.3152

ApxNDCG+NRS N 0.4067 0.3969 0.4025 0.4235 0.4495 0.4904

RankCosine [32] 0.3864 0.3913 0.4012 0.4220 0.4466 0.4861

RankCosine+NRS N 0.4118 0.4012 0.4084 0.4287 0.4546 0.4947

WassRank [43] 0.4041 0.3924 0.3983 0.4181 0.4442 0.4861

WassRank+NRS N 0.4244 0.4122 0.4160 0.4333 0.4557 0.4922

4.4. Computer Vision Datasets410

We then move from vectorized inputs to image data and we evaluate NRS

in CNN architectures for both 2D image recognition tasks in this section and

3D recognition tasks in the next section. For image recognition tasks, NRS is

used after GAP to non-linearly transform the GAP output vector at the end of

the network and we evaluate it on both fine-grained visual categorization tasks415

in Sec 4.4.1 and the large-scale ImageNet ILSVRC-12 in Sec 4.4.2. Moreover,

we demonstrate that NRS can further be installed across all layers in CNNs

(e.g., SENet [12])and we evaluate it on CIFAR-10, CIFAR-100 and ImageNet

ILSVRC-12 in Sec 4.4.3.

4.4.1. Fine-grained Visual Categorization420

We then evaluate NRS in CNN architectures for image recognition. NRS

is used after GAP to non-linearly transform the GAP output vector at the

end of the network. First, this section evaluates NRS with ResNet-50 [10] and

VGG-16 [35] on the Birds, Aircraft and Cars datasets. We compare our method

with baseline models and one representative higher-order pooling method.425

Implementation details: For fair comparisons, we follow [22] for exper-

imental setting and evaluation protocal. We crop 448 × 448 patches as input

21

Table 8: Comparison of representation dimensions, parameters, FLOPs, inference time per

image (ms) and accuracy (%) on fine-grained benchmarks. The inference time is recorded with

batch size of 1 on CPU and GPU. N denotes our method.

Method #Dim #Params #FLOPs
Inference Time Accuracy

CPU GPU Birds Aircraft Cars

ResNet-50 2K 23.92M 16.53G 540.48 28.16 84.0 88.6 89.2

ResNet-50+NRS N 4K 26.70M 16.53G 541.57 28.38 86.7 92.8 93.4

VGG-16 0.5K 15.34M 61.44G 644.18 28.24 78.7 82.7 83.7

B-CNN [22] 262K 67.14M 61.75G 856.46 31.90 84.0 84.1 90.6

VGG-16+NRS N 3K 17.11M 61.44G 645.19 28.58 84.4 89.6 91.5

images for all datasets. For baseline models, we replace the 1000-way softmax

layer of ResNet-50 pretrained on ImageNet ILSVRC-12 [33] with a k-way softmax

layer for finetuing, where k is the number of classes in the fine-grained dataset.430

We replace all FC layers of pretrained VGG-16 with a GAP layer plus a k-way

softmax layer to fit 448×448 input. We fine tune all the networks using SGD with

batch size of 32, a momentum of 0.9 and a weight decay of 0.0001. We train the

networks for 65 epochs, initializing the learning rate to 0.002 which is devided by

10 every 20 epochs. For NRS models, we replace the 1000-way softmax layer of435

pretrained ResNet-50 with our NRS module, specifically, random permutations,

1 group convolution layer and a k-way softmax layer (k is number of classes),

which is called ResNet-50+NRS. Here we set nMul, nPer and dH/dW to 2,

64 and 3, respectively. Moreover, we also use the pretrained VGG-16 as our

backbone network to construct VGG-16+NRS in a similar way, except that we440

set nMul to 6 considering different feature dimensionalities. We fine tune our

models under the same setting as the baseline models. These models integrating

NRS are trained end-to-end as the baseline models.

Comparison among different algorithms: Table 8 shows that our NRS

method achieves significant improvements compared to baseline models, with445

negligible increase in parameters, FLOPs and real running time. It is worth

mentioning that VGG-16+NRS achieves 7.2%, 8.3% and 9.3% relative improve-

22

ment over baseline models on Birds, Aircraft and Cars, respectively. Besides,

our NRS performs consistently better than B-CNN [22] on all the 3 datasets

under the VGG-16 architecture despite using much fewer parameters, FLOPs450

and real running time. Furthermore, the learning curves in Figure 5 shows that

NRS can greatly accelerate the convergence and achieves better results both

in accuracy and convergence speed than baseline methods (the red curves vs.

the green curves). It indicates that NRS can effectively learn non-linear feature

representations and achieves good results on fine-grained recognition.455

0 10 20 30 40 50 60

Epoch

0.00

0.03

0.06

0.09

0.12

0.15

0.18

C
ro

s
s
 E

n
tr

o
p
y
 L

o
s
s ResNet-50+NRS train

ResNet-50+NRS test

ResNet-50 train

ResNet-50 test

0 10 20 30 40 50 60

Epoch

0

20

40

60

80

100

A
c
c
u
ra

c
y
 (

%
)

ResNet-50+NRS train

ResNet-50+NRS test

ResNet-50 train

ResNet-50 test

(a) Learning curves of Aircrafts

0 10 20 30 40 50 60

Epoch

0.00

0.03

0.06

0.09

0.12

0.15

0.18

C
ro

s
s
 E

n
tr

o
p
y
 L

o
s
s ResNet-50+NRS train

ResNet-50+NRS test

ResNet-50 train

ResNet-50 test

0 10 20 30 40 50 60

Epoch

0

20

40

60

80

100

A
c
c
u
ra

c
y
 (

%
)

ResNet-50+NRS train

ResNet-50+NRS test

ResNet-50 train

ResNet-50 test

(b) Learning curves of Cars

Figure 5: Loss and accuracy learning curves. Both ResNet-50 and ResNet-50+NFL are trained

under the same setting.

4.4.2. ImageNet ILSVRC-12

We then evaluate NRS on the large-scale ImageNet ILSVRC-12 task and also

NRS is used after GAP at the end of the network.

23

Table 9: Error rate (%, 1-crop prediction) comparison on ImageNet ILSVRC-12 under different

architectures. N denotes our method.

Method #Params #FLOPs Top-1 / Top-5 error

Original ResNet-501 25.56M 4.14G 23.85 / 7.13

ResNet-50+NRS N 29.98M 4.14G 23.12 / 6.62

Original ResNet-181 11.69M 1.82G 30.24 / 10.92

ResNet-18+NRS N 13.82M 1.83G 28.32 / 9.77

Original MobileNetV21 3.50M 0.33G 28.12 / 9.71

MobileNetV2+NRS N 3.88M 0.33G 27.42 / 9.39

1 https://pytorch.org/docs/master/torchvision/models.html

Implementation details: We train a ResNet-50+NRS model from scratch

on ImageNet, which is described in Sec 4.4.1 except that the last layer is a460

1000-way softmax layer. The images are resized with shorter side=256, then

a 224× 224 crop is randomly sampled from the resized image with horizontal

flip and mean-std normalization. Then, the preprocessed images are fed into

ResNet-50+NRS model. We train ResNet-50+NRS using SGD with batch size

of 256, a momentum of 0.9 and a weight decay of 1e-4 for 100 epochs. The465

initial learning rate starts from 0.1, and is devided by 10 every 30 epochs. A

ResNet-18+NRS model is constructed and trained in a similar way, except that

we set nMul and nPer to 4 and 32, respectively. For MobileNetV2 [34], we set

nMul and nPer to 1 and 32, respectively. We train the network using SGD

with batch size of 256, a momentum of 0.9 and a weight decay of 4e-5 for 150470

epochs. We initialize the learning rate to 0.05 and use cosine learning rate decay.

Comparison with baseline methods: Table 9 shows that NRS produces

0.70%, 1.92% and 0.73% top-1 error (1-crop) less than the original MobileNetV2,

ResNet-18 and ResNet-50 model, respectively, with negligible increase in pa-

rameters and FLOPs. It indicates that our NRS method is also effective for475

large-scale recognition, achieving better performance consistently under various

architectures.

24

https://pytorch.org/docs/master/torchvision/models.html

4.4.3. NRS across all layers

Motivated by the Squeeze-and-Excitation (SE) method [12], we use NRS

to replace all the SE modules. We conduct experiments on CIFAR-10 [19],480

CIFAR-100 [19] and the ImageNet ILSVRC-12 task. We compare our method

with baseline methods and SENet under various architectures.

FC

GAP

ReLU

FC

Sigmoid

Residual

Scale

Random	
permutations

GAP

Depthwise	
Conv

Sigmoid

Residual

Scale

Residual

+ +

𝐻×𝑊×𝐶

1×1×𝐶

+
ResNet	module

SE-ResNet	module SE-ResNet+NRS	module

1×1×
𝐶
𝑟

1×1×
𝐶
𝑟

1×1×𝐶

1×1×𝐶

𝐻×𝑊×𝐶
𝐻×𝑊×𝐶

𝐻×𝑊×𝐶

𝐻×𝑊×𝐶

1×1×𝐶

3×3×𝐶

1×1×𝐶

1×1×𝐶

𝑿

𝑿)
𝑿)

𝑿)

𝑿 𝑿

𝐻×𝑊×𝐶

Figure 6: The schema of the original Residual module (left), the SE-ResNet module (middle)

and the SE-ResNet+NRS module (right).

Implementation details: We replace the 2 FC layers in each SE block with

NRS, specifically, random permutations and 1 group convolution layer followed

by sigmoid activation, which is called SENet+NRS, as shown in Figure 6. In485

all our experiments in this section, we set nMul and nPer to 1 and dH/dW

to 3 for SENet+NRS and the reduction ratio is set to 16 for SENet as is done

in [12]. For CIFAR-10 and CIFAR-100, we use ResNet-20 [10], ResNet-50 [10]

and Inception-v3 [37] as the backbone network. Mean subtraction, horizontal

random flip and 32× 32 random crops after padding 4 pixels on each side were490

performed as data preprocessing and augmentation. We train all networks from

scratch using SGD with 0.9 momentum, a weight decay of 5e-4 and batch size of

128 for 350 epochs. The initial learning rate starts from 0.1 using cosine learning

25

Table 10: Comparison of params, FLOPs and accuracy (%) on CIFAR-10 and CIFAR-100

under various architectures. N denotes our method.

Method
CIFAR-10 CIFAR-100

#Params #FLOPs Acc. #Params #FLOPs Acc.

original ResNet-20 0.27M 41.62M 92.75 0.28M 41.63M 69.33

SE-ResNet-20 0.27M 41.71M 93.28 0.28M 41.72M 70.35

SE-ResNet-20+NRS N 0.28M 41.71M 93.73 0.28M 41.72M 70.38

original ResNet-50 23.52M 1311.59M 95.78 23.71M 1311.96M 80.41

SE-ResNet-50 26.04M 1318.42M 95.59 26.22M 1318.79M 81.57

SE-ResNet-50+NRS N 23.67M 1313.56M 96.05 23.86M 1313.93M 81.48

original Inception-v3 22.13M 3411.04M 94.83 22.32M 3411.41M 79.62

SE-Inception-v3 23.79M 3416.04M 95.60 23.97M 3416.41M 80.44

SE-Inception-v3+NRS N 22.23M 3412.85M 95.67 22.42M 3413.22M 80.54

Table 11: Comparison of parameters, FLOPs, inference time per image (ms) and error rate

(%, 1-crop prediction) comparison on ImageNet ILSVRC-12 under SENet architectures. The

inference time is recorded with batch size of 1 on both CPU and GPU. N denotes our method.

Method #Params#FLOPs
Inference Time Top-1 / Top-5 error

CPU GPU reported in [12] our results

Original ResNet-501 25.56M 4.14G 465.39 21.07 24.80 / 7.48 23.85 / 7.13

SE-ResNet-50 28.07M 4.15G 581.32 35.82 23.29 / 6.62 22.68 / 6.30

SE-ResNet-50+NRS N 25.71M 4.14G 523.97 32.80 - / - 22.89 / 6.57

1 https://pytorch.org/docs/master/torchvision/models.html

rate decay. For ImageNet, we follow the same setting as in [12]. The images

are resized with shorter side=256, then a 224× 224 crop is randomly sampled495

from the resized imgae with horizontal flip and mean-std normalization. We use

SGD with a momentum of 0.9, a weight decay of 1e-4, and batch size of 256 and

the initial learning rate is set to 0.15 and decreased by a factor of 10 every 30

epochs. Models are trained for 100 epochs from scratch.

Comparison with baseline methods: Table 10 shows that under ResNet-500

20, SENet+NRS achieves the highest accuracy on CIFAR-10 and CIFAR-100

with negligible increase in parameters and FLOPs. For ResNet-50 and Inception-

v3 backbone, SENet+NRS achieves comparable or better accuracy than original

26

https://pytorch.org/docs/master/torchvision/models.html

SENet despite using fewer parameters and FLOPs, further confirming the effec-

tiveness of NRS.505

Table 11 shows that under ResNet-50, SENet+NRS achieves fewer parameters,

FLOPs and real running time than original SENet while maintaining comparable

accuracy. SENet+NRS also achieves higher accuracy than the baseline method

with negligible increase in parameters and FLOPs. It indicates that NRS can be

integrated not only at the end of a CNN as shown in the previous sections but510

also across all layers in a CNN to learn non-linear mapping effectively.

4.5. 3D Recognition

We then move from 2D image recognition to 3D recognition in this section.

Common types of 3D objects/scenes include point clouds, polygonal meshes,

volumetric grids and multiple/depth images (Figure. 7). A point cloud is a515

set of points in space sampled from object surfaces, usually collected by 3D

sensors such as LiDAR. Other representation types include polygon meshes,

volumetric grids and multiple view images. Among these 3D representations, we

Figure 7: Various Representations of 3D Object

are particularly interested to utilize point clouds for 3D understanding tasks,

because of two reasons. First, a point cloud is the closest representation to raw520

collected sensor data. It encodes full information from sensors, without any

27

quantization loss (in volumetric representations) or projection loss (in multi-view

representations). Second, a point cloud is quite neat in form, just a collection of

points, which avoids the combinatorial irregularities and complexities of meshes

(e.g. choices of polygons, polygon sizes and connectivities), and thus is easier to525

learn from. The point cloud is also free from the necessity to choose resolution

as in volumetric representations, or projection viewpoint in multi-view images.

For point cloud based 3D object recognition tasks, NRS is used after the

global feature encoders and we evaluate its effectiveness on ModelNet40 [42]

under PointNet [28] and PointNet++ [29]. We compare baselines enhanced with530

NRS modules and baseline methods with the vanilla versions.

Implementation details: For both baselines, we train them using Adam[16]

optimizer with L2 regularisation[24]. The initial learning rate is set to be 1e-3,

and it is decayed by a factor of 0.7 for every 20 epochs. We train the model for

200 epochs. We use a batch size of 24 and the momentum in batch normalisation535

is 0.9. We represent each object with 1024 points, for PointNet++ we also utilise

the surface normal of each point. For the NRS modules, we set nMul, nPer,

and dH/dW to 1, 32 and 3, respectively and the training protocols remain the

same as baseline models. During training process, we randomly drop, rescale

and translate the point cloud for the augmentation.540

Table 12: Comparison of parameters, FLOPs, inference time per point cloud objects (ms) and

accuracy (%) comparison on ModelNet40 under PointNet and PointNet++ architectures. The

inference time is recorded with batch size of 1 on both CPU and GPU. N denotes our method.

Method #Params #FLOPs
Inference Time

Accuracy
CPU GPU

PointNet [28] 3.47M 0.45G 27.06 7.18 89.2

PointNet+NRS N 3.77M 0.45G 28.69 7.25 90.3

PointNet++ [29] 1.48M 0.87G 234.16 248.03 91.9

PointNet+++NRS N 1.78M 0.87G 235.98 248.97 92.3

Comparison with baseline methods: Table 12 shows that both Point-

Net+NRS and PointNet+++NRS achieve higher accuracy than the correspond-

28

ing baseline methods with negligible increase in parameters, FLOPs and inference

time. We prove that NRS can be integrated within the CNN models that working

not only on 2D images, but also 3D objects efficiently and effectively.545

5. Conclusions

We proposed a deep learning based random subspace method NRS. We

introduced the random subspace method into deep learning with random permu-

tations acting as resampling and group convolutions acting as aggregation, where

each base learner learns from a random subset of features. NRS can handle550

vectorized inputs well and can be installed into CNNs seamlessly both at the

end of the network and across all layers in the network for both 2D and 3D

recognition tasks. On one hand, it enriches random subspaces with the capability

of end-to-end representation learning as well as pervasive deep learning software

and hardware support. On the other hand, it effectively learns non-linear feature555

representations in CNNs with negligible increase in parameters, FLOPs and

real running time. We have successfully confirmed the effectiveness of NRS on

standard machine learning datasets, popular CIFAR datasets, challenging fine-

grained benchmarks, the large-scale ImageNet dataset as well as 3D recognition

dataset ModelNet40. In the future, we will continue exploration on combining560

deep learning and traditional ensemble learning algorithms to better understand

the relation between different approaches. Furthermore, we will extend NRS to

handle datasets with high dimensional sparse features, as well as small datasets.

References

[1] Breiman, L.: Bagging predictors. Machine learning 24(2), 123–140 (2001)565

[2] Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)

[3] Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N.,

Hullender, G.: Learning to rank using gradient descent. In: The Interna-

tional Conference on Machine Learning. pp. 89–96 (2005)

29

[4] Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: From570

pairwise approach to listwise approach. In: The International Conference

on Machine Learning. pp. 129–136 (2007)

[5] Cimpoi, M., Maji, S., Vedaldi, A.: Deep filter banks for texture recognition

and description. In: The IEEE Conference on Computer Vision and Pattern

Recognition. pp. 3828–3836 (2015)575

[6] Feng, J., Yu, Y., Zhou, Z.H.: Multi-layered gradient boosting decision

trees. In: Advances in neural information processing systems. pp. 3551–3561

(2018)

[7] Friedman, J.H.: Greedy function approximation: a gradient boosting ma-

chine. The Annals of Statistics 29(5), 1189–1232 (2001)580

[8] Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies

for accurate object detection and semantic segmentation. In: The IEEE

Conference on Computer Vision and Pattern Recognition. pp. 580–587

(2014)

[9] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang,585

X., Wang, G., Cai, J., Chen, T.: Recent advances in convolutional neural

networks. Pattern Recognition 77, 354–377 (2018)

[10] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image

recognition. In: The IEEE Conference on Computer Vision and Pattern

Recognition. pp. 770–778 (2016)590

[11] Ho, T.K.: The random subspace method for constructing decision forests.

IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8),

832–844 (1998)

[12] Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation

networks. In: The IEEE Conference on Computer Vision and Pattern595

Recognition. pp. 7132–7141 (2018)

30

[13] Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift. In: The International Conference

on Learning Representations. pp. 1–11 (2015)

[14] Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR tech-600

niques. ACM Transactions on Information Systems 20(4), 422–446 (2002)

[15] Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors

into a compact image representation. In: The IEEE Conference on Computer

Vision and Pattern Recognition. pp. 3304–3311 (2010)

[16] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In:605

The International Conference on Learning Representations. pp. 1–9 (2015)

[17] Kontschieder, P., Fiterau, M., Criminisi, A., Buló, S.R.: Deep neural decision

forests. In: The IEEE International Conference on Computer Vision. pp.

1467–1475 (2015)

[18] Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for610

fine-grained categorization. In: ICCV Workshop on 3D Representation and

Recognition. pp. 554–561 (2013)

[19] Krizhevsky, A., Hinton, G.E.: Learning multiple layers of features from tiny

images. Tech. rep., University of Toronto (2009)

[20] Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with615

deep convolutional neural networks. In: Advances in neural information

processing systems. pp. 1097–1105 (2012)

[21] Li, P., Xie, J., Wang, Q., Gao, Z.: Towards faster training of global

covariance pooling networks by iterative matrix square root normalization.

In: The IEEE Conference on Computer Vision and Pattern Recognition.620

pp. 947–955 (2018)

[22] Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-

grained visual recognition. In: The IEEE International Conference on

Computer Vision. pp. 1449–1457 (2015)

31

[23] Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for625

semantic segmentation. In: The IEEE Conference on Computer Vision and

Pattern Recognition. pp. 3431–3440 (2015)

[24] Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: The

International Conference on Learning Representations. pp. 1–9 (2019)

[25] Maji, S., Rahtu, E., Kannala, J., Blaschko, M., Vedaldi, A.: Fine-grained630

visual classification of aircraft. arXiv preprint arXiv:1306.5151 (2013)

[26] Murthy, S.K., Kasif, S., Salzberg, S.: Induction of oblique decision trees. In:

The International Joint Conference on Artificial Intelligence. pp. 1002–1007

(1993)

[27] Perronnin, F., Sanchez, J., Mensink, T.: Improving the Fisher kernel for635

large-scale image classification. In: The European Conference on Computer

Vision, LNCS, vol. 6314, pp. 143–156. Springer (2010)

[28] Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point

sets for 3d classification and segmentation. In: The IEEE Conference on

Computer Vision and Pattern Recognition. pp. 652–660 (2017)640

[29] Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical

feature learning on point sets in a metric space. In: Advances in neural

information processing systems. pp. 5099–5108 (2017)

[30] Qin, T., Liu, T.: Introducing LETOR 4.0 datasets. CoRR abs/1306.2597

(2013)645

[31] Qin, T., Liu, T.Y., Li, H.: Query-level loss functions for information retrieval.

Information Processing and Management 13(4), 838–855 (2010)

[32] Qin, T., Zhang, X.D., Tsai, M.F., Wang, D.S., Liu, T.Y., Li, H.: Query-

level loss functions for information retrieval. Information Processing and

Management 2(44), 838–855 (2008)650

32

[33] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,

Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Im-

ageNet large scale visual recognition challenge. International Journal of

Computer Vision 115(3), 211–252 (2015)

[34] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mo-655

bileNetV2: Inverted residuals and linear bottlenecks. In: The IEEE Confer-

ence on Computer Vision and Pattern Recognition. pp. 4510–4520 (2018)

[35] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-

scale image recognition. In: The International Conference on Learning

Representations. pp. 1–14 (2015)660

[36] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov,

R.: Dropout: A simple way to prevent neural networks from overfitting. In:

The International Conference on Machine Learning. pp. 1929–1959 (2014)

[37] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the

inception architecture for computer vision. In: The IEEE Conference on665

Computer Vision and Pattern Recognition. pp. 2818–2826 (2016)

[38] Tanno, R., Arulkumaran, K., Alexander, D.C., Criminisi, A., Nori, A.:

Adaptive neural trees. In: The International Conference on Machine Learn-

ing. pp. 6166–6175 (2019)

[39] Vijayakumar, S., Schaal, S.: An O(n) algorithm for incremental real time670

learning in high dimensional space. In: The International Conference on

Machine Learning. pp. 288–293 (2000)

[40] Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-

UCSD Birds-200-2011 Dataset. Tech. Rep. CNS-TR-2011-001, California

Institute of Technology (2011)675

[41] Wen, Z., Shi, J., He, B., Li, Q., Chen, J.: ThunderGBM: Fast GB-

DTs and random forests on GPUs. Website (2019), https://github.com/

Xtra-Computing/thundergbm

33

https://github.com/Xtra-Computing/thundergbm
https://github.com/Xtra-Computing/thundergbm
https://github.com/Xtra-Computing/thundergbm

[42] Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D

ShapeNets: A deep representation for volumetric shapes. In: The IEEE680

Conference on Computer Vision and Pattern Recognition. pp. 1912–1920

(2015)

[43] Yu, H.T., Jatowt, A., Joho, H., Jose, J., Yang, X., Chen, L.: Wassrank:

Listwise document ranking using optimal transport theory. In: The ACM

International Conference on Web Search and Data Mining. pp. 24–32 (2019)685

[44] Zhang, X., Jia, Y.: A linear discriminant analysis framework based on

random subspace for face recognition. Pattern Recognition 40, 2585–2591

(2007)

[45] Zhou, Z.H., Feng, J.: Deep forest: Towards an alternative to deep neural

networks. In: The International Joint Conference on Artificial Intelligence.690

pp. 3553–3559 (2017)

34

	Introduction
	Related Work
	Forest Learning
	Non-linear representations in CNNs

	Neural Random Subspace
	Network architecture
	Neural random subspace via CNN implementation

	Experimental Results
	Overview
	Machine learning datasets
	Hyperparameters studies
	Ablation Study

	Document Retrieval Datasets
	Computer Vision Datasets
	Fine-grained Visual Categorization
	ImageNet ILSVRC-12
	NRS across all layers

	3D Recognition

	Conclusions

