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Abstract Many real-world datasets suffer from the unavoidable issue of missing values, and therefore classification with

missing data has to be carefully handled since inadequate treatment of missing values will cause large errors. In this paper,

we propose a random subspace sampling (RSS) method by sampling missing items from the corresponding feature histogram

distributions in random subspaces, which is effective and efficient at different levels of missing data. Unlike most established

approaches, RSS does not train on fixed imputed datasets. Instead, we design a dynamic training strategy where the filled

values change dynamically by resampling during training. Moreover, thanks to the sampling strategy, we design an ensemble

testing strategy where we combine the results of multiple runs of a single model, which is more efficient and resource-saving

than previous ensemble methods. Finally, we combine these two strategies with the random subspace method, which makes

our estimations more robust and accurate. The effectiveness of the proposed method is well validated by experimental studies.

Keywords missing data, random subspace, neural networks, ensemble learning

1 Introduction

Classification is one of the most important tasks in

machine learning and data mining. Many algorithms

have been proposed to deal with classification problems,

but the majority of them require complete data and

cannot be directly applied to data with missing values.

Even for algorithms that can cope with incomplete data,

missing values can often result in large classification

errors[1]. Unfortunately, missing values are a common

issue in numerous real-world applications. For example,

45% of the datasets in the UCI machine learning repos-

itory1, which is one of the most popular benchmark

databases, contain missing values.

The simplest approach for dealing with missing val-

ues is to ignore those instances with missing attributes.

Commonly referred to as the removal approaches, such

techniques are clearly suboptimal when a large portion

of the data has missing attributes, and of course infea-

sible, if each instance is missing at least one or more

features. A more pragmatic approach commonly used to

accommodate missing data is to use imputation methods

to substitute missing values with plausible values. For

example, mean imputation replaces all missing values in

a feature with the average of existing values in the same

feature. Imputation can provide complete data which

can then be used by any classification algorithm. Single-

imputation methods such as mean imputation are often

efficient but they are not accurate enough. In contrast,

multiple-imputation methods such as [2] create multiple

imputed datasets to reflect better the uncertainty in in-

complete data. They are usually more accurate but are
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computationally expensive[3]. It remains a challenge to

determine how to combine classification algorithms and

imputation in a way that is both effective and efficient.

With the rapid development of ensemble learning,

there have also been ensemble methods for classification

with missing data[4]. For example, Krause and Polikar[5]

trained an ensemble of base classifiers with random sub-

sets of features to classify with missing data. These

methods build multiple classifiers in the training process

and then applicable classifiers are selected to classify

each incomplete instance during inference. However, ex-

isting ensemble methods for classification with missing

data often cannot work well on datasets with numerous

missing values[6]. More importantly, they cannot guar-

antee to classify all incomplete instances. Hence, how

to develop an ensemble method that is effective even

when the data contains many missing values is still a

challenge.

In this paper, we take a step towards designing

an efficient and effective method at different levels of

missing data, by combining the advantages of multiple-

imputation and ensemble learning. We propose a Ran-

dom Subspace Sampling (RSS) method for classification

with missing data, which first constructs different ran-

dom subspaces and corresponding base learners. Then,

for each missing item in each random subspace, we di-

rectly sample from the corresponding feature histogram

distribution to fill in. During the training stage, we de-

sign a dynamic training strategy where we resample and

probabilisitically change the filled value for each missing

item. During the inference stage, thanks to our sam-

pling strategy, we design an ensemble testing strategy

where we combine the results of multiple runs of a single

model, which is efficient and effective. In contrast to

multiple-imputation methods which need iterative steps

to impute, ours is more efficient by sampling directly.

Moreover, the dynamic training strategy distinguishes

our method from most established approaches that train

on fixed data after imputation.

Experimental results validate the effectiveness of

RSS. We achieve superior performance on six incom-

plete datasets with inherent missing values and nine

complete datasets at four levels of artificially introduced

missing values. Furthermore, we carefully study the im-

pact of each component in RSS through ablation studies

and the sensitivity of hyperparameters.

2 Related Work

This section discusses related work, including tra-

ditional and ensemble methods for classification with

missing data.

2.1 Traditional Methods for Missing Data

There are four major approaches to addressing clas-

sification with missing data: the removal approach, the

model-based approach, the machine learning approach

and the imputation approach[1]. The removal approach

simply deletes all instances containing missing values,

which is limited to datasets with only a few missing

values in the training data and no missing values during

inference. The model-based approach generates a data

distribution model from input data. One of the most

used approaches in this category is the mixture models

trained with the expectation-maximization (EM) algo-

rithm. Zoubin and Michael[7] trained Gaussian Mixture

Models (GMM) on incomplete data using the EM algo-

rithm. Ghahramani and Jordan[8] proposed Bayesian

techniques for estimating class probabilities from in-

complete data using neural networks. Although this

approach can classify both complete and incomplete

instances, it requires making assumptions about the

joint distribution of all features in the model[1]. The ma-

chine learning approach makes classifiers that are able

to directly classify incomplete datasets, e.g., C4.5[9].
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However, this approach usually suffers from limited clas-

sification accuracies.

The most used approach to classification with in-

complete data is to use imputation methods to trans-

form incomplete data into complete data before build-

ing a classifier in the training process or classifying

a new incomplete instance in the application process.

This approach has the advantage that the imputed com-

plete data can be used by any classification algorithm.

Single-imputation methods such as mean and KNN

imputation[10] provide a simple missing data imputation

but under-represent the variability in the data[11]. Zhao

and Udell[12] developed an approximate EM algorithm

to estimate copula parameters from incomplete mixed

data. Instead of filling in a single value for each missing

one, multiple-imputation methods[2, 13, 14, 15] impute

the missing values for H times to produce H complete

datasets using an appropriate model that incorporates

random variation. Multiple-imputation methods have

become more and more popular because they reflect

better uncertainty and often yield better performance.

However, they are computationally very expensive. De-

spite sharing the similarity that our method also uses

multiple plausible values for each missing item to reflect

better uncertainty, our method differs from multiple-

imputation methods in at least three aspects: 1) We

directly sample from the estimated histogram distribu-

tion for missing values, which is far more efficient than

the iterative steps in multiple-imputation methods. (2)

By using the ensemble testing strategy, we can ensem-

ble multiple predictions without the need to generate

multiple datasets and train multiple models. 3) We

adopt a novel dynamic training strategy where the im-

puted values dynamically change during training and it

distinguishes our method from previous approaches.

2.2 Ensemble Methods for Missing Data

Ensemble learning is a powerful learning paradigm

which constructs a set of base classifiers for classifica-

tion and it has become the choice for many industrial

applications and data science projects[16]. The random

subspace method (RSM), which was originally proposed

by Ho[17], is the pillar of many ensemble methods, e.g.,

random forests[18]. In RSM, classifiers are trained us-

ing different random subsets of the features, allowing

classifiers to err in different sub-domains of the feature

space.

Ensemble methods, especially RSM, have also been

used for classification with missing data. One of the

earliest studies using ensembles for classification ap-

peared in [19], where four neural networks are built

to address classification with a thyroid database con-

sisting of two incomplete features. Stefan and Robi[5]

trained an ensemble of base classifiers with random sub-

sets of features to classify with missing data. In [20],

the incomplete dataset is divided into a group of com-

plete sub-datasets, which are then used as the training

sets for neural networks. In these approaches, when an

incomplete instance needs to be classified, only those

classifiers trained with those features that are available

in the instance are used to classify the instance. Al-

though these methods can cope with incomplete data

to some extent, they usually do not obtain good accu-

racy when datasets contain a large number of missing

values. The underlying reason is that the complete sub-

datasets often only have a small number of instances for

base classifiers to train on when the datasets include a

large number of missing values. Moreover, they cannot

guarantee to classify all incomplete instances, especially

when data contains many missing values. In contrast,

our method differs as follows: 1) We develop our method

from NRS[21], which implements RSM in the context of
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neural networks and enables our method to enjoy the

benefits of both ensemble learning and representation

learning. 2) All instances are used in the training of

each base classifier, which ensures that we make full use

of all information. 3) Our method can classify all in-

complete instances well even when the dataset contains

many missing values.

3 Random Subspace Sampling

In this section, we propose the random subspace

sampling (RSS) method. Recently, Cao et al.[21] pro-

posed a neural random subspace (NRS) method, which

implements the random subspace idea in the context

of neural networks and has achieved impressive results

on various tasks. In this paper, we develop our method

based on NRS. First, we introduce the notation used

in this paper. We then revisit the NRS method and

introduce our RSS method.

Let D = {(x(i), y(i))|i = 1, · · · , n} denote a dataset,

where each x(i) ∈ Rd represents an input instance with

its associated label y(i) ∈ {1, · · · ,K}, n is the number

of instances, d is the number of features and K is the

number of classes. Each instance x(i) is represented by a

d-dimensional feature vector (x
(i)
1 , x

(i)
2 , · · · , x(i)

d ), where

an x
(i)
j is either a valid value of the j-th feature, or is

the value “?”, which means that its value is unknown

(a missing value).

3.1 NRS Recap

NRS has three hyper-parameters, namely, the depth

expansion rate nMul, the height/width expansion rate

dH/dW and the number of channels per group in the

group convolution nPer. For a d-dimensional feature

vector x, NRS first generates q = dH × dW × nMul

randomly permuted vectors from x, each of which is

d-dimensional. Then, these q feature vectors are ar-

ranged into an order-3 tensor X ∈ RdH×dW×C , where

C = nMul × d. X includes a set of 2D feature maps

X = {Xc|c = 1, · · · , C}. Each feature map Xc consists

of g = dH × dW features, which are randomly selected

from the original features, that is, it is a random sub-

space. Hence, C feature maps correspond to C random

subspaces. Then, a depthwise group convolution plus

the subsequent ReLU non-linearity is acted upon X

to get S = (S1, · · · , SC), where each Sc represents the

output for the c-th random subspace Xc:

Sc = f

∑
i

∑
j

Xc(i, j)W c(i, j)

 , (1)

where f(·) denotes the ReLU function and each W c

(c = 1, · · · , C) denotes the weights of the c-th depthwise

convolution filter. Finally, a fully connected layer plus

a softmax layer are used to combine all base classifiers’

outputs {Sc|c = 1, · · · , C} for classification:

Yk =

C∑
c=1

Scw
FC(c, k) , (2)

where wFC denotes the weight matrix (of size C ×K)

of the fully connected layer and Yk denotes the output

for the k-th class (k = 1, · · · ,K). We set dH/dW = 3

and nPer = 1 as done in [21] in this paper.

In short, NRS implements the random subspace idea

in neural networks both efficiently and effectively. Hence,

we develop our algorithm on the basis of it and will fur-

ther study the impact of the selected NRS architecture.

3.2 The Proposed Method

Now, we introduce our random subspace sampling

algorithm, which mainly contains three steps:

1) Estimating Histogram Distribution. First, we esti-

mate the histogram distribution individually at each

feature dimension, which will be introduced next.

2) Constructing Random Subspaces. Then, we construct

random subspaces following NRS.
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3) Sampling for Missing Features. To handle the miss-

ing data problem, we sample from the corresponding

histogram distribution for each missing item individ-

ually in each random subspace and substitute it with

the sampled value.

Histogram Distribution. We calculate the histogram

distribution for each feature individually in the train

set and we disregard all missing values at this feature

dimension when counting. Each feature xj can be either

a categorical or a continuous variable and histogram can

handle both situations well. Next we consider the con-

tinuous situation and assume that xj ∈ [a, b], so pj(x)

is non-zero only within [a, b]. The histogram is to parti-

tion the set [a, b] into several bins and uses the count of

features falling into the bin as a density estimate. When

we have M bins, this yields a partition:

B1 = [a, a+
b− a

M
), · · · , BM = [a+

(M − 1)(b− a)

M
, b] .

Then, for a given point x ∈ Bl, the density estimate

from the histogram will be

p̂j(x) =
M

n(b− a)

n∑
i=1

I(x
(i)
j ∈ Bl) ,

where I(·) is the indicator function. Note that a missing

value does not belong to any bins. Then, for any given

point x, the probability of x ∈ Bl is

P (x ∈ Bl) =

∫
Bl

p̂j(x)dx =
1

n

n∑
i=1

I(x
(i)
j ∈ Bl) .

We use the average value of the endpoints in Bl as

a representative, hence we define the histogram distri-

bution of the j-th feature (j = 1, 2, · · · , d) as

P hist
j (x = a+

(2l − 1)(b− a)

2M
) =

1

n

n∑
i=1

I(x
(i)
j ∈ Bl) ,

(3)

where l = 1, 2, · · · ,M .

Proposition 1. P hist
j is a valid probability distribution.

Proof.
∫
x
phistj (x)dx = 1

n

∑n
i=1

∑M
l=1 I(x

(i)
j ∈ Bl) =

1 and obviously we have P hist
j (x) ≥ 0.

We use the histogram distribution P hist
j (x) ((3)) to

sample the j-th feature if it is missing in the subsequent

training and inference processes. Histogram visualiza-

tions on several datasets used in this paper will be shown

in Subsection 4.1.1.

Random Subspace Sampling. Then, we construct ran-

dom subspaces following the steps in NRS[21], as shown

in Fig. 1. We have C random subspaces X1, · · · ,XC in

total, where each Xc (c = 1, · · · , C) contains g features

(C and g are defined as before). Then for each feature

xj ∈ Xc, if it is missing then we sample from the cor-

responding histogram distribution P hist
j and substitute

the missing item with the sampled value. Notice that

one feature will appear multiple times in all random

subspaces and we independently resample for each miss-

ing item to impute every time it appears (thus can have

different sampled values). The pseudo code of RSS is

shown in Algorithm 1.

During training, we design a dynamic training strat-

egy where we resample all missing items at the start of

each epoch. In other words, we are changing filled values

for missing items dynamically, which distinguishes our

algorithm from other imputation-based methods.

During inference, notice that our algorithm will gen-

erate different outputs if we run it multiple times for

the same test instance, which is due to the random

sampling method for missing values. More specifically,

we resample the missing values and run the model for

H times and each time we generate Y = (Y1, · · · , YK)

according to (2), as shown in Algorithm 1. However,

this is not a disadvantage but a benefit, because we can

run the single model multiple times and ensemble these

predictions. Compared to other ensemble techniques

which require training multiple models to ensemble,
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Fig.1. RSS architecture. The input feature vector is x = (x1, · · · , x5), where x2 and x5 are missing and marked with diagonal lines. For
better illustration, we set nMul to 1 and hence C = 5 and X = {X1, · · · ,X5}.

e.g., multiple-imputation methods, ours uses a single

model by running it multiple times, which is far more

resource-efficient. We will further study the impact of

our training and inference strategy in ablation studies.

Notice that the training and inference strategies

above are not limited to NRS and can also be applied to

other architectures, e.g., multi-layer perceptrons (MLP).

In ablation studies, we show that 1) the two strategies

are effective in both NRS and MLP, 2) the inherent

random subspace method is crucial in our RSS since it

produces larger improvements than in MLP and conse-

quently the highest accuracies when combined with the

above two strategies.

3.3 Analysis about Feature Interactions

Notice that when filling in the missing values using

histogram random sampling, we are only considering

individual features without considering the interactions

between features. Most of the time the randomly gener-

ated values are not applicable to the sample and now

we discuss how our method inherently utilizes feature

interactions and filter out inappropriate values. Here

we use the example in Fig. 1 and specifically, we use the

last subspace XC for illustration. As shown in Fig. 1,

XC includes 1 missing feature x5 and 3 known features

x1, x3 and x4. Hence, according to (1), we have:

SC = f
(
WC

1 x3 +WC
2 x1 +WC

3 x5 +WC
4 x4

)
,

where we abbreviate WC(i, j) as WC
2i+j in this case.

Without loss of generality, we assume WC
3 > 0. We can

notice that SC is activated after the ReLU function f(·)

if and only if

x5 > − 1

WC
3

(WC
1 x3 +WC

2 x1 +WC
4 x4) ,

where the “>” becomes “<” if WC
3 < 0. In other words,

we inherently utilize interactions between missing fea-

ture x5 and known features x1, x3 and x4 by a linear

combination and the non-linearity in f .

We update these weights WC during training and

inappropriate fill-in values x5 will deactivate SC , i.e.,

SC = 0. With more such random subspaces, adjustable

weights and non-linearities, we can further explore the

interactions between features. During inference, we

can filter out incorrect fill-in values through multiple

sampling, thanks to such feature interactions.
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Algorithm 1 Random Subspace Sampling

Input: training dataset Dtr = {(x(i), y(i))|i = 1, · · · , n}, test dataset Dte = {(x(i)|i = n+ 1, · · · , n+m}, network
f(·; θ), total number of bins M , total training epochs T , test ensemble size H;

Output: predicted labels Ŷte = {ŷ(i)|i = n+ 1, · · · , n+m} on the test dataset;
1: Estimate histogram distributions P hist

j (j = 1, · · · , d) on Dtr using M bins in (3);
2: ▷ Training process:
3: for t = 1, · · · , T do
4: for i = 1, · · · , n do
5: Concatenate and reshape random permutations of x(i) and get 2D feature maps {Xc|c = 1, · · · , C};
6: for c = 1, · · · , C do

7: if x
(i)
j ∈ Xc and x

(i)
j ==“?” then

8: Sample from P hist
j and substitute the missing position in Xc with the sampled value;

9: end if
10: end for
11: Train the network f(·; θ) as normal;
12: end for
13: end for
14: ▷ Inference process:
15: for i = n+ 1, · · · , n+m do
16: for h = 1, · · · , H do

17: Sample for missing items as before and get the network output Y (i,h) = (Y
(i,h)
1 , · · · , Y (i,h)

K ) = f(x(i); θ)
using (2), where the superscript (i, h) denotes the output for the i-th instance in the h-th iteration;

18: end for
19: Ensemble predictions for the i-th instance: ŷ(i) = argmaxk

∑H
h=1 Y

(i,h)
k ;

20: end for
21: return Ŷte = {ŷ(i)|i = n, · · · , n+m}.

3.4 Analysis about Time Complexity

Now we analyze the time complexity of our method

as well as other comparison methods. As mentioned

before, the dataset contains n training instances and m

test instances, where each instance contains d features.

We train all networks for T epochs. Notice that the

total training time ttrain contains two parts, i.e., the

pre-processing time tpre and the network training time

tnet. Also, we denote the total test time as ttest.

Mean Imputation. Now the imputation time for each

missing feature is O(n) (calculating mean value) and the

total pre-processing time is tpre = O(nd). The network

training time is tnet = O(nT ) and ttrain = tpre + tnet =

O(nd+ nT ). The test time is ttest = O(m).

KNN Imputation. For the KNN imputation, the

imputation time for each instance is O(nd) (calculating

distance for one instance) and the total pre-processing

time is tpre = O(n2d) (calculating distance matrix).

Hence, the total training time is ttrain = O(n2d+ nT ).

During the inference stage, we need to calculate the

distance from the entire training set for each instance,

hence the total test time is ttest = O(mnd).

MICE Imputation. Each feature is modeled as a

regression function of other features. Hence for each

feature, the pre-processing time is O(n2d) (solving the

regression) and the total time is tpre = O(n2d2). Hence,

the total training time is ttrain = O(n2d2+nT ). During

the inference stage, each feature is calculated using other

features, hence the test time is O(md2).

RSS. We only need to calculate the histogram distri-

bution for each feature during the pre-processing, hence

tpre = O(nd). We need to sample each missing fea-

ture during the training and hence our training cost is

tnet = O(nT + dnT ). Hence, the total training time
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is ttrain = O(ndT ). We also need sampling during the

inference stage and the test time is ttest = O(md).

We will also empirically compare the running speed

of each method in Subsection 4.6.

4 Experimental Results

In this section, we experimentally investigate the

proposed method. First, we introduce the experimental

settings and then we evaluate our method on 15 datasets.

Then, we conduct ablation studies to investigate the

impact of each component in RSS and also conduct

experiments to study the sensitivity of hyperparameters

in RSS. Finally, we carefully compare the performance

of RSS with various combinations of different classifiers

and imputation methods and also the running speed of

RSS with other imputation methods.

4.1 Experimental Settings

4.1.1 Datasets

Fifteen datasets, summarized in Table 1, are used in

the experiments. These are taken from the UCI repos-

itory of Machine Learning Databases2. Each dataset

is presented in one row in Table 1, including the num-

ber of instances, the number of features, the number

of classes and the proportion of missing values (PMV).

The first six datasets suffer from missing values in a

“natural” way. In these datasets, we do not know any

information related to the randomness of missing val-

ues, so we assume that missing values in these datasets

are distributed in a missing at random (MAR) way[22].

Fig. 2 shows the histogram distributions of the first five

features on chess, letter, pendigits and segment. As

can be seen, different features have different distribu-

tions (may be Gaussian, Uniform, bimodal, etc.) and

histograms are a suitable way to describe these various

distributions.

Table 1. Dataset Statistics and Hyper-parameter Settings

Datasets
Statistics Settings

#Instances #Dim #Classes PMV (%) nMul
Mammographics 961 5 2 3.37 100
Hepatitis 155 19 2 5.67 100
Kidney-disease 400 24 2 10.54 50
Horse 368 22 2 23.8 50
Pima 768 8 2 12.24 100
Bands 539 19 2 5.38 100
Dna 3186 180 3 0 5
Protein 24387 357 3 0 2
Chess-krkp 3196 36 2 0 20
Chess-krkopt 28056 6 18 0 50
Letter 20000 16 10 0 100
HTRU2 17898 9 2 0 100
Yeast 1484 8 14 0 100
Segment 2310 19 7 0 50
Pendigits 10992 10 16 0 50

Note: ‘#Instances’ denotes the number of instances in the
dataset, ‘#Dim’ denotes the number of feature dimensions,
‘#Classes’ denotes the number of classes.

In order to test the performance of the proposed

method with datasets containing different levels of miss-

ing values, the missing completely at random (MCAR)

mechanism is utilized to introduce missing values into

the last nine complete datasets. Four different levels

of missing values: 20%, 40%, 60% and 70% are used

to introduce missing values into the datasets. For each

complete dataset and each level of the four missing

levels, we randomly separate the set into two subsets,

one with 70% examples for training, and the other one

with 30% examples for testing. We repeat the random

partition 10 times and report the average results.

Considering the small number of samples in the first

six incomplete datasets, we run 10 times in each parti-

tion and therefore 100 (=10×10) results are obtained

for each of these datasets. For the last seven complete

datasets, we report both the full test accuracy (where

we use the complete test set) and missing test accuracy

(where we use artificially created missing test set as

in training). We only report missing test accuracy in

ablation studies and hyperparameter studies.

2http://archive.ics.uci.edu/ml Oct. 2022
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig.2. Visualization of histogram distributions. We plot the first five features on five complete datasets and we plot the histogram
distribution of each feature. Blue represents the first feature dimension, red represents the second feature dimension, orange represents
the third feature dimension, and so on. (a)–(e) Feature 1–5 histogram distribution on HTRU2. (f)–(j) Feature 1–5 histogram distribution
on letter. (k)–(o) Feature 1–5 histogram distribution on pendigits. (p)–(t) Feature 1–5 histogram distribution on segment.

4.1.2 Implementation Details

The proposed RSS algorithm is compared with the

following methods: 1) Mean: missing features are re-

placed with mean values of those features computed

for all training samples; 2) KNN: missing features are

replaced with mean values of those features from the

k nearest training samples (we set k = 5); 3) MICE[2]:

iterative filling of missing attributes using Multiple-

Imputation by Chained Equation (MICE), where several

imputations are drawn from the conditional distribution

of data by Markov chain Monte Carlo techniques. We

train five different models on five imputed datasets gen-

erated by MICE and combine their results. 4) GMM[7]:

missing features are replaced with values sampled from

Gaussian Mixture Models (GMM) estimated from incom-

plete data using the EM algorithm. 5) Softimpute[23]:

matrix completion by iterative soft thresholding of SVD

decompositions; 6) AFASMC[24]: active feature acqui-

sition with supervised matrix completion. Since the

last two matrix completion methods treat the training

matrix as a whole to complete based on low-rank as-

sumptions and cannot be applied when a test instance
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contains missing values, we don’t include them in Table 2

and Table 4.

We use NRS as our classifier for all methods above

in our experiments. Following the settings in [21], we

build NRS by one depthwise convolution layer and two

FC layers with batch normalization (BN)[25]. We set

nPer = 1, dH/dW = 3 and only set different nMul

for these datasets following the suggestions in [21], as

shown in Table 1. For RSS, we have two extra hyper-

parameters and we set the number of bins M = 10 and

the test ensemble size H = 20 in all experiments unless

otherwise specified. We split 10% of the training data

for validation to determine the total epochs separately

for each dataset. All methods are trained under the

same setting: NRS are trained for 20–50 epochs, using

Adam[26] as the optimizer and initializing the learning

rate to 1e-4.

To further validate the choice of the NRS architec-

ture and confirm the effectiveness of our method, we also

compare RSS with other classification algorithms, e.g.,

logistic regression, MLP and random forests[18] using

KNN, Mean and MICE imputation in Subsection 4.5.

All our experiments were conducted using PyTorch on

Tesla M40 GPUs and we will make our code publicly

available.

4.2 Results on Classification Performance

Table 2 shows the average and standard deviation

of classification accuracy on the first six incomplete

datasets containing natural missing values. Table 3 and

Table 4 show the full test accuracy and missing test

accuracy on the last seven complete datasets with four

levels of missing values, respectively. To compare the

classification performance, paired t-tests at 95% con-

fidence interval are used to compare the classification

achieved by RSS with the other methods in both tables.

Table 2 shows that RSS achieves significantly better

classification accuracy (under paired t-tests) than the

other methods on kidney, horse, pima and bands, where

the first three have relatively high levels of missing val-

ues. However, there is no significant difference between

RSS and the other methods on mammographics and

hepatitis, where the level of missing values is low.

Table 3 and Table 4 show that RSS achieves the

highest accuracy for most of the times in both missing

test and full test situations with the datasets contain-

ing artificial missing values. As can be seen, our RSS

method significantly outperforms other methods, since

the win/tie/lose counts show that our RSS wins for most

times and seldom loses. It demonstrates the effectiveness

of RSS across datasets with various dimensionalities and

sizes, and under different levels of missing values. Also,

RSS has a larger edge over other methods along with

the increase of the portion of missing values, which indi-

cates that our method is effective to cope with datasets

containing numerous missing values.

It is clear from the results that RSS is generally bet-

ter than simple-imputation methods (Mean and KNN),

matrix completion methods (Softimpute and AFASMC)

and model-based method (GMM), which shows that our

method reflects better uncertainty and gets more reli-

able estimations than these methods. Furthermore, RSS

also gets better performance than multiple-imputation

method (MICE), which indicates that the inherent ran-

dom subspace method together with the dynamic train-

ing and ensemble testing strategy is effective. We will

further study the effectiveness of each component in

RSS through ablation studies and the sensitivity of hy-

perparameters in hyperparameter studies in the next

two subsections. The accuracy curves of different meth-

ods on different datasets during training are shown in

Fig. 3. We can see that our RSS converges well and the

injected randomness during training does not affect the

convergence stability of RSS.
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Table 2. Accuracy (%) on the First Six Incomplete Datasets

Methods Mammo. Hepatits Kidney Horse Pima Bands Win/Tie/Lose
RSS 82.2±1.7 82.3±5.1 97.3±1.4 82.3±3.5 75.7±2.3 70.4±2.7
Mean 81.6±1.9 82.1±5.6 96.9±1.5 80.3±3.2• 74.3±2.8• 68.4±3.2• 3/3/0
KNN[10] 81.9±1.4 82.0±4.9 95.6±1.7• 80.6±3.5• 75.6±2.6 68.3±3.0• 3/3/0
MICE[2] 82.4±1.7 81.9±5.1 95.9±1.4• 80.8±3.6• 75.6±2.6 68.5±3.1• 3/3/0
GMM[7] 82.1±1.7 81.6±6.0 96.1±1.8• 78.9±3.5• 74.1±2.5• 68.0±3.3• 4/2/0

Note: We report the average accuracy and standard deviation of 100 trials. •/◦ indicates that our RSS is significantly better/worse
than the corresponding method (pairwise t-tests at 95% significance level).

Table 3. Full Test Accuracy (%) on the Last Seven Complete Datasets

Methods PMV Chess-krkp Chess-krkopt Letter HTRU2 Yeast Segment Pendigts Win/Tie/Lose
RSS

20%

98.8±0.4 67.2±0.6 95.5±0.3 97.9±0.2 59.6±1.9 95.8±0.8 99.3±0.1
Mean 98.5±0.6 60.4±0.6• 94.3±0.4• 97.8±0.2 58.0±1.8• 95.1±1.3• 99.1±0.2• 5/2/0

KNN[10] 98.6±0.5• 57.7±0.8• 95.4±0.3 97.9±0.1 58.6±1.6 96.6±0.8◦ 99.2±0.1• 3/3/1

MICE[2] 99.2±0.4◦ 63.6±0.7• 94.6±0.4• 97.8±0.2 59.4±1.4 96.1±0.7 99.3±0.1 2/4/1

Softimpute[23] 99.2±0.4◦ 62.5±0.7• 94.8±0.4• 97.9±0.2 59.7±1.7 95.8±0.6 99.3±0.1 2/4/1

AFASMC[24] 99.1±0.2◦ 62.8±0.8• 93.9±1.2• 97.9±0.1 58.2±2.0• 96.4±1.0◦ 98.9±0.1• 4/1/2
RSS

40%

97.4±0.6 56.3±0.6 91.7±0.6 97.5±0.2 57.5±3.0 93.9±1.1 98.9±0.2
Mean 96.8±0.6• 46.0±1.0• 88.6±0.4• 97.5±0.2 56.2±2.6• 91.9±1.1• 98.6±0.2• 6/1/0

KNN[10] 95.7±0.7• 41.1±0.8• 87.2±0.6• 97.5±0.2 56.4±3.0 94.5±1.0 98.4±0.2• 4/3/0

MICE[2] 97.4±0.6 48.2±1.1• 88.2±0.6• 97.4±0.3• 56.9±3.3 93.8±0.8 98.8±0.3 3/4/0

Softimpute[23] 97.8±0.4 48.5±0.7• 89.9±0.4• 97.5±0.3 57.2±3.1 94.2±1.3 98.6±0.2• 3/4/0

AFASMC[24] 98.1±0.3◦ 48.8±1.0• 85.8±0.7• 97.4±0.3• 56.7±3.0 94.8±1.4 97.5±0.5• 4/2/1
RSS

60%

96.0±0.8 46.9±0.9 84.7±0.8 97.5±0.1 55.2±2.3 92.0±1.7 97.7±0.4
Mean 93.6±1.0• 35.4±0.8• 76.7±0.9• 97.3±0.2• 53.9±1.9 87.6±3.6• 97.3±0.4• 6/1/0

KNN[10] 91.0±1.2• 32.1±1.0• 69.5±0.9• 97.3±0.3• 51.7±2.5• 85.8±2.8• 94.5±1.2• 7/0/0

MICE[2] 93.6±1.6• 36.1±1.6• 78.4±1.1• 97.3±0.3• 52.4±2.7• 89.7±2.1• 96.9±0.8• 7/0/0

Softimpute[23] 94.6±0.5• 37.3±1.0• 78.7±1.2• 97.3±0.2• 48.1±2.7• 91.1±1.4 96.8±0.6• 6/1/0

AFASMC[24] 93.5±1.3• 37.2±0.9• 66.4±2.6• 97.4±0.2 54.2±2.0 91.6±1.4 93.3±1.0• 4/3/0
RSS

70%

94.2±1.0 42.1±1.1 78.6±0.4 97.3±0.3 55.5±1.4 89.3±3.1 96.1±0.9
Mean 90.9±2.1• 30.1±1.2• 68.5±1.1• 97.1±0.5• 51.9±2.8• 85.5±2.9• 95.9±0.7 6/1/0

KNN[10] 86.6±1.9• 26.1±0.8• 56.6±1.7• 97.2±0.3• 49.6±2.9• 81.4±2.3• 90.7±1.2• 7/0/0

MICE[2] 89.0±1.6• 31.3±1.5• 66.7±1.8• 96.9±0.3• 51.0±4.1• 84.6±3.1• 94.3±0.9• 7/0/0

Softimpute[23] 92.7±1.2• 31.4±1.3• 66.0±1.6• 97.1±0.3• 45.0±1.8• 83.0±2.9• 94.5±0.7• 7/0/0

AFASMC[24] 89.6±1.8• 30.9±1.9• 50.8±3.4• 97.2±0.2• 51.8±1.8• 87.5±1.7• 86.9±2.2• 7/0/0

Note: We report the average accuracy and standard deviation of 10 trials. •/◦ indicates that our RSS is significantly better/worse
than the corresponding method (pairwise t-tests at 95% significance level).

We also carefully study the running speed of RSS,

simple-imputation methods (Mean and KNN) and

multiple-imputation method (MICE) in Subsection 4.6.

The results show that RSS greatly saves the training

costs when compared to MICE, especially when the

feature dimensionality is high.

4.3 Ablation Studies

In this subsection, we conduct ablation studies on

the three components in RSS on three datasets, i.e.,

chess-krkp, HTRU-2 and letter:

1. Dynamic training (DR): RSS resamples missing

values dynamically at each epoch. For compar-

isons, we also study the static strategy where we

only sample at the first epoch and then fix them

during training.

2. Ensemble testing (ET): RSS runs the model multi-

ple times and ensemble the results to get the final

prediction and we also ablate this strategy.

3. NRS architecture: The above two strategies are

not limited to NRS and can also be applied to

other architectures, e.g., MLP. We also conduct

experiments for MLP to further investigate our

algorithm. In this experiment, we adopt a typical
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Table 4. Missing Test Accuracy (%) on the Last Seven Complete Datasets

Methods PMV Chess-krkp Chess-krkopt Letter HTRU2 Yeast Segment Pendigts Win/Tie/Lose
RSS

20%

95.9±0.7 47.7±0.7 84.6±0.5 97.7±0.1 52.7±1.9 93.5±1.0 96.4±0.2
Mean 94.8±1.0• 43.8±0.7• 81.0±0.5• 97.5±0.2• 53.0±2.6 89.3±0.8• 95.6±0.2• 6/1/0

KNN[10] 95.3±0.6• 40.3±0.5• 87.4±0.5◦ 97.4±0.2• 51.1±1.7• 94.1±0.8 97.9±0.3◦ 4/1/2

MICE[2] 97.2±0.4◦ 47.1±0.5 83.1±0.7• 97.6±0.2 54.7±1.9 93.8±0.6 97.2±0.3◦ 1/4/2
RSS

40%

88.3±1.0 32.4±0.6 68.8±0.5 97.1±0.2 46.9±2.6 87.2±1.4 89.7±0.5
Mean 86.8±0.8• 28.3±0.6• 62.3±0.4• 97.1±0.2 45.7±2.6 81.9±1.7• 87.3±0.6• 5/2/0

KNN[10] 86.0±1.2• 24.2±0.5• 51.1±1.0• 96.6±0.2• 43.3±2.2• 79.8±1.5• 81.6±0.7• 7/0/0

MICE[2] 90.9±0.9◦ 28.7±0.6• 61.8±0.9• 97.1±0.2 46.5±2.1 86.2±1.7 90.7±0.3◦ 2/3/2
RSS

60%

80.6±0.9 23.7±0.6 48.1±0.4 96.6±0.2 40.8±2.7 76.0±1.4 76.1±0.9
Mean 77.5±1.3• 19.9±0.6• 41.4±0.6• 96.0±0.3• 40.3±1.9 71.1±1.2• 73.1±0.9• 6/1/0

KNN[10] 72.5±1.0• 17.9±0.6• 26.3±0.7• 95.3±0.3• 36.6±1.9• 53.6±2.3• 59.7±0.9• 7/0/0

MICE[2] 80.5±0.8 19.7±0.6• 40.7±0.6• 96.2±0.2• 40.2±2.2 75.0±2.6 74.7±1.0• 4/3/0
RSS

70%

75.3±1.2 21.0±0.6 35.8±0.7 95.5±0.3 39.2±1.6 66.2±1.4 65.0±0.8
Mean 71.5±1.1• 17.3±0.5• 30.7±0.8• 95.2±0.3• 37.7±2.0 63.6±1.9• 62.6±0.9• 6/1/0

KNN[10] 66.1±1.8• 15.7±0.5• 18.6±0.4• 94.7±0.3• 34.4±1.8• 44.6±1.7• 49.7±0.9• 7/0/0

MICE[2] 72.7±1.3• 17.6±0.3• 29.6±0.6• 95.1±0.2• 37.9±1.9 64.7±3.1 61.7±1.2• 5/2/0

Note: We report the average accuracy and standard deviation of 10 trials. •/◦ indicates that our RSS is significantly better/worse
than the corresponding method (pairwise t-tests at 95% significance level).
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Fig.3. Full test accuracy curve on chess-krkp, yeast and segment under different PMV. (a) PMV=40% on chess-krkp. (b) PMV=40% on
yeast. (c) PMV=40% on segment. (d) PMV=70% on chess-krkp. (e) PMV=70% on yeast. (f) PMV=70% on segment.

MLP with two ReLU hidden layers and we also

use batch-normalization for fair comparisons.

The experimental results are shown in Table 5 and

we can have the following observations:

1) Both strategies DR and ET are effective in RSS.

From the vanilla baseline case 1, either by using DR

(case 2) or ET (case 3), we can get higher accuracy

on all the three datasets consistently. Finally, by

combining both strategies (case 4), we achieve the

best performance on all these datasets.

2) The above two strategies are generalizable. Notice

that when we use MLP as our classifier, we are oper-

ating only on the original space and we can compare

the performance of histogram random sampling to

fill in the vacant values instead of multiple subspaces.

Case 6 directly uses histogram random sampling to
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Table 5. Ablation Studies Using Different Strategies at Different Levels of Missing Values

Case Model
Scheme Chess-krkp HTRU2 Letter
DR ET 20% 40% 60% 70% 20% 40% 60% 70% 20% 40% 60% 70%

1

NRS

× × 92.9±0.6 83.4±1.0 73.7±1.2 68.2±1.3 96.6±0.2 95.5±0.3 94.0±0.3 93.2±0.3 73.1±1.2 48.9±1.0 27.7±0.7 18.6±0.3
2 ✓ × 94.3±0.5 87.0±1.0 78.4±1.0 73.4±1.6 97.3±0.1 96.9±0.2 95.7±0.2 94.8±0.2 82.9±0.6 66.1±0.5 44.9±0.4 33.1±0.6
3 × ✓ 94.4±0.5 87.4±0.7 78.9±1.0 74.1±1.6 97.0±0.2 96.3±0.2 95.0±0.3 94.0±0.3 78.3±0.9 58.3±2.3 37.9±1.3 27.4±0.6
4 ✓ ✓ 95.9±0.7 88.3±1.0 80.6±0.9 75.3±1.2 97.7±0.1 97.1±0.2 96.6±0.2 95.5±0.3 84.6±0.5 68.8±0.5 48.1±0.4 35.8±0.7
5

MLP

× × 88.3±1.0 77.6±1.7 66.3±1.1 59.8±1.7 96.9±0.2 95.9±0.2 93.7±0.2 92.5±0.3 63.5±0.9 37.4±0.7 18.1±0.5 11.7±0.4
6 ✓ × 89.7±0.8 80.9±1.3 70.5±1.5 65.9±1.0 96.9±0.1 95.9±0.2 93.8±0.3 92.5±0.3 68.8±0.5 45.0±0.5 24.9±0.4 17.3±0.5
7 × ✓ 92.2±0.5 84.7±0.9 74.7±1.3 68.5±1.8 97.2±0.1 96.5±0.3 94.4±0.3 93.2±0.3 77.0±0.6 55.3±0.5 31.8±0.6 21.3±0.6
8 ✓ ✓ 93.7±0.3 87.3±0.5 78.0±1.0 73.5±1.6 97.2±0.1 96.4±0.2 94.5±0.3 93.1±0.4 80.1±0.5 60.4±0.6 37.8±0.6 27.6±0.7

Note: We report the missing test accuracy (%) here.

fill in the missing values in the original feature vector

while case 5 serves as the baseline. As can be seen,

histogram random sampling (our DR strategy) also

works when filling in the original feature space. We

also achieve the highest accuracies for MLP when

combining both strategies on chess-krkp and letter.

It indicates that our strategies can also be applied

to other architectures.

3) NRS serves as a strong baseline classifier. NRS

achieves better performance than MLP consistently

under all settings on all datasets. As introduced be-

fore, we use NRS as our classifier for all comparison

methods and we now show that NRS serves as a

strong baseline classifier.

4) The inherent random subspace method is crucial in

our algorithm. By comparing case 4 with case 1 and

case 8 with case 5, the NRS architecture has more

improvements than MLP when combined with the

two strategies, especially on HTRU2. It indicates

that the inherent random subspace method allows

us to use multiple values to estimate one missing fea-

ture in different random subspaces, which provides

us more robust and accurate estimations.

In short, the DR and ET strategies are effective for

both NRS and MLP. Combining these two strategies

with NRS has more improvements than MLP and fi-

nally achieves the best performance on all these three

datasets, which explains again why we adopt NRS in

this paper.

4.4 Hyperparameters Studies

In this subsection, we study the sensitivity of hy-

perparameters in RSS, namely, the test ensemble size

H, the depth expansion rate nMul and the number of

bins M in the histogram. The experimental results are

shown in Table 6 and for better illustration we plot the

corresponding figures on HTRU2 in Fig. 4.

Ensemble Size H. Here we vary H and keep other

settings the same as before. Table 6 and Fig. 4(a) show

that when H grows, the accuracy also gets higher, which

indicates that we can get more accurate predictions by

enlarging the ensemble size in our ET strategy. It is

also worth mentioning that in contrast to other ensem-

ble strategies, e.g., MICE, the model size in our RSS

remains unchanged as we increase H, which saves a lot

of computing and storage overhead.

Expansion Rate nMul. Here we vary nMul and

other settings remain unchanged. The results in Ta-

ble 6 and Fig. 4(b) show that when nMul grows, the

average accuracy increases and the standard deviation

becomes smaller. It indicates that as nMul grows, more

random subspaces and base learners are integrated into

our model, hence the estimation gets more robust and

accurate and the performance becomes better.

Number of Bins M . As known in density estimation

methods, the value of M in histogram distribution plays

an important role and we also study the sensitivity of

M here. We only vary M and other settings remain un-
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Table 6. Hyperparameters Studies at Different Levels of Missing Values

Chess-krkp HTRU2 Letter
20% 40% 60% 70% 20% 40% 60% 70% 20% 40% 60% 70%

H

1 95.3±0.5 87.0±1.0 78.4±1.0 73.4±1.6 97.3±0.1 96.9±0.2 95.7±0.2 94.8±0.2 82.9±0.6 66.1±0.5 44.9±0.4 33.1±0.6
5 95.8±0.7 87.9±1.0 80.2±0.9 75.1±1.4 97.4±0.1 96.9±0.2 95.8±0.3 94.9±0.2 84.3±0.6 68.5±0.4 47.2±0.4 35.4±0.7
10 95.9±0.7 88.1±0.9 80.6±0.8 75.4±1.2 97.4±0.1 97.0±0.2 96.3±0.3 95.0±0.2 84.5±0.5 68.6±0.5 47.8±0.3 35.7±0.7
20 95.9±0.7 88.3±1.0 80.6±0.9 75.3±1.2 97.7±0.1 97.1±0.2 96.6±0.2 95.5±0.3 84.6±0.5 68.8±0.5 48.1±0.4 35.8±0.7

nMul

1 93.4±1.0 86.2±1.4 78.3±1.7 73.4±1.2 96.9±0.3 95.8±0.2 94.6±0.3 93.2±0.5 76.9±1.0 56.0±1.0 35.0±0.8 24.9±0.6
5 94.8±1.0 88.7±1.0 81.3±1.0 76.0±1.2 97.3±0.2 96.3±0.2 95.2±0.3 94.1±0.2 81.9±0.7 63.9±0.3 41.8±0.8 30.5±0.4
10 95.7±0.8 88.6±1.1 81.4±1.1 76.3±1.4 97.3±0.1 96.5±0.2 95.4±0.4 94.4±0.2 83.4±0.7 66.1±0.5 44.0±0.8 32.4±0.6
20 95.9±0.7 88.3±1.0 80.6±0.9 75.3±1.2 97.4±0.1 96.6±0.3 95.6±0.2 94.6±0.2 83.9±0.5 67.7±0.7 46.3±0.9 34.1±0.7

M
5 95.6±0.7 88.0±1.1 79.7±0.7 74.8±1.2 97.4±0.2 96.7±0.3 95.7±0.2 94.8±0.3 84.7±0.6 68.7±0.3 47.9±0.8 35.9±0.7
10 95.9±0.7 88.3±1.0 80.6±0.9 75.3±1.2 97.7±0.1 97.1±0.2 96.6±0.2 95.5±0.3 84.6±0.5 68.8±0.5 48.1±0.4 35.8±0.7
50 95.9±1.0 88.4±1.0 80.9±1.1 76.0±1.2 97.3±0.1 96.5±0.2 95.4±0.4 94.4±0.2 84.5±0.6 68.8±0.6 47.8±0.7 36.1±0.6

Note: We report the missing test accuracy (%) here.
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Fig.4. Hyperparameters studies of H, nMul and M on HTRU2. We plot the average accuracy and standard deviation of 10 trials at
each point. (a) Ensemble size H. (b) Expansion rate nMul. (c) Number of bins M .

changed. As can be seen, the optimal value of M varies

on different datasets, e.g., M equals 10 achieves the high-

est accuracy on HTRU2 while M equals 50 performs

best on chess-krkp. As mentioned before, we directly set

M to 10 for all datasets in this paper and it indicates

that we can get better performance by choosing more

appropriate M on each dataset.

4.5 Comparisons among Different Classifiers

In the previous subsections, we used NRS as the

classifier for our RSS as well as other comparative im-

putation methods and we trained them under the same

setting. To further validate the effectiveness of our

RSS, we also compare RSS with other classification al-

gorithms: logistic regression (LR), MLP and random

forests (RF) using Mean, KNN and MICE imputation.

As in Subsection 4.2, we report both the full test accu-

racy and missing test accuracy in Table 7 and Table 8,

respectively. From Table 7 and Table 8 we can have the

following conclusions:

1) There is no best classification algorithm in all cases.

For example, MLP achieves higher accuracies than

RF on chess-krkp when using the same imputation

method but performs worse on letter.

2) There is no best imputation algorithm in all cases.

For example, KNN imputation performs the best

among the three imputation methods on letter,

segment and pendigits under low missing levels

(PMV = 20%) but achieves the lowest accuracy

when the missing level increases. Also, we can see

that when using the same classification algorithm,

Mean imputation sometimes performs better than

MICE and sometimes performs worse, depending on

the specific dataset and the level of missing rate.

3) Overall, our RSS method significantly outperforms
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Table 7. Full Test Accuracy (%) of Different Classifiers

Methods PMV Chess-krkp Chess-krkopt Letter HTRU2 Yeast Segment Pendigits Win/Tie/Lose
RSS

20%

98.8±0.4 67.2±0.6 95.5±0.3 97.9±0.2 59.6±1.9 95.8±0.8 99.3±0.1
LR+Mean 95.4±0.7• 31.8±0.5• 70.7±0.4• 97.7±0.1 54.8±1.2• 89.2±1.2• 88.4±0.5• 6/1/0
LR+KNN[10] 95.5±0.8• 31.8±0.4• 75.5±0.4• 97.7±0.2 53.8±1.2• 91.6±1.0• 93.5±0.3• 6/1/0
LR+MICE[2] 95.9±0.6• 31.7±0.4• 73.6±0.4• 97.9±0.2 54.6±1.0• 90.3±1.1• 92.9±0.4• 6/1/0
MLP+Mean 98.6±0.5 58.3±0.8• 93.2±0.5• 97.8±0.2 58.6±1.8 93.8±1.1• 99.1±0.2• 4/3/0
MLP+KNN[10] 98.6±0.4 56.8±0.8• 94.8±0.3• 97.8±0.2 58.3±1.5 95.8±0.7 99.3±0.1 2/5/0
MLP+MICE[2] 99.1±0.3◦ 60.6±0.9• 94.0±0.5• 97.8±0.1 59.4±1.9 94.8±0.9• 99.2±0.2 3/3/1
RF+Mean 97.6±0.5• 57.6±0.6• 93.4±0.3• 97.9±0.1 60.0±2.6 96.5±0.9◦ 98.6±0.2• 4/2/1
RF+KNN[10] 98.5±0.4• 56.1±0.6• 94.6±0.4• 97.9±0.2 59.0±1.8 97.2±0.8◦ 98.9±0.1• 4/2/1
RF+MICE[2] 98.0±0.7• 60.5±0.8• 93.6±0.4• 98.0±0.1 60.4±2.0 96.5±0.7◦ 98.8±0.2• 4/2/1
RSS

40%

97.4±0.6 56.3±0.6 91.7±0.6 97.5±0.2 57.5±3.0 93.9±1.1 98.9±0.2
LR+Mean 94.4±0.6• 30.8±0.4• 64.2±0.5• 97.3±0.2 53.0±2.7• 85.4±1.0• 84.7±0.7• 6/1/0
LR+KNN[10] 94.4±0.7• 30.5±0.6• 66.9±0.6• 97.3±0.2 51.0±2.8• 89.9±1.4• 86.8±0.5• 6/1/0
LR+MICE[2] 94.9±0.6• 31.1±0.4• 67.5±1.4• 97.5±0.2 50.9±2.7• 89.4±1.2• 90.0±0.6• 6/1/0
MLP+Mean 97.1±0.5 47.6±0.8• 86.7±0.6• 97.4±0.2 57.3±2.6 90.9±2.3• 98.5±0.3• 4/3/0
MLP+KNN[10] 96.1±1.0• 43.5±0.6• 86.6±0.7• 97.5±0.2 56.4±3.1 93.8±1.4 98.6±0.2• 4/3/0
MLP+MICE[2] 97.9±0.7 48.3±1.0• 87.5±0.7• 97.5±0.3 56.6±3.1 93.3±1.0 98.7±0.2 2/5/0
RF+Mean 95.7±1.1• 48.3±0.7• 89.1±0.5• 97.7±0.2 57.3±1.7 95.5±1.0◦ 97.8±0.2• 4/2/1
RF+KNN[10] 97.0±0.8 46.3±0.8• 88.3±0.6• 97.7±0.2 54.9±2.0• 96.0±0.8◦ 98.0±0.2• 4/2/1
RF+MICE[2] 96.5±0.7• 50.2±0.7• 88.6±0.6• 97.7±0.2 57.1±2.1 95.1±1.0◦ 98.2±0.2• 4/2/1
RSS

60%

96.0±0.8 46.9±0.9 84.7±0.8 97.5±0.1 55.2±2.3 92.0±1.7 97.7±0.4
LR+Mean 93.6±1.0• 30.0±0.6• 58.4±0.5• 96.3±0.2• 47.9±1.6• 79.9±1.6• 83.0±0.5• 7/0/0
LR+KNN[10] 91.7±1.1• 28.7±0.8• 57.9±1.4• 97.3±0.2• 45.3±3.1• 81.8±1.9• 83.1±0.5• 7/0/0
LR+MICE[2] 93.9±1.2• 29.9±0.5• 61.5±1.7• 97.5±0.4 46.1±1.1• 87.4±1.9• 84.9±1.4• 6/1/0
MLP+Mean 95.2±0.8• 38.6±0.9• 75.9±1.5• 97.4±0.2 54.3±2.3 85.5±3.8• 96.8±0.6• 5/2/0
MLP+KNN[10] 91.7±0.9• 33.8±1.0• 71.5±0.9• 97.4±0.2 52.6±2.1• 86.1±2.2• 96.3±0.4• 6/1/0
MLP+MICE[2] 94.9±0.8• 38.2±1.0• 77.6±1.0• 97.3±0.3 52.7±1.4• 89.7±1.8• 96.9±0.5• 6/1/0
RF+Mean 95.0±1.0• 40.6±0.8• 81.6±0.6• 97.8±0.1◦ 53.9±1.6 93.9±1.0◦ 95.5±0.5• 4/1/2
RF+KNN[10] 95.0±1.1• 37.6±0.9• 77.5±1.1• 97.6±0.1 50.0±3.0• 92.5±0.7 94.2±0.8• 5/2/0
RF+MICE[2] 95.0±1.0• 40.5±0.9• 80.5±0.8• 97.8±0.1◦ 52.5±2.4• 92.8±1.3 96.4±0.4• 5/1/1
RSS

70%

94.2±1.0 42.1±1.1 78.6±0.4 97.3±0.3 55.5±1.4 89.3±3.1 96.1±0.9
LR+Mean 92.8±1.1• 29.8±0.5• 55.1±0.7• 95.2±0.6• 48.6±1.7• 78.2±1.2• 81.9±0.6• 7/0/0
LR+KNN[10] 89.9±1.5• 27.6±0.7• 53.4±1.1• 97.1±0.2 45.9±2.7• 80.3±1.6• 81.5±0.9• 6/1/0
LR+MICE[2] 92.7±1.2• 29.4±0.7• 55.1±2.1• 96.5±1.9• 45.7±1.3• 83.3±2.4• 82.2±1.0• 7/0/0
MLP+Mean 93.0±1.2• 33.1±0.8• 68.2±0.8• 97.2±0.4 53.7±1.5• 78.5±4.2• 95.8±0.7 5/2/0
MLP+KNN[10] 88.5±2.6• 28.2±0.8• 59.4±1.0• 97.3±0.2 52.0±1.5• 83.2±1.4• 93.2±0.8• 6/1/0
MLP+MICE[2] 91.3±1.5• 33.7±1.5• 66.5±2.5• 97.1±0.3 52.1±3.5• 85.0±2.3• 94.5±0.9• 6/1/0
RF+Mean 94.6±0.7 36.6±0.6• 75.8±0.9• 97.7±0.2◦ 52.9±2.4• 92.5±1.0◦ 93.4±0.8• 4/1/2
RF+KNN[10] 93.3±1.5• 33.2±0.6• 70.4±1.0• 97.3±0.3 50.4±2.0• 90.0±1.5 91.5±0.7• 5/2/0
RF+MICE[2] 94.5±0.6 36.1±0.8• 73.7±1.2• 97.5±0.2 49.8±3.3• 90.8±2.2 93.0±0.7• 4/3/0

Note: We report the average accuracy and standard deviation of 10 trials. •/◦ indicates that our RSS is significantly better/worse
than the corresponding method (pairwise t-tests at 95% significance level).

other methods, since the win/tie/lose counts show

that our RSS wins for most times and seldom loses

and it further demonstrates the effectiveness of our

method in these comparisons.

4.6 Speed Comparisons

In this subsection, we compare the running speed of

our RSS with other imputation methods: Mean, KNN

and MICE. Notice that the feature dimensionality has a

great influence on the running speed of different meth-

ods. Hence, we evaluate different methods on one low-

dimensional dataset yeast (8-dimensional) as well as two

more datasets with higher dimensionalities: dna (180-

dimensional) and protein (357-dimensional). We also

take the influence of the proportion of missing values

(PMV) into consideration and we set PMV to 20% and

60% for each dataset. All the other training settings

remain the same as before. For the training/inference

time, we count the total running time, which equals the

sum of preprocessing time (imputation time) and the

network running time (network total training/inference

time). We report the average training/inference time

and average accuracy of 10 trials in Table 9 (For accu-

racy, we also report the standard deviation).
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Table 8. Missing Test Accuracy (%) of Different Classifiers

Methods PMV Chess-krkp Chess-krkopt Letter HTRU2 Yeast Segment Pendigits Win/Tie/Lose
RSS

20%

95.9±0.7 47.7±0.7 84.6±0.5 97.7±0.1 52.7±1.9 93.5±1.0 96.4±0.2
LR+Mean 90.8±0.6• 28.1±0.5• 55.8±0.6• 97.3±0.2• 50.1±1.7• 82.6±1.7• 81.2±0.3• 7/0/0
LR+KNN[10] 92.6±0.7• 27.5±0.4• 70.5±0.8• 97.2±0.2• 48.8±1.9• 89.9±1.1• 91.9±0.6• 7/0/0
LR+MICE[2] 94.1±0.7• 28.8±0.4• 62.1±0.7• 97.6±0.1 50.2±2.2• 87.3±1.0• 87.4±0.4• 6/1/0
MLP+Mean 94.1±0.7• 43.2±0.6• 78.9±0.6• 97.4±0.1• 52.6±2.0 87.5±0.7• 95.0±0.4• 6/1/0
MLP+KNN[10] 95.2±0.5• 40.4±0.7• 86.5±0.6◦ 97.4±0.1• 51.6±1.8 93.7±1.0 97.7±0.3◦ 3/2/2
MLP+MICE[2] 97.2±0.5◦ 46.2±0.6• 82.4±0.8• 97.7±0.2 53.9±1.8 92.1±0.7• 97.1±0.3◦ 3/2/2
RF+Mean 95.0±0.5• 43.7±0.5• 84.4±0.4 97.7±0.2 53.1±1.5 93.5±0.6 95.9±0.4• 3/4/0
RF+KNN[10] 95.6±0.5 41.2±0.6• 87.8±0.6◦ 97.6±0.2 51.2±0.9• 95.1±1.0◦ 97.5±0.3◦ 2/2/3
RF+MICE[2] 96.5±0.8◦ 47.0±0.7• 83.9±0.6• 97.8±0.1 54.2±2.6 94.3±0.6◦ 96.8±0.2◦ 2/2/3
RSS

40%

88.3±1.0 32.4±0.6 68.8±0.5 97.1±0.2 46.9±2.6 87.2±1.4 89.7±0.5
LR+Mean 85.7±0.7• 24.9±0.5• 42.4±0.5• 96.8±0.2• 43.6±2.5• 74.8±1.2• 71.4±0.5• 7/0/0
LR+KNN[10] 85.8±0.8• 23.2±0.5• 41.0±0.6• 96.6±0.2• 41.0±1.8• 76.6±1.5• 70.4±0.7• 7/0/0
LR+MICE[2] 88.7±1.0 25.0±0.5• 46.8±0.6• 97.0±0.2 42.3±1.9• 80.9±1.5• 77.8±0.7• 5/2/0
MLP+Mean 87.3±0.8• 29.6±0.6• 60.8±0.6• 97.0±0.2 47.2±2.1 80.6±2.2• 87.4±0.6• 5/2/0
MLP+KNN[10] 86.9±0.7• 25.3±0.7• 51.5±0.8• 96.6±0.2• 44.1±1.6• 79.6±2.2• 80.9±0.5• 7/0/0
MLP+MICE[2] 91.3±0.7◦ 29.9±0.6• 61.5±0.7• 97.1±0.2 45.7±1.8 85.6±1.3• 90.8±0.5◦ 3/2/2
RF+Mean 89.3±0.9◦ 31.2±0.7• 68.5±0.5 97.4±0.2◦ 45.6±1.8• 89.8±1.1◦ 89.4±0.4• 3/1/3
RF+KNN[10] 88.8±0.6 26.5±0.5• 58.6±0.6• 96.9±0.2• 43.5±2.2• 85.1±1.4• 81.7±0.6• 6/1/0
RF+MICE[2] 90.7±1.0◦ 31.8±0.8• 65.5±0.7• 97.2±0.2 45.3±2.1• 89.2±1.0◦ 89.2±0.5• 4/1/2
RSS

60%

80.6±0.9 23.7±0.6 48.1±0.4 96.6±0.2 40.8±2.7 76.0±1.4 76.1±0.9
LR+Mean 78.5±0.8• 21.8±0.6• 29.5±0.5• 95.5±0.3• 37.4±1.8• 63.2±1.1• 59.2±0.6• 7/0/0
LR+KNN[10] 73.9±1.3• 20.4±0.5• 23.6±0.8• 95.2±0.2• 35.1±1.6• 49.8±2.3• 51.5±0.8• 7/0/0
LR+MICE[2] 80.2±1.0• 21.7±0.5• 31.4±0.5• 95.9±0.2• 38.2±1.5• 69.1±1.9• 63.4±0.9• 7/0/0
MLP+Mean 78.8±1.0• 21.6±0.2• 40.3±0.5• 96.0±0.3• 40.4±2.2 70.5±2.2• 72.5±0.5• 6/1/0
MLP+KNN[10] 73.1±1.0• 19.2±0.6• 27.6±0.7• 95.4±0.3• 36.4±2.3• 54.9±2.6• 58.4±0.6• 7/0/0
MLP+MICE[2] 81.5±0.8 21.7±0.5• 40.7±0.7• 96.1±0.2• 40.7±1.7 74.4±1.5• 74.9±1.2• 5/2/0
RF+Mean 81.3±1.1 22.8±0.4• 47.4±0.5• 96.2±0.3• 37.7±1.6• 82.0±1.7◦ 75.0±0.6• 5/1/1
RF+KNN[10] 77.2±1.0• 18.6±0.4• 35.6±0.4• 95.5±0.3• 35.8±2.6• 65.0±1.9• 60.8±0.9• 7/0/0
RF+MICE[2] 82.0±1.0◦ 23.1±0.2• 44.6±1.0• 96.1±0.2• 37.7±1.1• 78.3±1.4◦ 74.0±0.8• 5/0/2
RSS

70%

75.3±1.2 21.0±0.6 35.8±0.7 95.5±0.3 39.2±1.6 66.2±1.4 65.0±0.8
LR+Mean 75.3±1.2 20.4±0.3• 22.9±0.3• 94.6±0.2• 36.2±2.0• 56.4±2.0• 51.0±0.8• 6/1/0
LR+KNN[10] 69.8±1.6• 18.9±0.4• 17.7±0.5• 94.6±0.3• 34.2±3.0• 43.1±1.6• 43.5±1.2• 7/0/0
LR+MICE[2] 75.3±1.0 20.2±0.4• 23.3±0.5• 94.7±0.2• 36.1±2.0• 59.8±2.9• 52.4±1.1• 6/1/0
MLP+Mean 73.5±1.3• 19.1±0.5• 30.3±0.5• 94.7±0.3• 39.1±1.0 62.6±1.7• 61.1±0.8 5/2/0
MLP+KNN[10] 68.3±1.7• 16.7±0.4• 19.7±0.5• 94.7±0.2• 35.9±2.8• 46.5±1.7• 47.9±0.7• 7/0/0
MLP+MICE[2] 74.3±0.7• 18.7±0.8• 30.0±0.4• 95.1±0.2• 38.0±1.9• 64.6±2.1• 61.9±1.2• 7/0/0
RF+Mean 75.8±1.0 19.0±0.3• 34.5±0.6• 95.2±0.2• 33.7±2.2• 73.8±1.0◦ 64.3±0.9• 5/1/1
RF+KNN[10] 71.3±2.3• 16.2±0.4• 26.8±0.5• 94.8±0.2• 34.0±1.1• 56.3±1.9• 51.0±0.8• 7/0/0
RF+MICE[2] 76.2±0.8 19.8±0.5• 32.7±0.7• 95.0±0.1• 35.0±1.3• 69.6±1.9◦ 61.6±0.7• 5/1/1

Note: We report the average accuracy and standard deviation of 10 trials. •/◦ indicates that our RSS is significantly better/worse
than the corresponding method (pairwise t-tests at 95% significance level).

From Table 9 we can get the following observations:

1) Multiple-imputation method (MICE) achieves better

performance than single-imputation methods (Mean

and KNN). However, the computing resources are

too expensive for MICE, especially in the training

process. For example, on the 357-dimensional dataset

protein, MICE takes about one day to finish the impu-

tation process and it indicates that it is not practical

for many real-world applications with even higher di-

mensionalities. In contrast, single-imputation meth-

ods are efficient for training and inference but they

are not accurate enough.

2) Our method RSS has higher accuracies but slower

running speed than single-imputation methods.

When compared with MICE, our method RSS has

higher accuracies in most cases. More importantly,

the training cost has been reduced a lot in contrast to

MICE, especially on the relatively high dimensional

datasets dna and protein.

3) With the increase of feature dimensionality, the train-

ing time for KNN, MICE and RSS also increases.

However, the training overhead of MICE increases

the most as the dimensionality increases among these

methods, which corresponds to the previous time
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Table 9. Speed Comparisons Between RSS and Other Methods

Methods PMV
Yeast Dna Protein

Train (s) Infer (s) Acc. (%) Train (s) Infer (s) Acc. (%) Train (s) Infer (s) Acc. (%)
RSS

20%

69.15 0.83 52.7±1.9 260.47 6.92 89.2±0.9 2474.18 107.89 63.9±0.4
Mean 6.09 0.01 53.0±2.6 3.98 0.02 88.2±0.7 14.13 0.34 62.5±0.4
KNN[10] 7.27 0.54 51.1±1.7 6.37 2.05 88.2±0.9 347.47 150.88 61.4±0.7
MICE[2] 6.16 0.02 54.7±1.9 13973.27 21.88 89.1±0.8 39754.31 24.67 62.3±0.5
RSS

60%

99.19 1.21 40.8±2.7 1061.29 29.24 75.8±0.8 3954.64 170.98 56.1±0.6
Mean 7.11 0.01 40.3±1.9 3.73 0.02 73.7±1.1 12.08 0.29 53.9±0.5
KNN[10] 7.66 0.65 36.6±1.9 69.5 1.4 69.5±1.4 491.53 210.66 48.3±0.5
MICE[2] 6.74 0.03 40.2±2.2 18343.63 36.47 75.6±1.3 82562.93 118.68 55.7±0.6

Note: ‘Train (s)’ and ‘Infer (s)’ denote the average training and inference time on each dataset, in seconds. ‘Acc. (%)’ denotes the
average accuracy of 10 trials.

complexity analysis in Subsection 3.4.

4) In short, RSS has both higher accuracy and efficiency

than multiple-imputation method (MICE). Further-

more, the current implementation of RSS has not

been carefully optimized and thus it has the potential

to be further accelerated.

5 Conclusions

In this paper, we proposed a random subspace sam-

pling method RSS for classification with missing data.

RSS enables us to use multiple values for each missing

feature in different random subspaces to reflect better

uncertainty, which is very effective in dealing with a

large proportion of missing values. We showed that

RSS is robust to different levels of missing data and is

more efficient than multiple imputation methods such

as MICE[2]. We conducted experiments on both incom-

plete and complete datasets under different levels of

missing values. Experimental results show that RSS

achieves superior performance than other comparison

methods and the advantage will become larger with the

increase of missing rate. In the future, we will further

investigate our method from a theoretical perspective.
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