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Abstract

Self-supervised learning (SSL), in particular contrastive
learning, has made great progress in recent years. However,
a common theme in these methods is that they inherit the
learning paradigm from the supervised deep learning sce-
nario. Current SSL methods are often pretrained for many
epochs on large-scale datasets using high resolution images,
which brings heavy computational cost and lacks flexibility.
In this paper, we demonstrate that the learning paradigm
for SSL should be different from supervised learning and
the information encoded by the contrastive loss is expected
to be much less than that encoded in the labels in super-
vised learning via the cross entropy loss. Hence, we propose
scaled-down self-supervised learning (S3L), which include 3
parts: small resolution, small architecture and small data.
On a diverse set of datasets, SSL methods and backbone
architectures, S3L achieves higher accuracy consistently
with much less training cost when compared to previous SSL
learning paradigm. Furthermore, we show that even with-
out a large pretraining dataset, S3L can achieve impressive
results on small data alone. Our code has been made publi-
cally available at https://github.com/CupidJday/
Scaled-down-self-supervised—-learning.

1. Introduction

Deep supervised learning has achieved great success in
the last decade. However, its dependency on image labels has
driven people to explore a better solution. Self-supervised
learning (SSL) has gained popularity because of its ability
to avoid the cost of annotating large-scale datasets. After
the emerging of the InfoNCE loss [36] and the contrastive
learning paradigm, SSL has clearly gained momentum and a
large amount of research contributions have been published,
such as MoCo [17] (and MoCov2 [£8]), SimCLR [6] (and
SimCLRv2 [7]), BYOL [16] and many more.

A common theme in all these methods, however, is that
they all learn self-supervised models in a setup that is clearly
inherited from the supervised learning setting. Common
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Figure 1: Accuracy of SSL methods on CUB200 [37] with
ResNet-50 backbone. Only the small CUB200 dataset was
used in SSL pretraining and subsequent fine-tuning. In each
method (MoCov2, SimCLR and BYOL), smaller resolution
not only trained much faster, but also achieved higher accu-
racy than the baseline 224 resolution.

characteristics of these methods include: (1) Use 224x224
as the input resolution; (2) Use large-scale training sets (e.g.,
ILSVRC-2012 [33]); (3) Use the entire network architecture
from supervised learning tasks (mostly ResNet-50 [20]) and
the entire backbone network afterwards in downstream tasks;
(4) Require many training (e.g., 800 or more) epochs. The
combination of these four characteristics dominates current
SSL researches. This combination, however, has exhibited
clear disadvantages in three important aspects:

e Computing. The combination of a large-scale dataset, a
large input resolution, a large number of epochs and a
complex backbone network means that SSL methods are
computationally extremely expensive. This phenomenon
makes SSL a privilege for researchers at few institutions.

e Data. SSL methods are often pretrained on a large-scale
dataset (such as ILSVRC-2012 or even larger ones), and
then fine-tuned in various downstream tasks. For a task
where the foral amount of available images (labeled or not)
is limited (e.g., 100 categories with roughly 20 images per
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category), it is unknown whether SSL will still be useful

without a large pretraining dataset.

o Flexibility. This SSL paradigm (pretraining on big data
followed by downstream fine-tuning) will sometimes be-
come cumbersome. For instance, we need to train 10
different models for the same task, and deploy them to
different hardware platforms [1], but it is impractical to
pretrain 10 models on a large-scale dataset.
Self-supervised learning, however, dramatically differs

from supervised learning. In SSL, why must we blindly

inherit the setup from supervised learning? The most im-

portant difference is, of course, the presence or missing of

image labels. As a direct consequence, we assume that the
information encoded by the contrastive loss is expected to
be much less than that encoded in the labels via the cross
entropy loss, which is the fundamental assumption of this
paper. To properly learn lesser information, we rethink how

SSL should be carried out, and recommend the following

changes to SSL:

e Smaller resolution. Fine-grained details in high resolu-
tion images may be unnecessary, or may even confuse the
contrastive loss;

e Directly perform SSL on the target domain, even when
there are only a small set of training images;

o Partial backbone. As will be further analyzed, removing
the last residual block in the SSL pretrained model is
helpful in improving accuracies for small data. We do not
always need to train the full backbone model in SSL.

In short, in this paper we propose a new paradigm for
training SSL models, which moves away from the supervised
setup: use smaller resolution, fewer training data, and only
part of the pretrained model. Because all these changes are
scaled-down versions of the supervised learning setup, we
call it scaled-down self-supervised learning (S3L). With S3L,
obviously we can greatly accelerate self-supervised learning,
thanks to the reduction in various dimensions. As Figure 1
shows, S3L also leads to higher accuracy on downstream
tasks using only small data from the target task, which leads
to much higher flexibility. S3L will be empirically verified
by extensive experiments in this paper.

2. Related Works

To avoid time-consuming and expensive data annotations
and to explore better feature representations, many self-
supervised methods were proposed to learn visual represen-
tations from large-scale unlabeled images or videos. Genera-
tive approaches learn to generate or otherwise model pixels
in the input space ([41, 23, 12]). Pretext-based approaches
mainly explore the context features of images or videos such
as context similarity [30, | 1], spatial structure [15], cluster-
ing property [3], temporal structure [24], etc.

Unlike generative and pretext-based models, contrastive

learning is a discriminative approach that aims at grouping
similar samples closer and diverse samples far from each
other. Contrastive learning methods greatly improve the
performance of representation learning, which has become
the driving force of self-supervised representation learning
in recent years ([17, 6, 39, 16, 4, 9]). Following MoCo [17],
contrastive learning can be viewed as a dictionary lookup
task. For each encoded query ¢, there is a set of encoded
keys {ko, k1, . .. }, among which a single positive key &k
matches the query ¢ (generated from different views). A
contrastive loss function InfoNCE [36] is employed to pull ¢
close to k4 while pushing it away from other negative keys:

exp(q - ky/7)
exp(q-ky/T)+ Y, exp(q-k_/7)’

where 7 denotes a temperature parameter. Both SimCLR [6]
and MoCo are based on Equation (1). The main difference
is that SImCLR samples negative pairs from the current
batch while MoCo maintains a momentum memory bank.
A more radical step is made by BYOL [16], which discards
negative sampling in contrastive learning but achieves even
better results in case a momentum encoder is used. Recently,
follow-up work SimSiam [9] reports surprising results that
simple siamese networks can learn meaningful representa-
tions even without the momentum encoder. SWAV [4] takes
advantages of contrastive methods without computing pair-
wise comparisons by enforcing consistency between cluster
assignments from different views.

However, they all suffer from heavy training costs be-
cause they train the entire network on large-scale datasets at
a large resolution for many epochs, which is clearly inherited
from the supervised learning settings. Recently, SEED [14]
proposes to use self-supervised knowledge distillation for
SSL with small models. However, it still follows this train-
ing paradigm using large resolution on large-scale datasets.
In this paper, we argue that SSL should have a different
learning paradigm and we aim to scale down SSL from three
aspects mentioned above, i.e., resolution, model, and data.

L, =—log (1)

3. Methods

Our fundamental assumption is that the information en-
coded inside the contrastive loss is much less than that en-
coded in the labels via the cross entropy loss. To adapt to
the reduction in information, we make a paradigm shift from
previous SSL methods, which mainly include 3 aspects:

e Large (224) — small resolution (112 or even 56). In the
supervised setting, training with larger resolutions often
yields better performance for classification [27], object
detection [19] and semantic segmentation [5], in spite of
much higher overhead. Also, with much more fine-grained
labels, object detection and semantic segmentation often
need much larger resolutions (800x600 or larger) than im-
age classification (224x224) to get good results. However,



Table 1: Statistics of the 7 small datasets used in the paper.

Datasets # Category | # Training | # Testing
CUB200 [37] 200 5994 5794
Cars [22] 196 8144 8041
Aircrafts [28] 100 6667 3333
Flowers [29] 102 2040 6149
Pets [31] 37 3680 3669
Dogs [21] 120 12000 8580
DTD [10] 47 3760 1880

given the very weak supervision via the contrastive loss,
we expect an SSL model will not learn image details, and
a low-resolution input image is intuitively a better fit. In
the next section, we show that lower resolution in fact
brings higher accuracy at much less training cost, which
is the opposite of the supervised learning situation.

e Entire — partial backbone. We find that SSL fails to
learn deep layers (e.g., conv5) well on small data, espe-
cially for large models. This phenomenon once again
confirms our conjecture: the information encoded by the
contrastive loss is limited and complex models suffer more
from training on small data. Hence, we propose to only
train shallow layers (e.g., convl-conv4) during SSL pre-
training and then train all layers during supervised fine-
tuning. It greatly improves the accuracy with less cost.

e Large — small data. The key is to explore the power of
small data with SSL. On one hand, SSL methods are of-
ten pretrained on large-scale datasets, which brings heavy
training cost. On the other hand, the paradigm of pre-
training followed by downstream fine-tuning will become
cumbersome in some scenarios. As aforementioned, we
cannot endure such a huge training cost to pretrain 10
different models on big data. Hence, how to directly per-
form SSL on the target small datasets is a valuable and
interesting problem.

Combining the 3 aspects above, our scaled-down self-
supervised learning (S3L) framework successfully explore
the power of small data with existing SSL. methods, which
not only greatly accelerates the training process but also
achieves higher accuracy, as shown in the next section.

4. Experimental Results

We used 7 small datasets for our experiments, as shown
in Table 1. First, we demonstrate the effectiveness of small
resolution on small datasets as well as the large-scale Ima-
geNet [33] in Section 4.1. Then, we investigate the effect of
removing the last residual block in Section 4.2. Finally, we
explore the power of small data in Section 4.3. All our ex-
periments were conducted using PyTorch and we used Titan
Xp GPUs for ImageNet experiments and Tesla K80 GPUs
for small datasets. Codes will be made publicly available.

4.1. Small resolution is beautiful

We first investigate the effectiveness and efficiency of
small resolution on small datasets in Section 4.1.1. Then,
we demonstrate that small resolution is also useful for the
large-scale dataset ImageNet (IN) in Section 4.1.2.

4.1.1 Results on CUB200 and other small datasets

We carefully compare the influence of various input resolu-
tions during SSL pretraining using 3 typical SSL methods,
namely MoCov2 [8], SImCLR [6] and BYOL [16] under
both ResNet-18 and ResNet-50 [20]. The full learning pro-
cess contains two stages: pretraining and fine-tuning. We
use the pretrained weights obtained by SSL for initialization
and then fine-tune networks for classification using the cross
entropy loss. Note that SSL pretraining and fine-tuning are
both performed only on the target dataset.

For the fine-tuning stage, we fine-tune all methods for
120 epochs using SGD with a batch size of 64, a momentum
of 0.9 and a weight decay of 5e-4 for fair comparisons. For
the ImageNet supervised setting, the learning rate (Ir) is
initialized to 0.01, which is divided by 10 every 40 epochs
following [2]. For other methods, we initialize the Ir to 0.1
and use the cosine learning rate decay. We also list the results
using the mixup [40] strategy, where alpha is set to 1.0. For
the SSL pretraining stage, we follow the same settings in the
original papers and more details are included in the appendix.
Experimental results are shown in Table 2 (and part of the
results are visualized in Figure 1).

Notice that we use the same batch size in Table 2 and
Table 4 for all input resolutions for fair comparisons. How-
ever, we know that small resolutions require much fewer
GPU memories and thus enable larger batch sizes, hence we
also investigate the influence of input resolution and batch
size in Table 3. From these results, we have the following
observations:

e SSL pretraining is useful and SimCLR yields the best
performance among the 3 SSL methods on CUB200. Mo-
Cov2, SimCLR and BYOL all achieve much higher ac-
curacies than random initialization when fine-tuned for
120 epochs (and similar results are obtained in Table 4
when fine-tuned for more epochs). ‘SimCLR 800ep (56)’
(800 epochs pretraining with 56x56 input resolution us-
ing SimCLR) achieves the highest accuracy (71.0%) for
ResNet-18 and ‘SimCLR 800ep (112) achieves the high-
est accuracy (74.5%) for ResNet-50.

e Small resolution achieves better performance with
much fewer training cost using various SSL methods
and backbone networks. Take SimCLR 800ep as an ex-
ample, 56x56 resolution achieves 5.5% relative higher ac-
curacy (71.0 v.s. 67.3) and 58.8% relative fewer training
hours (3.5 v.s. 8.5) than the baseline 224x224 resolution
under ResNet-18.



Table 2: Comparisons of pretraining details, total time (GPU hours using 2 Tesla K80s) and accuracy (%) on CUB200. All are

fine-tuned for 120 epochs for fair comparisons. ‘N/A’ means that we didn’t conduct ImageNet pretraining on K80 GPUs.

pretraining Accuracy .
Backbone method | resolution [ #FLOPS epochs time | Normal | Mixup Total time
ImageNet supervised N/A 76.2 75.0 N/A
random initialize 0.0 62.0 63.4 1.1
700 T6 [ 637 | 653 77
224 1824.54M 800 64 | 650 | 663 75
200 09 [ 642 | 654 70
112 488.40M 800 36 | 662 | 674 47
MoCovy [ TT2527 755.63M 800200 ST 664 | 634 63
" 3075M 700 07 T 632 | 646 T8
: 800 28 | 661 67.5 37
56112 202.28M R00—200 377 660 | 683 i3
36 112=224 | 295.95M | 800=200—100 | 45 | 662 | 69.3 36
200 T8 636 | 645 79
ResNet-18 24 1824.54M 200 il oS e o
. 200 08 | 648 | 679 19
SimCLR 12 488.40M 200 o os | s 3
200 06 1 657 | 689 17
36 130.75M 800 24| 681 | 710 35
200 30 632 | 660 3
224 1824.54M 800 80 | 653 | 686 9.1
200 09 [ 649 | 650 70
BYOL 112 488.40M 800 37| 663 | 703 438
200 06 640 | 673 17
36 130.75M 800 24 | 672 | 700 35
ImageNet supervised N/A 81.3 82.1 N/A
MoCov2 IN 800ep NA T 777 [ 779 N/A
random initialize 0.0 58.6 56.3 2.1
300 T4 [ 665 | 620 35
224 4135.75M 1200 172 | 690 | 724 19.3
800 S5 670 | 710 76
112 1091.26M 1200 83 | 689 | 740 10.4
[12=224 | T700.17M R00—200 84 T 684 | 723 1035
800 35 662 | 702 36
MoCov2 36 304.06M 1200 53| 680 | 723 7.4
36112 36T50M R00—200 84 [ 69.1 726 105
S6112=224 | 673.14M | 800=200—100 | 113 | 698 | 727 3.4
ResNet-50 700 377 680 | 663 33
224 4135.79M 800 148 | 692 | 730 16.9
. 200 5 653 | 693 36
SimCLR 12 1091.26M 200 A .
200 08 [ 680 | 709 79
36 304.06M 800 30 | 715 | 742 5.1
200 52594 577 73
224 4135.79M 800 208 | 624 | 641 22,9
200 T 604 | 627 %)
BYOL 112 1091.26M 800 84 | 633 | 677 105
200 T3 630 | 653 34
36 304.06M 800 50 | 641 68.1 7.1

e Gradual transition from small to large resolution is ef-
fective to train with large resolution for SSL methods. In
Table 2, we design a multi-stage pretraining strategy (grad-
ually from small to large resolution). For example, in the
‘56—112—224’ setting, the SSL pretraining process con-
tains 3 stages: (1) train the network for 800 epochs with
56x56 input resolution; (2) then, train for 200 epochs with
112x112 resolution initialized with the weights obtained
in the first stage; (3) finally, train for 100 epochs with
224x224 resolution initialized with the weights obtained
in the second stage. This multi-stage training strategy
achieves higher accuracy than the baseline ‘224’ setting
with fewer training hours, although the final pretraining
resolution are both 224x224. It indicates that directly train-

ing with a large resolution is harmful on small datasets
while a gradual transition from small to large resolution is
promising to train with large resolution for SSL methods.

e As shown in Table 3, a smaller resolution enables a

larger batch size, which will further improve the perfor-
mance when compared to the results in Table 2 where we
used the same batch size for all resolutions. Take ResNet-
50 as an example, the maximum batch size is 128 with
224x224 resolution using 2 K80 GPUs and a batch size of
512 will incur the ‘out of memory’ problem. This problem
will not appear when small resolutions are used. In has
already been shown that larger batch size brings higher
accuracy for SImCLR in [6], hence we use BYOL here



Table 3: Smaller resolution enables larger batch sizes (bs).

All methods are trained using BYOL and ResNet-50 for 800
epochs on 2 K80 GPUs on CUB200. ‘N/A’ indicates the 224
resolution incurs out of memory with batch size being 512.

bs resolution | time Norrﬁacﬂc uralali XD
224 20.8 62.4 64.1
128 112 8.3 63.3 67.7
56 5.0 64.1 68.1
224 N/A N/A N/A
512 112 7.0 67.0 71.8
56 3.7 66.8 70.5

Table 4: Results on CUB200 with more fine-tuning (FT)
epochs. ‘(112 FT)’ means fine-tuning with 112x112 resolu-
tion. ‘SimCLR 800ep (112)’ means 800 epochs pretraining
with 112x112 resolution under SimCLR.

FT | ResNet-18 | ResNet-50
epochs | acc. | time | acc. | time
IN supervised 120 |75.0] N/A|82.1| N/A
random init. (112 FT) 31%8 ggg g; gg% 4]18
120 |63.4] 1.1 [56.3| 2.1
480 [69.2] 44 |724| 8.4

pretraining method

random init. 1200 |72.5] 11.0 [76.5] 21.0

1600 |72.1| 14.7 |77.2| 28.8
MoCov2 800ep (224) 480 [72.5| 10.8 |76.5] 19.8
MoCov2 800ep (112) 480 [73.6| 8.0|77.9] 13.9

MoCov2 800ep (56)—

200ep (112)—100ep (224) 480 |74.21 9.9 |78.4| 19.7
SimCLR 800ep (224) 480 [73.2] 10.8 |77.4] 23.2
SimCLR 800ep (112) 480 |74.1| 7.6 |79.5| 14.4
SimCLR 800ep (56) 480 |75.8| 6.8 (794 11.4
BYOL 800ep (224) 480 |73.1] 12.4 |73.0| 23.2
BYOL 800ep (112) 480 [73.8] 8.1 |75.6] 16.8
BYOL 800ep (56) 480 |74.7| 6.8 |76.0| 13.4

for illustration in Table 3. We can observe that 112x112

resolution have 12% relative higher accuracy (71.8 v.s.

64.1) than the baseline 224x224 resolution, using only

one-third of the time (7.0 v.s. 20.8).

As known in [18], more training epochs is essential when
training from scratch for object detection. Hence, we also
investigate the effect of more fine-tuning epochs in Table 4
and we can have the following conclusions:

e More epochs is essential when training from scratch
on small datasets for image classification. When ran-
domly initialized, ResNet-18 achieves the highest accu-
racy of 75.8% (1200 epochs) and the accuracy will not
continue to improve with more epochs, and ResNet-50
achieves the highest accuracy of 77.2% (1600 epochs).

e Small resolution still has consistent improvements
compared to large resolution when fine-tuning for more
epochs. When compared with the best performance of ran-
dom initialization, ‘SimCLR 800ep (56)" achieves 3.3%
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Figure 2: Comparisons between different resolutions during
pretraining under SimCLR on 7 small datasets.

higher accuracy for ResNet-18 and 2.2% higher accuracy
for ResNet-50 with less than half of the training time.

o Small resolution is useful for SSL but not for super-
vised learning. When using the 112x112 resolution for
supervised fine-tuning, the accuracy is much lower than
using the 224x224 resolution (e.g., 54.3 v.s. 69.2 for
ResNet-18 when fine-tuned for 480 epochs). In contrast,
small resolution achieves much higher accuracy than large
resolution for SSL. It indicates that SSL has limited infor-
mation and hence fine-grained details in high resolution
images may be unnecessary, or may even confuse the con-
trastive loss. In short, small resolution makes SSL easier
to learn and it is not the case when we have supervised
information (i.e., the labels).

e ‘SimCLR 800ep (112)’ achieves higher accuracy than
‘MoCov2 IN 800ep’ (79.5 v.s. 77.9) when fine-tuned for
480 epochs under ResNet-50. It indicates that directly
performing SSL on the target domain is promising,
even when there are only a small set of training images.
Note that the latter is pretrained on ImageNet.

We experimented with all the datasets in Table | and
more results are shown in Figure 2 (c.f. appendix for pre-
cise values). We can find consistent improvements of small
resolution on all these datasets with much less training costs.

Moreover, we visualize the feature maps using Grad-
CAM [34] to better understand the learned representations
with different pretraining resolutions in the appendix. Small
resolution also achieves better localization performance.



Table 5: Object detection and instance segmentation fine-tuned on COCO: bounding-box AP (AP®) and mask AP (AP™)
evaluated on val2017. Pretraining time (GPU hours) was counted using 8 Titan XP GPUs.

retrainin,
—— L g S AP APYY  APYY | APTK APIK AP APP  APED  APDY | Apmk ApmE  ApmE
random init. 0310 495 332 | 285 468 304 367 367 400 | 337 538 359
IN supervised 278|384 592 416 | 350 559 37. 40.6 613 444 | 368  58.1 395
MoCov2 200ep (224) 836|390 505 424 | 356 366 380 412 618 45.1 | 376 589 403
MoCov2 200ep (112) 473389 593 426 | 352 564 377 410 617 450 | 372 588 399
200ep (112)— 50ep (224) | 68.2 | 389 59.8 429 | 358 569 383 412 619 453 | 376 592 403
MoCov2 800ep (224) 3344 395 398 432 | 360 369 386 415 620 457 | 376 389 403
MoCov2 800ep (112) 189.2 | 303 508 429 | 358 569 383 414 622 453 | 376 592 403
800cp (112)—200ep (224) | 272.8 | 395  60.1 433 | 359 57.1 386 415 621 452 | 377 593 404

(a) R50-FPN (1x)

(b) R50-FPN (2x)

Table 6: Transfer learning results from ImageNet with standard ResNet-50 architecture.

Method ImageNet VOC2007 CUB200 Cars Aircrafts CIFAR10 CIFAR100 Caltech-101 Flowers Dogs DTD
Linear evaluation:

MoCov2 200ep (224) 67.7 80.6 17.8 141 123 56.4 26.0 80.8 68.5 42.1 649
MoCov2 200ep (112) 65.3 76.4 1.5 10.8 9.5 50.1 18.4 73.4 64.6 283 60.1
MoCov2 200ep (112)—50ep (224) 66.7 81.2 18.8 162 147 57.8 25.5 81.8 735 429 65.1
MoCov2 800ep (224) 71.1 82.8 175 134 118 56.8 23.6 82.1 67.8 464 652
MoCov2 800ep (112) 68.4 79.0 11.0 98 8.2 53.1 21.4 72.9 569 364 61.4
MoCov2 800ep (112)—200ep (224)  69.8 82.9 18.6 146 12.6 59.2 27.8 82.4 724 467 654
IN supervised - 73.9 61.7 47.1 23.7 58.0 27.3 89.1 86.9 82.2 68.2
Fine-tuned:

MoCov2 200ep (224) 73.9 85.6 755 892 865 89.7 65.0 89.2 957 76.6 68.6
MoCov2 200ep (112) 73.6 86.0 764 89.1 86.3 90.3 67.4 89.7 948 76.5 68.2
MoCov2 200ep (112)—50ep (224) 73.9 86.2 775 887 86.7 89.4 65.2 91.0 959 77.6 70.2
MoCov2 800ep (224) 75.3 87.4 7777 899 875 89.2 65.3 89.5 954 717 617
MoCov2 800ep (112) 75.0 87.6 7777 883 86.7 91.1 67.7 90.2 957 772 682
MoCov2 800ep (112)—200ep (224)  75.3 86.2 78.8 89.1 87.7 90.1 66.7 91.4 96.0 77.7 69.6
IN supervised 76.1 89.0 813 90.6 86.7 90.0 67.0 94.1 96.7 80.1 74.7

Table 7: Object detection fine-tuned on PASCAL VOC train- with a backbone of R50-FPN [25] or R50-C4 [19] for Pascal

val07+12. Evaluation is on test2007: AP5q (default VOC
metric), AP (COCO-style), and AP75. All are fine-tuned for
24k iterations (~23 epochs).

pretraining R-50 FPN R-50 C4
method time|APsg AP AP75[AP59 AP APr5
random init. 0.0 63.0 36.7 36.9|60.2 33.8 33.1
IN supervised 27.8| 80.8 53.5 58.4 | 81.3 53.5 58.8
MoCov2 200ep (224) 83.6 81.8 55.0 605|822 57.1 64.5
MoCov2 200ep (112) 47.3]81.3 54.1 59.5|82.1 56.8 63.1
200ep (112)—50ep (224) | 68.2| 81.7 54.8 60.4 | 82.2 56.6 63.5
MoCov2 800ep (224) 334.4| 81.5 55.0 61.0 | 82.6 57.7 64.5
MoCov2 800ep (112) 189.2| 81.2 543 61.2|824 572 639
800ep (112)—200ep (224)|272.8| 81.7 554 61.7 | 82.5 57.7 64.4

4.1.2 Results on ImageNet

Now we have shown that small resolution is beautiful for
small datasets, and move on to investigating the effect of
small resolution for SSL on the large-scale dataset Ima-
geNet. We use MoCov?2 for illustration following the of-
ficial training and evaluation protocol in [8]. We carefully
investigate the downstream object detection performance on
COCO02017 [26] in Table 5 and Pascal VOC07&12 [13] in
Table 7, as well as downstream classification performance
on 10 datasets in Table 6. The detector is Faster R-CNN [32]

VOC object detection and Mask R-CNN [19] with R50-FPN
backbone for COCO, implemented in [38]. For ImageNet
linear evaluation, we follow the same settings in [8]. For
ImageNet fine-tuning, we train for 30 epochs with the learn-
ing rate initialized to 0.01, which is divided by 10 every 10
epochs. For other classification benchmarks, we train the
network for 120 epochs with a batch size of 64 and a weight
decay of 5e-4. The learning rate starts from 10.0 for linear
evaluation and 0.01 for fine-tuning and is decreased every
40 epochs.

For detection, our ‘800ep (112)—200ep (224)’ strategy
(c.f. Sec. 4.1.1) has comparable accuracy as the baseline
‘800ep (224)’ setting on both Pascal VOC and COCO0O2017,
but using 61.6 fewer training hours. Notice that the 112
resolution reduces the training time by nearly a half although
it does not get as much improvements as before in small
datasets when compared to the 224 resolution.

For image classification, our method achieves lower accu-
racy than the baseline method for ImageNet linear evaluation,
which is a popular benchmark in previous works. However, it
may not be an appropriate indicator for our method, because
our ‘800ep (112)—200ep (224)’ achieves higher linear eval-
uation accuracies than baseline ‘800ep (224)° on all the
10 downstream classification datasets. Moreover, ‘800ep



Table 8: The effect of removing conv5 on 3 small datasets. We count the extra training time of warmup epochs in total time.

pretraining

Accuracy

Backbone resolution setting #FLOPs epochs [ time | CUB200 | Pets | Flowers Total time
) 200 6 654 742 | 761 277
baseline 1824.54M | 900 | 64 | 663 | 769 | 827 75
224 drop conv5 weights | 1824.54M égg ég ggg ;;i ;gg %2
remove convs 1412.51M 588 ;3 22; ;gg ;gg ég
ResNet-18 — rssaon | 20 09 [ 658 [ 752 [ 772 70
aseine . 800 3.6 67.4 77.7 82.8 47
112 drop conv5 weights 488.40M égg 22 22? ;gg ;gg i;
remove convs 353.51M égg 22 ggg ;;; ;471(6) 3(6)
) 200 29 33.0 780 | 582 5.0
baseline ABTM | g00 | 114 | 620 | 611 | 656 13.5
224 | dropcomvS weights | 413579M | a0 | T4 | s | 805 | 22 a5
remove convs 3332.09M 288 32 ;g; ;?? ;gg 1?;
ResNet-50 ool 0ol 2en | 200 T4 3540 | 486 | 64.0 33
aseline : 800 55 71.0 613 | 674 7.6
112 | dropconvs weights | 109126M | o0 | 52| 95 || sre B
200 12 713 80.1 | 78.1 34
remove convs 83206M | g5y | 48 | 722 | 818 | 83.0 7.1

(112)—200ep (224)’ achieves higher fine-tuning accuracies
than baseline ‘800ep (224)’ on 7 out of the 10 downstream
datasets and the same accuracy when fine-tuning on Ima-
geNet. Linear evaluation may not be a good SSL evaluator.

4.2. Small architecture is useful

Furthermore, now we show that small architecture is use-
ful and removing the last residual block in the SSL pretrained
model is in fact helpful in improving accuracies. In Table 8§,
we compare 3 strategies on 3 datasets to investigate the effect
of removing the last residual block during SSL pretraining:

(a) baseline: we pretrain the whole network using Mo-
Cov2 and then fine-tune for 120 epochs as before.

(b) remove conv5: During the SSL pretraining process,
we remove the last residual block in the ResNet (namely
conv5) and only keep convl-conv4 for pretraining. Then,
during the fine-tuning process, following the previous prac-
tices for newly added modules in [27], we freeze the conv1-
conv4 blocks and warmup the conv5 block for 10 epochs
with learning rate 0.1 using the supervised cross entropy loss.
After that, we fine-tune all the network for 120 epochs as be-
fore. We list the total training time in Table 8, which includes
the minor extra training time for the warmup epochs.

(c) drop conv5 weights: we pretrain the whole network,
and then drop the conv5 weights (i.e., randomly re-initialize
these weights) during the fine-tuning process. We warmpup
the conv5 block for 10 epochs before fine-tuning the whole
network for 120 epochs as in (b) for fair comparisons.

From Table 8, we have the following observations:

e Large models suffer more from training on small data
than small models. When comparing the baseline setting,

ResNet-18 achieves much higher accuracy than ResNet-
50 under the same pretraining and fine-tuning epochs. It
indicates that large models are much easier to overfit on
small data and they suffer from learning complex parame-
ters with limited data. Moreover, MoCov?2 even achieves
lower accuracy than random initialization when pretrained
for 200 epochs under ResNet-50 and the situation is al-
leviated when pretrained for more epochs, which further
demonstrates the difficulty of learning on small data with
large models.

e The SSL pretrained model fails to learn deep layers
well on small data, but ‘drop conv5 weights’ and ‘remove
convS’ are both useful, especially for the large model
ResNet-50. Take ResNet-50 800ep (224) as an example,
our ‘remove conv5’ strategy achieve 17.3%, 32.7% and
25.5% relative higher accuracies than the baseline strategy
on CUB200, pets and flowers, respectively.

e Asis well known in previous works [0, 8], the MLP head
is essential to separate representation learning from learn-
ing specific properties of the contrastive loss. Note that
the ‘drop conv5 weights’ strategy works well and hence
there is a possibility that conv5 is also fitting to certain
properties of the contrastive loss rather than generic image
properties. But, the ‘remove conv5’ strategy also works
well and achieves even better performance than the ‘drop
conv5 weights’ strategy with less training cost. Hence,
it indicates that the underlying reason is the lack of ca-
pability to learn complex conv5 layers well with small
data for SSL models.



Table 9: Classification results on small datasets. ‘448 fine-tune’ means fine-tuning with 448x448 input resolution.

Backbone Method Extradata CUB200 Cars Aircrafts Flowers Pets DTD Dogs
random init. X 72.1 88.1 82.9 86.9 845 60.1 683

IN super. v 76.2 88.3 81.2 95.6 90.8 689 765

ResNet-18 S3L (ours) X 75.8 90.1 89.0 91.4 86.4 63.1 70.7
IN super. 448 fine-tune v 81.3 92.0 86.9 95.6 920 70.8 798

S3L 4438 fine-tune (ours) X 80.1 92.9 91.0 92.7 88.0 674 76.1

random init. X 772 88.9 87.5 86.6 81.8 556 69.1

IN super. v 81.3 90.6 86.7 96.7 915 747  80.1

ResNet-50 MoCov2 IN 800ep v 71.7 89.9 87.5 95.4 888 677 717
S3L (ours) X 79.5 91.9 90.6 91.7 88.7 634 738

IN super. 448 fine-tune v 84.5 93.2 91.0 97.0 93.3 755 834

S3L 448 fine-tune (ours) X 83.8 934 92.3 934 893 669 78.1

Table 10: Downstream object detection performance when
pretrained on small ImageNet under ResNet-50 backbone.
Other metrics on COCO are included in the appendix.

pretraining VOC 07&12  |COCO 2017

method | #images|epochs|APsg AP AP75 |AP™® AP™
random init. 0] 63.0 36.7 369 [31.0 285
1.28M| 100| 80.8 53.5 58.4 [38.4 35.0

10000 100] 55.9 31.2 30.8[28.2 262

supervised 2000| 55.7 29.5 27.0 |27.5 25.7
50000 100] 68.4 39.3 393 [31.6 29.1

800| 68.2 38.9 38.1 29.7 27.7

[.28M] 200] 81.3 54.1 59.5[389 352

10000 20001 75.1 47.1 503|352 323

MoCov2 (112) 8000| 76.5 48.4 519|356 325
50000 800] 78.5 51.0 55.436.7 335

4000| 79.0 51.4 56.1 |37.3 34.1

4.3. Small data is powerful

Finally, we show that small data alone is also powerful:
we can achieve impressive results by directly training on
small datasets without the need of pretraining on large-scale
datasets (e.g., ImageNet), by combining the two strategies
mentioned above.

We conducted experiments on the 7 small datasets in
Table 9. For the ImageNet supervised setting, we follow
the training protocols as before. For our S3L method, we
pretrain SimCLR for 800~1600 epochs by combining both
small resolution and small architecture strategies and fine-
tune the whole model for 480 epochs with Ir initialized to 0.1.
For random initialization, we train the network for longer
epochs (over 800 epochs) and report the best results.

Table 9 shows that our S3L. method has achieved impres-
sive results on these small datasets without using any extra
data. S3L even achieves higher accuracy on Cars and Air-
craft than the models pretrained on ImageNet (supervised or
SSL), which indicates that our method is very effective to
handle small data and directly training with small data is a
very promising direction. Also, we achieve the state-of-the-
art results on CUB200, Cars, Aircraft and pets when training
from scratch to the best of our knowledge.

However, the results on DTD is still far from the Ima-
geNet supervised baseline, especially for ResNet-50. Note

that DTD is a texture dataset, and textures have an important
property called the self-similarity [35], which means that
images of the same category have highly similar internal
structures and textures. This property contradicts the con-
trastive loss which requires an image to be similar to itself
and dissimilar to others.

Another interesting thing is to investigate the performance
of supervised learning and SSL when using small number of
images for ImageNet (small ImageNet). We randomly sam-
ple 10000 and 50000 images to construct small ImageNet.
As shown in Table 10, we surprisingly find that:

MoCov2 (112) can learn representations well and get
impressive results on downstream object detection tasks
even with only 10000 images. In comparison, supervised
learning fails to learn meaningful representations because
they are much easier to overfit on small ImageNet. It
shows that SSL is useful and essential for small data, and
we can get a good starting point with SSL on small data.
More epochs pretraining are beneficial for SSL on small
ImageNet but not for supervised learning. When training
on 10000 images, the performance on downstream tasks
for supervised learning even decreases when training for
more epochs, which indicates that supervised learning
suffers more from the overfit problem on small data.
SSL may not need as much images as supervised learn-
ing because it gets much better results than supervised
baseline with only a small number of training data on
ImageNet. It once again verifies our motivation: we need
to scale-down from various aspects for SSL.

5. Conclusion

In this paper, we proposed a shift from the existing self-
supervised learning paradigm to scaled-down self-supervised
learning (S3L) from 3 aspects: small resolution, small ar-
chitecture and small data. Various experiments show that
our method obtained a significant edge over the previous
learning paradigm with much less training cost, especially
on small datasets. Moreover, we achieved impressive results
by directly learning on small data without any extra datasets
using our S3L method, which shows that our S3L is both



effective and efficient, and that learning with only small data
is a promising and valuable direction.

In the future, we will explore two directions. First, we
will dive into deep learning with only small data. Second,
we will investigate more effective and efficient methods for
self-supervised learning.
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Table 11: Training details for MoCov2, SimCLR and BYOL
on CUB200 for experiments presented in Table 2. 7 denotes
the temperature parameter and k denotes the size of the
memory bank in MoCov2.

Settings
Method | backbone bs Ir |lrschedule| 7 k
MoCov2 ResNet-18 | 128 | 0.03 cosine 0.2 | 4096
ResNet-50 | 128 | 0.03 cosine 0.2 | 4096
. ResNet-18 | 512 | 0.5 cosine 0.1 -
SImCLR | pesNet-50 | 128 [ 0.125 | cosine | 0.1| -
ResNet-18 | 512 | 0.5 cosine - -
BYOL ResNet-50 | 128 | 0.125 cosine - -
A. Training details
A.1. SSL settings

The training details for MoCov2, SimCLR and BYOL on
CUB200 for those experimental results presented in Table 2
in the main paper are shown in Table 11.

A.2. Data augmentations

For SSL pre-training, we follow the data augmentation
setting in SimCLR for all the 3 SSL methods, including
Gaussian blur, color distortion, random horizontal flip, ran-
dom resized crop, etc. For the ‘224’ setting, we crop
224x224 patches following previous works. For the ‘112’
(or *56’) setting, we crop 112x112 (or 56x56) patches, re-
spectively, and other transformations remain the same.

For supervised fine-tuning, the images are resized with
shorter side=256, then a 224 x 224 crop is randomly sampled
from the resized image with horizontal flip and mean-std
normalization.

B. Localization results and visualization

To better understand the difference of the final learned
feature representations between different input resolutions
during SSL pretraining, we visualize the feature maps us-
ing Grad-CAM and evaluate the localization performance
on CUB200. Following previous works, we evaluate the
fine-tuned models because Grad-CAM depends on the clas-
sification head. G7-Known Loc is correct when given the
ground truth class label to the model, the intersection over
union (IoU) between the ground truth bounding box and the
predicted box is 50% or more. The localization results are
shown in Table 12 and visualization results are shown in
Figure 3.

As can be seen in Table 12, small resolution not only
achieves higher classification accuracy but also achieves bet-
ter localization performance. Note that we use GT known
Loc for evaluation, which is irrelevant to classification per-
formance, hence the higher localization accuracy directly
comes from better feature representations.

Table 12: Localization results using Grad-CAM on CUB200
under ResNet-50 with different SSL pretraining resolutions.

Methods Cls acc. | GT known Loc acc. | time
SimCLR 800ep (224) | 69.2 55.9 16.9
SimCLR 800ep (112) | 71.2 57.5 8.1
SimCLR 800ep (56) 71.5 57.7 5.1

From Figure 3, we can find that SImCLR (224) is some-
times confused by complex backgrounds (column (a) and
(1)) and often localizes only the most discriminative part
of an object in an image (column (c), (g), (h) and (i)). In
contrast, SImCLR (112) achieves better localization results
and interestingly in column (e), it successfully localizes two
wings as well as the head.

C. More results

The precise results of the influence of pretraining resolu-
tions on 7 small datasets (Figure 2 in the paper) are shown
in Table 13. As can be seen, small resolution achieves con-
sistent improvements on all the 7 small datasets under both
ResNet-18 and ResNet-50.

Also, we didn’t list all metrics for COCO in Table 10 in
Section 4.3 in the paper due to limited space, and the detailed
results are shown in Table 14.
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Figure 3: Comparisons of activation maps visualization between SimCLR (224) and SimCLR (112) using Grad-CAM on
CUB200. Note that red boxes are Grad-CAM predicted boxes and green boxes are groundtruth boxes. This figure is best
viewed in color and zoomed in.

Table 13: Ablation studies of different input resolutions on the 7 small datasets. All fine-tuned for 120 epochs.

Backbone Method CUB Cars Aircraft Flowers Pets DTD Dogs
random init. 634 809 78.6 72.2 73.7  56.0 67.7

ResNet-18  SimCLR 200ep (224) 645  85.0 79.0 74.9 79.8 581  69.0
SimCLR 200ep (112) 67.9 85.8 79.7 79.6 81.1 584 69.6

random init. 563 773 75.2 59.3 29.1 379 619

ResNet-50  SimCLR 200ep (224) 66.5 879 79.6 51.2 464 500 726
SimCLR 200ep (112) 69.8  88.3 79.8 65.0 50.0 534 741

Table 14: Downstream object detection performance when pretrained on small ImageNet under ResNet-50 backbone.

pretraining VOC 07&12 COCO 2017
method #images | epochs | APsy AP AP;5 | AP® AP, APR  AP™ AP,  APTF
random init. 0 0] 63.0 367 369 | 31.0 495 332 285 468 304

1.28M 100 | 80.8 535 584 | 384 592 416 350 559 371
10000 100 | 559 312 30.8 | 282 461 298 262 434 273
supervised 2000 | 557 295 27.0 | 275 458 289 257 429 268
50000 100 | 684 393 393 | 31.6 51.0 335 29.1 479 310
800 | 682 389 381 | 291 491 313 277 459 293
1.28M 200 | 81.3 541 595 | 389 593 426 352 564 377
10000 2000 | 75.1 47.1 503 | 352 551 385 323 519 347
MoCov2 (112) 8000 | 76.5 484 519 | 356 552 387 325 522 347
50000 800 | 785 510 554 | 367 566 399 335 538 358
4000 | 79.0 514 56.1 | 373 5777 407 341 54.8  36.6




