

MEGVII 町衣

1. Introduction & Motivation

In this paper, we propose a method called synergistic self-supervised and quantization learning (SSQL) to pretrain quantization-friendly self-supervised models facilitating downstream deployment.

- With the fast development of self-supervised learning (SSL), an increasing proportion of the models that need to be deployed in downstream tasks are finetuned from SSL pretrained models.
- To facilitate deployment, quantization is one of the most effective methods and is directly supported by most current hardware.
- Current state-of-the-art SSL methods all incur severe drop in accuracy when bit-width goes below 5.

Key idea

- Can we learn a quantization-friendly representation such that the pretrained model can be quantized more easily to facilitate deployment when transferring to various downstream tasks?
- Key Property > Train only once
- > One copy of weights
- Bit-width flexibility
- Improve the accuracy of full precision models in most cases

Synergistic Self-supervised and Quantization Learning

Yun-Hao Cao¹, Peiqin Sun^{2*}, Yechang Huang², Jianxin Wu¹, Shuchang Zhou² ¹State Key Laboratory for Novel Software Technology, Nanjing University ²MEGVII Technology

2. Framework of proposed SSQL

Our SSQL can be combined with various SSL methods and here we use SimSiam as the baseline.

 $L_{SSQL} = D(\boldsymbol{p}_1^q, SG(\boldsymbol{z}_2)) + D(\boldsymbol{p}_2^q, SG(\boldsymbol{z}_1))$

3. Experiments

	CIFA	R-1	10 r	esu	lts						
Backbone	Method	Linear evaluation accuracy (%)									
	a, a, a)	FP	8w8a	6w6a	5w5a	4w4a	3w3a	2w8a	2w4a		
	SimSiam [6]	90.7	90.7	90.6	90.3	88.9	66.0	70.1	63.8		
	BYOL <u>13</u>	89.3	89.3	89.4	89.3	88.0	75.1	71.9	63.3		
	SimSiam-PACT [7]	-	89.2	89.2	89.3	89.2	88.2	89.3	88.3		
$\operatorname{ResNet-18}$	SSQL (ours)	90.7	90.8	90.6	90.6	90.1	85.6	88.0	86.5		
	SimCLR 4	89.4	89.3	89.2	88.8	87.1	73.9	65.6	55.6		
	MoCov2 5	88.9	88.8	88.4	88.2	86.8	72.2	66.4	50.7		
	SSQL-NCE (ours)	89.0	89.0	89.0	88.8	87.9	82.9	87.1	84.9		
	SimSiam 6	90.9	90.9	91.0	90.6	89.5	74.1	55.1	57.1		
	BYOL 13	90.3	90.3	90.0	89.7	87.5	58.5	82.4	67.8		
RosNot-50	SSQL (ours)	91.1	91.1	91.1	91.1	90.0	77.4	89.5	87.2		
Ttestvet-50	SimCLR 4	91.5	91.4	91.3	90.5	88.1	59.6	63.5	42.4		
	MoCov2 5	90.2	90.2	90.2	89.4	87.9	72.1	68.8	49.5		
	SSQL-NCE (ours)	92.1	92.1	92.0	91.9	89.8	74.0	88.6	84.9		

SSQL achieves better performance than counterparts in most bit-widths.

Object detection&segmentation on COCO

Mothod	FP				6w6a							
Method	AP ^{bb}	AP_{50}^{bb}	AP_{75}^{bb}	AP ^{mk}	AP_{50}^{mk}	AP_{75}^{mk}	AP ^{bb}	AP_{50}^{bb}	AP_{75}^{bb}	AP ^{mk}	AP_{50}^{mk}	AP_{75}^{mk}
IN supervised	38.2	56.0	42.0	34.8	56.0	37.2	37.6	58.3	41.4	34.3	55.2	36.8
SimSiam	38.9	59.8	42.3	35.2	56.7	37.7	38.1	58.7	41.5	34.5	55.7	36.8
BYOL	37.4	57.9	40.6	34.1	54.9	36.4	37.0	57.4	40.2	33.7	54.3	36.0
SSQL (ours)	38.7	59.2	42.3	35.2	56.2	37.7	38.3	58.8	41.7	34.8	55.8	37.3
			5v	v5a					41	v4a		
IN supervised	35.2	55.5	38.4	31.9	52.3	34.0	23.4	38.6	24.6	21.4	36.3	22.1
SimSiam	34.3	54.0	36.7	30.9	50.6	32.6	19.9	33.6	20.6	18.1	31.3	18.3
BYOL	34.9	54.4	37.7	31.8	51.4	33.8	22.7	37.4	24.0	20.9	35.2	21.7
SSQL (ours)	36.5	56.9	39.4	33.3	53.6	35.5	28.2	43.1	27.5	26.0	43.1	27.5

SSQL surpasses the other methods at all bit-widths by a large margin even after fine-tuning.

 \succ How to quantize the network during training? We propose PSQ, in which we calculate S and Z in each step, to adapt to the changing weights.

> How to update the weights?

The quantized network f_a and FP network f share weights and we directly backprop the quantized network f_q using STE.

 \succ How to achieve bit-width flexibility?

We randomly select values from a set of candidate bit-widths in each step for the assignment of q. The synergy between SSL and quantization

$$\begin{split} & \mathbb{E}_{x,\mathcal{T},q} \left[\|\mathcal{F}_{\theta}^{q}(\mathcal{T}(x)) - \mathcal{F}_{\theta^{t}}(\mathcal{T}'(x))\|_{2}^{2} \right] \\ = & \mathbb{E}_{x,\mathcal{T},q} \left[\|\mathcal{F}_{\theta}^{q}(\mathcal{T}(x)) - \mathcal{F}_{\theta}(\mathcal{T}(x)) + \mathcal{F}_{\theta}(\mathcal{T}(x)) - \mathcal{F}_{\theta^{t}}(\mathcal{T}'(x)) - \mathcal{F}_{\theta^{t}}(\mathcal{T}'(x)) - \mathcal{F}_{\theta^{t}}(\mathcal{T}(x)) - \mathcal{F}_{\theta^{t}}(\mathcal{T}(x))$$

١	١	
J	J	

	ImageN	let r	esu	lts				
Backbone	Method	Linea FP [8	ar eva 8w8a	luatio 5w5a	on acc 4w4a	uracy 3w3a	(%) 2w4a	
ResNet-18	SimSiam [6] BYOL [13] SimSiam-PACT [7] SSQL (ours)	55.0 54.1 - 57.6	54.7 54.0 52.8 57.6	53.9 51.9 52.8 56.7	36.7 42.4 52.3 52.8	6.3 13.6 51.0 41.0	$1.5 \\ 3.6 \\ 51.6 \\ 43.1$	
ResNet-50	SimSiam [6] BYOL [13] MoCov2 [†] [5] SSQL (ours)	68.1 64.6 67.7 67.9	67.9 64.4 67.0 67.9	65.0 61.7 60.3 66.1	52.4 53.6 26.3 63.0	$15.0 \\ 16.8 \\ 2.3 \\ 40.8$	$3.1 \\ 6.4 \\ 0.1 \\ 37.4$	
mu	weight	rman	ibut	at lov	wer l	bit-w	vidths.	
	0							

 $-\mathcal{F}_{\theta^{t}}(\mathcal{T}'(x))\|_{2}^{2} + 2\mathbb{E}_{x,\mathcal{T},q} \Big[\big(\mathcal{F}_{\theta}^{q}(\mathcal{T}(x)) - \mathcal{F}_{\theta}(\mathcal{T}(x))\big)^{T} \big(\mathcal{F}_{\theta}(\mathcal{T}(x)) - \mathcal{F}_{\theta^{t}}(\mathcal{T}'(x))\big) \Big]$ ve learning term) cross term

4. Contributions & Conclusions

✓ We design an effective method called SSQL, which not only greatly improves the performance when quantized to low bit-widths, but also boosts the performance of full precision models in most cases.

✓ With SSQL, models only need to be trained once and can then be customized for a variety of downstream tasks at different bit-widths.

 \checkmark We provide theoretical analysis about the synergy between SSL and quantization in SSQL.

 Exhaustive experimental results further show that our SSQL achieves better performance on various benchmarks at all bit-widths.