1. Introduction & Motivation

In this paper, we propose a method called

synergistic self-supervised and quantization learning
(SSQL) to pretrain quantization-friendly self-supervised
models facilitating downstream deployment.

® \\Vith the fast development of self-supervised learning
(SSL), an increasing proportion of the models that
need to be deployed in downstream tasks are
finetuned from SSL pretrained models.

® To facilitate deployment, quantization is one of the
most effective methods and is directly supported by
most current hardware.

® Current state-of-the-art SSL methods all incur severe
drop in accuracy when bit-width goes below 5.
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Key idea

® Can we learn a quantization-friendly representation such
that the pretrained model can be quantized more easily
to facilitate deployment when transferring to various
downstream tasks?

Key Property

» Train only once

» One copy of weights

» Bit-width flexibility

» Improve the accuracy of full precision models in most
cases
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2. Framework of proposed SSQL

Our SSQL can be combined with various SSL methods and » How to quantize the network during training®

here we use SimSiam as the baseline. We propose PSQ, in which we calculate S and Z in each step, to adapt to the changing weights.

oragent » How to update the weights?
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Bt procson o The quantized network f, and FP network f share weights and we directly backprop the quantized

A predictor predictor network fCI USing STE.
—> forwardpass Quantized = PSC - » How to achieve bit-width flexibility?
G- backward pass EﬂCﬂdEf fﬂ . . . . .
" h " We randomly select values from a set of candidate bit-widths in each step for the assignment of gq.
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The synergy between SSL and quantization
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cross term

Q term (quantization term) CL term (contrastive learning term)

4. Contributions & Conclusions

3. Experiments
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. _ L much better performance at lower bit-widths.
« SSQL achieves better performance than counterparts in most bit-widths.
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v" We provide theoretical analysis about the synergy
between SSL and quantization in SSQL.
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