
SUBMITTED TO IEEE TRANS. PAMI 1

Tobias: A Random CNN Sees Objects
Yun-Hao Cao, and Jianxin Wu, Member, IEEE

Abstract—This paper starts by revealing a surprising finding: without any learning, a randomly initialized CNN can localize objects
surprisingly well. That is, a CNN has an inductive bias to naturally focus on objects, named as Tobias (“The object is at sight”) in this
paper. This empirical inductive bias is further theoretically analyzed and empirically verified, and successfully applied to self-supervised
learning as well as supervised learning. For self-supervised learning, a CNN is encouraged to learn representations that focus on the
foreground object, by transforming every image into various versions with different backgrounds, where the foreground and background
separation is guided by Tobias. Experimental results show that the proposed Tobias significantly improves downstream tasks, especially
for object detection. This paper also shows that Tobias has consistent improvements on training sets of different sizes, and is more
resilient to changes in image augmentations. Furthermore, we apply Tobias to supervised image classification by letting the average
pooling layer focus on foreground regions, which achieves improved performance on various benchmarks.

Index Terms—Convolutional Neural Networks, Randomly Initialized Networks, Object Localization, Self-supervised Learning.

✦

1 INTRODUCTION

D EEP convolutional neural networks (CNNs) have
achieved great success in various computer vision

tasks. However, as of today we still know little about what
makes a CNN suitable for analyzing natural images, i.e.,
what is its inductive bias. The inductive bias of a learning
algorithm specifies constraints on the hypothesis space,
and a model can only be instantiated from the hypothesis
space that satisfies these constraints. It is easy to reveal
the inductive bias of certain learning algorithms (e.g., a
linear classifier specifies a linear relationship between the
features and the target variable). But, the inductive bias of
complex CNNs is still hidden in the fog [1]. Successfully
identifying CNN’s inductive bias will not only deepen our
theoretical understanding of this complex model, but also
lead to potential important algorithmic progresses.

Objects are the key in most natural images, and CNNs are
good at recognizing, detecting and segmenting objects. For
instance, weakly supervised object localization (WSOL) [2],
[3], [4] and unsupervised object localization (USOL) meth-
ods [5], [6] can even localize objects without training on
bounding box annotations. All these methods, however, rely
on ImageNet [7] pretrained models and non-trivial learning
steps.

In this paper, we first show that focusing its attention
to objects is a born gift of CNNs even without any training,
i.e., it is CNN’s inductive bias (or one inductive bias out of
many) from an empirical perspective! A randomly initialized
CNN has surprisingly good localization ability, as shown in
Figure 1. We name this phenomenon “The object is at sight”,
or “Tobias” for short. The object(s) miraculously pop out
(“at sight”) without any need for learning. Our conjecture
is: the background is relatively texture-less compared to the
objects, and texture-less regions have higher chances to be

• All authors are with the State Key Laboratory for Novel Software
Technology, Nanjing University, Nanjing 210023, China. J. Wu is the
corresponding author.
E-mail: {caoyh, wujx}@lamda.nju.edu.cn.

• This research was partly supported by the National Natural Science
Foundation of China under Grant 61772256 and Grant 61921006.

deactivated by activation functions like ReLU. We will then‘’
provide theoretical analyses to verify our conjecture.

Tobias then lends us ‘free’ (free of labels and pretrained
models) and relatively accurate supervision for where objects
are. Hence, a natural application of Tobias is self-supervised
learning (SSL), which aims to learn useful representations
without requiring labels. After the emerging of the InfoNCE
loss [8] and the contrastive learning paradigm, many SSL
algorithms have been published, such as MoCo [9], Sim-
CLR [10], BYOL [11], and many more. In this paper, we
propose to probabilistically change an image’s background
(selected from other images) while keeping the foreground
objects by using Tobias. We thus force the model to learn
representations focusing on the objects. We evaluate the
representation learned by Tobias SSL on ImageNet and
other vision benchmarks. Our method achieves consistent
improvements on various benchmarks, especially on object
detection because our method can better capture the fore-
ground objects. Also, we carefully study the influence of the
number of pretraining images, and our method has consistent
improvements on different amounts of training data.

Furthermore, we apply Tobias to supervised image
classification and we let the average pooling layer in typical
CNNs to focus only on foreground locations determined by
Tobias. Our method achieves consistent improvements on
various classification benchmarks. Our contributions are:
• We find the “Tobias” inductive bias of CNN, i.e., a random

CNN can localize objects without any learning.
• We give theoretical analyses on why a random CNN can

localize objects. We find that activations like ReLU and
network depth are essential for a random CNN to localize.
• We successfully apply Tobias to SSL and achieve consistent

improvements on various benchmarks. Our method is ro-
bust when the amount of data is small or large, and is more
resilient to changes in the set of image augmentations.
• We successfully apply Tobias to supervised image classi-

fication and achieve both a faster convergence rate and
higher accuracy on various benchmarks.
The rest of this paper is organized as follows. First, we

SUBMITTED TO IEEE TRANS. PAMI 2

C
U

B
20

0
Im

ag
eN

et
V

O
C

20
07

Figure 1: Visualization of localization heatmaps using SCDA [5] for a randomly initialized ResNet-50. Best viewed in color
when zoomed in.

review the related work in Section 2. Then, we introduce our
method in Section 3, and mathematically analyze Tobias in
Section 4. Experimental results are reported and analyzed in
Section 5. Finally, Section 6 concludes this paper.1

2 RELATED WORKS

Random networks’ potential. [13] proposed the Lottery
Ticket Hypothesis: A randomly initialized, dense neural
network contains a subnetwork that is initialized such that—
when trained in isolation—it can match the test accuracy
of the original network after training for at most the same
number of iterations. A lot of works followed this line of
research [14], [15], [16]. The SSL method BYOL [11] was
also motivated by the random network’s potential: the
representation obtained by using fixed randomly initialized
network to produce the targets can already be much better
than the initial fixed representation. DIP [17] proposed that
a randomly initialized neural network can be used as a
handcrafted prior in standard inverse problems. These works
show the potential of random networks from the perspective
of network pruning, self learning or image denoising. We
investigate it from a new perspective: a random CNN already
sees objects well.
Un-/Weakly-supervised object localization. Weakly super-
vised object localization (WSOL) [3], [4] learns to localize
objects with only image-level labels. CAM [2] generated
class activation maps with the global average pooling (GAP)
layer and the final fully connected (FC) layer. Unsupervised
localization methods do not even need image-level labels.
SCDA [5] aggregated information through the channel
dimension to get localization masks. DDT [6] evaluated
the correlation of descriptors. However, they all rely on
ImageNet [7] pretrained models. Instead, our Tobias does
not require any labels or pretrained models.
Self-supervised learning. Self-supervised learning (SSL) has
emerged as a powerful method to learn visual representa-
tions without the expensive labels [18]. Many recent works
follow the contrastive learning paradigm [8]. SimCLR [10]

1. This paper is extended based on our preliminary work [12].
Now we provide theoretical proofs on our conjecture about why
Tobias works, add discussions about various initialization schemes
and more visualizations, supply more baselines, ablation studies and
transfer learning experiments for Tobias SSL, and extend Tobias on the
supervised learning task.

and MoCo [9] trained networks to identify a pair of views
originating from the same image when contrasted with a
large set of views from other images. The most related
methods to ours are [19] and [20], where Mixup [21] or
CutMix [22] was used to combine two images and force
the new image to be similar to both. However, they may
either generate unnatural images or cut objects out due to
the lack of supervision. In contrast, our method provides free
foreground vs. background supervision to merge patches,
which proves to be useful in subsequent experiments.
Data augmentation. We use Tobias to merge patches from
two different images to generate a new image, which keeps
the objects and replaces the background. Our method can be
viewed as a data augmentation strategy. As aforementioned,
Mixup and CutMix do not have the location information as
in our method and the random cut in CutMix may cover the
foreground area with the background. “Copy and paste” [23],
[24] is an effective augmentation in object detection and
instance segmentation, which cut object instances and paste
them on other images. These methods require ground-truth
bounding box labels, while ours does not rely on any labels.

3 TOBIAS, AND SSL WITH TOBIAS

We first propose how a randomly initialized CNN localizes
objects, but leave the theoretical justification of this surprising
phenomenon to the next section. Then, in this section we
also propose how to apply Tobias to both self-supervised
and supervised learning.

3.1 Object localization using a random CNN

Given an input image x of size H ×W , the outputs of a
CNN (before the GAP layer) are formulated as an order-3
tensor Q ∈ Rh×w×d, which include a set of 2-D feature maps
S = {Sn}(n = 1, . . . , d). Sn (of size h×w) is the n-th feature
map of the corresponding channel (the n-th channel). For
instance, by employing the ResNet-50 [25] model, Q is the
output of ‘pool5’ (i.e., activations of the last max-pooling
layer) and we can get a 7×7×2048 tensor if the input image
is 224× 224.

SCDA [5] obtains a 2-D aggregation map A ∈ Rh×w by
adding up Q through the depth direction and then uses the
mean value of A as the threshold to localize objects. Formally,

SUBMITTED TO IEEE TRANS. PAMI 3

A =
∑d

n=1 Sn. Then, a mask map M of the same size as A
is obtained by

Mi,j =

{
1 if Ai,j > ā
0 otherwise , (1)

where ā = 1
h×w

∑
i,j Ai,j and (i, j) denotes any position in

these h×w locations. Those positions (i, j) whose activation
responses are higher than ā (i.e., Mi,j = 1) indicate the
foreground objects.

The original SCDA [5] used ImageNet pretrained models
for feature extraction and localization, and obtained good
localization performance. However, there are many scenarios
where pretrained models do not exist. Instead, we follow the
same setups as in SCDA but replace the ImageNet pretrained
weights by random weights. We find that a pretrained
model is not necessary and a randomly initialized CNN
can also localize objects surprisingly well. We name this
phenomenon “The object is at sight”, or “Tobias” for short.
Figure 1 visualizes some localization examples, and we defer
more results and analyses to the following sections.

3.2 Tobias self-supervised learning
Based on our finding that an un-trained random network
can capture foreground objects well (i.e., Tobias), it is natural
to wonder if we can take advantage of this property in SSL,
where we do not have any pretrained models or annotated
labels. In this section, we propose a Tobias augmentation,
which keeps the objects and probabilistically changes the
background for an image, and can be integrated into any
existing SSL method. Moreover, we will demonstrate that
our method can be viewed as either a data augmentation or
a pseudo supervised contrastive learning method.

The Tobias augmentation. We make two modifications
to SCDA in order to better adapt to SSL algorithms. First,
we add an extra max-pooling layer (with stride=2) after
‘pool5’ and the mask map M becomes 4 × 4 instead of
7 × 7 for a 224 × 224 input image. The mask M for each
image is pre-calculated by a randomly initialized network
and do not change during further training. Second, we use
the median instead of the mean value as the threshold to
make sure that we have half the background (Mi,j = 0)
and half the foreground (Mi,j = 1). Notice that this hard
half-half division cannot fit all images exactly, because there
exist images where objects cover more than or less than
half of the area. However, this choice makes it easier when
we combine foreground and background patches from two
different images.

Then we split the input image x into 4× 4 = 16 patches
R = {Ri,j}(i, j = 0, . . . , 3), in which each patch corresponds
to one position in M :

Ri,j = x[i× r : (i+1)× r− 1, j × r : (j +1)× r− 1] , (2)

where [:, :] denotes the slice operation, r × r is the patch size
and r = 224/4 = 56 in our setting. We call Ri,j a foreground
patch if Mi,j = 1 and a background patch otherwise.

Given two image x1 and x2, we can generate a new
image x1,2, which contains foreground patches in x1 and
background patches in x2. When merging patches from
two images, we keep the positions of foreground patches
unchanged and fill in other positions with background

patches in a random order. Let R(1), R(2) and R(1,2) denote
the patches in x1,x2 and x1,2, respectively. Then,

R
(1,2)
i,j =

{
R

(1)
i,j if M (1)

i,j = 1

R
(2)
σ(i,j) otherwise

, (3)

where σ(·, ·) defines a one-to-one mapping from background
positions in x1 to background positions in x2. More specifi-
cally, background positions in x means {(i, j)|Mi,j = 0} and
σ defines such a random order to fill in background patches.
Notice that all images have the same number of foreground
and background patches and we are safe to merge these
patches.

Applying Tobias to SSL. We now apply Tobias to the
contrastive learning paradigm following the notations in
SupCon [26]. Suppose the dataset D has a total of Nt

images and we randomly sample N images {xk}k=1...N to
form a batch. The corresponding batch used for training
consists of N pairs, {x′

k,x
′′
k}k=1...N , where x′

k and x′′
k

are two random augmentations (i.e., “views”) of xk. We
denote the transformation as T , which is sampled from the
predefined augmentation function space Γ. Hence we have
x′
k = T ′(xk) and x′′

k = T ′′(xk), where T ′, T ′′ ∼ Γ. In self-
supervised contrastive learning, e.g., MoCo [9], the loss takes
the following form:

Lself = −
∑
i

log
ez

′
i·z

′′
i /τ∑

j ̸=i e
z′
i·z′

j/τ +
∑

j e
z′
i·z′′

j /τ
, (4)

where z′
i = f(x′

i), z
′′
i = f(x′′

i), the · symbol denotes the
inner product and τ is the temperature parameter. Here
f(·) ≡ Proj(Enc(·)) denotes the composition of an encoder
and a projection network.

Then we introduce Tobias into SSL (illustrated in Figure 2).
Given an image xk, we generate the first view as before, i.e.,
x′
k = T ′(xk). However, for another view x′′

k , we transform
xk into xk,m by changing its background patches with
another randomly selected image xm with probability p,
where p is a hyper-parameter:{

Pr
(
x′′
k = T ′′(xk)

)
= 1− p

Pr
(
x′′
k = T ′′(xk,m)

)
= p

Nt
,m = 1, . . . , Nt

. (5)

Hence, the loss function becomes

LTobias = −
∑
i

log
ez

′
i·z

p
i /τ∑

j ̸=i e
z′
i·z′

j/τ +
∑

j e
z′
i·z

p
j /τ

, (6)

where zp
i = f(xp

i) and xp
i is one of the augmented samples in

P (i) ≡ {xi,xi,1, . . . ,xi,Nt}, which follows the distribution
in Equation 5. Notice that when p = 0, LTobias degenerates
into Lself . Furthermore, Equation 6 can be seen as a pseudo
supervised contrastive loss, where P (i) contains images with
the same foreground object.

3.3 Tobias supervised learning

Now we further apply our Tobias finding into supervised
learning (image classification) and we modify the GAP layer
in typical CNNs. As noted in Sec. 3.1, the outputs before the
GAP layer are formulated as an order-3 tensor Q ∈ Rh×w×d.
Then, after GAP we can get G =

∑h−1
i=0

∑w−1
j=0 Qi,j ∈ Rd.

We propose to average over only foreground locations,

SUBMITTED TO IEEE TRANS. PAMI 4

forward

𝑓𝑓𝜃𝜃

𝑓𝑓𝜃𝜃

𝑓𝑓𝜉𝜉

Part II: Probabilistically changing background

Part I: Localization using randomly initialized CNNs

Input image agg. mask 𝐴𝐴 FG&BG patches 𝑅𝑅Random network ‘pool5’ output 𝑄𝑄

aggregation thresholdinginput

…
Background patches pool

𝑇𝑇′~Γ

𝑇𝑇′′~Γ

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑍𝑍1

𝑍𝑍2

View 1

View 2

backprop

backprop
p𝑟𝑟𝑟𝑟𝑟𝑟 = 1 − 𝑝𝑝 p𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑝𝑝

Figure 2: Pipeline of Tobias SSL. Upper: splitting foreground
and background using a randomly initialized CNN. Lower:
applying Tobias augmentation into SSL.

i.e., those with Mi,j = 1. Under this formulation, the
CNN is encouraged to utilize only foreground regions for
classification. The mask map M is dynamically generated
by Q during training while n Sec. 3.2 M was pre-calculated
using a random network. Also notice that M is generated by
using a threshold λ, where λ equals the mean value in Sec. 3.1
and median in Sec. 3.2. We will study different strategies of
the threshold in Sec. 5.3.

We name this pooling strategy as Tobias average pooling
(TAP) and it can be easily implemented by adding an extra
element-wise multiplication operation before the GAP layer:

Qn
i,j = Qn

i,j ×Mi,j , (7)

where n denotes the channel index (n = 1, . . . , d).

4 THEORETICAL AND EMPIRICAL ANALYSES

Randomly initialized networks are more convenient to
analyze than trained ones. In this case, all the weights are
i.i.d. variables and we assume the input image is constant
and only focus on the behavior of random networks.

Now we will mathematically analyze why a randomly
initialized CNN can localize objects. In order to facilitate the
description, we first give some assumptions and notations
used in this section. Assume the pixels are indexed by (x, y)
and the layers are indexed by p. Let f(x, y) and fp(x, y)
denote the value at location (x, y) of the input image and the
output of the p-th layer, respectively. We start by the simple
the case of n convolutional layers using k × k kernels with
stride one, and only one single channel in each layer, i.e.,

fp(x, y) = h
(k−1∑

i=0

k−1∑
j=0

wp
i,jf

p−1(x+ i, y + j)
)
, (8)

where wp
ij denotes the weight of the convolution filter at

the p-th layer and h(·) denotes the activation function. wp
ij

are i.i.d. variables and we assume wp
ij ∼ N (0, σ2) unless

otherwise specified. When referring to E[·] and Var[·], we
mean the expectation and variance w.r.t. many different
sampled random networks (i.e., w) for the same input.

First, the following Claim 1 says that the first convolution
layer acts as an edge detector and regions with higher image
gradients are expected to have larger activations after ReLU.
Claim 1. Assume k = 2, h(x) = max(0, x) (ReLU activation)

and
∑

i,j w
1
i,j = 0, then E[f1(x, y)] =

√
|gx|+|gy|+|gxy|√

2π
σ,

where gx, gy and gx,y are the image gradient along the
vertical, horizontal and diagonal direction, respectively.

Next, the following Claim 2 states that the receptive
filed [27] expands along with the increase of depth, and the
influence (variance of values at different spatial locations)
decays quickly from the center. Hence, a deep linear convo-
lutional network can capture features from local to global
along with the increase of depth, and can find larger regions
containing richer features (e.g., edges in Claim 1).
Claim 2. Assume k = 2, h(x) = x (linear activation) and the

depth p is large, then

fp(x, y) =

p∑
s=0

p∑
t=0

W p
s,tf(x+ s, y + t) ,

in which W p
s,t ∼ N(0,

Cs,t

p σ2) and the constant Cs,t ≈

22p 1
2πp× 1

4

e
−

(s− p
2
)2+(t− p

2
)2

2p× 1
4 .

Then, the following Claim 3 says that the expectation of
the output equals 0 without non-linearity. Finally, Claim 4
and Claim 5 explain that regions with large values are
expected to remain a large value for unbounded activation
functions (e.g., ReLU) but not for bounded activations (e.g.,
sigmoid). In other words, regions with larger values (textures,
edges, and potential objects) are likely to stay prominent after
ReLU but will be suppressed for sigmoid.
Claim 3. Suppose h(x) = x (no activation), then

Ew[f
p(x, y)] = 0 , (9)

Var[fp(x, y)] = Tσ2 , (10)

where T =
∑k−1

i=0

∑k−1
j=0 |fp−1(x+ i, y + j)|.

Claim 4. Suppose h(x) = max(0, x) (ReLU activation), then

Ew[f
p(x, y)] =

√
T

2π
σ , (11)

Var[fp(x, y)] = (
1

2
− 1

2π
)Tσ2 ≈ 0.34Tσ2 , (12)

where T =
∑k−1

i=0

∑k−1
j=0 f

p−1(x+ i, y + j).

Claim 5. Suppose h(x) = 1
1+e−x (sigmoid activation), then

1
4 < Ew[f

p(x, y)] < 3
4 .

In conclusion, Claim 1 and Claim 2 show that a random
CNN can capture local edges (with larger activations values)
as well as global features (with increasing receptive field
sizes). Then, Claim 3∼Claim 5 show that unbounded acti-
vations like ReLU can help regions with large activations
stay prominent. Hence, we can conclude that regions with
higher activations in the final feature map are more likely to
contain objects. More results and analyses will be shown in
Section 5.1.

All proofs of Claim 1∼Claim 5 are provided in the
appendix to this paper.

SUBMITTED TO IEEE TRANS. PAMI 5

Input Filter 1 Filter 2 Filter 3 Filter 4 Filter 5 Filter 6

Figure 3: Visualization of the output of one 3×3 convolution
filter when C = 0. In this case, random convolution filters act
as edge detectors.

4.1 Empirical Analysis
We then conduct empirical experiments as a supplement to
the above theoretical analyses.

Empirical results for Claim 1. We visualize the outputs of
one 3×3 convolution filter, as shown in Figure 3. The weights
wij ∼ N (0, 0.1) and after initialization we set wij ← wij−µ
to let C = 0, where µ = 1

9

∑
wi,j . As can be seen, in this case

convolution filters act as edge detectors in different directions.
Notice that sometimes the brightness will be reversed (the
last column) because the sign of the output may be negative
and be deactivated after ReLU. It is worth noting that we
remove the constraint of C = 0 in all subsequent experiments
in Section 5 and we can also get similar good results.

Empirical results for Claim 3∼Claim 5. Now we fix our
input image to better understand the behavior of randomly
initialized networks. We generate L (L = 100 in our
experiments) randomly initialized networks and analyze
the mean and standard deviation of the output at different
depth. Let us denote the output at the (x, y) position of
the p-th layer of the l-th model as fp

l (x, y). We calculate
the mean and standard deviation at different locations of
different depth as follows:

Up(x, y) =
1

L

L∑
l=1

fp
l (x, y) ,

Sp(x, y) =

√√√√ 1

L

L∑
l=1

[fp
l (x, y)− Up(x, y)]2 .

We visualize the heatmap of Up(x, y) (normalized to
[0, 1]) using one example image in Figure 4. We can see that
ReLU can preserve regions with large activations (potential
objects) but it is not the case for linear and sigmoid.

Moreover, we average over spatial locations for Sp(x, y)
to get Sp and plot it in Figure 5:

Sp =
1

H ×W

∑
x,y

Sp(x, y) .

When comparing Equation (10) and (12), we can see that
ReLU has an extra (12 −

1
2π)

p constant factor multiplier on
the variance. As can be seen from Figure 5, ReLU activation
effectively reduces the variance. This can partly explain the
robustness of the localization results in Sec. 5.1.

linear

Layer 1 Layer 2 Layer 3 Layer 5 Layer 10 Layer 20

ReLU

sigmoid

Color Map
0

1

Figure 4: Visualization of the heatmap of Up(x, y).

2 4 6 8 10 12 14 16 18 20
depth

−16
−14
−12
−10
−8
−6
−4
−2
0

lo
g1

0(
S)

linear
ReLU

(a) 1 channel

2 4 6 8 10 12 14 16 18 20
depth

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

lo
g1

0(
S)

linear
ReLU

(b) 16 channels

Figure 5: Average standard deviation Sp (in log10) w.r.t.
depth with different number of channels and activations.

5 EXPERIMENTAL RESULTS

We use CUB-200 [28] and ImageNet [7] for our experiments.
First, we show the localization results of randomly initialized
CNNs and make further analyses. Then, we apply our Tobias
method into SSL and demonstrate its effectiveness across
various pretraining datasets, downstream tasks, backbone
architectures and SSL algorithms. Then, we study the effects
of different components and hyper-parameters and sensi-
tivity to data augmentations in our algorithm. Finally, we
apply our Tobias into supervised image classification tasks.
All our experiments were conducted using PyTorch [29] and
we used 8 Titan Xp GPUs for our experiments.

5.1 Localization ability of random CNNs

We start by studying the localization ability of randomly
initialized CNNs. We use SCDA [5] for localization and
conduct experiments on two popular datasets for object
localization, i.e., ImageNet and CUB-200. Notice that [5]
used ImageNet pretrained models for evaluation while we
study the potential of randomly initialized models here.
The localization is correct when the intersection over union
(IoU) between the ground truth bounding box and the
predicted box is 50% or more. In Table 1, we report the
average localization accuracy and standard deviation of 3
trials for randomly initialized models and we adopt Kaiming
initialization [30] used in the PyTorch official code. We use
the PyTorch official models for ImageNet pretrained models.
We show some visualization results on CUB-200, ImageNet as
well as one complex multi-object dataset Pascal VOC2007 [31]
in Figure 1. The heatmap in Figure 1 is calculated by the 2-D
aggregation mask A, as noted in Sec. 3.1.

As shown in Table 1, a randomly initialized ResNet-
50 (R-50) [25] achieves comparable localization accuracies
with its ImageNet supervised counterpart on both ImageNet

SUBMITTED TO IEEE TRANS. PAMI 6

Table 1: Comparisons of localization accuracy between ImageNet pretrained and randomly initialized CNNs on ImageNet
and CUB-200. ‘#ReLU’ and ‘#stages’ represent the number of ReLU units and stages, respectively. ‘IN super.’ stands for
‘ImageNet supervised’. We report the average accuracy and standard deviation of 3 trials for randomly initialized models.

Method Backbone #ReLU / #stages ImageNet CUB-200
IN super. random init. IN super. random init.

SCDA [5]

R-50 33 / 5 51.9 48.2±0.6 44.8 41.8±0.6
R-50 (sigmoid) 0 / 5 46.9 45.5±1.9 32.6 22.6±3.3
R-50 (arctan) 0 / 5 34.4 36.6±0.7 19.1 18.1±0.3
R-50 (conv1) 1 / 1 44.1 41.3±1.5 33.8 30.5±1.0
R-50 (conv1-2) 7 / 2 38.4 39.7±1.5 22.1 29.6±0.9
R-50 (conv1-3) 15 / 3 45.0 42.2±0.9 31.0 31.8±0.2
R-50 (conv1-4) 27 / 4 49.9 47.2±1.3 39.2 40.1±0.4
Vit-Base - / - 50.9 40.5±0.5 48.6 31.9±1.3

CAM [2] R-50 33 / 5 52.9 33.8±0.1 50.0 26.0±0.3

and CUB-200. We also present one popular WSOL method,
CAM [2], for comparison and it further shows that our results
for random CNNs are accurate. Notice that SCDA relies
only on convolution feature maps while CAM also relies
on the trained FC weights, hence we can see a significant
drop for CAM with randomly initialized models. Also, from
Figure 1 we can observe more intuitively that randomly
initialized CNNs can not only locate a single object, but
multiple objects as well. Furthermore, we can observe that
the standard deviation of multiple trials is small for randomly
initialized models (also see the appendix—there is only
small difference between the visualization results of different
trials). The results show that a randomly initialized CNN
can achieve surprisingly good localization results and the
localization results are robust with different random weights.
Moreover, as the core component of CNNs is convolution,
we also investigate what the localization effect has to do with
convolution. We compare with the non-CNN architecture
ViT-Base [32] and there is a large gap between pretrained and
randomly initialized ViT models. Hence, we can conclude
that it is one inductive bias for CNNs, but not for MLP-based
architectures such as ViT.

But, why can a random CNN see objects without any
learning? Given the theoretical and empirical results and in
particular its stability under different random initializations,
we believe it is the inductive bias of modern CNNs. There are
a lot of ReLU and convolution layers inside ResNet-50 (and
most other modern CNNs). Remember that SCDA simply
adds feature maps across the channel dimension. Hence, if
one spatial location has many zeros (i.e., deactivated after
ReLU), we expect it to have a low SCDA score and thus
being predicted as belonging to the background.

Our conjecture is then: the background is relatively texture-
less when compared to the objects, and texture-less regions have
higher chances to be deactivated by ReLU as the increase of network
depth. In addition to the theoretical analyzes in Sec. 4, we
also design two experiments to verify it. One is to replace
all ReLU activations with other activation functions (e.g.,
sigmoid). The other one is to gradually reduce the number
of ReLU units and we directly remove whole stages for R-
50. For instance, ‘conv1-4’ means that we remove the last
stage in R-50 (i.e., ‘conv5’). From Table 1 we can have the
following two conclusions. First, ReLU plays an important
role because when we replace ReLU with sigmoid or arctan, a
significant decrease in localization accuracy was observed (cf.
appendix for visualization). Second, network depth is also
important and we can observe a significant performance

C
o
n
v
1
-5

C
o
n
v
1
-4

C
o
n
v
1
-3

(a) (b) (c) (d) (e) (f) (g)

C
o
n
v
1
-2

C
o
n
v
1

(h)

Figure 6: Ablation of network depth for randomly initialized
ResNet-50 using SCDA on ImageNet.

Table 2: Localization accuracy of various CNNs on ImageNet
and CUB-200. We report the average accuracy and standard
deviation of 3 trials for randomly initialized models.

id Backbone ImageNet CUB-200
1 R-50 48.2±0.6 41.8±0.6
2 R-50 (w/o skip connection) 50.8±1.0 42.3±1.5
3 R-50 (w/o batch normalization) 49.1±0.5 41.0±1.4
4 R-50 (shallow [1,2,3,1]) 43.9±1.5 36.7±0.7
5 R-50 (shallow [1,1,1,1]) 42.1±1.7 31.8±2.1
6 R-50 (deep [6,8,12,6]) 50.0±0.8 45.0±0.9
7 R-50 (ELU) 49.3±0.9 46.6±2.7
8 R-50 (SELU) 50.4±0.6 45.4±3.5
9 R-50 (softplus) 51.0±2.7 51.6±3.1

10 VGG-11 40.0±0.5 30.6±1.4
11 VGG-16 40.8±0.5 33.5±1.9
12 VGG-16 (sigmoid) 39.8±0.6 18.2±1.3
13 VGG-16 (arctan) 34.6±0.5 20.1±1.0
14 VGG-16 (ELU) 40.4±1.0 32.5±1.0
15 VGG-19 41.4±1.8 34.2±0.3
16 AlexNet 34.6±1.5 24.8±0.3
17 Inception v3 52.2±0.6 49.6±0.9
18 Hourglass 52.6±0.2 46.9±0.4
19 EdgeBox 31.8 32.7
20 lower bound (whole image) 38.8 19.1
21 upper bound (faster R-CNN) 58.9 96.2

degradation as the network depth decreases (i.e., fewer
stages). Visualizations in Figure 6 more intuitively show
that shallow layers (e.g., ‘conv1’ and ‘conv1-2’) are confused
by edges in backgrounds (such as grass or floor) but the full
network can successfully see the whole object.

To make our conclusions more convincing, we add more
baselines and further investigate different components in

SUBMITTED TO IEEE TRANS. PAMI 7

35 40 45 50 55
Localization accuracy (%) when randomly initialized

55

60

65

70

75

80
Cl

as
sif

ica
tio

n
ac

cu
ra

cy
 (%

)

AlexNet

VGG-11

VGG-16
VGG-19

ResNet-50
ResNet-152

Inception v3

AlexNet (5)
VGG-11 (8)
VGG-16 (13)
VGG-19 (16)
ResNet-50 (53)
ResNet-152 (155)
Inception v3 (96)

Figure 7: Classification accuracy after training (PyTorch
model zoo) versus localization accuracy (when randomly
initialized) on ImageNet. The numbers in brackets represent
the number of convolutions in the models (i.e., depth).

ResNet-50 as well as other CNN architectures in Table 2.
More baselines. We provide some more upper and lower
bounds to help understanding. The lower bound is the
accuracy of predicting the entire image as the bounding box,
which is not trivial given that many images have a single
prominent object in CUB and ImageNet. The upper bound
is the accuracy of pretrained Faster R-CNN R-50 [33], which
is directly supervised on the detection task COCO [34]. We
also compare with the object proposal method EdgeBox [35].
These results further prove that the localization results of
random CNNs are good.
Different components in ResNet-50.

(1) Skip connection and batch normalization (BN) [36] are
not crucial. We remove all skip connections in R-50 (row 2)
and we even achieve slightly better performance than the
original R-50 (row 1). Also, when we remove all BN (row 3),
we achieve comparable performance.

(2) Network depth is important. We reduced the number
of stages in Table 1 before and now we keep the number
of stages unchanged but change the number of bottlenecks
in each stage. The number of bottlenecks in each stage for
R-50 is 3, 4, 6 and 3, respectively (denoted as [3,4,6,3]). When
reduced to [1,2,3,1] (row 4), we have 4.3 and 5.1 points
losses compared with original R-50 on ImageNet and CUB,
respectively. When further reduced to [1,1,1,1] (row 5), we
have 6.1 and 10.0 points losses on ImageNet and CUB,
respectively. Conversely, when we increase the number of
bottlenecks to [6,8,12,6], we can get 1.8 and 3.2 points gains
on ImageNet and CUB, respectively. It indicates that deeper
architectures can better capture high-level information and
localize objects better, even when randomly initialized.

(3) Other ReLU-like unbounded activations also help.
When we use other unbounded activations, e.g., ELU, SELU
and softplus (row 7∼9), we can get comparable or even better
results than ReLU. All these activation functions have one
thing in common: deactivate negative values and unbounded
for positive values. This is consistent with our previous
theoretical analyses Claim 3 and Claim 4.
Other CNN architectures. Other randomly initialized
CNN architectures can also localize objects well. We study
AlexNet [37], VGG-style networks [38], Hourglass [17] and
Inception v3 [39]. We can observe that other architectures
(e.g., VGG-19, Hourglass and Inception v3) can also achieve

Table 3: Comparisons of localization accuracy (without
training) using SCDA on ImageNet and CUB-200, and classi-
fication accuracy (after training) on CIFAR-10 using different
initialization methods. We report the average accuracy and
standard deviation of 3 trials.

Initialization method Loc acc. Cls acc.
ImageNet CUB-200 CIFAR-10

Kaiming normal (default) 48.2±0.6 41.8±0.6 83.4±0.3
Kaiming uniform 49.2±0.6 43.3±0.6 82.7±0.7
Xavier normal 42.2±1.1 32.6±0.9 80.9±0.6
Xavier uniform 41.3±1.0 33.3±0.6 80.4±0.4
Normal(0,0.1) 50.6±0.3 43.4±0.5 82.8±0.8
Normal(0,1) 0.0* 0.0* 77.4±0.8
Uniform(-0.1,0.1) 50.0±0.4 43.4±0.4 82.3±0.3
Uniform(-1,1) 0.0* 0.0* 79.5±0.5
Zero init 0.0* 0.0* 10.0±0.0
* When using Normal(0,1) or Uniform(-1,1) for initialization, the

network fails to localize objects (obtain nearly all zero activation
map and the localization accuracy is actually 0).

non-trivial localization ability.
When comparing among VGG-style networks, we can

also observe that the localization accuracy increases with the
increase of network depth (row 10∼15). Also, activations like
ReLU perform better than sigmoid and arctan activations.

When comparing among different CNN architectures, we
can see that deeper networks (e.g., Inception v3) perform
better than shallow networks (e.g., AlexNet). As shown in
Fig. 7, we rank the networks according to the localization
accuracy on ImageNet: AlexNet<VGG-11<VGG-16<VGG-
19<ResNet-50<Inception v3. Note that the ranking of the lo-
calization accuracy of these random networks is surprisingly
consistent with their classification accuracy on ImageNet. We
can conclude that deeper networks perform better in terms
of localization, even when randomly initialized.
Initialization scheme. Notice that we used PyTorch default
initialization method Kaiming normal initialization before.
Now we investigate the effect of other initialization meth-
ods, i.e., Kaiming uniform, Xavier normal, Xavier uniform,
Normal(0,0.1), Normal(0,1), Uniform(-0.1,0.1), Uniform(-1,1)
and zero init for experiments, and the localization results are
shown in Table 3. We can observe that other initialization
methods, e.g., Kaiming uniform, Normal(0,0.1) and Uniform(-
0.1,0.1), can also get good and robust localization results and
Tobias is actually a general phenomenon. However, we can
not expect a good localization result with inappropriate
initialization methods. For instance, when we set all the
weights to zero, we will get all zero activation map and zero
localization accuracy (it will also destroy supervised training
with this bad initialization). Also, as discussed in [30], the
linear assumption in Xavier init. [40] is invalid for ReLU and
we can observe degraded localization accuracy here.

Also, we design an experiment to investigate the relation-
ship between the localization accuracy of a random network
before any training and its classification accuracy after
training. We train on CIFAR-10 for 60 epochs using ResNet-
50 with different initialization methods as aforementioned.
We can observe that the localization accuracy of a random
network can somehow indicate its classification accuracy
after training (i.e., has high correlation). For instance, Nor-
mal(0,1) has much worse localization performance than
Normal(0,0.1) (without any training using SCDA) and it
also gets lower accuracy after training on CIFAR-10. Also,

SUBMITTED TO IEEE TRANS. PAMI 8

C
U

B
20

0
Im

ag
eN

et
V

O
C

20
07

(a) (b) (c) (d) (e) (f) (g)

Figure 8: Visualization of some failure cases using SCDA for
a randomly initialized ResNet-50. Best viewed in color.

Xavier initialization performs worse on localization than
Kaiming initialization and lower classification accuracy after
training is observed. In other words, we observe that a
random network that sees objects better is more likely to
perform better for classification after training.

Failure case analysis. Here we present and analyze some
failure cases on these 3 datasets in Figure 8. For CUB-200, the
random network focuses only on the head of birds in column
(a), (d) and (e) while gets confused by complex backgrounds
in column (b) and (g). For VOC2007, the random network
does not localize all objects when there are multiple objects
in column (a) (miss people), column (b) (miss the other cat),
column (c) (miss people) and column (d) (miss other people).

In short, we find that randomly initialized CNNs can
localize objects surprisingly well, which is even comparable
to their supervised counterparts. Also, we analyze the effect
of different components in modern CNNs. The results reveal
the potential of a random CNN in localizing objects and
provide a new perspective to explain why modern CNNs
achieve such good performance in visual analysis.

5.2 Tobias self-supervised learning
Now we apply Tobias to SSL (Equation 6) and evaluate
its effectiveness on CUB200 and ImageNet. Then, we will
analyze the effects of different components and hyper-
parameters and the sensitivity to data augmentations.

5.2.1 Results on CUB-200
We carefully study our Tobias using 2 typical SSL methods,
namely MoCov2 [41] and SimCLR [10] under both ResNet-
18 and ResNet-50. We follow the training and evaluation
protocols in [42] and conduct experiments on CUB-200. The
full learning process contains two stages: pretraining and fine-
tuning. We use the pretrained weights obtained by SSL for
initialization and then fine-tune networks for classification.
Note that SSL pretraining and fine-tuning are both performed
only on the target dataset CUB-200 in this subsection.

For the fine-tuning stage, we fine-tune all methods for
120 epochs using SGD with a batch size of 64, a momentum
of 0.9 and a weight decay of 5e-4 for fair comparison. The
learning rate starts from 0.1 with cosine learning rate decay.
We also list the results using the mixup strategy, where the α
is set to 1.0. For the SSL pretraining stage, we follow the same
settings in the original papers and more details are included
in the appendix. ‘-Tobias’ denotes our method and we only
change the data loading process and other training settings
remain the same as baseline methods for fair comparison.

Table 4: Comparisons of pretraining details and accuracies
(%) on CUB-200. ‘N/A’ means that pretraining are conducted
on ImageNet instead of CUB-200 for ImageNet supervised
models. ‘FT’ is short for ‘fine-tuning’.

Backbone SSL pretraining Fine-tuning accuracy (%)
method epochs Normal FT Mixup FT

ResNet-18

ImageNet super. N/A 76.2 75.0
random init. 0 62.0 63.4
MoCov2 200 63.7 65.8
MoCov2-Tobias 64.4 (+0.7) 66.3 (+0.5)
MoCov2 800 65.0 66.3
MoCov2-Tobias 66.2 (+1.2) 67.7 (+1.4)
SimCLR 200 63.6 64.5
SimCLR-Tobias 65.4 (+1.8) 68.6 (+4.1)
SimCLR 800 66.0 67.3
SimCLR-Tobias 67.4 (+1.4) 69.3 (+2.0)

ResNet-50

ImageNet super. N/A 81.3 82.1
random init. 0 58.6 56.3
MoCov2 200 56.2 53.0
MoCov2-Tobias 63.6 (+7.4) 62.0 (+9.0)
MoCov2 800 66.5 62.0
MoCov2-Tobias 67.2 (+0.7) 71.5 (+9.5)
SimCLR 200 68.0 66.5
SimCLR-Tobias 68.4 (+0.4) 71.7 (+5.2)
SimCLR 800 69.2 73.0
SimCLR-Tobias 70.0 (+0.8) 73.6 (+0.6)

The results are shown in Table 4. Tobias has consis-
tent improvements under various backbones, pretraining
epochs and SSL algorithms. Taking ResNet-50 as an example,
our Tobias achieves 13.2% relative higher accuracies than
the baseline MoCov2 with normal fine-tuning when both
pretrained for 200 epochs. Also, the relative improvement
has risen to 17.0% if we use mixup. It is because that we
also merge image patches in an informative way during
pretraining and it is more friendly to subsequent fine-
tuning with mixup. Moreover, we can observe that the
improvement is larger when pretrained for fewer epochs
(200 v.s. 800). It is because that our method can better capture
foreground objects, which leads to faster convergence during
pretraining. We will further demonstrate the effectiveness of
such foreground vs. background information later.

5.2.2 Results on ImageNet

Now we move on to the large-scale dataset ImageNet. We
use MoCv2 for illustration following the official training
protocols in [41]. We adopt ResNet-50 as backbone and set
the batch size to 256, learning rate to 0.03 and number
of epochs to 200. We investigate the downstream object
detection performance on Pascal VOC 07&12 [31] in Table 5.
We carefully investigate the downstream object detection
performance on COCO2017 [34] and Pascal VOC 07&12 in
Table 5. The detector is Faster R-CNN [33] with a backbone
of R50-FPN [43] or R50-C4 [44] for Pascal VOC, and Mask R-
CNN [44] with R50-FPN backbone for COCO, implemented
in [45]. Also, we experimented on 8 downstream classifica-
tion benchmarks following [42], with results in Table 7.

As shown in Table 5, Tobias achieves better performance
than baseline MoCov2 on both COCO and Pascal VOC.
Also notice that our Tobias even achieves slightly better
performance than MoCov2 800ep (pretrained much longer)
on Pascal VOC. Also, Table 7 shows that although our
Tobias achieves slightly lower accuracy in ImageNet linear
evaluation, it outperforms MoCov2 baseline on 6 out of 8

SUBMITTED TO IEEE TRANS. PAMI 9

Table 5: Left: Object detection and instance segmentation on COCO, showing bounding-box AP (APbb) and mask AP (APmk)
evaluated on val2017; Right: Object detection on PASCAL VOC trainval07+12 (default VOC metric AP50, COCO-style AP,
and AP75 evaluated on test2007).

pretraining method R50-FPN (1x)
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

random init. 31.0 49.5 33.2 28.5 46.8 30.4
IN supervised 38.4 59.2 41.6 35.0 55.9 37.1
MoCov2 200ep 39.0 59.5 42.4 35.6 56.6 38.0
MoCov2-Tobias 200ep 39.3 59.9 42.7 35.8 56.9 38.4
MoCov2 800ep 39.5 59.8 43.2 36.0 56.9 38.6

(a) COCO2017

R50-FPN (24k) R-50 C4 (24k)
AP50 AP AP75 AP50 AP AP75

63.0 36.7 36.9 60.2 33.8 33.1
80.8 53.5 58.4 81.3 53.5 58.8
81.8 55.0 60.5 82.2 57.1 64.5
82.0 55.5 61.1 82.6 57.7 64.9
81.5 55.0 61.0 82.6 57.7 64.5

(b) Pascal VOC 07&12

Table 6: Downstream object detection performance on VOC
07&12 and linear evaluation accuracy on Tiny-IN-200 when
pretrained on ImageNet subsets using ResNet-50. ‘#imgs’
(‘#eps’) represent the number of images (epochs).

pretraining VOC 07&12 Tiny-IN-200method #imgs #eps AP50 AP75

random init. 0 0 63.0 36.9 0.5
MoCov2 10k 200 71.1 45.8 0.5
MoCov2-Tobias 71.4 (+0.3) 47.0 (+1.2) 9.9 (+9.4)
MoCov2

10k 800

71.6 45.9 23.6
MoCov2-Tobias 73.2 (+1.6) 48.5 (+2.6) 23.9 (+0.3)
MoCov2-RM 72.0 ↓1.2 47.4 ↓1.1 23.5 ↓0.4
MoCov2-CutMix 71.8 ↓1.4 47.1 ↓1.4 23.2 ↓0.7
MoCov2-Mixup 70.9 ↓2.3 43.3 ↓5.2 19.3 ↓4.6
MoCov2 50k 200 72.2 46.8 26.3
MoCov2-Tobias 73.7 (+1.5) 49.2 (+2.4) 26.0 (-0.3)
MoCov2

50k 800

77.5 53.3 37.9
MoCov2-Tobias 77.9 (+0.4) 54.9 (+1.6) 40.7 (+2.8)
MoCov2-RM 77.4 ↓0.5 53.3 ↓1.6 40.1 ↓0.6
MoCov2-CutMix 77.0 ↓0.9 53.0 ↓1.9 39.7 ↓1.0
MoCov2-Mixup 76.7 ↓1.2 52.4 ↓2.5 38.7 ↓2.0
MoCov2 100k 200 76.2 51.6 35.3
MoCov2-Tobias 77.5 (+1.3) 53.9 (+2.3) 36.5 (+1.2)
MoCov2 100k 800 78.7 56.3 43.7
MoCov2-Tobias 79.4 (+0.7) 57.3 (+1.0) 44.3 (+0.6)

downstream classification benchmarks in linear evaluation
and 7 out of 8 in fine-tuning.

Apart from the full large-scale ImageNet dataset, we
also study the performance under different data volumes by
sampling the original ImageNet to smaller subsets, motivated
by [42]. We randomly sample (without using any image label)
10 thousand (10k), 50 thousand (50k) and 100 thousand
(100k) images to construct IN-10k, IN-50k and IN-100k,
respectively. We only change the amount of data here and
other training settings remain the same as before. The results
are shown in Table 6 and we adopt Pascal VOC 07&12 for
object detection and Tiny-ImageNet-200 (100,000 training
and 10,000 validation images from 200 classes at 64 × 64
resolution) for linear evaluation.

As can be seen in Table 6 and Figure 9, our Tobias
achieves significant improvements on both downstream
tasks, especially on VOC 07&12 object detection. For instance,
when both trained for 200 epochs on IN-100k, our Tobias
is significantly better than baseline counterpart: up to +1.3
AP50 and +2.3 AP75. Also notice that when both trained
for 200 epochs on IN-10k, MoCov2 performs the same
as random guess (0.5%) while our method learns much
better representations (9.9%) in terms of Tiny-IN-200 linear
evaluation. In general, our method improves the most on
AP75, which is a more stringent metric for detection accuracy.
It indicates that our model can better capture foreground

10k 50k 100k 1.28M
#pretraining images from ImageNet

46
48
50
52
54
56
58
60

AP
75

 o
n

VO
C2

00
7

MoCov2 200ep
MoCov2-Tobias 200ep

Figure 9: Performance of Tobias on Pascal VOC (AP75) with
respect to different training data size.

M
o
C

o
v
2

T
o
b

ia
s

Figure 10: Visualizations of heatmaps using SCDA for
MoCov2 and MoCov2-Tobias pretrained models.

objects across changing backgrounds during pretraining,
hence improving performance for object detection as well
as image classification. Moreover, our method is especially
effective (i.e., has greater improvements) when the amount of
data is small. We also visualize the heatmaps of MoCov2 and
MoCov2-Tobias pretrained models in Figure 10. We compare
the checkpoints pretrained on IN-100k for 800 epochs. We
can see that Tobias will give higher scores (more red color)
on objects and it further demonstrates that our Tobias can
help the network focus on foreground objects.

5.2.3 Ablation studies
In this section, we will first study the effectiveness of the
foreground vs. background (Tobias) information generated
by random networks. Then, we will study the effect of the
hyper-parameter p in our method. Finally, we study the
sensitivity to data augmentations.
Effect of Tobias information. Notice that we use the fore-
ground vs. background information when merging patches
from two images. To demonstrate its effectiveness, we design
a random merging strategy for comparison (MoCov2-RM in
Table 6). More specifically, we do not use such information
and randomly select patches from two images for merging
(also half-half division) and it can also be viewed as one
kind of patch-level CutMix. As can be seen, CutMix achieves
slightly worse performance when compared with the ‘RM’

SUBMITTED TO IEEE TRANS. PAMI 10

Table 7: Transfer learning results from ImageNet with the standard ResNet-50 architecture.

Method ImageNet VOC2007 CUB200 Cars Aircrafts Caltech-101 Flowers Dogs DTD
Linear evaluation:
MoCov2 200ep 67.7 80.6 17.8 14.1 12.3 80.8 68.5 42.1 64.9
MoCov2-Tobias 200ep 67.4↓ 82.0↑ 18.2↑ 12.3↓ 12.9↑ 81.7↑ 70.1↑ 42.9↑ 63.9↓
IN supervised - 73.9 61.7 47.1 23.7 89.1 86.9 82.2 68.2
Fine-tuned:
MoCov2 200ep 73.9 85.6 75.5 89.2 86.5 89.2 95.7 76.6 68.6
MoCov2-Tobias 200ep 74.0↑ 86.3↑ 76.1↑ 89.5↑ 87.8↑ 90.7↑ 96.2↑ 77.5↑ 68.2↓
IN supervised 76.1 89.0 81.3 90.6 86.7 93.0 96.7 80.1 74.7

Table 8: Effect of the hyper-parameter p. All settings are
pretrained on IN-10k for 800 epochs using ResNet-50.

prob p
VOC 07&12 Tiny-IN-200AP50 AP AP75

0.0 71.6 43.9 45.9 23.6
0.3 73.2 45.7 48.5 23.9
0.5 73.9 46.3 49.4 23.3
0.7 72.3 44.8 47.4 25.4
1.0 71.8 44.3 46.6 24.3

Table 9: Impact of progressively removing transformations.
All pretrained on IN-10k for 800 epochs.

transformation set MoCov2 MoCov2-Tobias
AP50 AP75 Tiny-IN AP50 AP75 Tiny-IN

baseline 71.6 45.9 23.6 73.2 48.5 23.9
remove grayscale 70.2 44.1 19.9↓3.7 73.1 49.0 22.7↓1.2

remove color 71.3 46.0 18.1↓5.5 72.7 48.2 21.2↓2.7
crop+flip only 71.0 46.2 16.8↓6.8 72.9 48.3 20.2↓3.7

crop only 71.7 46.7 15.0↓8.6 73.1 49.9 17.9↓6.0

baseline (also our Tobias). We also compare with MoCov2-
Mixup where we use mixup in merging images. We keep
all other settings the same and conduct pretraining on both
IN-10k and IN-50k. As can be seen in Table 6, we will see a
significant drop, especially in object detection performance
if we discard the foreground vs. background information
provided by our Tobias: up to -1.2 AP50 for RM, -1.4 AP50

for CutMix and -2.3 AP50 for mixup when trained on IN-
10k for 800 epochs. It demonstrates the Tobias information
provided by a randomly initialized network is vital. Another
interesting thing is that RM achieves better performance than
the baseline MoCov2, which indicates that this kind of data
augmentation is somehow useful for SSL, as shown in [19].
Effect of hyper-parameter. Now we study the effect of
the hyper-parameter p, i.e., the probability of changing
backgrounds in another view. We study p = 0, 0.3, 0.5, 0.7
and 1.0. Notice that when p=0, our Tobias degenerates into
the baseline MoCov2. We train on IN-10k for 800 epochs for
all settings, as shown in Table 8. For object detection, we can
see that when p grows, the result becomes better and will
not continue to improve when it grows beyond 0.5. For Tiny
ImageNet, p = 0.7 achieves the highest accuracy. Notice that
we directly set p to 0.3 for all our experiments throughout
this paper and did not tune it under different settings. It also
indicates that we can get better results with more carefully
tuned hyper-parameter p (see appendix).
Sensitivity to image augmentations. Now we study the
sensitivity to image augmentations of our Tobias by progres-
sively removing transformations in the transformation set
following [11]. The results in Table 9 show that the perfor-
mance of Tobias is much less affected than the performance

Table 10: Effect of the number of patches. All settings are
pretrained on IN-50k for 200 epochs using ResNet-50.

Method VOC 07&12 Tiny-IN-200AP50 AP AP75

MoCov2 72.2 44.7 46.8 26.3
MoCov2-Tobias (4×4) 73.7 46.0 49.2 26.0
MoCov2-Tobias (8×8) 74.3 46.7 50.0 26.3

MoCov2-Tobias (16×16) 74.9 47.4 50.6 28.5

of MoCov2 when removing the color distortion, especially on
Tiny-IN-200. Also we can observe that color distortion (e.g.,
grayscale and color-jitter) has greater impact on downstream
image classification and less impact on object detection.
When image augmentations are reduced to a mere random
crop, the gap between our Tobias and baseline MoCov2 has
increased to 2.9 and 3.2 points for Tiny-IN-200 and VOC
detection (AP75), respectively. It indicates that our Tobias is
itself an effective data augmentation and less sensitive to
other augmentations.
Effect of the number of patches. Notice that all the
experiments were done using a 4 x 4 patch grid in our Tobias
SSL, as noted in Sec. 3.2. To better leverage localization, we
conduct experiments by increasing the size of grids, e.g., to
8x8 and 16x16. As can be seen in Table 10, we can achieve
better results when increasing the size of grids, which further
proves the localization ability of random CNNs.

5.3 Tobias supervised learning
Now we apply Tobias to supervised learning (Equation 7)
and evaluate its effectiveness on 5 classification benchmarks.

We conduct experiments for both randomly initialized
models (i.e., train from scratch) and ImageNet pretrained
models (i.e., fine-tune from IN supervised). When randomly
initialized, we train the network for 120 epochs with a
batch size of 64 and a weight decay of 5e-4. The learning
rate starts from 0.1 with cosine learning rate decay. For
ImageNet pretrained fine-tuning, we train for 60 epochs with
lr initialized to 0.01, which is divided by 10 every 20 epochs.

We design different strategies on the threshold λ for TAP:
(1) Tobias-mean-full: this means that λ is set to the mean

value ā throughout the whole training process.
(2) Tobias-mean-half: this means that λ is set to the mean

value in the first half of the training epochs and then
normal GAP is used in the second half (i.e., λ = −∞).

(3) Tobias-β-linear: this means λ equals the βth percentile
at the beginning, where β ∈ [0, 1] is a hyper-parameter.
Then, β is linearly reduced to 0 at the last epoch following
linear decay. Take ‘Tobias-0.9-linear’ as an example, the
top 10% locations are selected for average pooling at
the beginning and more and more areas are engaged as

SUBMITTED TO IEEE TRANS. PAMI 11

Table 11: Supervised fine-tuning results with the standard
ResNet-50 architecture.

Method CUB200 Caltech-101 Flowers Dogs Pets
Random init.:
Baseline 55.9 62.5 58.4 62.8 51.6
Tobias-mean-full 58.6 60.2 62.9 67.2 62.4
Tobias-mean-half 61.6 67.0 66.7 67.6 65.4
Tobias-0.9-linear 61.5 67.8 66.8 69.8 71.6
IN supervised:
Baseline 81.3 93.0 96.7 80.1 90.0
Tobias-0.9-linear 82.5 94.2 96.5 81.8 91.4

0 20 40 60 80 100 120
Epoch

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y
(%

)

Baseline
Tobias-mean-full
Tobias-mean-half
Tobias-0.9-linear

(a) CUB200

0 20 40 60 80 100 120
Epoch

0

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y
(%

)
Baseline
Tobias-mean-full
Tobias-mean-half
Tobias-0.9-linear

(b) Flowers

0 20 40 60 80 100 120
Epoch

0

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y
(%

)

Baseline
Tobias-mean-full
Tobias-mean-half
Tobias-0.9-linear

(c) Dogs

0 20 40 60 80 100 120
Epoch

0

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y
(%

)

Baseline
Tobias-mean-full
Tobias-mean-half
Tobias-0.9-linear

(d) Pets

Figure 11: Test accuracy curve with different methods on 4
datasets (random init.). This figure is best viewed in color.

the increase of epochs (from local to global). Finally, the
network can utilize all locations during average pooling.
(i.e., TAP becomes GAP when β becomes 0).
The results are shown in Table 11 and the test accuracy

curves are in Figure 11. All variants of our TAP method
achieves faster convergence and higher accuracy than the
baseline GAP. It indicates that this kind of local average
pooling is effective (especially for training from scratch) and
the localization mask provided by a randomly initialized
network is vital. Moreover, we can see that ‘Tobias-mean-
half’ achieves higher accuracy than ‘Tobias-mean-full’. It
indicates that it is beneficial to include more regions in the
later training process. In summary, our ‘Tobias-0.9-linear’
achieves the best results and it can even improve the baseline
GAP when using ImageNet pretrained models.

Now we investigate the effect of different components in
our Tobias-β-linear strategy. First, we vary β from 0 to 0.9, as
shown in Figure 12a. Notice that when β = 0, TAP becomes
GAP and we can observe that the accuracy increases as β
increase. Then, we further design a ‘Tobias-β-linear-reverse’
strategy for comparison, i.e., M is generated from −Q. In
this case, when β = 0.9, 10% locations with the lowest scores
will be included at the beginning. The results are shown in
Figure 12b and we can see that our ‘Tobias-β-linear’ achieves
higher accuracy than the reversed counterpart consistently,
which further verifies the effectiveness of Tobias.

6 CONCLUSIONS

In this paper, we revealed the phenomenon that a randomly
initialized CNN has the potential to localize objects well,

0.0 0.3 0.5 0.7 0.8 0.9
percentile (threshold)

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Te
st

 A
cc

ur
ac

y
(%

)

CUB200
Flowers
Dogs
Pets

(a) Effect of percentile β

CUB200 Flowers Dogs Pets
Datasets

0
10
20
30
40
50
60
70
80

Te
st

 A
cc

ur
ac

y
(%

)

Baseline
Tobias-linear
Tobias-linear Reverse

(b) Effect of order (β = 0.9)

Figure 12: Ablation study on our Tobias-β-linear fine-tuning
strategy on different datasets (random init.). Left: effect of
the percentile hyper-parameter. Right: effect of the order.

which we called Tobias. Moreover, we analyzed that activa-
tion functions like ReLU and network depth are essential
for a random CNN to localize from both empirical and
theoretical perspectives. Then, we proposed Tobias self-
supervised learning, which forces the model to focus on
foreground objects by dynamically changing backgrounds
while keeping the objects under the guidance of Tobias.
Various experiments have shown that our method obtained
a significant edge over baseline counterparts because it
learns to better capture foreground objects. Furthermore, we
applied Tobias to supervised image classification by letting
the average pooling layer focus on foreground regions, which
also achieves superior performance. In the future, we will try
to explore other applications of Tobias and further explore
the potential of random networks.

REFERENCES

[1] N. Cohen and A. Shashua, “Inductive bias of deep convolutional
networks through pooling geometry,” in The International Conference
on Learning Representations, 2017, pp. 1–28. 1

[2] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba,
“Learning deep features for discriminative localization,” in The
IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.
2921–2929. 1, 2, 6

[3] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” in The IEEE International Conference on
Computer Vision, 2017, pp. 618–626. 1, 2

[4] C.-L. Zhang, Y.-H. Cao, and J. Wu, “Rethinking the route towards
weakly supervised object localization,” in The IEEE Conference on
Computer Vision and Pattern Recognition, 2020, pp. 13 460–13 469. 1, 2

[5] X.-S. Wei, J.-H. Luo, J. Wu, and Z.-H. Zhou, “Selective convolutional
descriptor aggregation for fine-grained image retrieval,” IEEE
Transactions on Image Processing, vol. 26, no. 6, pp. 2868–2881, 2017.
1, 2, 3, 5, 6

[6] X.-S. Wei, C.-L. Zhang, J. Wu, C. Shen, and Z.-H. Zhou, “Unsu-
pervised object discovery and co-localization by deep descriptor
transformation,” Pattern Recognition, vol. 88, pp. 113–126, 2019. 1, 2

[7] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet large scale visual recognition challenge,”
International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252,
2015. 1, 2, 5

[8] A. van den Oord, Y. Li, and O. Vinyals, “Representation learning
with contrastive predictive coding,” arXiv preprint arXiv:1807.03748,
2018. 1, 2

[9] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in The IEEE
Conference on Computer Vision and Pattern Recognition, 2020, pp.
9729–9738. 1, 2, 3

[10] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple
framework for contrastive learning of visual representations,” in
The International Conference on Machine Learning, 2020, pp. 1597–1607.
1, 2, 8

SUBMITTED TO IEEE TRANS. PAMI 12

[11] J.-B. Grill, F. Strub, F. Altche, C. Tallec, P. H.Richemond,
E. Buchatskaya, C. Doersch, B. A. Pires, Z. D. Guo, M. G. Azar,
B. Piot, K. Kavukcuoglu, R. Munos, and M. Valko, “Boostrap
your own latent: A new approach to self-supervised learning,” in
Advances in Neural Information Processing Systems, 2020, pp. 21 271–
21 284. 1, 2, 10

[12] Y.-H. Cao and J. Wu, “A random CNN sees objects: One inductive
bias of CNN and its applications,” in The 36th AAAI Conference on
Artificial Intelligence, 2022, p. in press. 2

[13] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding
sparse, trainable neural networks,” in The International Conference
on Learning Representations, 2019, pp. 1–13. 2

[14] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, M. Carbin, and
Z. Wang, “The lottery tickets hypothesis for supervised and self-
supervised pre-training in computer vision models,” in The IEEE
Conference on Computer Vision and Pattern Recognition, 2021, pp.
16 306–16 316. 2

[15] S. Girish, S. R. Maiya, K. Gupta, H. Chen, L. Davis, and A. Shrivas-
tava, “The lottery ticket hypothesis for object recognition,” in The
IEEE Conference on Computer Vision and Pattern Recognition, 2021, pp.
762–771. 2

[16] E. Malach, G. Yehudai, S. Shalev-Schwartz, and O. Shamir, “Proving
the lottery ticket hypothesis: Pruning is all you need,” in The
International Conference on Machine Learning, 2020, pp. 6682–6691. 2

[17] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in
The IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 9446–9454. 2, 7

[18] L. Jing and Y. Tian, “Self-supervised visual feature learning with
deep neural networks: A survey,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 43, no. 11, pp. 4037–4058, 2021.
2

[19] Z. Shen, Z. Liu, Z. Liu, M. Savvides, T. Darrell, and E. Xing,
“Un-mix: Rethinking image mixtures for unsupervised visual
representation learning,” arXiv preprint arXiv:2003.05438, 2020. 2,
10

[20] X. Chu, X. Zhan, and X. Wei, “Beyond single instance multi-
view unsupervised representation learning,” arXiv preprint
arXiv:2011.13356, 2020. 2

[21] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup:
Beyond empirical risk minimization,” in The International Conference
on Learning Representations, 2018, pp. 1–13. 2

[22] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “CutMix:
Regularization strategy to train strong classifiers with localizable
features,” in The IEEE International Conference on Computer Vision,
2019, pp. 6023–6032. 2

[23] D. Dwibedi, I. Misra, and M. Hebert, “Cut, paste and learn:
Surprisingly easy synthesis for instance detection,” in The IEEE
International Conference on Computer Vision, 2019, pp. 1301–1310. 2

[24] G. Ghiasi, Y. Cui, A. Srinivas, R. Qian, T.-Y. Lin, E. D.Cubuk,
Q. V. Le, and B. Zoph, “Simple copy-paste is a strong data
augmentation method for instance segmentation,” arXiv preprint
arXiv:2012.07177v1, 2012. 2

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in The IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 770–778. 2, 5

[26] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive
learning,” in Advances in Neural Information Processing Systems, 2020,
pp. 18 661–18 673. 3

[27] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the
effective receptive field in deep convolutional neural networks,” in
Advances in Neural Information Processing Systems, 2016, pp. 4905—-
4913. 4, 15

[28] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
Caltech-UCSD Birds-200-2011 Dataset,” California Institute of
Technology, Tech. Rep. CNS-TR-2011-001, 2011. 5

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural
Information Processing Systems, 2019, pp. 8024–8035. 5

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,”
in The IEEE International Conference on Computer Vision, 2015, pp.
1026–1034. 5, 7

[31] M. Everingham, L. V. Gool, C. K. Williams, J. Winn, and A. Zis-
serman, “The PASCAL visual object classes (VOC) challenge,”
International Journal of Computer Vision, vol. 88, no. 2, pp. 303–338,
2010. 5, 8

[32] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” ICLR, pp. 1–9, 2021. 6

[33] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 6, pp. 1137–1149, 2017. 7, 8

[34] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in The European Conference on Computer Vision, ser. LNCS.
Springer, 2014, vol. 8693, pp. 740–755. 7, 8

[35] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals
from edges,” in The European Conference on Computer Vision, ser.
LNCS. Springer, 2014, vol. 8693, pp. 391–405. 7

[36] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in The
International Conference on Machine Learning, 2015, pp. 448–456.
7

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems, 2012, pp. 1097–1105. 7

[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in The International Conference on
Learning Representations, 2015, pp. 1–14. 7

[39] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in
The IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2818–2826. 7

[40] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, vol. 9,
2010, pp. 249–256. 7

[41] X. Chen, H. Fan, R. Girshick, and K. He, “Improved baselines with
momentum contrastive learning,” arXiv preprint arXiv:2003.04297,
2020. 8, 16

[42] Y.-H. Cao and J. Wu, “Rethinking self-supervised learning: Small is
beautiful,” arXiv preprint arXiv:2103.13559, 2021. 8, 9

[43] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in The IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
2177–2125. 8

[44] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,”
in The IEEE International Conference on Computer Vision, 2017, pp.
2961–2969. 8

[45] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
https://github.com/facebookresearch/detectron2, 2019. 8

Yun-Hao Cao received his BS degree in Com-
puter Science and Technology from Nanjing Uni-
versity. He is currently a Ph.D. student in the De-
partment of Computer Science and Technology in
Nanjing University, China. His research interests
are computer vision and machine learning.

https://github.com/facebookresearch/detectron2

SUBMITTED TO IEEE TRANS. PAMI 13

Jianxin Wu received his BS and MS degrees
from Nanjing University, and his PhD degree
from the Georgia Institute of Technology, all in
computer science. He is currently a professor
in the School of Artificial Intelligence at Nanjing
University, China, and is associated with the State
Key Laboratory for Novel Software Technology,
China. He has served as an (senior) area chair
for CVPR, ICCV, ECCV, AAAI and IJCAI, and as
an associate editor for the IEEE Transactions on
Pattern Analysis and Machine Intelligence. His

research interests are computer vision and machine learning.

SUBMITTED TO IEEE TRANS. PAMI 14

APPENDIX A
PROOF OF CLAIM 1
Before the formal proof of claims, we prove Lemma A.1 that
will be used later.
Lemma A.1. Suppose X ∼ N(0, σ2), i.e., the probability

density function p(x) = 1√
2πσ

e−
x2

2σ2 , and let Y = h(x) =

max(0, x). Then, E(Y) = σ√
2π

, Var(Y) = (12 −
1
2π)σ

2.

Proof. Using the fact that
∫ +∞
0 e−ax2

xdx = 1
2a , we have:

E(Y) =

∫ +∞

−∞
h(x)p(x) dx

=

∫ 0

−∞
0× p(x) dx+

∫ +∞

0
xp(x) dx

=
1√
2πσ

∫ ∞

0
xe−

x2

2σ2 dx

=
σ√
2π

,

and

Var(Y) =E(Y 2)− E2(Y)

=

∫ +∞

−∞
[h(x)]2p(x) dx− σ2

2π

=

∫ 0

−∞
0× p(x) dx+

∫ +∞

0
x2p(x) dx− σ2

2π

=
1

2

∫ +∞

−∞
x2p(x) dx− σ2

2π

=(
1

2
− 1

2π
)σ2 .

□
Then, we will give formal proofs of the claims and

we assume that we use Gaussian distribution N (0, σ2) for
random initialization of the weights.

We start from Claim 1.
Proof. Without loss of generality, we first consider 2×2
convolution filter of depth 1 and we omit the superscript ‘1’
for w1

i,j for simplicity:

W =

[
w00 w01

w10 w11

]
∈ R2×2 , (13)

where wij are i.i.d. variables and we assume wij ∼ N (0, σ2).
Suppose the input image is f , and we use f(x, y) to denote
the pixel value at position (x, y), where x ∈ [0, H − 1], y ∈
[0,W − 1] and H,W are the height and width of f , respec-
tively. The image gradient at (x, y) can be written as:

∇f(x, y) =
[
gx
gy

]
=

[
∂f
∂x
∂f
∂y

]
=

[
f(x+ 1, y)− f(x, y)
f(x, y + 1)− f(x, y)

]
, (14)

where gx and gy represent the vertical and horizontal
gradients, respectively. Also, we denote the gradient along
the diagonal as:

gxy = f(x+ 1, y + 1)− f(x, y) (15)
= f(x+ 1, y + 1)− f(x+ 1, y) + f(x+ 1, y)− f(x, y)

(16)
= gy+1 + gx . (17)

If we convolve W with the 2× 2 square starting at (x, y),
we use f1

w to denote the output after the first convolution:

f1
w(x, y) =w00f(x, y) + w01f(x, y + 1)

+ w10f(x+ 1, y) + w11f(x+ 1, y + 1) (18)

=w01

(
f(x, y + 1)− f(x, y)

)
+ w10

(
f(x+ 1, y)− f(x, y)

)
+ w11

(
f(x+ 1, y + 1)− f(x, y)

)
+ (w00 + w01 + w10 + w11)f(x, y) (19)

=w01gy + w10gx + w11gxy + Cf(x, y) , (20)

where C =
∑

i,j wij . We can see that the resulted output
f1
w(x, y) can be decomposed into four terms, three of which

are related to image gradients, and one represents pixel
value.

If we constrain C = 0, i.e., the elements in W sum to 0,
then f1

w(x, y) = w01gy + w10gx + w11gxy . Hence,

Var[f1
w(x, y)] = (|gx|+ |gy|+ |gxy|)σ2 .

Notice that the input f is given and only w are random
variables. It is thus obvious that f1

w(x, y) ∼ N (0, (|gx| +
|gy| + |gxy|)σ2). Hence, from Lemma A.1, the expectation
after ReLU activation (h) is:

E[f1(x, y)] = E[h(f1
w(x, y))] =

√
|gx|+ |gy|+ |gxy|√

2π
σ .

(21)
Therefore, we can conclude that regions with larger image

gradients are expected to have higher activations after the
first convolution layer. If (x, y) is located in the texture-less
background, then the image gradients at (x, y) are relatively
small and these background regions will be most likely
deactivated. Conversely, if (x, y) is located in textured edges,
then the image gradients will become big.

Notice that with different w01 and w10, we can capture
image gradients w.r.t different angles θ, e.g., θ = arctan(w10

w01
)

for w01, w10 > 0. In practice we use multiple convolution
filters to output multiple channels and hence we can detect
various angles with various parameters. □

APPENDIX B
PROOF OF CLAIM 2
Proof. Assume there is no non-linearity in Equation (8), i.e.,
for a deep linear CNN and k = 2:

fp(x, y) =
1∑

i=0

1∑
j=0

wp
i,jf

p−1(x+ i, y + j) , (22)

where wp
i,j denotes the weight of convolution filter at the

p-th layer. By induction we know that

fp(x, y) =
1∑

i1=0

1∑
j1=0

· · ·
1∑

ip=0

1∑
jp=0

(
wp

i1,j1
· · ·wp

ip,jp
×

f(x+ i1 + · · ·+ ip, y + j1 + · · ·+ jp)
)

(23)

≜
p∑

s=0

p∑
t=0

W p
s,tf(x+ s, y + t) , (24)

SUBMITTED TO IEEE TRANS. PAMI 15

where s =
∑p

u=1 iu and t =
∑p

u=1 ju. If we set all w to 1,
then W p

s,t becomes the number of combinations Cs,t where
the sum of subscript i equals s and the sum of subscript j
equals t:

Cs,t =
∑

i1,j1,...,ip,jp

I(i1 + · · ·+ ip − s)× I(j1 + · · ·+ ip − t) ,

where
I(x) =

{
1 if x = 0
0 otherwise,

is the indicator function. Now we let Cs =
∑

i1,...,ip
I(i1 +

· · · + ip − s) and each it ∈ {0, 1}. Suppose there are k
elements equal 1 (hence p − k elements equal 0), then we
have Ck+0×(p−k) = Ck =

(p
k

)
. As can be seen, Cs follows

the binomial distribution, which distributes w.r.t. s like a
Gaussian when p becomes large.

Notice that the indexes of i and j are independent and
we have Cs,t = CsCt. Hence, Eq. (23) can be reformulated
as:

fp(x, y) =

p∑
s=0

p∑
t=0

Cs,tf(x+ s, y + t) (25)

=

p∑
s=0

p∑
t=0

CsCtf(x+ s, y + t) (26)

=

p∑
s=0

p∑
t=0

(
p

s

)(
p

t

)
f(x+ s, y + t) . (27)

Notice that as p becomes large,

Cs =

(
p

s

)
≈ 2p

1√
2πp× 1

4

e

−(s− p
2
)2

2p× 1
4 ,

Cs,t =

(
p

s

)(
p

t

)
≈ 22p

1

2πp× 1
4

e
−

(s− p
2
)2+(t− p

2
)2

2p× 1
4 .

Let g(s, t) ≜ 1
2πp× 1

4

e
−

(s− p
2
)2+(t− p

2
)2

2p× 1
4 and we can see that

g(s, t) becomes a Gaussian kernel with µ = (p2 ,
p
2) and

Σ =

[p
4 0
0 p

4

]
. In other words, convolutional layers of depth

p in a deep linear CNN corresponds to Gaussian kernels with
width p.

Extension to k > 2. In this case the coefficients are
known as “extended binomial coefficients” or “polynomial
coefficients”, and they too distribute like Gaussian [27].

Extension to random weights. Notice that we set all w to
1 in Equation (25) and now we consider w ∼ N(0, σ2). Notice
that {wk

i,j |k = 1, . . . , p; i = 0, . . . , k−1; j = 0, . . . , k−1} are
mutually independent. Suppose w1 and w2 are independent
random variables that follows N(0, σ2). It is well-known that
the product of two independent Gaussian distributions is still
Gaussian: w1w2 ∼ N(0, σ2

2). It is obvious that w1w2 . . . wn ∼
N(0, σ2

n). Also, we know that w1+w2+· · ·+wn ∼ N(0, nσ2).
Hence, from Equation (23) we have W p

s,t ∼ N(0,
Cs,t

p σ2). In
this case, the weight of the kernel is sampled from a Gaussian,
whose variance distributes like a Gaussian kernel. In other
words, the receptive field increases along with the increase
of the depth and the impact of each pixel (i.e., variance of
weight) decays quickly from the center. □

APPENDIX C
PROOF OF CLAIM 3

Proof. Now we analyze the expectation and variance of
the output layers and we first consider the case without
non-linearity. Then if we take expectations over both sides of
Equation (22) we have

Ew[f
p(x, y)] =

k−1∑
i=0

k−1∑
j=0

Ew[w
p
i,jf

p−1(x+ i, y + j)] (28)

=
k−1∑
i=0

k−1∑
j=0

Ew[w
p
i,j]f

p−1(x+ i, y + j) (29)

= 0 . (30)

Notice that we assume fp−1(·, ·) are given as constant
value when analyzing fp(,) and hence for the variance we
have

Var[fp(x, y)] =
k−1∑
i=0

k−1∑
j=0

Var[wp
i,jf

p−1(x+ i, y + j)] (31)

=
k−1∑
i=0

k−1∑
j=0

Var[wp
i,j]|f

p−1(x+ i, y + j)| (32)

= σ2
k−1∑
i=0

k−1∑
j=0

|fp−1(x+ i, y + j)| . (33)

□

APPENDIX D
PROOF OF CLAIM 4

Proof. Now we introduce ReLU non-linearity back into
our analyses. Let us denote S =

∑k−1
i=0

∑k−1
j=0 w

p
i,jf

p−1(x +
i, y + j). Notice that wp

i,j are independent and identically
distributed from N(0, σ2). Hence we have S ∼ N (0, Tσ2),
where T =

∑k−1
i=0

∑k−1
j=0 f

p−1(x+ i, y + j). Hence,

fp(x, y) = h
(k−1∑

i=0

k−1∑
j=0

wp
i,jf

p−1(x+ i, y + j)
)

(34)

= max(S, 0) . (35)

Fom Lemma A.1 we have

Ew[f
p(x, y)] = Ew[h(S)] =

√
T

2π
σ , (36)

and

Var[fp(x, y)] = (
1

2
− 1

2π
)Tσ2 . (37)

Hence, from Equation (36) and (37) we know that under
ReLU activation, both the expectation and variance of
fp(x, y) is positively correlated with T , which is the sum
of the neighborhood region in the previous layer. In other
words, a region with relatively large values will remain a
relatively large value in the expectation (O(

√
T)) and will be

deactivated for T = 0. □

SUBMITTED TO IEEE TRANS. PAMI 16

APPENDIX E
PROOF OF CLAIM 5
We first prove Lemma E.1 that will be used soon.
Lemma E.1. Suppose X ∼ N(0, σ2), i.e., the probability

density function p(x) = 1√
2πσ

e−
x2

2σ2 , and let Y = h(x) =
1

1+e−x . Then, 1
4 < E(Y) < 3

4 .

Proof. It is obvious that 0 < h(x) < 1
2 for x < 0 and

1
2 < h(x) < 1 for x > 0. Hence,

E(Y) =

∫ +∞

−∞
h(x)p(x) dx (38)

=

∫ 0

−∞
h(x)p(x) dx+

∫ ∞

0
h(x)p(x) dx (39)

<
1

2

∫ 0

−∞
p(x) dx+

∫ ∞

0
p(x) dx (40)

=
3

4
(41)

For the lower bound, we have

E(Y) =

∫ 0

−∞
h(x)p(x) dx+

∫ ∞

0
h(x)p(x) dx (42)

>

∫ 0

−∞
0× p(x) dx+

1

2

∫ ∞

0
p(x) dx (43)

=
1

4
(44)

□
Then the proof of Claim 5 follows.

Proof. If we instead use a bounded activation function, e.g.,
sigmoid and now h(x) = 1

1+e−x .
From Lemma E.1, if we use sigmoid activation, then

Equation (36) becomes:

Ew[f
p(x, y)] = Ew[h(S)] ∈ (

1

4
,
3

4
).

In this case the expectation of output is bounded by
constant value and we can not expect a large T to get a
large Ew[f

p(x, y)]. In other words, regions with relatively
high activation values (possibly objects) will not continue
to be maintained at large values when the number of layers
increases if we use sigmoid (or other bounded activations).
□

The following sections contain more visualization results,
experimental details and experimental results not included
in the main paper.

APPENDIX F
VISUALIZATION AND LOCALIZATION RESULTS

In Table 1 of the main paper, we analyzed the localization
ability of randomly initialized ResNet-50 and we present
more visualization results of Table 1 here.

Visualization of multiple randomly initialized ResNet-
50. From Table 1 of the main paper we have seen that
randomly initialized networks can get robust localization
results because it achieves a low standard deviation of 0.6
on ImageNet and CUB-200, respectively. We show some
visualization results of 3 randomly initialized ResNet-50
using SCDA on ImageNet and CUB-200 in Figure 13 and

Table 12: Training details for MoCov2, SimCLR and BYOL on
CUB200 for experiments presented in Table 2. τ denotes the
temperature parameter and k denotes the size of the memory
bank in MoCov2.

Method backbone Settings
bs lr lr schedule τ k

MoCov2 ResNet-18 128 0.03 cosine 0.2 4096
ResNet-50 128 0.03 cosine 0.2 4096

SimCLR ResNet-18 512 0.5 cosine 0.1 -
ResNet-50 128 0.125 cosine 0.1 -

Figure 14, respectively. We color foreground regions, i.e.,
those patches with (i, j)|Mi,j = 1 with the red color. We
can intuitively see that the localization results of different
randomly initialized ResNet-50 are very similar and it
further suggests that Tobias is one inductive bias of CNN.
Also, we can observe that a randomly initialized CNN can
localize objects surprisingly well, which is comparable to the
ImageNet supervised counterpart.

Visualization of using different activation functions.
We change the default activation function ReLU to sigmoid
and arctan for a randomly initialized ResNet-50 and show
the results on ImageNet in Figure 15. As can be seen, ReLU
achieves significantly better localization performance than
sigmoid and arctan. It demonstrates that ReLU plays an
important role in modern CNNs to deactivate texture-less
backgrounds and activate objects.

APPENDIX G
TRAINING DETAILS

We present training details for self-supervised learning and
downstream evaluation here.

Training details for SSL: The training details for
MoCov2 and SimCLR on CUB200 for those experimental
results presented in Table 2 in the main paper are shown
in Table 12. We adopt several common data augmentations
and compose them stochastically: (a) random scaling and
cropping with a scaling factor chosen between [0.2, 1.0]; (b)
random horizontal flipping with a probability of 0.5; (c) color
distortion with a probability of 0.8; (d) color dropping (i.e.,
randomly convert images to grayscale with 20% probability
for each image); (e) random gaussian blur.

Training details for downstream classification bench-
marks: For ImageNet linear evaluation, we follow the same
settings in [41]. For ImageNet fine-tuning, we train for 30
epochs with the learning rate initialized to 0.01, which is
divided by 10 every 10 epochs. For other classification
benchmarks, we train the network for 120 epochs with a
batch size of 64 and a weight decay of 5e-4. The learning rate
starts from 10.0 for linear evaluation and 0.01 for fine-tuning
and is decreased every 40 epochs.

APPENDIX H
MORE RESULTS

In this section, we show experiments that were not included
in the main paper due to limited space.

We set the hyper-parameter p to 0.3 for all experiments
in the main paper and we have seen that we can get better
results with more carefully tuned p in Section 5.2.3. Here we

SUBMITTED TO IEEE TRANS. PAMI 17

R
an

do
m

 1
R

an
do

m
 2

R
an

do
m

 3
IN

 su
pe

r

Figure 13: Visualization of multiple randomly initialized ResNet-50 using SCDA on ImageNet. ‘Random 1’ represents the first
trial and the same for ‘Random 2’ and ‘Random 3’. We color foreground regions, i.e., those patches with (i, j)|Mi,j = 1 with
the red color.

R
an

do
m

 1
R

an
do

m
 2

R
an

do
m

 3
IN

 su
pe

r

Figure 14: Visualization of multiple randomly initialized ResNet-50 using SCDA on CUB-200.

SUBMITTED TO IEEE TRANS. PAMI 18

R
eL

U
si

gm
oi

d
ar

ct
an

Figure 15: Ablation of activation functions for randomly initialized ResNet-50 on ImageNet.

investigate the influence of data volume on hyper-parameter
selection and present more results by setting different p
values on ImageNet subsets in Table 13.

As shown in Table 13, we can get much better perfor-
mance with more carefully tuned p. For instance, when both
trained for 200 epochs on IN-50k (50,000 images), our Tobias
(with p = 0.5) achieves better results than those reported
in the main paper (with p = 0.3), and is significantly better
than baseline counterpart: up to +2.5 AP50, +2.7 AP and
+3.7 AP75. It confirms that our method has the potential to
perform better with more carefully tuned p. Also, we can
observe that when trained for 200 epochs on IN-100k, p = 0.5
achieves worse results than p = 0.3, which indicates that a
higher p value is more suitable for small data while a lower
p value is more suitable for large data.

APPENDIX I
INTRODUCTION OF ACTIVATION FUNCTIONS

Now we introduce the activation functions used in the main
paper.

The ReLU activation takes the following form:

ReLU(x) = max(0, x) .

The softplus activation takes the following form:

softplus(x) =
1

β
log(1 + eβx) ,

where the default value for β is 1 in PyTorch.
The ELU activation takes the following form:

ELU(x) =

{
x, if x > 0
α(ex − 1), otherwise ,

where the default value for α is 1 in PyTorch.
The SELU activation takes the following form:

SELU(x) = s ∗ (max(0, x) + min(0, α(ex − 1))) ,

where s = 1.0507 and α = 1.6733 in PyTorch.

The sigmoid activation takes the following form:

sigmoid(x) =
1

1 + e−x
.

The arctan activation takes the following form:

arctan(x) = tan−1(x) .

We also plot these activation functions in Figure 16 for
better illustration.

SUBMITTED TO IEEE TRANS. PAMI 19

Table 13: Downstream object detection performance on VOC 07&12 and linear evaluation accuracy on Tiny-ImageNet-200
when pretrained on ImageNet subsets using ResNet-50 (with different hyper-parameter p).

pretraining VOC 07&12 Tiny-IN-200method #images epochs AP50 AP AP75

random init. 0 0 63.0 36.7 36.9 0.5
MoCov2

10,000 200
71.1 43.6 45.8 0.5

MoCov2-Tobias (p=0.3) 71.4 (+0.3) 44.3 (+0.7) 47.0 (+1.2) 9.9 (+9.4)
MoCov2-Tobias (p=0.5) 71.5 (+0.4) 44.3 (+0.7) 47.3 (+1.5) 10.2 (+9.7)
MoCov2

10,000 800
71.6 43.9 45.9 23.6

MoCov2-Tobias (p=0.3) 73.2 (+1.6) 45.7 (+1.8) 48.5 (+2.6) 23.9 (+0.3)
MoCov2-Tobias (p=0.5) 73.9 (+2.3) 46.3 (+2.4) 49.4 (+3.5) 23.3 (-0.3)
MoCov2

50,000 200
72.2 44.7 46.8 26.3

MoCov2-Tobias (p=0.3) 73.7 (+1.5) 46.0 (+1.3) 49.2 (+2.4) 26.0 (-0.3)
MoCov2-Tobias (p=0.5) 74.7 (+2.5) 47.4 (+2.7) 50.5 (+3.7) 26.3
MoCov2

50,000 800
77.5 49.3 53.3 37.9

MoCov2-Tobias (p=0.3) 77.9 (+0.4) 50.3 (+1.0) 54.9 (+1.6) 40.7 (+2.8)
MoCov2-Tobias (p=0.5) 78.4 (+0.9) 50.9 (+1.6) 55.1 (+1.8) 39.4 (+1.5)
MoCov2

100,000 200
76.2 48.0 51.6 35.3

MoCov2-Tobias (p=0.3) 77.5 (+1.3) 49.8 (+1.8) 53.9 (+2.3) 36.5 (+1.2)
MoCov2-Tobias (p=0.5) 76.8 (+0.6) 49.2 (+1.2) 53.3 (+1.7) 36.4 (+1.1)

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
X

0

2

4

6

8

10

Y

ReLU
ReLU

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
X

0

2

4

6

8

10

Y

ELU
ELU

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
X

−2

0

2

4

6

8

10

Y

SELU
SELU

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
X

0

2

4

6

8

10

Y

Softplus
Softplus

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

Sigmoid
Sigmoid

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
X

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Y

Arctan
Arctan

Figure 16: Visualization of different activation functions used in the main paper.

	Introduction
	Related Works
	Tobias, and SSL with Tobias
	Object localization using a random CNN
	Tobias self-supervised learning
	Tobias supervised learning

	Theoretical and Empirical Analyses
	Empirical Analysis

	Experimental Results
	Localization ability of random CNNs
	Tobias self-supervised learning
	Results on CUB-200
	Results on ImageNet
	Ablation studies

	Tobias supervised learning

	Conclusions
	References
	Biographies
	Yun-Hao Cao
	Jianxin Wu

	Appendix A: Proof of Claim 1
	Appendix B: Proof of Claim 2
	Appendix C: Proof of Claim 3
	Appendix D: Proof of Claim 4
	Appendix E: Proof of Claim 5
	Appendix F: Visualization and localization results
	Appendix G: Training details
	Appendix H: More results
	Appendix I: Introduction of activation functions

