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Abstract
Deep neural networks have witnessed great suc-
cesses in various real applications, but it requires
a large number of labeled data for training. In
this paper, we propose tri-net, a deep neural net-
work which is able to use massive unlabeled data
to help learning with limited labeled data. We con-
sider model initialization, diversity augmentation
and pseudo-label editing simultaneously. In our
work, we utilize output smearing to initialize mod-
ules, use fine-tuning on labeled data to augment di-
versity and eliminate unstable pseudo-labels to al-
leviate the influence of suspicious pseudo-labeled
data. Experiments show that our method achieves
the best performance in comparison with state-of-
the-art semi-supervised deep learning methods. In
particular, it achieves 8.30% error rate on CIFAR-
10 by using only 4000 labeled examples.

1 Introduction
Deep neural networks (DNNs) have become a hot wave
during the past few years, and great successes have been
achieved in various real applications, such as image classifi-
cation [Krizhevsky et al., 2012], object detection [Girshick
et al., 2014], scene labeling [Shelhamer et al., 2017], etc.
DNNs always learn a large number of parameters requiring
a large amount of labeled data to alleviate overfitting. It is
well-known that collecting tremendous high-quality labeled
data is expensive, yet we could easily collect abundant unla-
beled data in many real applications. Hence, it is desirable
to use unlabeled data to improve the performance of DNNs
when training with limited labeled data.

A natural idea is to combine semi-supervised learn-
ing [Chapelle et al., 2006; Zhu, 2007; Zhou and Li, 2010]
with deep learning. The disagreement-based learning [Zhou
and Li, 2010] plays an important role in semi-supervised
learning, in which co-training [Blum and Mitchell, 1998] and
tri-training [Zhou and Li, 2005b] are two representatives. The
basic idea of disagreement-based semi-supervised learning is
to train multiple learners for the task and exploit the disagree-
ments during the learning process. The disagreement in co-
training is based on different views, while tri-training uses
bootstrap sampling to get diverse training sets. Co-training

has been combined with deep model for the tasks which have
two views [Cheng et al., 2016; Ardehaly and Culotta, 2017].
Nevertheless, in real applications, we always confront the
task with one-view data, and tri-training can be utilized no
matter whether there are one or more views.

In this paper, we propose tri-net which combines tri-
training with deep model. We first learn three initial mod-
ules, and each module is then used to predict a pool of un-
labeled data, where two modules label some unlabeled in-
stances for another module. Later, three modules are refined
by using the newly labeled examples. We consider three key
techniques in tri-net, i.e., model initialization, diversity aug-
mentation and pseudo-label editing, which can be summa-
rized as follows: we use output smearing [Breiman, 2000] to
help generate diverse and accurate initial modules; we fine-
tune the modules in some specific rounds on labeled data to
augment the diversity among them; we propose a data editing
method named DES based on the intuition that stable pseudo-
labels are more reliable. Experiments are conducted on three
benchmark datasets, i.e., MNIST, SVHN and CIFAR-10, and
the results demonstrate that our tri-net has good performance
on all datasets. In particular, it achieves 8.45% error rate
on CIFAR-10 by using only 4,000 labeled examples. With
more sophisticated initialization methods, tri-net can get even
better performance. For example, when we use the semi-
supervised deep learning method Π model [Laine and Aila,
2016] to initialize our tri-net, we can achieve 8.30% error rate
on CIFAR-10 by using only 4,000 labeled examples.

The rest of this paper is organized as follows: we introduce
related work in Section 2 and present our tri-net in Section 3.
Experimental results are given in Section 4. Finally, we make
a conclusion in Section 5.

2 Related Work
Many methods have been proposed to tackle semi-supervised
learning, we only introduce the most related ones. For more
information of semi-supervised learning, see [Chapelle et al.,
2006; Zhu, 2007; Zhou and Li, 2010].

Disagreement-based semi-supervised learning started from
the seminal paper of Blum and Mitchell [1998] on co-
training. Co-training first learns two classifiers from two
views and then lets them label unlabeled data for each other to
improve performance. However, in most real applications the
data sets have only one view rather than two. Some methods
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Figure 1: Training process of tri-net.

employed different learning algorithms or different parameter
configurations to learn two different classifiers [Goldman and
Zhou, 2000; Zhou and Li, 2005a]. Although these methods
do not rely on the existence of two views, they require spe-
cial learning algorithms to construct classifiers. Zhou and Li
[2005b] proposed tri-training, which utilizes bootstrap sam-
pling to get three different training sets and generates three
classifiers from these three training sets respectively. Tri-
training requires neither the existence of multiple views nor
special learning algorithms, thus it can be applied to more
real applications. For these algorithms, there have been some
theoretical studies to explain why unlabeled data can im-
prove the learning performance [Blum and Mitchell, 1998;
Balcan et al., 2004; Wang and Zhou, 2010; Balcan and Blum,
2010].

With the fast development of deep learning, disagreement-
based semi-supervised learning has been combined with deep
model for some applications. Cheng et al. [2016] developed a
semi-supervised multimodal deep learning framework based
on co-training to deal with the RGB-D object-recognition
task. They utilized each view (i.e., RGB and depth) to learn
a DNN and the two DNNs labeled unlabeled data to augment
the training set. Ardehaly and Culotta [2017] combined co-
training with deep model to address the demographic classifi-
cation task. They generated two DNNs from two views (i.e.,
image and text) respectively and let them provide pseudo-
labels for each other. Nevertheless, many tasks have only one
view in real applications. It is more desirable to develop the
disagreement-based deep models for one-view data.

There are many other methods in semi-supervised deep
learning. Some of them were based on generative mod-
els. These methods paid efforts to learn the input distribu-
tion p(x). Variational auto-encoder (VAE) combined varia-
tional methods with DNNs to help estimate p(x) [Kingma
et al., 2014; Maaløe et al., 2016] while generative adver-
sarial networks (GANs) aimed to leverage a generator to
detect the low-density boundaries [Salimans et al., 2016;
Dai et al., 2017]. In contrast to the generative nature, our
tri-net is a discriminative model and does not need to esti-
mate p(x). Some combined graph-based methods with deep
neural networks [Weston et al., 2012; Luo et al., 2017]. They
enforced smoothness of the predictions with respect to the
graph structure while we do not need to construct the graph.
Some were perturbation-based discriminative methods. They
utilized local variations of the input to regularize the output
to be smooth [Bachman et al., 2014; Rasmus et al., 2015;
Laine and Aila, 2016; Sajjadi et al., 2016]. VAT [Miyato

et al., 2017] and VAdD [Park et al., 2018] introduced ad-
versarial training [Goodfellow et al., 2014] into these meth-
ods while temporal ensembling [Laine and Aila, 2016] and
mean teacher [Tarvainen and Valpola, 2017] introduced en-
semble learning [Zhou, 2012] into them. Compared with
these state-of-the-art methods, our method can achieve bet-
ter performance.

3 Our Approach
3.1 Overview
In semi-supervised learning, we have a small labeled data set
L = {(xl, yl)|l = 1, 2, . . . , L} with L labeled examples and
a large-scale unlabeled data set U = {(xu)|u = 1, 2, . . . , U}
with U unlabeled instances. Suppose the data have C classes
and yl = (yl1, yl2, . . . , ylC), where ylc = 1 if the example be-
longs to the c-th class otherwise ylc = 0, for c = 1, 2, . . . , C.
Our goal is to learn a model from the training set L ∪ U to
classify unseen instances. In this paper, we propose tri-net by
combining tri-training with deep neural network. Our tri-net
has three phases which are described as follows.

Initialization. The first step in tri-net is to generate three
accurate and diverse modules. Instead of training three net-
works separately, tri-net is one DNN which is composed of a
shared module MS and three different modules M1, M2 and
M3. Here, M1, M2 and M3 classify the shared features gen-
erated by MS . This network structure is inspired by Saito et
al. [2017] and is efficient for implementation. In order to get
three accurate and diverse modules, we use output smearing
(Section 3.2) to generate three different labeled data sets, i.e.,
L1
os, L2

os and L3
os. We train MS , M1, M2 and M3 simulta-

neously on the three data sets. Specifically, MS and Mv are
trained on Lv

os (v = 1, 2, 3).
Training. In the training process, some unlabeled data will

be labeled and added into the labeled training sets. In order
not to change the distribution of labeled training sets, we as-
sume that the unlabeled data are selected from a pool of U .
We use N to denote the size of the pool. This strategy is
widely used in semi-supervised learning [Blum and Mitchell,
1998; Zhou and Li, 2005a; Saito et al., 2017]. With three
modules, if two modules agree on the prediction of the unla-
beled instance from the pool and the prediction is confident
and stable, the two modules will teach the third module on
this instance. The instance with the pseudo-label predicted
by the two modules is added into the training sets of the third
module. Then the third module is refined with the augmented
training set. Here, confident prediction means that the av-
erage maximum posterior probability of the two modules is



Algorithm 1 Tri-net
Input:
Labeled set L and unlabeled set U
Labeling: the methods of labeling when the predictions of two clas-
sifiers are confident and agree with each other
DES: the methods of pseudo-label editing
σ0: the initial threshold parameter for filtrating the unconfident
pseudo-labels
σos: the value to decrease σ if output smearing is used in this learn-
ing round
Output:
Tri-net: the model composed of MS , M1, M2 and M3

1: Initialization:
2: Generate {L1

os,L2
os,L3

os} by using output smearing on L
3: Train MS ,M1,M2,M3 with mini-batch from training set L1

os,
L2

os, L3
os

4: flagos = 1; σ = σ0

5: Training:
6: for t = 1→ T do
7: Nt = min(1000× 2t, U)
8: if Nt = U then
9: if mod(t, 4) = 0 then

10: Train MS ,M1,M2,M3 with mini-batch from training
set L1

os, L2
os, L3

os

11: flagos = 1 ; σ = σ − 0.05
12: continue
13: if flagos = 1 then
14: flagos = 0 ; σt = σ − σos

15: else
16: σt = σ
17: for v = 1→ 3 do
18: PLv ← ∅
19: PLv ← Labeling(MS ,Mj ,Mh,U , Nt, σt)(j, h 6= v)
20: PLv ← DES(MS ,PLv,Mj ,Mh)

21: L̂v ← L∪ PLv

22: if v = 1 then
23: Train MS ,Mv with mini-batch from training set L̂v

24: else
25: Train Mv with mini-batch from training set L̂v

26: return MS ,M1,M2 and M3

larger than the threshold σ. Stable prediction means that the
pseudo-label should not change much when the modules pre-
dict the instance repeatedly and the details will be presented
in Section 3.4. Three modules will be more and more similar
since they augment the training sets of one another [Wang and
Zhou, 2017]. To tackle this problem, we fine-tune the mod-
ules on labeled data to augment the diversity among them in
some specific rounds. The whole training process is shown in
Algorithm 1.

Inference. Given an unseen instance x, we use the average
of the posterior probability of the three modules as the poste-
rior probability of our method. The unseen instance x is clas-
sified with maximum posterior probability shown in Eq. 1,
where MS denotes the shared module and Mv

(
MS(x)

)
de-

notes the label predicted by Mv (v = 1, 2, 3) on x.

y = arg max
c∈{1,2,...,C}

{
p
(
M1

(
MS(x)

)
= c|x

)
+

p
(
M2

(
MS(x)

)
= c|x

)
+ p
(
M3

(
MS(x)

)
= c|x

)}
(1)

3.2 Output Smearing
Output smearing was proposed by Breiman [2000]. It con-
structs diverse training sets by injecting random noise into
true labels and generates modules from the diverse training
sets respectively. Injecting noise into true labels can also reg-
ularize the modules by smoothing the labels [Szegedy et al.,
2016]. We apply this technique to initialize our modules M1,
M2 andM3. For an example {xl, yl} (l = 1, 2, . . . , L), where
yl = (yl1, yl2, . . . , ylC), ylc = 1 if the example belongs to
the c-th class otherwise ylc = 0. In output smearing, we add
noise into every component of yl.

ŷlc = ylc + ReLU(zlc × std) (2)

where zlc is sampled independently from the standard normal
distribution, std is the standard deviation, ReLU is a function

ReLU(a) =

{
a, a > 0 ,

0, a ≤ 0 .
(3)

Here, we use ReLU function to ensure ŷlc non-negative and
normalize ŷlc according to Eq. 4.

ŷl = (ŷl1, ŷl2, . . . , ŷlC)/

C∑
c=1

ŷlc. (4)

With output smearing, we construct three diverse training sets
L1
os,L2

os and L3
os from the initial labeled data set L, where

Lv
os = {(xl, ŷvl )|1 ≤ l ≤ L} (v = 1, 2, 3) is constructed

by output smearing and ŷvl is calculated according to Eq. 4.
Then we initialize tri-net with L1

os,L2
os and L3

os by minimiz-
ing Loss shown in Eq. 5.

Loss =
1

L

L∑
l=1

{
Ly

(
M1

(
MS(xl)

)
, ŷ1l
)

+ Ly

(
M2

(
MS(xl)

)
, ŷ2l
)

+ Ly

(
M3

(
MS(xl)

)
, ŷ3l
)}

(5)

Here, Ly denotes the standard softmax cross-entropy loss
function, MS denotes the shared module, M1,M2 and M3

denote the three modules in tri-net, Mv

(
MS(xl)

)
denotes the

output of Mv on xl where Mv classifies the features gener-
ated by MS on xl (v = 1, 2, 3).

3.3 Diversity Augmentation
Diversity among three modules in tri-net plays an important
role in the training process. When three modules label unla-
beled data to augment the training sets of one another, they
become more and more similar. In order to maintain the
diversity, we fine-tune three modules M1, M2 and M3 on
the diverse training sets L1

os,L2
os and L3

os in some specific
rounds. In the experiments, the fine-tuning is executed every
3 rounds, which will be described in Section 4.

3.4 Pseudo-Label Editing
The pseudo-labels of the newly labeled examples may be in-
correct, and these incorrect pseudo-labels will degenerate the
performance. Data editing which can deal with the suspi-
cious pseudo-labels is important and there have been some
data-editing methods in semi-supervised learning [Zhang and
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Figure 2: The architecture of tri-net. It is composed of a shared module MS and three different modules M1, M2 and M3.

Zhou, 2011]. However, these existing methods are usually
based on graph and are difficult to be used in DNNs due to the
high dimension. Here, we propose a new data-editing method
for DNNs with dropout [Srivastava et al., 2014]. Generally,
dropout works in two modes: at training mode, the connec-
tions of the network are different in every forward pass; at test
mode, the connections are fixed. This means that the predic-
tion for dropout working in training mode may change. For
each (xi, yi), yi is the pseudo-label predicted by the mod-
ules working in test mode. We use dropout working in train
mode to measure the stability of the pseudo-labeled data, i.e.,
we use the modules to predict the label of xi for K times in
training mode and record the frequency k that the prediction
is different from yi. If k > K

3 , we regard the pseudo-label yi
of xi as an unstable pseudo-label. For these unstable pseudo-
labels, we will eliminate them. We set K = 9 in all experi-
ments.

4 Experiments
4.1 Setup
Datasets. We run experiments on three widely used bench-
mark datasets, i.e., MNIST, SVHN, and CIFAR-10. We ran-
domly sample 100, 1,000, and 4,000 labeled examples from
MNIST, SVHN and CIFAR-10 as the initial labeled data set
L respectively and use the standard data split for testing as
that in previous work.

Network Architectures. The network architecture of tri-
net for CIFAR-10 is shown in Figure 2, which is derived
from the popular architecture [Laine and Aila, 2016] used in
semi-supervised deep learning. In order to get more diver-
sity among three modules, we use different convolution ker-
nel sizes, different network structures (with/without residual
block) and different depths for M1, M2 and M3. The net-
work architectures for MNIST and SVHN are similar to that
in Figure 2 but in a smaller size.

Parameters. In order to prevent the network from over-
fitting, we gradually increase the pool size N = 1000 × 2t

up to the size of unlabeled data U [Saito et al., 2017], where
t denotes the learning round. The maximal learning round
T is set to be 30 in all experiments. We gradually decrease
the confidence threshold σ after N = U to make more unla-
beled data to be labeled (line 11, Algorithm 1). In the train-

ing process, we respectively fine-tune three modules M1, M2

and M3 on the diverse training sets L1
os, L2

os and L3
os ev-

ery 3 rounds after N = U to maintain the diversity (line 10,
Algorithm 1). Since L1

os, L2
os and L3

os are injected into ran-
dom noise, the confidence threshold σ is decreased by σos
(line 14, Algorithm 1). We set σ0 = 0.999 and σos = 0.01
in MNIST; σ0 = 0.95 and σos = 0.25 in SVHN and CIFAR-
10. We use dropout (p = 0.5) after each max-pooling layer,
use Leaky-ReLU (α = 0.1) as activate function except the
FC layer, and use soft-max for FC layer. We also use Batch-
Normalization [Ioffe and Szegedy, 2015] for all layers ex-
cept the FC layer. We use SGD with a mini-batch size of 16.
The learning rate starts from 0.1 in initialization (from 0.02
in training) and is divided by 10 when the error plateaus. In
initialization, three modules M1, M2 and M3 are trained for
up to 300 epochs in SVHN and CIFAR-10 (100 in MNIST).
In training, three modules M1, M2 and M3 are trained for up
to 90 epochs in SVHN and CIFAR-10 (60 in MNIST). We
set std = 0.05 in SVHN and CIFAR-10 (0.001 in MNSIT).
We use a weight decay of 0.0001 and a momentum of 0.9.
Following the setting in Laine and Aila [2016], we use ZCA,
random crop and horizon flipping for CIFAR-10, zero-mean
normalization and random crop for SVHN.

4.2 Results
We compare our tri-net with state-of-the-art methods shown
in Table 1. Recently, Abbasnejad et al. [2017] exploited a pre-
trained model in their infinite Variational Autoencoder (infi-
nite VAE) method, however, the state-of-the-art methods did
not use the pre-trained model. To make a fair comparison,
we do not exploit the pre-trained model as that in state-of-
the-art methods. The results in Table 1 indicate that tri-net
has good performance. It achieves the error rate of 0.53% on
MNIST with 100 labeled examples and 8.45% error rate on
CIFAR-10 with 4000 labeled examples, which are much bet-
ter than state-of-the-art methods. Since tri-net exploits three
modules while the state-of-the-art methods exploit one or two
modules, the time cost of tri-net is more than that of these
methods.

There is an initialization in tri-net, with more sophisticated
initialization methods, tri-net could have better performance.
Π model [Laine and Aila, 2016] is a rising semi-supervised
deep learning method. It evaluates each input twice based on



Methods MNIST (L = 100) SVHN (L = 1000) CIFAR-10 (L = 4000)

Ladder network [Rasmus et al., 2015] 0.89 ± 0.50 - 20.40 ± 0.47*
GoodSemiBadGan [Dai et al., 2017] 0.795 ± 0.098 4.25 ± 0.03* 14.41 ± 0.03*
Π model [Laine and Aila, 2016] - 4.82± 0.17 12.36 ± 0.31
Temporal ensembling [Laine and Aila, 2016] - 4.42 ± 0.16 12.16 ± 0.24
Mean teacher [Tarvainen and Valpola, 2017] - 3.95 ± 0.19 12.31 ± 0.28
VAT + EntMin [Miyato et al., 2017] - 3.86 10.55
Π + SNTG [Luo et al., 2017] 0.66 ± 0.07 3.82 ± 0.25 11.00 ± 0.13
VAdD(KL)+VAT [Park et al., 2018] - 3.55 ± 0.05 9.22 ± 0.10

Tri-net 0.53± 0.10 3.71 ± 0.14 8.45 ± 0.22
Tri-net + Π model 0.52± 0.05 3.45 ± 0.10 8.30 ± 0.15

Table 1: Error rates (%) of methods on MNIST, SVHN and CIFAR-10. * indicates that the method does not use data augmentation.

datasets MNIST SVHN CIFAR-10

index err agr err agr err agr

without output smearing 8.55 ± 0.00 85.69± 0.50 12.47 ± 0.12 82.56 ± 0.88 16.51 ± 0.09 81.47 ± 0.40
with output smearing 7.85 ± 0.48 86.52 ± 0.55 12.20 ± 0.21 81.25 ± 0.22 15.42 ± 0.17 79.98 ± 0.89

Table 2: Results of tri-net with/without output smearing. err means the error rate of ensemble of three modulesM1, M2 andM3. arg means
the ratio of the agreed data by modules M1, M2 and M3.

the neural network and calculates the loss between the two
predictions to regularize the neural network. We also use Π
model to initialize three modules M1, M2 and M3 in tri-net
and call it tri-net + Π model. The results are also shown in
Table 1. From Table 1, we can find that tri-net + Π model per-
forms better than tri-net and achieves the error rate of 3.45%
on SVHN with 1000 labeled examples.

Tri-net is a semi-supervised learning method by using un-
labeled data to improve learning performance. It has been re-
ported that semi-supervised learning with the exploitation of
unlabeled data might deteriorate learning performance [Bal-
can and Blum, 2010; Chapelle et al., 2006]. Now, we demon-
strate whether the performance of tri-net will be deteriorated
by keeping on using unlabeled data. As tri-net labels more
and more unlabeled data, we depict the error rates of three
modules M1, M2, M3 and tri-net in every learning round in
Figure 3, which shows that except very few learning rounds,
the performance is not deteriorated by keeping on using un-
labeled data.

4.3 Further Discussion
In order to generate three accurate and diverse modules M1,
M2 and M3, we introduce output smearing in initialization.
We record the error rates of ensemble of three modules M1,
M2,M3 and their agreement in the initialization with/without
output smearing. The results are shown in Table 2. Table 2
indicates that on all three datasets the error rates of ensem-
ble of M1, M2 and M3 in initialization with output smearing
are lower than that without output smearing. Three modules
M1, M2 and M3 generated with output smearing also have
large diversity (low agreement means large diversity). As tri-
net goes on, M1, M2 and M3 become similar, and then fine-
tuning is introduced to augment the diversity among them.
Some pseudo-labels may be incorrect, pseudo-label editing is

used to alleviate the influence of suspicious pseudo-labels.
To show that whether these techniques are helpful to tri-

net, we run experiments with/without them in tri-net, and the
results are shown in Figure 4. Figure 4 indicates that when all
three techniques are used, tri-net has the best performance.
It implies that these techniques are very necessary for tri-net
and each of them makes a contribution to the good perfor-
mance of tri-net.

Different network structures are used to get three diverse
modules M1, M2 and M3, we conduct the experiments with
the same network structure for three modules M1, M2 and
M3 as a comparison. The results shown in Table 3 indicate
that different structures bring better performance. The pa-
rameter σos controls the confidence threshold when output
smearing is used in the training process. We conduct the ex-
periments with different σos ∈ [0.01, 0.25], and the results
shown in Table 4 indicate that tri-net is not very sensitive to
the parameter σos.

5 Conclusion
In this paper, we propose tri-net for semi-supervised deep
learning, in which we generate three modules to exploit unla-
beled data by considering model initialization, diversity aug-
mentation and pseudo-label editing simultaneously. Exper-
iments on several benchmarks demonstrate that our method
is superior to state-of-the-art semi-supervised deep learning

datasets MNIST SVHN CIFAR-10

with the same structure 0.60 3.95 9.05
with different structures 0.53 3.71 8.45

Table 3: Error rates (%) of tri-net with the same/different structures.
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Figure 3: Error rates of tri-net and its three modules M1, M2 and M3.
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Figure 4: Error rates of tri-net with/without three techniques. Specifically, “w/o os” means tri-net without output smearing, “w/o ft” means
tri-net without fine-tuning, and “w/o DES” means tri-net without pseudo-label editing.

σos 0.01 0.05 0.1 0.25

MNIST 0.53 0.55 0.58 0.60
SVHN 4.23 4.09 3.81 3.71
CIFAR-10 9.38 9.10 8.65 8.45

Table 4: Error rates (%) of tri-net with different σos.

methods. In particular, it can achieve the error rate of 8.30%
on CIFAR-10 by using only 4000 labeled examples. Extend-
ing tri-net with more modules could exploit the power of en-
semble in labeling the unlabeled data confidently. In this situ-
ation, one important issue is to maintain the diversity among
these modules, which will be an interesting research direction
in semi-supervised deep learning.
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