Applications

Lijun Zhang

zlj@nju. edu. cn

http://cs. nju. edu. cn/zlj

Outline

- □ Norm Approximation
 - Basic Norm Approximation
 - Penalty Function Approximation
 - Approximation with Constraints
- Least-norm Problems
- □ Regularized Approximation
- □ Projection
 - Projection on a Set
 - Projection on a Convex Set

■ Norm Approximation Problem

min
$$||Ax - b||$$

- $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ are problem data
- $\mathbf{Z} \in \mathbf{R}^n$ is the variable
- $\|\cdot\|$ is a norm on \mathbb{R}^n
- Approximation solution of $Ax \approx b$, in $\|\cdot\|$
- Residual

$$r = Ax - b$$

- □ A Convex Problem
 - $b \in \mathcal{R}(A)$, the optimal value is 0
 - $b \notin \mathcal{R}(A)$, more interesting (m > n)

Approximation Interpretation

$$Ax = x_1 a_1 + \dots + x_n a_n$$

- $a_1, ..., a_n \in \mathbb{R}^m$ are the columns of A
- Approximate the vector b by a linear combination
- Regression problem
 - $\checkmark a_1, ..., a_n$ are regressors
 - \checkmark $x_1a_1 + \cdots + x_na_n$ is the regression of b

Estimation Interpretation

Consider a linear measurement model

$$y = Ax + v$$

- $y \in \mathbb{R}^m$ is a vector measurement
- $x \in \mathbb{R}^n$ is a vector of parameters to be estimated
- $v \in \mathbb{R}^m$ is some measurement error that is unknown, but presumed to be small
- Assume smaller values of v are more plausible $\hat{x} = \operatorname{argmin}_z ||Az y||$

□ Geometric Interpretation

- Consider the subspace $\mathcal{A} = \mathcal{R}(A) \subseteq \mathbf{R}^m$, and a point $b \in \mathbf{R}^m$
- A projection of the point b onto the subspace A, in the norm $\|\cdot\|$

min
$$||u - b||$$

s.t. $u \in \mathcal{A}$

Parametrize an arbitrary element of $\mathcal{R}(A)$ as u = Ax, we see that norm approximation is equivalent to projection

□ Weighted Norm Approximation Problems

 $\min \|W(Ax-b)\|$

- $W \in \mathbb{R}^{m \times m}$ is called the weighting matrix
 - ✓ The weighting matrix is often diagonal
- A norm approximation problem with norm $\|\cdot\|$, and data $\tilde{A} = WA$, $\tilde{b} = Wb$
- A norm approximation problem with data A and b, and the W-weighted norm

$$||z||_W = ||Wz||$$

Least-Squares Approximation

min
$$||Ax - b||_2^2 = r_1^2 + r_2^2 + \dots + r_m^2$$

The minimization of a convex quadratic function

$$f(x) = x^{\mathsf{T}} A^{\mathsf{T}} A x - 2b^{\mathsf{T}} A x + b^{\mathsf{T}} b$$

A point x minimizes f if and only if

$$\nabla f(x) = 2A^{\mathsf{T}}Ax - 2A^{\mathsf{T}}b = 0$$

Normal equations

$$A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$$

□ Chebyshev or Minimax Approximation

$$\min ||Ax - b||_{\infty} = \max\{|r_1|, ..., |r_m|\}$$

Be cast as an LP

s.t.
$$-t1 \leq Ax - b \leq t1$$

with variables $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$

Sum of Absolute Residuals Approximation

$$\min ||Ax - b||_1 = |r_1| + \dots + |r_m|$$

Be cast as an LP

min
$$1^T t$$

s.t.
$$-t \leq Ax - b \leq t$$

with variables $x \in \mathbb{R}^n$ and $t \in \mathbb{R}^m$

Outline

- □ Norm Approximation
 - Basic Norm Approximation
 - Penalty Function Approximation
 - Approximation with Constraints
- Least-norm Problems
- □ Regularized Approximation
- □ Projection
 - Projection on a Set
 - Projection on a Convex Set

l_p -norm Approximation

- \square l_p -norm approximation, for $1 \le p \le \infty$ $(|r_1|^p + \dots + |r_m|^p)^{1/p}$
- ☐ The equivalent problem with objective $|r_1|^p + \cdots + |r_m|^p$
 - A separable and symmetric function of the residuals
 - Objective depends only on the amplitude distribution of the residuals

Penalty Function Approximation

☐ The Problem

min
$$\phi(r_1) + \cdots + \phi(r_m)$$

s.t. $r = Ax - b$

- $\phi: \mathbf{R} \to \mathbf{R}$ is called the penalty function
- $lacktriangledown \phi$ is convex
- ϕ is symmetric, nonnegative, and satisfies $\phi(0) = 0$
- A penalty function assesses a cost or penalty for each component of residual

Example

\square ℓ_p -norm Approximation

$$\phi(u) = |u|^p$$

- Quadratic penalty: $\phi(u) = u^2$
- Absolute value penalty: $\phi(u) = |u|$
- Deadzone-linear Penalty Function

$$\phi(u) = \begin{cases} 0 & |u| \le a \\ |u| - a & |u| > a \end{cases}$$

□ The Log Barrier Penalty Function

$$\phi(u) = \begin{cases} -a^2 \log(1 - (u/a)^2) & |u| < a \\ \infty & |u| \ge a \end{cases}$$

Example

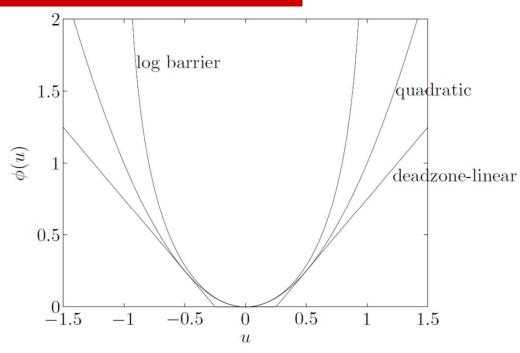


Figure 6.1 Some common penalty functions: the quadratic penalty function $\phi(u) = u^2$, the deadzone-linear penalty function with deadzone width a = 1/4, and the log barrier penalty function with limit a = 1.

- Log barrier penalty function assesses an infinite penalty for residuals larger than a
- Log barrier function is very close to the quadratic penalty for $|u/a| \le 0.25$

Discussions

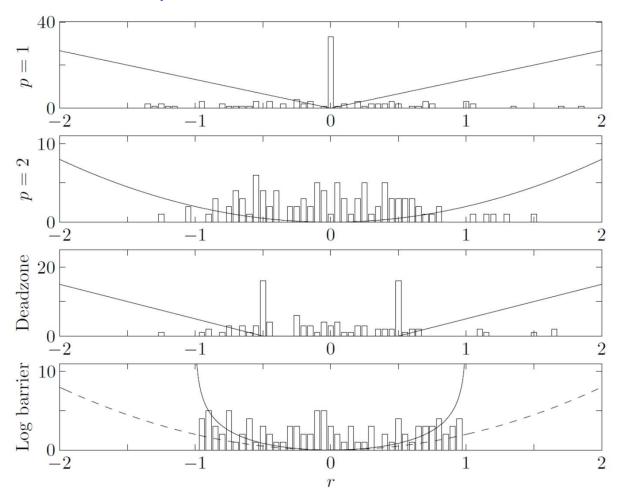
- \square Roughly speaking, $\phi(u)$ is a measure of our dislike of a residual of value u
- If ϕ is very small for small u, it means we care very little if residuals have these values
- If $\phi(u)$ grows rapidly as u becomes large, it means we have a strong dislike for large residuals
- \Box If ϕ becomes infinite outside some interval, it means that residuals outside the interval are unacceptable

Discussions

- $\Box \phi_1(u) = |u|, \phi_2(u) = u^2$
 - For small u we have $\phi_1(u) \gg \phi_2(u)$, so ℓ_1 -norm approximation puts relatively larger emphasis on small residuals
 - The optimal residual for the ℓ_1 -norm approximation problem will tend to have more zero and very small residuals
 - For large u we have $\phi_2(u) \gg \phi_1(u)$, so ℓ_1 -norm approximation puts less weight on large residuals
 - The ℓ_2 -norm solution will tend to have relatively fewer large residuals

Example

 \square $A \in \mathbb{R}^{100 \times 30}$, $b \in \mathbb{R}^{100}$

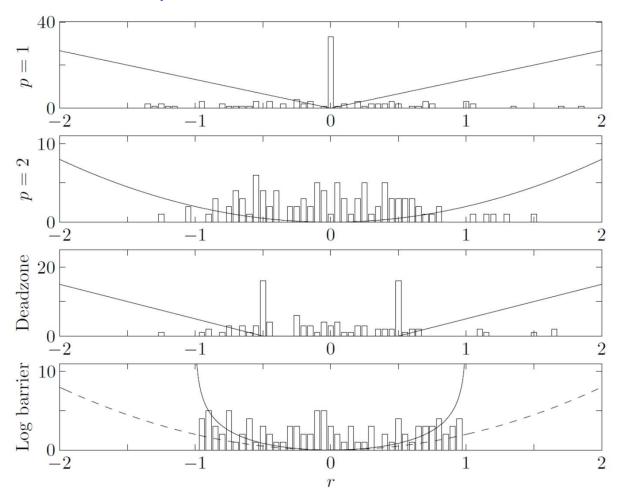


Observations of Penalty Functions

- ☐ The ℓ_1 -norm penalty puts the most weight on small residuals and the least weight on large residuals.
- ☐ The ℓ_2 -norm penalty puts very small weight on small residuals, but strong weight on large residuals.
- ☐ The deadzone-linear penalty function puts no weight on residuals smaller than 0.5, and relatively little weight on large residuals.
- The log barrier penalty puts weight very much like the ℓ_2 -norm penalty for small residuals, but puts very strong weight on residuals larger than around 0.8, and infinite weight on residuals larger than 1.

Example

 \square $A \in \mathbb{R}^{100 \times 30}$, $b \in \mathbb{R}^{100}$



Observations of Amplitude Distributions

- □ For the ℓ_1 -optimal solution, many residuals are either zero or very small. The ℓ_1 -optimal solution also has relatively more large residuals.
- ☐ The ℓ_2 -norm approximation has many modest residuals, and relatively few larger ones.
- ☐ For the deadzone-linear penalty, we see that many residuals have the value ±0.5, right at the edge of the 'free' zone, for which no penalty is assessed.
- \square For the log barrier penalty, we see that no residuals have a magnitude larger than 1, but otherwise the residual distribution is similar to the residual distribution for ℓ_2 -norm approximation.

Outline

- □ Norm Approximation
 - Basic Norm Approximation
 - Penalty Function Approximation
 - Approximation with Constraints
- Least-norm Problems
- □ Regularized Approximation
- □ Projection
 - Projection on a Set
 - Projection on a Convex Set

Add Constraints to

min
$$||Ax - b||$$

- Rule out certain unacceptable approximations of the vector b
- Ensure that the approximator Ax satisfies certain properties
- Prior knowledge of the vector x to be estimated
- \blacksquare Prior knowledge of the estimation error v
- Determine the projection of a point b on a set more complicated than a subspace

■ Nonnegativity Constraints on Variables

min ||Ax - b||s.t. $x \ge 0$

- Estimate a vector x of parameters known to be nonnegative
- Determine the projection of a vector b onto the cone generated by the columns of A
- Approximate b using a nonnegative linear combination of the columns of A

□ Variable Bounds

min
$$||Ax - b||$$

s.t. $l \le x \le u$

- Prior knowledge of intervals in which each variable lies
- Determine the projection of a vector b onto the image of a box under the linear mapping induced by A

Probability Distribution

min
$$||Ax - b||$$

s.t. $x \ge 0, 1^T x = 1$

- Estimation of proportions or relative frequencies
- Approximate b by a convex combination of the columns of A

Norm Ball Constraint

min
$$||Ax - b||$$

s.t. $||x - x_0|| \le d$

 \mathbf{z}_0 is prior guess of what the parameter x is, and d is the maximum plausible deviation

Outline

- Norm Approximation
 - Basic Norm Approximation
 - Penalty Function Approximation
 - Approximation with Constraints
- Least-norm Problems
- □ Regularized Approximation
- □ Projection
 - Projection on a Set
 - Projection on a Convex Set

■ Basic least-norm Problem

$$\begin{array}{ll}
\min & ||x|| \\
s. t. & Ax = b
\end{array}$$

- $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m$
- $\mathbf{x} \in \mathbf{R}^n$, $\|\cdot\|$ is a norm on \mathbf{R}^n
- The solution is called a least-norm solution of Ax = b
- A convex optimization problem
- Interesting when m < n
 - ✓ When the equation is underdetermined

- □ Reformulation as Norm Approximation Problem
 - Let x_0 be any solution of Ax = b
 - Let $Z \in \mathbb{R}^{n \times k}$ be a matrix whose columns are a basis for the nullspace of A.

$$\{x | Ax = b\} = \{x_0 + Zu | u \in \mathbf{R}^k\}$$

The least-norm problem can be expressed as

min
$$||x_0 + Zu||$$

■ Estimation Interpretation

- We have m < n perfect linear measurement, given by Ax = b
- Our measurements do not completely determine x
- Suppose our prior information, is that x is more likely to be small than large
- Choose the parameter vector x which is smallest among all parameter vectors that are consistent with the measurements

- □ Geometric Interpretation
 - The feasible set $\{x | Ax = b\}$ is affine
 - The objective is the distance between x and the point 0
 - Find the point in the affine set with minimum distance to 0
 - Determine the projection of the point 0 on the affine set $\{x | Ax = b\}$

☐ Least-squares Solution of Linear Equations $\min \|x\|_2^2$

s.t.
$$Ax = b$$

The optimality conditions

$$2x^* + A^T v^* = 0$$
 $Ax^* = b$

- \checkmark v is the dual variable
- The Solution

$$x^* = -\frac{1}{2}A^\mathsf{T} v^* \implies -\frac{1}{2}AA^\mathsf{T} v^* = b$$

$$v^* = -2(AA^T)^{-1}b, x^* = A^T(AA^T)^{-1}b$$

■ Least-penalty Problems

min
$$\phi(x_1) + \dots + \phi(x_n)$$

s.t. $Ax = b$

- $\phi: \mathbf{R} \to \mathbf{R}$ is convex, nonnegative and satisfies $\phi(0) = 0$
- The penalty function value $\phi(u)$ quantifies our dislike of a component of x having value u
- Find x that has least total penalty, subject to the constraint Ax = b

 \square Sparse Solutions via Least ℓ_1 -norm

$$\min ||x||_1$$

s. t. $Ax = b$

- Tend to produce a solution x with a large number of components equal to 0
- Tend to produce sparse solutions of Ax = b, often with m nonzero components

 \square Sparse Solutions via Least ℓ_1 -norm

$$\begin{array}{ll}
\min & ||x||_1 \\
\text{s. t.} & Ax = b
\end{array}$$

- ☐ Find solutions of Ax = b that have only m nonzero components
 - \blacksquare \tilde{A} is a submatrix of A
 - \mathbf{x} and subvector of \mathbf{x}
 - Solve $\tilde{A}\tilde{x} = b$
 - ✓ If there is a solution, we are done
 - Complexity: n!/(m!(n-m)!)

Outline

- Norm Approximation
 - Basic Norm Approximation
 - Penalty Function Approximation
 - Approximation with Constraints
- Least-norm Problems
- □ Regularized Approximation
- □ Projection
 - Projection on a Set
 - Projection on a Convex Set

Bi-criterion Formulation

□ A (convex) Vector Optimization Problem with Two Objectives

 $\min(\text{w.r.t.} \mathbf{R}_+^2) \quad (\|Ax - b\|, \|x\|)$

- Find a vector x that is small
- Make the residual Ax b small
- Optimal trade-off between the two objectives
 - ✓ The minimum value of ||x|| is 0 and the residual norm is ||b||
 - ✓ Let C denote the set of minimizers of ||Ax b||, and then any minimum norm point in C is Pareto optimal

Regularization

■ Weighted Sum of the Objectives

$$\min ||Ax - b|| + \gamma ||x||$$

- $ightharpoonup \gamma > 0$ is a problem parameter
- A common scalarization method used to solve the bi-criterion problem
- As γ varies over $(0, \infty)$, the solution traces out the optimal trade-off curve
- Weighted Sum of Squared Norms

min
$$||Ax - b||^2 + \gamma ||x||^2$$

Regularization

□ Tikhonov Regularization

$$\min ||Ax - b||_2^2 + \delta ||x||_2^2 = x^{\mathsf{T}} (A^{\mathsf{T}}A + \delta I)x - 2b^{\mathsf{T}}Ax + b^{\mathsf{T}}b$$

Analytical solution

$$x = (A^{\mathsf{T}}A + \delta I)^{-1}A^{\mathsf{T}}b$$

Since $A^TA + \delta I > 0$ for any $\delta > 0$, the Tikhonov regularized least-squares solution requires no rank assumptions on the matrix A

Regularization

 \square ℓ_1 -norm Regularization

min
$$||Ax - b||_2 + \gamma ||x||_1$$

- Find a sparse solution
- The residual is measured with the Euclidean norm and the regularization is done with an ℓ_1 -norm
- By varying γ we can sweep out the optimal trade-off curve between $||Ax b||_2$ and $||x||_1$
 - ✓ As an approximation of the optimal trade-off curve between $||Ax b||_2$ and the cardinality card(x) of the vector x

□ Regressor Selection Problem

min
$$||Ax - b||_2$$

s.t. $card(x) \le k$

- One straightforward approach is to check every possible sparsity pattern in x with k nonzero entries
- For a fixed sparsity pattern, we can find the optimal x by solving a least-squares problem
- Complexity: n!/(k!(n-k)!)

□ Regressor Selection Problem

min
$$||Ax - b||_2$$

s.t. $card(x) \le k$

A good heuristic approach is to solve the following problem for different γ

min
$$||Ax - b||_2 + \gamma ||x||_1$$

- Find the smallest value of γ that results in a solution with card(x) = k
- We then fix this sparsity pattern and find the value of x that minimizes $||Ax b||_2$

NANTING DATE

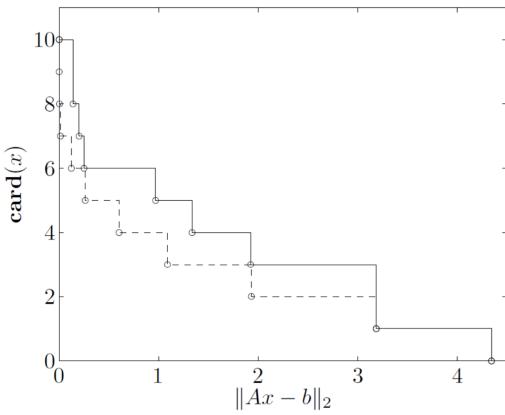


Figure 6.7 Sparse regressor selection with a matrix $A \in \mathbf{R}^{10 \times 20}$. The circles on the dashed line are the Pareto optimal values for the trade-off between the residual $||Ax - b||_2$ and the number of nonzero elements $\mathbf{card}(x)$. The points indicated by circles on the solid line are obtained via the ℓ_1 -norm regularized heuristic.

Outline

- Norm Approximation
 - Basic Norm Approximation
 - Penalty Function Approximation
 - Approximation with Constraints
- Least-norm Problems
- □ Regularized Approximation
- □ Projection
 - Projection on a Set
 - Projection on a Convex Set

Projection on a Set

☐ The distance of a point $x_0 \in \mathbb{R}^n$ to a closed set $C \subseteq \mathbb{R}^n$, in the norm $\|\cdot\|$

$$dist(x_0, C) = \inf\{||x_0 - x|| | x \in C\}$$

- The infimum is always achieved
- \square Projection of x_0 on C
 - Any point $z \in C$ which is closest to x_0

$$||z - x_0|| = \operatorname{dist}(x_0, C)$$

- \blacksquare Can be more than one projection of x_0 on C
- If C is closed and convex, and the norm is strictly convex, there is exactly one

Projection on a Set

☐ The distance of a point $x_0 \in \mathbb{R}^n$ to a closed set $C \subseteq \mathbb{R}^n$, in the norm $\|\cdot\|$

$$dist(x_0, C) = \inf\{||x_0 - x|| | x \in C\}$$

- The infimum is always achieved
- \square $P_C: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ to denote the projection of x_0 on C

$$P_C(x_0) \in C$$
, $||x_0 - P_C(x_0)|| = \text{dist}(x_0, C)$
 $P_C(x_0) = \text{argmin}\{||x - x_0|||x \in C\}$

■ We refer to P_C as projection on C

- ☐ Projection on the Unit Square in R²
 - Consider the boundary of the unit square in \mathbb{R}^2 , i.e., $C = \{x \in \mathbb{R}^2 | ||x||_{\infty} = 1\}$, take $x_0 = 0$
 - In the ℓ_1 -norm, the four points (1,0), (0,-1), (-1,0), and (0,1) are closest to $x_0=0$, with distance 1, so we have $\mathrm{dist}(x_0,C)=1$ in the ℓ_1 -norm
 - In the ℓ_{∞} -norm, all points in C lie at a distance 1 from x_0 , and $\mathrm{dist}(x_0,C)=1$

☐ Projection onto Rank-k Matrices

The set of $m \times n$ matrices with rank less than or equal to k

$$C = \{X \in \mathbf{R}^{m \times n} | \operatorname{rank} X \le k\}$$
 with $k \le \min\{m, n\}$

■ The Projection of $X_0 \in \mathbb{R}^{m \times n}$ on C in $\|\cdot\|_2$

$$\checkmark$$
 SVD of X_0
$$X_0 = \sum_{i=1}^r \sigma_i u_i v_i^{\mathsf{T}}$$

$$P_C(x_0) = \sum_{i=1}^{\min\{k,r\}} \sigma_i u_i v_i^{\mathsf{T}}$$

Outline

- Norm Approximation
 - Basic Norm Approximation
 - Penalty Function Approximation
 - Approximation with Constraints
- Least-norm Problems
- □ Regularized Approximation
- □ Projection
 - Projection on a Set
 - Projection on a Convex Set

Projection on a Convex Set

☐ C is Convex

Represent C by a set of linear equalities and convex inequalities

$$Ax = b, f_i(x) \le 0, i = 1, ..., m$$

 \square Projection of x_0 on C

min
$$||x - x_0||$$

s.t. $f_i(x) \le 0, i = 1, ..., m$
 $Ax = b$

- A convex optimization problem
- Feasible if and only if C is nonempty

■ Euclidean Projection on a Polyhedron

Projection of x_0 on $C = \{x | Ax \le b\}$

min
$$||x - x_0||_2^2$$

s. t. $Ax \le b$

Projection of x_0 on $C = \{x | a^T x = b\}$

$$P_C(x_0) = x_0 + \frac{(b - a^{\mathsf{T}} x_0)a}{\|a\|_2^2}$$

Projection of x_0 on $C = \{x | a^T x \le b\}$

$$P_C(x_0) = \begin{cases} x_0 + \frac{(b - a^{\mathsf{T}} x_0)a}{\|a\|_2^2}, a^{\mathsf{T}} x_0 > b \\ x_0, & a^{\mathsf{T}} x_0 \le b \end{cases}$$

- Euclidean Projection on a Polyhedron
 - Projection of x_0 on $C = \{x | l \le x \le u\}$

$$P_{C}(x_{0})_{k} = \begin{cases} l_{k}, & x_{0k} \leq l_{k} \\ x_{0k}, & l_{k} \leq x_{0k} \leq u_{k} \\ u_{k}, & u_{k} \leq x_{0k} \end{cases}$$

- □ Property of Euclidean Projection
 - C is Convex

$$||P_C(x) - P_C(x)||_2 \le ||x - y||_2$$
 for all x , y

ALISH DALLA

Example

■ Euclidean Projection on a Proper Cone

Projection of x_0 on a proper cone K

min
$$||x - x_0||_2^2$$

s. t. $x \ge_K 0$

KKT Conditions

$$x \ge_K 0$$
, $x - x_0 = z$, $z \ge_{K^*} 0$, $z^T x = 0$

Introduce $x_+ = x$ and $x_- = z$

$$x_0 = x_+ - x_-, \qquad x_+ \geqslant_K 0, \qquad x_- \geqslant_{K^*} 0, \qquad x_+^{\mathsf{T}} x_- = 0$$

- \blacksquare Decompose x_0 into two orthogonal elements
 - ✓ One nonnegative with respect to K
 - \checkmark The other nonnegative with respect to K^*

$$\square K = \mathbb{R}^n_+$$

$$P_K(x_0)_k = \max\{x_{0k}, 0\}$$

- Replace each negative component with 0
- \square $K = \mathbb{S}^n_+$ and $\|\cdot\|_F$

$$P_K(X_0) = \sum_{i=1}^{n} \max\{0, \lambda_i\} v_i v_i^{\mathsf{T}}$$

- The eigendecomposition of X_0 is $X_0 = \sum_{i=1}^{n} \lambda_i v_i v_i^{\mathsf{T}}$
- Drop terms associated with negative eigenvalues

Summary

- Norm Approximation
 - Basic Norm Approximation
 - Penalty Function Approximation
 - Approximation with Constraints
- Least-norm Problems
- □ Regularized Approximation
- □ Projection
 - Projection on a Set
 - Projection on a Convex Set