Convex Optimization Problems (I)

Lijun Zhang

zlj@nju. edu. cn

http://cs.nju. edu. cn/zlj

Outline

- □ Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions
- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization

Outline

- ☐ Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions
- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization

Optimization Problems

min
$$f_0(x)$$

s. t. $f_i(x) \le 0$, $i = 1,..., m$ (1)
 $h_i(x) = 0$, $i = 1,..., p$

Unconstrained when m = p = 0

- Optimization variable: $x \in \mathbb{R}^n$
- Objective function: $f_0: \mathbb{R}^n \to \mathbb{R}$
- Inequality constraints: $f_i(x) \le 0$
- Inequality constraint functions: $f_i: \mathbf{R}^n \to \mathbf{R}$
- **Equality constraints:** $h_i(x) = 0$
- Equality constraint functions: $h_i: \mathbb{R}^n \to \mathbb{R}$

Optimization Problems

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1,..., m$ (1)
 $h_i(x) = 0$, $i = 1,..., p$

Domain

$$\mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i$$

- $x \in \mathcal{D}$ is feasible if it satisfies all the constraints
- The problem is feasible if there exists at least one feasible point

NANUTAR UNITED TO THE PARTY OF THE PARTY OF

Basic Terminology

\square Optimal Value p^*

$$p^* = \inf \{ f_0(x) | f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p \}$$

- Infeasible problem: $p^* = \infty$
- Unbounded below: if there exist x_k with $f_0(x_k) \to -\infty$ as $k \to \infty$, then $p^* = -\infty$

Optimal Points

- \blacksquare x^* is feasible and $f_0(x^*) = p^*$
- □ Optimal Set

$$X_{\text{opt}} = \{x | f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p, f_0(x) = p^*\}$$

 $\square p^*$ is achieved if X_{opt} is nonempty

- \square ε -suboptimal Points
 - a feasible x with $f_0(x) \le p^* + \varepsilon$
- \square ε -suboptimal Set
 - \blacksquare the set of all ε -suboptimal points
- Locally Optimal Points

min
$$f_0(z)$$

s. t. $f_i(z) \le 0$, $i = 1,..., m$
 $h_i(z) = 0$, $i = 1,..., p$
 $||z - x||_2 \le R$

- \blacksquare x is feasible and solves the above problem
- □ Globally Optimal Points

□ Types of Constraints

- If $f_i(x) = 0$, $f_i(x) \le 0$ is active at x
- If $f_i(x) < 0$, $f_i(x) \le 0$ is inactive at x
- $h_i(x) = 0$ is active at all feasible points
- Redundant constraint: deleting it does not change the feasible set

\square Examples on $x \in \mathbf{R}$ and dom $f_0 = \mathbf{R}_{++}$

- $f_0(x) = 1/x$: $p^* = 0$, the optimal value is not achieved
- $f_0(x) = -\log x$: $p^* = -\infty$, unbounded blow
- $f_0(x) = x \log x : p^* = -1/e, x^* = 1/e \text{ is optimal}$

☐ Feasibility Problems

find
$$x$$

s.t. $f_i(x) \le 0$, $i = 1,..., m$
 $h_i(x) = 0$, $i = 1,..., p$

Determine whether constraints are consistent

■ Maximization Problems

max
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1,..., m$
 $h_i(x) = 0$, $i = 1,..., p$

- It can be solved by minimizing $-f_0$
- \blacksquare Optimal Value p^*

$$p^* = \sup \{f_0(x) | f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p\}$$

□ Standard Form

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1,..., m$
 $h_i(x) = 0$, $i = 1,..., p$

■ Box constraints

min
$$f_0(x)$$

s.t. $l_i \le x_i \le u_i$, $i = 1,...,n$

Reformulation

min
$$f_0(x)$$

s.t. $l_i - x_i \le 0$, $i = 1,...,n$
 $x_i - u_i \le 0$, $i = 1,...,n$

Outline

- ☐ Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions
- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization

Equivalent Problems

- ☐ Two Equivalent Problems
 - If from a solution of one, a solution of the other is readily found, and vice versa
- □ A Simple Example

min
$$\tilde{f}(x) = \alpha_0 f_0(x)$$

s. t. $\tilde{f}_i(x) = \alpha_i f_i(x) \le 0$, $i = 1, ..., m$
 $\tilde{h}_i(x) = \beta_i h_i(x) = 0$, $i = 1, ..., p$

- $\alpha_i > 0, i = 0, \ldots, m$
- $\beta_i \neq 0, i = 1, \dots, p$
- Equivalent to the problem (1)

Change of Variables

 $\square \phi : \mathbb{R}^n \to \mathbb{R}^n$ is one-to-one and $\phi(\operatorname{dom} \phi) \supseteq \mathcal{D}$, and define

$$\tilde{f}_i(z) = f_i(\phi(z)),$$
 $i = 0, ..., m$
 $\tilde{h}_i(z) = h_i(\phi(z)),$ $i = 1, ..., p$

☐ An Equivalent Problem

min
$$\tilde{f}_0(z)$$

s.t. $\tilde{f}_i(z) \leq 0$, $i = 1, ..., m$
 $\tilde{h}_i(z) = 0$, $i = 1, ..., p$

- If z solves it, $x = \phi(z)$ solves the problem (1)
- If x solves (1), $z = \phi^{-1}(x)$ solves it

NANALING UNITED

Transformation of Functions

- \square $\psi_0: \mathbf{R} \to \mathbf{R}$ is monotone increasing
- \square $\psi_1, \dots, \psi_m : \mathbb{R} \to \mathbb{R}$ satisfy $\psi_i(u) \leq 0$ if and only if $u \leq 0$
- \square $\psi_{m+1}, \dots, \psi_{m+p} : \mathbb{R} \to \mathbb{R}$ satisfy $\psi_i(u) = 0$ if and only if u = 0
- Define $\tilde{f}_i(x) = \psi_i(f_i(x)),$ i = 0,...,m $\tilde{h}_i(x) = \psi_{m+i}(h_i(x)),$ i = 1,...,p
- ☐ An Equivalent Problem

min
$$\tilde{f}_0(x)$$

s. t. $\tilde{f}_i(x) \leq 0$, $i = 1, ..., m$
 $\tilde{h}_i(x) = 0$, $i = 1, ..., p$

Example

□ Least-norm Problems

min
$$||Ax - b||_2$$

- Not differentiable at any x with Ax b = 0
- Least-norm-squared Problems

min
$$||Ax - b||_2^2 = (Ax - b)^T (Ax - b)$$

 \blacksquare Differentiable for all x

Slack Variables

- \Box $f_i(x) \le 0$ if and only if there is an $s_i \ge 0$ that satisfies $f_i(x) + s_i = 0$
- ☐ An Equivalent Problem

min
$$f_0(x)$$

s. t. $s_i \ge 0$, $i = 1,..., m$
 $f_i(x) + s_i = 0$, $i = 1,..., m$
 $h_i(x) = 0$, $i = 1,..., p$

- s_i is the slack variable associated with the inequality constraint $f_i(x) \le 0$
- x is optimal for the problem (1) if and only if (x,s) is optimal for the above problem, where $s_i = -f_i(x)$

NANALIS OF THE PROPERTY OF THE

Eliminating Equality Constraints

 \square Assume $\phi: \mathbb{R}^k \to \mathbb{R}^n$ is such that x satisfies

$$h_i(x) = 0, \qquad i = 1, \dots, p$$

if and only if there is some $z \in \mathbb{R}^k$ such that

$$x = \phi(z)$$

☐ An Equivalent Problem

min
$$\tilde{f}_0(z) = f_0(\phi(z))$$

s.t. $\tilde{f}_i(z) = f_i(\phi(z)) \le 0$, $i = 1, ..., m$

- If z is optimal for this problem, $x = \phi(z)$ is optimal for the problem (1)
- If x is optimal for (1), there is at least one z which is optimal for this problem

Eliminating linear equality constraints

- \square Assume the equality constraints are all linear Ax = b, and x_0 is one solution
- Let $F \in \mathbb{R}^{n \times k}$ be any matrix with $\mathcal{R}(F) = \mathcal{N}(A)$, then

$$\{x | Ax = b\} = \{Fz + x_0 | z \in \mathbf{R}^k\}$$

 \square An Equivalent Problem $(x = Fz + x_0)$

min
$$f_0(Fz + x_0)$$

s.t. $f_i(Fz + x_0) \le 0$, $i = 1,..., m$

 $= k = n - \operatorname{rank}(A)$

Linear algebra

□ Range and nullspace

Let $A \in \mathbb{R}^{m \times n}$, the range of A, denoted $\mathcal{R}(A)$, is the set of all vectors in \mathbb{R}^m that can be written as linear combinations of the columns of A:

$$\mathcal{R}(A) = \{Ax | x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$$

The nullspace (or kernel) of A, denoted $\mathcal{N}(A)$, is the set of all vectors x mapped into zero by A:

$$\mathcal{N}(A) = \{x | Ax = 0\} \subseteq \mathbf{R}^n$$

if \mathcal{V} is a subspace of \mathbb{R}^n , its orthogonal complement, denoted \mathcal{V}^{\perp} , is defined as:

$$\mathcal{V}^{\perp} = \{x | z^{\mathsf{T}}x = 0 \text{ for all } z \in \mathcal{V}\}$$

Introducing Equality Constraints

Consider the problem

min
$$f_0(A_0x + b_0)$$

s.t. $f_i(A_ix + b_i) \le 0$, $i = 1,..., m$
 $h_i(x) = 0$, $i = 1,..., p$

 $\mathbf{z} \in \mathbf{R}^n$, $A_i \in \mathbf{R}^{k_i \times n}$ and $f_i : \mathbf{R}^{k_i} \to \mathbf{R}$

□ An Equivalent Problem

min
$$f_0(y_0)$$

s. t. $f_i(y_i) \le 0$, $i = 1,..., m$
 $y_i = A_i x + b_i$, $i = 0,..., m$
 $h_i(x) = 0$, $i = 1,..., p$

Introduce $y_i \in \mathbf{R}^{k_i}$ and $y_i = A_i x + b_i$

Optimizing over Some Variables

- □ Suppose $x \in \mathbb{R}^n$ is partitioned as $x = (x_1, x_2)$, with $x_1 \in \mathbb{R}^{n_1}$, $x_2 \in \mathbb{R}^{n_2}$ and $n_1 + n_2 = n$
- Consider the problem

min
$$f_0(x_1, x_2)$$

s.t. $f_i(x_1) \le 0$, $i = 1, ..., m_1$
 $\tilde{f}_i(x_2) \le 0$, $i = 1, ..., m_2$

□ An Equivalent Problem

min
$$\tilde{f}_0(x_1)$$

s. t. $f_i(x_1) \le 0$, $i = 1, ..., m_1$

where

$$\tilde{f}_0(x_1) = \inf \{ f_0(x_1, z) | \tilde{f}_i(z) \le 0, i = 1, \dots, m_2 \}$$

Example

■ Minimize a Quadratic Function

min
$$x_1^{\mathsf{T}} P_{11} x_1 + 2x_1^{\mathsf{T}} P_{12} x_2 + x_2^{\mathsf{T}} P_{22} x_2$$

s. t. $f_i(x_1) \le 0$, $i = 1, ..., m$

 \square Minimize over x_2

$$\inf_{x_2} \left(x_1^{\mathsf{T}} P_{11} x_1 + 2 x_1^{\mathsf{T}} P_{12} x_2 + x_2^{\mathsf{T}} P_{22} x_2 \right)$$
$$= x_1^{\mathsf{T}} \left(P_{11} - P_{12} P_{22}^{-1} P_{12}^{\mathsf{T}} \right) x_1$$

□ An Equivalent Problem

min
$$x_1^{\mathsf{T}} (P_{11} - P_{12} P_{22}^{-1} P_{12}^{\mathsf{T}}) x_1$$

s. t. $f_i(x_1) \le 0$, $i = 1, ..., m$

Epigraph Problem Form

□ Epigraph Form

min
$$t$$

s.t. $f_0(x) - t \le 0$
 $f_i(x) \le 0$, $i = 1,..., m$
 $h_i(x) = 0$, $i = 1,..., p$

- Introduce a variable $t \in \mathbf{R}$
- (x,t) is optimal for this problem if and only if x is optimal for (1) and $t=f_0(x)$
- The objective function of the epigraph form problem is a linear function of x, t

Epigraph Problem Form

□ Geometric Interpretation

Find the point in the epigraph that minimizes *t*

Making Constraints Implicit

Unconstrained problem

$$\min F(x)$$

- $dom F = \{x \in dom f_0 | f_i(x) \le 0, i = 1, ..., m,$ $h_i(x) = 0, i = 1, ..., p\}$
- $F(x) = f_0(x)$ for $x \in \text{dom } F$
- It has not make the problem any easier
- It could make the problem more difficult, because F is probably not differentiable

Making Constraints Explicit

□ A Unconstrained Problem

$$\min f(x)$$

where

$$f(x) = \begin{cases} x^{\mathsf{T}} x & Ax = b\\ \infty & \text{otherwise} \end{cases}$$

- An implicit equality constraint Ax = b
- □ An Equivalent Problem

min
$$x^Tx$$

s.t. $Ax = b$

Objective and constraint functions are differentiable

Outline

- ☐ Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions
- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization

Problem Descriptions

□ Parameter Problem Description

- Functions have some analytical or closed form
- Example: $f_0(x) = x^T P x + q^T x + r$, where $P \in \mathbf{S}^n, q \in \mathbf{R}^n$ and $r \in \mathbf{R}$
- Give the values of the parameters
- ☐ Oracle Model (Black-box Model)
 - Can only query the objective and constraint functions by oracle
 - Evaluate f(x) and its gradient $\nabla f(x)$
 - Know some prior information (convexity)

Outline

- Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions
- □ Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization

Convex Optimization Problems

☐ Standard Form

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1,..., m$
 $a_i^{\mathsf{T}} x = b_i$, $i = 1,..., p$

- The objective function must be convex
- The inequality constraint functions must be convex
- The equality constraint functions $h_i(x) = a_i^T x b_i$ must be affine

Convex Optimization Problems

Properties

Feasible set of a convex optimization problem is convex

$$\bigcap_{i=0}^{m} \text{dom } f_i \cap \bigcap_{i=1}^{m} \{x | f_i(x) \le 0\} \cap \bigcap_{i=1}^{p} \{x | a_i^{\top} x = b_i\}$$

- Minimize a convex function over a convex set
- \blacksquare ε -suboptimal set is convex
- The optimal set is convex
- If the objective is strictly convex, then the optimal set contains at most one point

Concave Maximization Problem

□ Standard Form

max
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1,..., m$
 $a_i^{\mathsf{T}} x = b_i$, $i = 1,..., p$

- It is referred as a convex optimization problem if f_0 is concave and f_1, \ldots, f_m are convex
- It is readily solved by minimizing the convex objective function $-f_0$

Abstract From Convex Optimization Problem

□ Consider the Problem

min
$$f_0(x) = x_1^2 + x_2^2$$

s. t. $f_1(x) = x_1/(1 + x_2^2) \le 0$
 $h_1(x) = (x_1 + x_2)^2 = 0$

- Not a convex optimization problem
 - \checkmark f_1 is not convex and h_1 is not affine
- But the feasible set is indeed convex
- Abstract convex optimization problem

□ An Equivalent Convex Problem

min
$$f_0(x) = x_1^2 + x_2^2$$

s. t. $f_1(x) = x_1 \le 0$
 $h_1(x) = x_1 + x_2 = 0$

Outline

- Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions
- □ Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization

Local and Global Optima

- □ Any locally optimal point of a convex problem is also (globally) optimal
- □ Proof by Contradiction
 - x is locally optimal implies

$$f_0(x) = \inf\{f_0(z) \mid z \text{ feasible, } ||z - x||_2 \le R\}$$
 for some R

- Suppose x is not globally optimal, i.e., there exists $f_0(y) < f_0(x)$ and $||y - x||_2 > R$
- Define $z = (1 \theta)x + \theta y, \theta = \frac{R}{2\|y x\|_2} \in (0,1)$

Local and Global Optima

- By convexity of the feasible set
 z is feasible
- It is easy to check

$$||z - x||_2 = ||\theta(y - x)||_2 = \left\| \frac{R(y - x)}{2||y - x||_2} \right\|_2 = \frac{R}{2} < R$$

By convexity of f_0

$$f_0(z) \le (1 - \theta)f_0(x) + \theta f_0(y) < f_0(x)$$

which contradicts

$$f_0(x) = \inf\{f_0(z) \mid z \text{ feasible, } ||z - x||_2 \le R\}$$

Outline

- Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions
- □ Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization

An Optimality Criterion for Differentiable f_0

\square Suppose f_0 is differentiable

$$f_0(y) \ge f_0(x) + \nabla f_0(x)^{\mathsf{T}} (y - x), \forall x, y \in \text{dom } f_0(y)$$

An Optimality Criterion for Differentiable f_0

 \square Suppose f_0 is differentiable

$$f_0(y) \ge f_0(x) + \nabla f_0(x)^{\mathsf{T}} (y - x), \forall x, y \in \text{dom } f_0(y) \ge f_0(x) + \nabla f_0(x)^{\mathsf{T}} (y - x), \forall x, y \in \text{dom } f_0(y) \ge f_0(y) \ge f_0(y) + \nabla f_0$$

□ Let *X* denote the feasible set

$$X = \{x | f_i(x) \le 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p\}$$

 $\square x$ is optimal if and only if $x \in X$ and

$$\nabla f_0(x)^{\mathsf{T}}(y-x) \ge 0 \text{ for all } y \in X$$

An Optimality Criterion for Differentiable f_0

 $\square x$ is optimal if and only if $x \in X$ and

$$\nabla f_0(x)^{\mathsf{T}}(y-x) \ge 0 \text{ for all } y \in X$$

 $\Box - \nabla f_0(x)$ defines a supporting hyperplane to the feasible set at x

Proof of Optimality Condition

■ Sufficient Condition

$$\left. \begin{array}{l} \nabla f_0(x)^{\top}(y - x) \ge 0 \\ f_0(y) \ge f_0(x) + \nabla f_0(x)^{\top}(y - x) \end{array} \right\} \Rightarrow f_0(y) \ge f_0(x)$$

■ Necessary Condition

 \blacksquare Suppose x is optimal but

$$\exists y \in X, \nabla f_0(x)^{\mathsf{T}}(y-x) < 0$$

■ Define $z(t) = ty + (1 - t)x, t \in [0,1]$

$$f_0(z(0)) = f_0(x), \qquad \frac{d}{dt} f_0(z(t)) \Big|_{t=0} = \nabla f_0(x)^{\mathsf{T}} (y - x) < 0$$

■ So, for small positive t, $f_0(z(t)) < f_0(x)$

Unconstrained Problems

- \square x is optimal if and only if $\nabla f_0(x) = 0$
 - Consider $y = x t\nabla f_0(x)$ and t > 0
 - \blacksquare When t is small, y is feasible

$$\nabla f_0(x)^{\mathsf{T}}(y - x) = -t \|\nabla f_0(x)\|_2^2 \ge 0 \Leftrightarrow \nabla f_0(x) = 0$$

□ Unconstrained Quadratic Optimization

min
$$f_0(x) = (1/2)x^{T}Px + q^{T}x + r$$
, where $P \in \mathbf{S}_{+}^{n}$

- \blacksquare x is optimal if and only if $\nabla f_0(x) = Px + q = 0$
- If $q \notin \mathcal{R}(P)$, no solution, f_0 is unbound below
- If P > 0, unique minimizer $x^* = -P^{-1}q$
- If P is singular, but $q \in \mathcal{R}(P)$, $X_{\text{opt}} = -P^{\dagger}q + \mathcal{N}(P)$

Problems with Equality Constraints Only

□ Consider the Problem

min
$$f_0(x)$$

s.t. $Ax = b$

 \square x is optimal if and only if

$$\nabla f_0(x)^{\mathsf{T}}(y-x) \ge 0, \forall Ay = b$$

Problems with Equality Constraints Only

□ Consider the Problem

min
$$f_0(x)$$

s. t. $Ax = b$

Lagrange Multiplier Optimality Condition

$$Ax = b$$

$$\nabla f_0(x) + A^{\mathsf{T}}v = 0$$

 \square x is optimal if and only if

$$\nabla f_0(x)^{\mathsf{T}}(y-x) \ge 0, \forall Ay = b$$

$$\{y|Ay = b\} = \{x + v|v \in \mathcal{N}(A)\}$$

$$\Leftrightarrow \nabla f_0(x)^{\top} v \ge 0, \forall v \in \mathcal{N}(A)$$

$$\Leftrightarrow \nabla f_0(x)^\top v = 0, \forall \ v \in \mathcal{N}(A)$$

$$\Leftrightarrow \nabla f_0(x) \perp \mathcal{N}(A) \Leftrightarrow \nabla f_0(x) \in \mathcal{N}(A)^{\perp} = \mathcal{R}(A^{\top})$$

$$\Leftrightarrow \exists v \in \mathbf{R}^p, \nabla f_0(x) + A^{\mathsf{T}}v = 0$$

Minimization over the Nonnegative Orthant

□ Consider the Problem

min
$$f_0(x)$$

s.t. $x \ge 0$

 \square x is optimal if and only if

$$\nabla f_0(x)^{\mathsf{T}}(y-x) \ge 0, \forall y \ge 0$$

$$\Leftrightarrow \begin{cases} \nabla f_0(x) \ge 0 \\ -\nabla f_0(x)^{\mathsf{T}} x \ge 0 \end{cases} \Leftrightarrow \begin{cases} \nabla f_0(x) \ge 0 \\ \nabla f_0(x)^{\mathsf{T}} x = 0 \end{cases}$$

■ The Optimality Condition

$$x \ge 0$$
, $\nabla f_0(x) \ge 0$, $x_i(\nabla f_0(x))_i = 0$, $i = 1, ..., n$

■ The last condition is called complementarity

Outline

- Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions
- □ Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization

Equivalent Convex Problems

☐ Standard Form

min
$$f_0(x)$$

s. t. $f_i(x) \le 0$, $i = 1,..., m$
 $a_i^{\mathsf{T}} x = b_i$, $i = 1,..., p$

Eliminating Equality Constraints

min
$$f_0(Fz + x_0)$$

s.t. $f_i(Fz + x_0) \le 0$, $i = 1, ..., m$

- $A = [a_1^{\mathsf{T}}; ...; a_p^{\mathsf{T}}], b = (b_1; ...; b_p)$
- The composition of a convex function with an affine function is convex

Equivalent Convex Problems

■ Introducing Equality Constraints

If an objective or constraint function has the form $f_i(A_ix + b_i)$, where $A_i \in \mathbf{R}^{k_i \times n}$, we can replace it with $f_i(y_i)$ and add the constraint $y_i = A_ix + b_i$, where $y_i \in \mathbf{R}^{k_i}$

□ Slack Variables

- Introduce new constraint $f_i(x) + s_i = 0$ and requiring that f_i is affine
- Introduce slack variables for linear inequalities preserves convexity of a problem

■ Minimizing over Some Variables

■ It preserves convexity. $f_0(x_1, x_2)$ needs to be jointly convex in x_1 and x_2

Equivalent Convex Problems

☐ Epigraph Problem Form

min
$$t$$

s. t. $f_0(x) - t \le 0$
 $f_i(x) \le 0$, $i = 1,..., m$
 $a_i^T x = b_i$, $i = 1,..., p$

- The objective is linear (hence convex)
- The new constraint function $f_0(x) t$ is also convex in (x,t)
- This problem is convex
- Any convex optimization problem is readily transformed to one with linear objective.

Outline

- Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions
- □ Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization

Quasiconvex Optimization

☐ Standard Form

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1,..., m$
 $Ax = b$

- \blacksquare f_0 is quasiconvex and $f_1, ..., f_m$ are convex
- Have locally optimal solutions that are not (globally) optimal

Quasiconvex Optimization

☐ Standard Form

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1,..., m$
 $Ax = b$

- \blacksquare f_0 is quasiconvex and $f_1, ..., f_m$ are convex
- Have locally optimal solutions that are not (globally) optimal

\square Optimality Conditions for Differentiable f_0

- Let *X* denote the feasible set, *x* is optimal if $x \in X$, $\nabla f_0(x)^{\mathsf{T}}(y-x) > 0$ for all $y \in X \setminus \{x\}$
- 1. Only a sufficient condition
- 2. Requires $\nabla f_0(x)$ to be nonzero

Representation via family of convex functions

- □ Rerpesent the sublevel sets of a quasiconvex function f via inequalities of convex functions.

 - lacktriangledown ϕ_t is a nonincreasing function of t
 - Examples

$$\phi_t(x) = \begin{cases} 0 & f(x) \le t \\ \infty & \text{otherwise} \end{cases}$$

$$\phi_t(x) = \text{dist}(x, \{z | f(z) \le t\})$$

Quasiconvex Optimization via Convex Feasibility Problems

Let ϕ_t : $\mathbb{R}^n \to \mathbb{R}$, $t \in \mathbb{R}$, be a family of convex functions such that

$$f_0(x) \le t \Leftrightarrow \phi_t(x) \le 0$$

and for each x, $\phi_s(x) \le \phi_t(x)$ whenever $s \ge t$

- Let p^* be the optimal value of quasiconvex problem
- Consider the feasibility problem

find
$$x$$

s. t. $\phi_t(x) \le 0$
 $f_i(x) \le 0$, $i = 1,..., m$
 $Ax = b$

If it is feasible, $p^* \le t$. Conversely, $p^* \ge t$

Bisection for Quasiconvex Optimization

□ Algorithm

given $l \le p^*, u \ge p^*$, tolerance $\epsilon > 0$ repeat

- 1. t := (l + u)/2
- 2. Solve the convex feasibility problem
- 3. **if** it is feasible, u = t; **else** l = t

until
$$u - l \le \epsilon$$

- The interval [l,u] is guaranteed to contain p^*
- The length of the interval after k iterations is $2^{-k}(u-l)$
- $[\log_2((u-l)/\epsilon)]$ iterations are required

Bisection for Quasiconvex Optimization

\square An ϵ -suboptimal Solution

- $l \le p^* \le u$
- $u-l \leq \epsilon$
- $u p^* \le \epsilon$

find
$$x$$

s. t. $\phi_u(x) \le 0$
 $f_i(x) \le 0$, $i = 1,..., m$
 $Ax = b$

$$f_0(x) \le u = p^* + u - p^* \le p^* + \epsilon$$

Summary

- Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions
- □ Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization