Convex Optimization Problems (I)

Lijun Zhang
zlj@nju.edu.cn
http://cs.nju.edu.cn/zlj
Outline

- Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions

- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization
Outline

- Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions

- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization
Basic Terminology

- **Optimization Problems**

\[
\begin{align*}
\text{min } & \quad f_0(x) \\
\text{s.t. } & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

- Optimization variable: \(x \in \mathbb{R}^n \)
- Objective function: \(f_0: \mathbb{R}^n \rightarrow \mathbb{R} \)
- Inequality constraints: \(f_i(x) \leq 0 \)
- Inequality constraint functions: \(f_i: \mathbb{R}^n \rightarrow \mathbb{R} \)
- Equality constraints: \(h_i(x) = 0 \)
- Equality constraint functions: \(h_i: \mathbb{R}^n \rightarrow \mathbb{R} \)

Unconstrained when \(m = p = 0 \)
Basic Terminology

- Optimization Problems

\[
\begin{align*}
\min & \quad f_0(x) \\
\text{s.t.} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\] \hspace{1cm} (1)

- Domain

\[\mathcal{D} = \bigcap_{i=0}^{m} \text{dom } f_i \cap \bigcap_{i=1}^{p} \text{dom } h_i\]

- \(x \in \mathcal{D}\) is feasible if it satisfies all the constraints

- The problem is feasible if there exists at least one feasible point
Basic Terminology

- **Optimal Value** p^*

 $p^* = \inf \{f_0(x)|f_i(x) \leq 0, i = 1,\ldots,m, h_i(x) = 0, i = 1,\ldots,p\}$

 - Infeasible problem: $p^* = \infty$
 - Unbounded below: if there exist x_k with $f_0(x_k) \to -\infty$ as $k \to \infty$, then $p^* = -\infty$

- **Optimal Points**

 - x^* is feasible and $f_0(x^*) = p^*$

- **Optimal Set**

 $X_{opt} = \{x|f_i(x) \leq 0, i = 1,\ldots,m, h_i(x) = 0, i = 1,\ldots,p, f_0(x) = p^*\}$

- **p^* is achieved if X_{opt} is nonempty**
Basic Terminology

- **ε-suboptimal Points**
 - a feasible x with $f_0(x) \leq p^* + \varepsilon$

- **ε-suboptimal Set**
 - the set of all ε-suboptimal points

- **Locally Optimal Points**
 \[
 \begin{align*}
 \min & \quad f_0(z) \\
 \text{s.t.} & \quad f_i(z) \leq 0, \quad i = 1, \ldots, m \\
 & \quad h_i(z) = 0, \quad i = 1, \ldots, p \\
 & \quad \|z - x\|_2 \leq R
 \end{align*}
 \]
 - x is feasible and solves this above problem

- **Globally Optimal Points**
Basic Terminology

☐ **Types of Constraints**

- If $f_i(x) = 0$, $f_i(x) \leq 0$ is **active** at x
- If $f_i(x) < 0$, $f_i(x) \leq 0$ is **inactive** at x
- $h_i(x) = 0$ is active at all feasible points
- **Redundant** constraint: deleting it does not change the feasible set

☐ **Examples on** $x \in \mathbb{R}$ and $\text{dom } f_0 = \mathbb{R}_{++}$

- $f_0(x) = 1/x : p^* = 0$, the optimal value is not achieved
- $f_0(x) = -\log x : p^* = -\infty$, unbounded blow
- $f_0(x) = x \log x : p^* = -1/e$, $x^* = 1/e$ is optimal
Basic Terminology

- **Feasibility Problems**

 find \(x \)

 s.t.

 \[f_i(x) \leq 0, \quad i = 1, \ldots, m \]

 \[h_i(x) = 0, \quad i = 1, \ldots, p \]

 - Determine whether constraints are consistent

- **Maximization Problems**

 \[\max f_0(x) \]

 s.t.

 \[f_i(x) \leq 0, \quad i = 1, \ldots, m \]

 \[h_i(x) = 0, \quad i = 1, \ldots, p \]

 - It can be solved by minimizing \(-f_0\)

 - Optimal Value \(p^* \)

 \[p^* = \sup \{ f_0(x) | f_i(x) \leq 0, i = 1, \ldots, m, h_i(x) = 0, i = 1, \ldots, p \} \]
Basic Terminology

- **Standard Form**
 \[
 \min \quad f_0(x) \\
 \text{s.t.} \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
 \quad h_i(x) = 0, \quad i = 1, \ldots, p
 \]

- **Box constraints**
 \[
 \min \quad f_0(x) \\
 \text{s.t.} \quad l_i \leq x_i \leq u_i, \quad i = 1, \ldots, n
 \]

- **Reformulation**
 \[
 \min \quad f_0(x) \\
 \text{s.t.} \quad l_i - x_i \leq 0, \quad i = 1, \ldots, n \\
 \quad x_i - u_i \leq 0, \quad i = 1, \ldots, n
 \]
Outline

- Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions

- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization
Equivalent Problems

- Two Equivalent Problems
 - If from a solution of one, a solution of the other is readily found, and vice versa

- A Simple Example

 \[
 \begin{align*}
 \min & \quad \tilde{f}(x) = \alpha_0 f_0(x) \\
 \text{s.t.} & \quad \tilde{f}_i(x) = \alpha_i f_i(x) \leq 0, \quad i = 1, \ldots, m \\
 & \quad \tilde{h}_i(x) = \beta_i h_i(x) = 0, \quad i = 1, \ldots, p
 \end{align*}
 \]

 - \(\alpha_i > 0, i = 0, \ldots, m\)
 - \(\beta_i \neq 0, i = 1, \ldots, p\)
 - Equivalent to the problem (1)
Change of Variables

- $\phi: \mathbb{R}^n \rightarrow \mathbb{R}^n$ is one-to-one and $\phi(\text{dom } \phi) \supseteq \mathcal{D}$, and define

\[
\tilde{f}_i(z) = f_i(\phi(z)), \quad i = 0, \ldots, m \\
\tilde{h}_i(z) = h_i(\phi(z)), \quad i = 1, \ldots, p
\]

- An Equivalent Problem

\[
\min \quad \tilde{f}_0(z) \\
\text{s.t.} \quad \tilde{f}_i(z) \leq 0, \quad i = 1, \ldots, m \\
\tilde{h}_i(z) = 0, \quad i = 1, \ldots, p
\]

- If z solves it, $x = \phi(z)$ solves the problem (1)
- If x solves (1), $z = \phi^{-1}(x)$ solves it
Transformation of Functions

- $\psi_0 : \mathbb{R} \to \mathbb{R}$ is monotone increasing
- $\psi_1, \ldots, \psi_m : \mathbb{R} \to \mathbb{R}$ satisfy $\psi_i(u) \leq 0$ if and only if $u \leq 0$
- $\psi_{m+1}, \ldots, \psi_{m+p} : \mathbb{R} \to \mathbb{R}$ satisfy $\psi_i(u) = 0$ if and only if $u = 0$
- Define $\tilde{f}_i(x) = \psi_i(f_i(x)), \quad i = 0, \ldots, m$
 $\tilde{h}_i(x) = \psi_{m+i}(h_i(x)), \quad i = 1, \ldots, p$
- An Equivalent Problem

$$\min \tilde{f}_0(x)$$
$$\text{s. t. } \tilde{f}_i(x) \leq 0, \quad i = 1, \ldots, m$$
$$\tilde{h}_i(x) = 0, \quad i = 1, \ldots, p$$
Example

- **Least-norm Problems**
 \[
 \min \quad \|Ax - b\|_2
 \]
 - Not differentiable at any \(x \) with \(Ax - b = 0 \)

- **Least-norm-squared Problems**
 \[
 \min \quad \|Ax - b\|_2^2 = (Ax - b)^T(Ax - b)
 \]
 - Differentiable for all \(x \)
slack variables

- $f_i(x) \leq 0$ if and only if there is an $s_i \geq 0$ that satisfies $f_i(x) + s_i = 0$

- An Equivalent Problem

\[
\begin{align*}
\min & \quad f_0(x) \\
\text{s.t.} & \quad s_i \geq 0, \quad i = 1, \ldots, m \\
& \quad f_i(x) + s_i = 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

- s_i is the slack variable associated with the inequality constraint $f_i(x) \leq 0$

- x is optimal for the problem (1) if and only if (x, s) is optimal for the above problem, where $s_i = -f_i(x)$
Eliminating Equality Constraints

- Assume $\phi: \mathbb{R}^k \to \mathbb{R}^n$ is such that x satisfies
 \[h_i(x) = 0, \quad i = 1, \ldots, p \]
 if and only if there is some $z \in \mathbb{R}^k$ such that
 \[x = \phi(z) \]

- An Equivalent Problem
 \[
 \begin{align*}
 \min & \quad \tilde{f}_0(z) = f_0(\phi(z)) \\
 \text{s.t.} & \quad \tilde{f}_i(z) = f_i(\phi(z)) \leq 0, \quad i = 1, \ldots, m
 \end{align*}
 \]
 - If z is optimal for this problem, $x = \phi(z)$ is optimal for the problem (1)
 - If x is optimal for (1), there is at least one z which is optimal for this problem
Eliminating linear equality constraints

- Assume the equality constraints are all linear $Ax = b$, and x_0 is one solution

- Let $F \in \mathbb{R}^{n \times k}$ be any matrix with $\mathcal{R}(F) = \mathcal{N}(A)$, then

$$\{x | Ax = b\} = \{Fz + x_0 | z \in \mathbb{R}^k\}$$

- An Equivalent Problem ($x = Fz + x_0$)

$$\min \ f_0(Fz + x_0)$$
$$\text{s.t.} \ f_i(Fz + x_0) \leq 0, \quad i = 1, \ldots, m$$

$k = n - \text{rank}(A)$
Introducing Equality Constraints

Consider the problem
\[
\begin{align*}
\min & \quad f_0(A_0x + b_0) \\
\text{s.t.} & \quad f_i(A_ix + b_i) \leq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]
\[x \in \mathbb{R}^n, A_i \in \mathbb{R}^{k_i \times n} \text{ and } f_i : \mathbb{R}^{k_i} \to \mathbb{R}\]

An Equivalent Problem
\[
\begin{align*}
\min & \quad f_0(y_0) \\
\text{s.t.} & \quad f_i(y_i) \leq 0, \quad i = 1, \ldots, m \\
& \quad y_i = A_ix + b_i, \quad i = 0, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]
\[\text{Introduce } y_i \in \mathbb{R}^{k_i} \text{ and } y_i = A_ix + b_i\]
Optimizing over Some Variables

- Suppose \(x \in \mathbb{R}^n \) is partitioned as \(x = (x_1, x_2) \), with \(x_1 \in \mathbb{R}^{n_1}, x_2 \in \mathbb{R}^{n_2} \) and \(n_1 + n_2 = n \)

- Consider the problem

\[
\begin{align*}
\min & \quad f_0(x_1, x_2) \\
\text{s.t.} & \quad f_i(x_1) \leq 0, \quad i = 1, \ldots, m_1 \\
& \quad \tilde{f}_i(x_2) \leq 0, \quad i = 1, \ldots, m_2
\end{align*}
\]

- An Equivalent Problem

\[
\begin{align*}
\min & \quad \tilde{f}_0(x_1) \\
\text{s.t.} & \quad f_i(x_1) \leq 0, \quad i = 1, \ldots, m_1
\end{align*}
\]

where

\[
\tilde{f}_0(x_1) = \inf \{ f_0(x_1, z) | \tilde{f}_i(z) \leq 0, i = 1, \ldots, m_2 \}
\]
Example

- **Minimize a Quadratic Function**

\[
\begin{align*}
\min & \quad x_1^\top P_{11} x_1 + 2x_1^\top P_{12} x_2 + x_2^\top P_{22} x_2 \\
\text{s.t.} & \quad f_i(x_1) \leq 0, \quad i = 1, \ldots, m
\end{align*}
\]

- **Minimize over** \(x_2\)

\[
\begin{align*}
\inf_{x_2} \left(x_1^\top P_{11} x_1 + 2x_1^\top P_{12} x_2 + x_2^\top P_{22} x_2 \right) \\
= x_1^\top (P_{11} - P_{12} P_{22}^{-1} P_{12}^\top) x_1
\end{align*}
\]

- **An Equivalent Problem**

\[
\begin{align*}
\min & \quad x_1^\top (P_{11} - P_{12} P_{22}^{-1} P_{12}^\top) x_1 \\
\text{s.t.} & \quad f_i(x_1) \leq 0, \quad i = 1, \ldots, m
\end{align*}
\]
Epigraph Problem Form

- **Epigraph Form**

 \[
 \begin{align*}
 \text{min} & \quad t \\
 \text{s.t.} & \quad f_0(x) - t \leq 0 \\
 & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
 & \quad h_i(x) = 0, \quad i = 1, \ldots, p
 \end{align*}
 \]

- Introduce a variable \(t \in \mathbb{R} \)
- \((x, t)\) is optimal for this problem if and only if \(x\) is optimal for (1) and \(t = f_0(x)\)
- The objective function of the epigraph form problem is a **linear function** of \(x, t\)
Epigraph Problem Form

- Geometric Interpretation

Find the point in the epigraph that minimizes t
Making Constraints Implicit

- Unconstrained problem

\[
\min F(x)
\]

- \(\text{dom } F = \{x \in \text{dom } f_0 | f_i(x) \leq 0, i = 1, \ldots, m, h_i(x) = 0, i = 1, \ldots, p\}\)

- \(F(x) = f_0(x) \text{ for } x \in \text{dom } F\)

- It has not made the problem any easier

- It could make the problem more difficult, because \(F\) is probably not differentiable
Making Constraints Explicit

A Unconstrained Problem

\[\min f(x) \]

where

\[f(x) = \begin{cases}
 x^\top x & Ax = b \\
 \infty & \text{otherwise}
\end{cases} \]

An implicit equality constraint \(Ax = b \)

An Equivalent Problem

\[\min x^\top x \]

s.t. \(Ax = b \)

Objective and constraint functions are differentiable
Outline

- Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions

- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization
Problem Descriptions

- **Parameter Problem Description**
 - Functions have some analytical or closed form
 - Example: $f_0(x) = x^T P x + q^T x + r$, where $P \in S^n, q \in \mathbb{R}^n$ and $r \in \mathbb{R}$
 - Give the values of the parameters

- **Oracle Model (Black-box Model)**
 - Can only query the objective and constraint functions by oracle
 - Evaluate $f(x)$ and its gradient $\nabla f(x)$
 - Know some prior information
Outline

- Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions

- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization
Convex Optimization Problems

- **Standard Form**

\[
\begin{align*}
\min & \quad f_0(x) \\
\text{s.t.} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad a_i^T x = b_i, \quad i = 1, \ldots, p
\end{align*}
\]

- The objective function must be convex
- The inequality constraint functions must be convex
- The equality constraint functions \(h_i(x) = a_i^T x - b_i \) must be affine
Convex Optimization Problems

Properties

- Feasible set of a convex optimization problem is convex

\[\bigcap_{i=0}^{m} \text{dom } f_i \cap \bigcap_{i=1}^{m} \{x | f_i(x) \leq 0\} \cap \bigcap_{i=1}^{p} \{x | a_i^T x = b_i\} \]

- Minimize a convex function over a convex set
- ε-suboptimal set is convex
- The optimal set is convex
- If the objective is strictly convex, then the optimal set contains at most one point
Concave Maximization Problems

- **Standard Form**

 \[
 \begin{align*}
 \text{max} & \quad f_0(x) \\
 \text{s.t.} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
 & \quad a_i^T x = b_i, \quad i = 1, \ldots, p
 \end{align*}
 \]

- It is referred as a convex optimization problem if \(f_0 \) is concave and \(f_1, \ldots, f_m \) are convex

- It is readily solved by minimizing the convex objective function \(-f_0\)
Abstract From Convex Optimization Problem

- **Consider the Problem**

 \[
 \begin{align*}
 \min & \quad f_0(x) = x_1^2 + x_2^2 \\
 \text{s.t.} & \quad f_1(x) = x_1/(1 + x_2^2) \leq 0 \\
 & \quad h_1(x) = (x_1 + x_2)^2 = 0
 \end{align*}
 \]

 - Not a convex optimization problem
 - \(f_1 \) is not convex and \(h_1 \) is not affine
 - But the **feasible set** is indeed convex
 - Abstract convex optimization problem

- **An Equivalent Convex Problem**

 \[
 \begin{align*}
 \min & \quad f_0(x) = x_1^2 + x_2^2 \\
 \text{s.t.} & \quad f_1(x) = x_1 \leq 0 \\
 & \quad h_1(x) = x_1 + x_2 = 0
 \end{align*}
 \]
Outline

- Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions

- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization
Local and Global Optima

- Any locally optimal point of a convex problem is also (globally) optimal

- Proof by Contradiction
 - x is locally optimal implies:
 \[f_0(x) = \inf \{ f_0(z) \mid z \text{ feasible}, \|z - x\|_2 \leq R \} \]
 for some R
 - Suppose x is not globally optimal, i.e., there exists $f_0(y) < f_0(x)$ and $\|y - x\|_2 > R$
 - Define
 \[z = (1 - \theta)x + \theta y, \theta = \frac{R}{2\|y - x\|_2} \in (0,1) \]
Local and Global Optima

- By convexity of the feasible set, z is feasible.

- It is easy to check

$$\|z - x\|_2 = \|\theta(y - x)\|_2 = \left\| \frac{R(y - x)}{2\|y - x\|_2} \right\|_2 = \frac{R}{2} < R$$

- By convexity of f_0

$$f_0(z) \leq (1 - \theta)f_0(x) + \theta f_0(y) < f_0(x)$$

which contradicts

$$f_0(x) = \inf\{f_0(z) \mid z \text{ feasible}, \|z - x\|_2 \leq R\}$$
Outline

- Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions

- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization
An Optimality Criterion for Differentiable f_0

- Suppose f_0 is differentiable

$$f_0(y) \geq f_0(x) + \nabla f_0(x)^T (y - x), \forall x, y \in \text{dom } f_0$$
An Optimality Criterion for Differentiable f_0

- Suppose f_0 is differentiable
 \[f_0(y) \geq f_0(x) + \nabla f_0(x)^T (y - x), \forall x, y \in \text{dom } f_0 \]

- Let X denote the feasible set
 \[X = \{ x | f_i(x) \leq 0, i = 1, \ldots, m, h_i(x) = 0, i = 1, \ldots, p \} \]

- x is optimal if and only if $x \in X$ and
 \[\nabla f_0(x)^T (y - x) \geq 0 \text{ for all } y \in X \]
An Optimality Criterion for Differentiable f_0

- x is optimal if and only if $x \in X$ and
 $$\nabla f_0(x)^T(y - x) \geq 0 \text{ for all } y \in X$$

- $-\nabla f_0(x)$ defines a supporting hyperplane to the feasible set at x
Proof of Optimality Condition

Sufficient Condition

\[\nabla f_0(x)^T (y - x) \geq 0 \]
\[f_0(y) \geq f_0(x) + \nabla f_0(x)^T (y - x) \]

\[\Rightarrow f_0(y) \geq f_0(x) \]

Necessary Condition

- Suppose \(x \) is optimal but \(\exists y \in X, \nabla f_0(x)^T (y - x) < 0 \)
- Define \(z(t) = ty + (1 - t)x, t \in [0,1] \)
 \[f_0(z(0)) = f_0(x), \quad \frac{d}{dt} f_0(z(t)) \bigg|_{t=0} = \nabla f_0(x)^T (y - x) < 0 \]
- So, for small positive \(t \), \(f_0(z(t)) < f_0(x) \)
Unconstrained Problems

- x is optimal if and only if $\nabla f_0(x) = 0$
 - Consider $y = x - t\nabla f_0(x)$ and $t > 0$
 - When t is small, y is feasible
 \[
 \nabla f_0(x)^\top(y - x) = -t\|\nabla f_0(x)\|^2 \geq 0 \iff \nabla f_0(x) = 0
 \]

- Unconstrained Quadratic Optimization
 \[
 \min f_0(x) = \frac{1}{2}x^\top P x + q^\top x + r, \quad \text{where } P \in S^n_+
 \]
 - x is optimal if and only if $\nabla f_0(x) = Px + q = 0$
 - If $q \notin \mathcal{R}(P)$, no solution, f_0 is unbound below
 - If $P > 0$, unique minimizer $x^* = -P^{-1}q$
 - If P is singular, but $q \in \mathcal{R}(P)$, $X_{\text{opt}} = -P^\dagger q + \mathcal{N}(P)$
Problems with Equality Constraints Only

☐ Consider the Problem

\[\min f_0(x) \]
\[\text{s.t. } Ax = b \]

☐ \(x \) is optimal if and only if

\[\forall f_0(x)^T(y - x) \geq 0, \forall Ay = b \]
Problems with Equality Constraints Only

Consider the Problem

\[
\begin{align*}
\min & \quad f_0(x) \\
\text{s.t.} & \quad Ax = b
\end{align*}
\]

\(x\) is optimal if and only if

\(\nabla f_0(x)^\top(y - x) \geq 0, \forall Ay = b\)

\(\{y | Ay = b\} = \{x + v | v \in \mathcal{N}(A)\}\)

\(\iff \nabla f_0(x)^\top v \geq 0, \forall v \in \mathcal{N}(A)\)

\(\iff \nabla f_0(x)^\top v = 0, \forall v \in \mathcal{N}(A)\)

\(\iff \nabla f_0(x) \perp \mathcal{N}(A) \iff \nabla f_0(x) \in \mathcal{N}(A)^\perp = \mathcal{R}(A^\top)\)

\(\iff \exists v \in \mathbb{R}^p, \nabla f_0(x) + A^\top v = 0\)

Lagrange Multiplier
Optimality Condition

\(Ax = b\)

\(\nabla f_0(x) + A^\top v = 0\)
Minimization over the Nonnegative Orthant

Consider the Problem

\[
\min f_0(x) \\
\text{s.t. } x \succeq 0
\]

\(x\) is optimal if and only if

\[
\nabla f_0(x)^T(y - x) \succeq 0, \forall y \succeq 0
\]

\(\iff\)

\[
\begin{cases}
\nabla f_0(x) \succeq 0 \\
-\nabla f_0(x)^T x \succeq 0
\end{cases}
\iff
\begin{cases}
\nabla f_0(x) \succeq 0 \\
\nabla f_0(x)^T x = 0
\end{cases}
\]

The Optimality Condition

\(x \succeq 0, \nabla f_0(x) \succeq 0, x_i (\nabla f_0(x))_i = 0, i = 1, \ldots, n\)

The last condition is called complementarity
Outline

- Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions

- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization
Equivalent Convex Problems

- **Standard Form**
 \[
 \begin{align*}
 \text{min} & \quad f_0(x) \\
 \text{s.t.} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
 & \quad a_i^T x = b_i, \quad i = 1, \ldots, p
 \end{align*}
 \]

- **Eliminating Equality Constraints**
 \[
 \begin{align*}
 \text{min} & \quad f_0(Fz + x_0) \\
 \text{s.t.} & \quad f_i(Fz + x_0) \leq 0, \quad i = 1, \ldots, m
 \end{align*}
 \]
 - \(A = [a_1^T; \ldots; a_p^T], \quad b = (b_1; \ldots; b_p) \)
 - \(Ax_0 = b, \quad \mathcal{R}(F) = \mathcal{N}(A) \)
 - The composition of a convex function with an affine function is convex
Equivalent Convex Problems

- **Introducing Equality Constraints**
 - If an objective or constraint function has the form $f_i(A_i x + b_i)$, where $A_i \in \mathbb{R}^{k_i \times n}$, we can replace it with $f_i(y_i)$ and add the constraint $y_i = A_i x + b_i$, where $y_i \in \mathbb{R}^{k_i}$

- **Slack Variables**
 - Introduce new constraint $f_i(x) + s_i = 0$ and requiring that f_i is affine
 - Introduce slack variables for linear inequalities preserves convexity of a problem

- **Minimizing over Some Variables**
 - It preserves convexity. $f_0(x_1, x_2)$ needs to be jointly convex in x_1 and x_2
Equivalent Convex Problems

- **Epigraph Problem Form**

 \[
 \begin{align*}
 \text{min} & \quad t \\
 \text{s.t.} & \quad f_0(x) - t \leq 0 \\
 & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
 & \quad a_i^\top x = b_i, \quad i = 1, \ldots, p
 \end{align*}
 \]

- The objective is linear (hence convex)
- The new constraint function \(f_0(x) - t \) is also convex in \((x, t) \)
- This problem is convex
- Any convex optimization problem is readily transformed to one with linear objective.
Outline

- Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions

- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization
Quasiconvex Optimization

Standard Form

\[
\begin{align*}
\min & \quad f_0(x) \\
\text{s.t.} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

- \(f_0 \) is quasiconvex and \(f_1, \ldots, f_m \) are convex
- Have locally optimal solutions that are not (globally) optimal
Quasiconvex Optimization

- **Standard Form**

 \[
 \min \quad f_0(x) \\
 \text{s.t.} \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
 Ax = b
 \]

 - \(f_0 \) is quasiconvex and \(f_1, \ldots, f_m \) are convex
 - Have locally optimal solutions that are not (globally) optimal

- **Optimality Conditions for Differentiable \(f_0 \)**

 - Let \(X \) denote the feasible set, \(x \) is optimal if
 \[
 x \in X, \quad \nabla f_0(x)^T(y - x) > 0 \quad \text{for all} \quad y \in X \setminus \{x\}
 \]
 1. Only a sufficient condition
 2. Requires \(\nabla f_0(x) \) to be nonzero
Representation via family of convex functions

- Represent the sublevel sets of a quasiconvex function f via inequalities of convex functions.
 - $\phi_t : \mathbb{R}^n \to \mathbb{R}$ is convex, $t \in \mathbb{R}$
 \[f(x) \leq t \iff \phi_t(x) \leq 0 \]
 - ϕ_t is a nonincreasing function of t
 - Examples
 \[\phi_t(x) = \begin{cases}
 0 & f(x) \leq t \\
 \infty & \text{otherwise}
 \end{cases} \]
 \[\phi_t(x) = \text{dist}(x, \{z | f(z) \leq t\}) \]
Let $\phi_t : \mathbb{R}^n \to \mathbb{R}, t \in \mathbb{R}$, be a family of convex functions such that

$$f_0(x) \leq t \iff \phi_t(x) \leq 0$$

and for each x, $\phi_s(x) \leq \phi_t(x)$ whenever $s \geq t$

- Let p^* be the optimal value of quasiconvex problem
- Consider the feasibility problem

\[
\begin{align*}
\text{find} & \quad x \\
\text{s. t.} & \quad \phi_t(x) \leq 0 \\
& \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

- If it is feasible, $p^* \leq t$. Conversely, $p^* \geq t$
Bisection for Quasiconvex Optimization

Algorithm

given \(l \leq p^*, u \geq p^* \), tolerance \(\epsilon > 0 \)

repeat
1. \(t := (l + u)/2 \)
2. Solve the convex feasibility problem
3. if it is feasible, \(u := t \); else \(l := t \)

until \(u - l \leq \epsilon \)

- The interval \([l, u]\) is guaranteed to contain \(p^* \)
- The length of the interval after \(k \) iterations is \(2^{-k}(u - l) \)
- \(\lceil \log_2((u - l)/\epsilon) \rceil \) iterations are required
Bisection for Quasiconvex Optimization

- An ϵ-suboptimal Solution

- $l \leq p^* \leq u$
- $u - l \leq \epsilon$
- $u - p^* \leq \epsilon$

\[
\begin{align*}
\text{find} & \quad x \\
\text{s.t.} & \quad \phi_u(x) \leq 0 \\
& \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

- $f_0(x) \leq u = p^* + u - p^* \leq p^* + \epsilon$
Summary

- Optimization Problems
 - Basic Terminology
 - Equivalent Problems
 - Problem Descriptions

- Convex Optimization
 - Standard Form
 - Local and Global Optima
 - An Optimality Criterion
 - Equivalent Convex Problems
 - Quasiconvex Optimization