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Basic Norm Approximation

 Norm Approximation Problem

 are problem data
 is the variable
 is a norm on 
 Approximation solution of , in 

 Residual

 A Convex Problem
 , the optimal value is 0
 , more interesting ( )

min 𝐴𝑥 𝑏

𝑟 𝐴𝑥 𝑏



Basic Norm Approximation

 Approximation Interpretation

 are the columns of 
 Approximate the vector by a linear 

combination

 Regression problem
 𝑎 , … , 𝑎 are regressors
 𝑥 𝑎 ⋯ 𝑥 𝑎 is the regression of 𝑏

𝐴𝑥 𝑥 𝑎 ⋯ 𝑥 𝑎



Basic Norm Approximation

 Estimation Interpretation
 Consider a linear measurement model

 is a vector measurement
 is a vector of parameters to be 

estimated
 is some measurement error that is 

unknown, but presumed to be small
 Assume smaller values of are more 

plausible

𝑦 𝐴𝑥 𝑣

𝑥 argmin 𝐴𝑧 𝑦



Basic Norm Approximation

 Geometric Interpretation
 Consider the subspace , and 

a point 
 A projection of the point onto the 

subspace , in the norm 

 Parametrize an arbitrary element of 
as , we see that norm approximation 
is equivalent to projection

min 𝑢 𝑏
s. t. 𝑢 ∈ 𝒜 



Basic Norm Approximation

 Weighted Norm Approximation 
Problems

 is called the weighting matrix
 The weighting matrix is often diagonal

 A norm approximation problem with 
norm , and data 

 A norm approximation problem with data 
and , and the -weighted norm

𝑧 𝑊𝑧

min 𝑊 𝐴𝑥 𝑏



Basic Norm Approximation

 Least-Squares Approximation

 The minimization of a convex quadratic 
function

 A point minimizes if and only if

 Normal equations

𝑓 𝑥 𝑥 𝐴 𝐴𝑥 2𝑏 𝐴𝑥 𝑏 𝑏

𝛻𝑓 𝑥 2𝐴 𝐴𝑥 2𝐴 𝑏 0

𝐴 𝐴𝑥 𝐴 𝑏

min 𝐴𝑥 𝑏 𝑟 𝑟 ⋯ 𝑟



Basic Norm Approximation

 Chebyshev or Minimax Approximation

 Be cast as an LP

with variables and 
 Sum of Absolute Residuals Approximation

 Be cast as an LP

with variables 𝑥 ∈ 𝐑 and 𝑡 ∈ 𝐑

min 𝐴𝑥 𝑏 𝑟 ⋯ 𝑟  

min 𝑡                                     
s. t. 𝑡1 ≼ 𝐴𝑥 𝑏 ≼ 𝑡1 

min 𝐴𝑥 𝑏 max 𝑟 , … , 𝑟  

min 1 𝑡                           
s. t. 𝑡 ≼ 𝐴𝑥 𝑏 ≼ 𝑡 
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-norm Approximation

 -norm approximation, for 

 The equivalent problem with objective

 A separable and symmetric function of the 
residuals

 Objective depends only on the amplitude
distribution of the residuals

𝑟 ⋯ 𝑟 /

𝑟 ⋯ 𝑟



Penalty Function Approximation

 The Problem

 is called the penalty function
 is convex
 is symmetric, nonnegative, and 

satisfies 

 A penalty function assesses a cost or 
penalty for each component of residual

min 𝜙 𝑟 ⋯ 𝜙 𝑟
s. t. 𝑟 𝐴𝑥 𝑏            



Example

 -norm Approximation

 Quadratic penalty: 
 Absolute value penalty: 

 Deadzone-linear Penalty Function

 The Log Barrier Penalty Function

𝜙 𝑢 𝑢

𝜙 𝑢 0               𝑢 𝑎
𝑢 𝑎    𝑢 𝑎

𝜙 𝑢 𝑎 log 1 𝑢/𝑎     𝑢 𝑎
∞                                         𝑢 𝑎



Example

 Log barrier penalty function assesses an infinite 
penalty for residuals larger than 𝑎

 Log barrier function is very close to the 
quadratic penalty for |𝑢/𝑎| 0.25



Discussions

 Roughly speaking, is a measure of 
our dislike of a residual of value 

 If is very small for small , it means 
we care very little if residuals have 
these values

 If grows rapidly as becomes 
large, it means we have a strong dislike 
for large residuals

 If becomes infinite outside some 
interval, it means that residuals outside 
the interval are unacceptable



Discussions

 、
 For small 𝑢 we have 𝜙 𝑢 ≫ 𝜙 𝑢 , so ℓ -norm 

approximation puts relatively larger emphasis 
on small residuals 

 The optimal residual for the ℓ -norm 
approximation problem will tend to have more 
zero and very small residuals

 For large 𝑢 we have 𝜙 𝑢 ≫ 𝜙 𝑢 , so ℓ -norm 
approximation puts less weight on large 
residuals

 The ℓ -norm solution will tend to have 
relatively fewer large residuals



Example

 , 



Observations of Penalty 
Functions
 The ℓ -norm penalty puts the most weight on small 

residuals and the least weight on large residuals.
 The ℓ -norm penalty puts very small weight on 

small residuals, but strong weight on large 
residuals.

 The deadzone-linear penalty function puts no 
weight on residuals smaller than 0.5, and relatively 
little weight on large residuals.

 The log barrier penalty puts weight very much like 
the ℓ -norm penalty for small residuals, but puts 
very strong weight on residuals larger than around 
0.8, and infinite weight on residuals larger than 1.



Example

 , 



Observations of Amplitude 
Distributions
 For the ℓ -optimal solution, many residuals are 

either zero or very small. The ℓ -optimal solution 
also has relatively more large residuals.

 The ℓ -norm approximation has many modest 
residuals, and relatively few larger ones.

 For the deadzone-linear penalty, we see that 
many residuals have the value 0.5, right at the 
edge of the ‘free’ zone, for which no penalty is 
assessed.

 For the log barrier penalty, we see that no 
residuals have a magnitude larger than 1, but 
otherwise the residual distribution is similar to the 
residual distribution for ℓ -norm approximation.
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Approximation with Constraints

 Add Constraints to

 Rule out certain unacceptable 
approximations of the vector 

 Ensure that the approximator satisfies 
certain properties

 Prior knowledge of the vector to be 
estimated

 Prior knowledge of the estimation error 
 Determine the projection of a point on 

a set more complicated than a subspace

min 𝐴𝑥 𝑏



Approximation with Constraints

 Nonnegativity Constraints on 
Variables

 Estimate a vector of parameters known 
to be nonnegative

 Determine the projection of a vector 
onto the cone generated by the columns 
of 

 Approximate using a nonnegative 
linear combination of the columns of 

min 𝐴𝑥 𝑏
s. t. 𝑥 ≽ 0     



Approximation with Constraints

 Variable Bounds

 Prior knowledge of intervals in which 
each variable lies

 Determine the projection of a vector 
onto the image of a box under the linear 
mapping induced by 

min 𝐴𝑥 𝑏
s. t. 𝑙 ≼ 𝑥 ≼ 𝑢



Approximation with Constraints

 Probability Distribution

 Estimation of proportions or relative frequencies
 Approximate 𝑏 by a convex combination of the 

columns of 𝐴

 Norm Ball Constraint

 𝑥 is prior guess of what the parameter 𝑥 is, and 
𝑑 is the maximum plausible deviation

min 𝐴𝑥 𝑏             
s. t. 𝑥 ≽ 0, 1 𝑥 1 

min 𝐴𝑥 𝑏          
s. t. 𝑥 𝑥 𝑑 
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Least-norm Problems

 Basic least-norm Problem



 is a norm on 
 The solution is called a least-norm 

solution of 
 A convex optimization problem
 Interesting when 
 When the equation is underdetermined

min 𝑥       
s. t. 𝐴𝑥 𝑏



Least-norm Problems

 Reformulation as Norm 
Approximation Problem
 Let be any solution of 
 Let be a matrix whose columns 

are a basis for the nullspace of . 

 The least-norm problem can be 
expressed as 

𝑥|𝐴𝑥 𝑏 𝑥 𝑍𝑢|𝑢 ∈ 𝐑

min 𝑥 𝑍𝑢



Least-norm Problems

 Estimation Interpretation
 We have 𝑚 𝑛 perfect linear measurement, 

given by 𝐴𝑥 𝑏
 Our measurements do not completely 

determine 𝑥

 Suppose our prior information, is that 𝑥 is 
more likely to be small than large

 Choose the parameter vector 𝑥 which is 
smallest among all parameter vectors that 
are consistent with the measurements



Least-norm Problems

 Geometric Interpretation
 The feasible set is affine
 The objective is the distance between 

and the point 

 Find the point in the affine set with 
minimum distance to 

 Determine the projection of the point 0 
on the affine set 



Least-norm Problems

 Least-squares Solution of Linear 
Equations

 The optimality conditions

 𝑣 is the dual variable
 The Solution

min 𝑥     
s. t. 𝐴𝑥 𝑏

2𝑥∗ 𝐴 𝑣∗ 0 𝐴𝑥∗ 𝑏

𝑥∗ 1
2 𝐴 𝑣∗ 1

2 𝐴𝐴 𝑣∗ 𝑏

𝑣∗ 2 𝐴𝐴 𝑏, 𝑥∗ 𝐴 𝐴𝐴 𝑏



Least-norm Problems

 Least-penalty Problems

 is convex, nonnegative and 
satisfies 

 The penalty function value 
quantifies our dislike of a component of 
having value 

 Find that has least total penalty, 
subject to the constraint 

min 𝜙 𝑥 ⋯ 𝜙 𝑥
s. t. 𝐴𝑥 𝑏                      



Least-norm Problems

 Sparse Solutions via Least -norm

 Tend to produce a solution with a large 
number of components equal to 

 Tend to produce sparse solutions of 
, often with nonzero components

min 𝑥     
s. t. 𝐴𝑥 𝑏



Least-norm Problems

 Sparse Solutions via Least -norm

 Find solutions of that have 
only nonzero components
 is a submatrix of 
 and subvector of 
 Solve 
 If there is a solution, we are done

 Complexity: 

min 𝑥     
s. t. 𝐴𝑥 𝑏
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Bi-criterion Formulation

 A (convex) Vector Optimization 
Problem with Two Objectives

 Find a vector that is small
 Make the residual small
 Optimal trade-off between the two 

objectives
 The minimum value of 𝑥 is 0 and the residual 

norm is 𝑏
 Let 𝐶 denote the set of minimizers of 𝐴𝑥 𝑏 , 

and then any minimum norm point in 𝐶 is 
Pareto optimal

min w. r. t. 𝐑 𝐴𝑥 𝑏 , 𝑥



Regularization

 Weighted Sum of the Objectives

 is a problem parameter
 A common scalarization method used to 

solve the bi-criterion problem
 As varies over , the solution 

traces out the optimal trade-off curve
 Weighted Sum of Squared Norms

min 𝐴𝑥 𝑏 𝛾 𝑥

min 𝐴𝑥 𝑏 𝛾 𝑥



Regularization

 Tikhonov Regularization

 Analytical solution

 Since for any , the 
Tikhonov regularized least-squares 
solution requires no rank assumptions on 
the matrix 

min 𝐴𝑥 𝑏 𝛿 𝑥 𝑥 𝐴 𝐴 𝛿𝐼 𝑥 2𝑏 𝐴𝑥 𝑏 𝑏 

𝑥 𝐴 𝐴 𝛿𝐼 𝐴 𝑏



Regularization

 -norm Regularization

 Find a sparse solution
 The residual is measured with the Euclidean 

norm and the regularization is done with an 
-norm

 By varying we can sweep out the optimal 
trade-off curve between and 
 As an approximation of the optimal trade-off 

curve between 𝐴𝑥 𝑏 and the cardinality 
card 𝑥 of the vector x

min 𝐴𝑥 𝑏 𝛾 𝑥



Example

 Regressor Selection Problem

 One straightforward approach is to check 
every possible sparsity pattern in with 

nonzero entries
 For a fixed sparsity pattern, we can find 

the optimal by solving a least-squares 
problem

 Complexity: 

min 𝐴𝑥 𝑏      
s. t. card 𝑥 𝑘 



Example

 Regressor Selection Problem

 A good heuristic approach is to solve the 
following problem for different 

 Find the smallest value of that results 
in a solution with 

 We then fix this sparsity pattern and find 
the value of that minimizes 

min 𝐴𝑥 𝑏      
s. t. card 𝑥 𝑘 

min 𝐴𝑥 𝑏 𝛾 𝑥



Example
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Projection on a Set

 The distance of a point to a 
closed set , in the norm 

 The infimum is always achieved

 Projection of on 
 Any point which is closest to 

 Can be more than one projection of on 
 If is closed and convex, and the norm is 

strictly convex, there is exactly one

dist 𝑥 , 𝐶 inf 𝑥 𝑥 |𝑥 ∈ 𝐶

𝑧 𝑥 dist 𝑥 , 𝐶



Projection on a Set

 The distance of a point to a 
closed set , in the norm 

 The infimum is always achieved
 to denote the projection 

of on 

 We refer to as projection on 

𝑃 𝑥 ∈ 𝐶, 𝑥 𝑃 𝑥 dist 𝑥 , 𝐶

𝑃 𝑥 argmin 𝑥 𝑥 |𝑥 ∈ 𝐶

dist 𝑥 , 𝐶 inf 𝑥 𝑥 |𝑥 ∈ 𝐶



Example

 Projection on the Unit Square in 
 Consider the boundary of the unit square 

in , i.e., , take 

 In the -norm, the four points , 
, , and are closest to 

, with distance , so we have 
in the -norm

 In the -norm, all points in lie at a 
distance 1 from , and 



Example

 Projection onto Rank- Matrices
 The set of matrices with rank less 

than or equal to 

with 
 The Projection of on in 
 SVD of 𝑋

𝐶 𝑋 ∈ 𝐑 |rank 𝑋 𝑘

𝑃 𝑥 𝜎 𝑢 𝑣
,

𝑋 𝜎 𝑢 𝑣



Outline

 Norm Approximation
 Basic Norm Approximation
 Penalty Function Approximation
 Approximation with Constraints

 Least-norm Problems

 Regularized Approximation

 Projection
 Projection on a Set
 Projection on a Convex Set



Projection on a Convex Set

 is Convex
 Represent by a set of linear 

equalities and convex inequalities

 Projection of on 

 A convex optimization problem
 Feasible if and only if is nonempty

𝐴𝑥 𝑏, 𝑓 𝑥 0, 𝑖 1, … , 𝑚

min 𝑥 𝑥                          
s. t. 𝑓 𝑥 0, 𝑖 1, … , 𝑚

𝐴𝑥 𝑏                           



Example

 Euclidean Projection on a Polyhedron
 Projection of on 

 Projection of on

 Projection of on

min 𝑥 𝑥
s. t. 𝐴𝑥 ≼ 𝑏  

𝑃 𝑥 𝑥
𝑏 𝑎 𝑥 𝑎

𝑎

𝑃 𝑥 𝑥
𝑏 𝑎 𝑥 𝑎

𝑎
, 𝑎 𝑥 𝑏

𝑥 ,                              𝑎 𝑥 𝑏



Example

 Euclidean Projection on a Polyhedron
 Projection of on 

 Property of Euclidean Projection
 is Convex

for all , 

𝑃 𝑥
𝑙 , 𝑥 𝑙          

𝑥 , 𝑙 𝑥 𝑢
𝑢 , 𝑢 𝑥         

𝑃 𝑥 𝑃 𝑥 𝑥 𝑦



Example

 Euclidean Projection on a Proper Cone
 Projection of on a proper cone 

 KKT Conditions

 Introduce and 

 Decompose into two orthogonal elements
 One nonnegative with respect to 𝐾
 The other nonnegative with respect to 𝐾∗

min 𝑥 𝑥
s. t. 𝑥 ≽ 0    

𝑥 ≽ 0, 𝑥 𝑥 𝑧, 𝑧 ≽ ∗ 0, 𝑧 𝑥 0

𝑥 𝑥 𝑥 , 𝑥 ≽ 0,   𝑥 ≽ ∗ 0, 𝑥 𝑥 0



Example



 Replace each negative component with 
 and 

 The eigendecomposition of is 

 Drop terms associated with negative 
eigenvalues

𝑃 𝑥 max 𝑥 , 0

𝑃 𝑋 max 0, 𝜆 𝑣 𝑣
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