Applications

Lijun Zhang
zlj@nju.edu.cn
http://cs.nju.edu. cn/zlj

Outline

\square Norm Approximation

- Basic Norm Approximation
- Penalty Function Approximation
- Approximation with Constraints
\square Least-norm Problems
\square Regularized Approximation
\square Projection
- Projection on a Set
- Projection on a Convex Set

Basic Norm Approximation

\square Norm Approximation Problem

$$
\min \|A x-b\|
$$

■ $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$ are problem data
■ $x \in \mathbf{R}^{n}$ is the variable

- \|•\| is a norm on \mathbf{R}^{n}
- Approximation solution of $A x \approx b$, in $\|\cdot\|$
\square Residual

$$
r=A x-b
$$

\square A Convex Problem

- $b \in \mathcal{R}(A)$, the optimal value is 0

■ $b \notin \mathcal{R}(A)$, more interesting $(m>n)$

Basic Norm Approximation

\square Approximation Interpretation

$$
A x=x_{1} a_{1}+\cdots+x_{n} a_{n}
$$

- $a_{1}, \ldots, a_{n} \in \mathbf{R}^{m}$ are the columns of A
- Approximate the vector b by a linear combination
- Regression problem
$\checkmark a_{1}, \ldots, a_{n}$ are regressors
$\checkmark x_{1} a_{1}+\cdots+x_{n} a_{n}$ is the regression of b

Basic Norm Approximation

\square Estimation Interpretation
■ Consider a linear measurement model

$$
y=A x+v
$$

- $y \in \mathbf{R}^{m}$ is a vector measurement
- $x \in \mathbf{R}^{n}$ is a vector of parameters to be estimated
- $v \in \mathbf{R}^{m}$ is some measurement error that is unknown, but presumed to be small
- Assume smaller values of v are more plausible

$$
\hat{x}=\operatorname{argmin}_{z}\|A z-y\|
$$

Basic Norm Approximation

\square Geometric Interpretation
■ Consider the subspace $\mathcal{A}=\mathcal{R}(A) \subseteq \mathbf{R}^{m}$, and a point $b \in \mathbf{R}^{m}$

- A projection of the point b onto the subspace \mathcal{A}, in the norm $\|\cdot\|$

$$
\begin{array}{cl}
\min & \|u-b\| \\
\text { s.t. } & u \in \mathcal{A}
\end{array}
$$

- Parametrize an arbitrary element of $\mathcal{R}(A)$ as $u=A x$, we see that norm approximation is equivalent to projection

Basic Norm Approximation

\square Weighted Norm Approximation Problems
$\min \|W(A x-b)\|$

- $W \in \mathbf{R}^{m \times m}$ is called the weighting matrix
\checkmark The weighting matrix is often diagonal
- A norm approximation problem with norm $\|\cdot\|$, and data $\tilde{A}=W A, \tilde{b}=W b$

■ A norm approximation problem with data A and b, and the W-weighted norm

$$
\|z\|_{W}=\|W z\|
$$

Basic Norm Approximation

\square Least-Squares Approximation

$$
\min \|A x-b\|_{2}^{2}=r_{1}^{2}+r_{2}^{2}+\cdots+r_{m}^{2}
$$

- The minimization of a convex quadratic function

$$
f(x)=x^{\top} A^{\top} A x-2 b^{\top} A x+b^{\top} b
$$

- A point x minimizes f if and only if

$$
\nabla f(x)=2 A^{\top} A x-2 A^{\top} b=0
$$

■ Normal equations

$$
A^{\top} A x=A^{\top} b
$$

Basic Norm Approximation

\square Chebyshev or Minimax Approximation $\min \|A x-b\|_{\infty}=\max \left\{\left|r_{1}\right|, \ldots,\left|r_{m}\right|\right\}$

- Be cast as an LP
$\min t$

$$
\text { s.t. } \quad-t 1 \preccurlyeq A x-b \leqslant t 1
$$

with variables $x \in \mathbf{R}^{n}$ and $t \in \mathbf{R}$
\square Sum of Absolute Residuals Approximation

$$
\min \|A x-b\|_{1}=\left|r_{1}\right|+\cdots+\left|r_{m}\right|
$$

- Be cast as an LP

$$
\min 1^{\top} t
$$

$$
\text { s.t. } \quad-t \preccurlyeq A x-b \preccurlyeq t
$$

with variables $x \in \mathbf{R}^{n}$ and $t \in \mathbf{R}^{m}$

Outline

\square Norm Approximation

- Basic Norm Approximation
- Penalty Function Approximation
- Approximation with Constraints
\square Least-norm Problems
\square Regularized Approximation
\square Projection
- Projection on a Set
- Projection on a Convex Set

l_{p}-norm Approximation

$\square l_{p}$-norm approximation, for $1 \leq p \leq \infty$

$$
\left(\left|r_{1}\right|^{p}+\cdots+\left|r_{m}\right|^{p}\right)^{1 / p}
$$

\square The equivalent problem with objective

$$
\left|r_{1}\right|^{p}+\cdots+\left|r_{m}\right|^{p}
$$

- A separable and symmetric function of the residuals

■ Objective depends only on the amplitude distribution of the residuals

Penalty Function Approximations

\square The Problem

$$
\begin{array}{cl}
\min & \phi\left(r_{1}\right)+\cdots+\phi\left(r_{m}\right) \\
\text { s.t. } & r=A x-b
\end{array}
$$

■ $\phi: \mathbf{R} \rightarrow \mathbf{R}$ is called the penalty function

- ϕ is convex

■ ϕ is symmetric, nonnegative, and satisfies $\phi(0)=0$

- A penalty function assesses a cost or penalty for each component of residual

Example

$\square \ell_{p}$-norm Approximation

$$
\phi(u)=|u|^{p}
$$

■ Quadratic penalty: $\phi(u)=u^{2}$

- Absolute value penalty: $\phi(u)=|u|$
\square Deadzone-linear Penalty Function

$$
\phi(u)= \begin{cases}0 & |u| \leq a \\ |u|-a & |u|>a\end{cases}
$$

\square The Log Barrier Penalty Function

$$
\phi(u)= \begin{cases}-a^{2} \log \left(1-(u / a)^{2}\right) & |u|<a \\ \infty & |u| \geq a\end{cases}
$$

Example

Figure 6.1 Some common penalty functions: the quadratic penalty function $\phi(u)=u^{2}$, the deadzone-linear penalty function with deadzone width $a=$
$1 / 4$, and the \log barrier penalty function with limit $a=1$.
■ Log barrier penalty function assesses an infinite penalty for residuals larger than a

- Log barrier function is very close to the quadratic penalty for $|u / a| \leq 0.25$

Discussions

\square Roughly speaking, $\phi(u)$ is a measure of our dislike of a residual of value u
\square If ϕ is very small for small u, it means we care very little if residuals have these values
\square If $\phi(u)$ grows rapidly as u becomes large, it means we have a strong dislike for large residuals
\square If ϕ becomes infinite outside some interval, it means that residuals outside the interval are unacceptable

Discussions

$\square \phi_{1}(u)=|u|, \phi_{2}(u)=u^{2}$

- For small u we have $\phi_{1}(u) \gg \phi_{2}(u)$, so ℓ_{1}-norm approximation puts relatively larger emphasis on small residuals
- The optimal residual for the ℓ_{1}-norm approximation problem will tend to have more zero and very small residuals
- For large u we have $\phi_{2}(u) \gg \phi_{1}(u)$, so ℓ_{1}-norm approximation puts less weight on large residuals
- The ℓ_{2}-norm solution will tend to have relatively fewer large residuals

Example

$\square A \in \mathbf{R}^{100 \times 30}, b \in \mathbf{R}^{100}$

Observations of Penalty Functions

\square The ℓ_{1}-norm penalty puts the most weight on small residuals and the least weight on large residuals.
\square The ℓ_{2}-norm penalty puts very small weight on small residuals, but strong weight on large residuals.
\square The deadzone-linear penalty function puts no weight on residuals smaller than 0.5 , and relatively little weight on large residuals.
\square The log barrier penalty puts weight very much like the ℓ_{2}-norm penalty for small residuals, but puts very strong weight on residuals larger than around 0.8 , and infinite weight on residuals larger than 1.

Example

$\square A \in \mathbf{R}^{100 \times 30}, b \in \mathbf{R}^{100}$

Observations of Amplitude Distributions

\square For the ℓ_{1}-optimal solution, many residuals are either zero or very small. The ℓ_{1}-optimal solution also has relatively more large residuals.
\square The ℓ_{2}-norm approximation has many modest residuals, and relatively few larger ones.
\square For the deadzone-linear penalty, we see that many residuals have the value ± 0.5, right at the edge of the 'free' zone, for which no penalty is assessed.
\square For the log barrier penalty, we see that no residuals have a magnitude larger than 1, but otherwise the residual distribution is similar to the residual distribution for ℓ_{2}-norm approximation.

Outline

\square Norm Approximation

- Basic Norm Approximation
- Penalty Function Approximation
- Approximation with Constraints
\square Least-norm Problems
\square Regularized Approximation
\square Projection
- Projection on a Set
- Projection on a Convex Set

Approximation with Constraints

\square Add Constraints to

$$
\min \|A x-b\|
$$

■ Rule out certain unacceptable approximations of the vector b

- Ensure that the approximator $A x$ satisfies certain properties
- Prior knowledge of the vector x to be estimated
■ Prior knowledge of the estimation error v
- Determine the projection of a point b on a set more complicated than a subspace

Approximation with Constraints

\square Nonnegativity Constraints on
Variables

$$
\begin{array}{cl}
\min & \|A x-b\| \\
\text { s.t. } & x \geqslant 0
\end{array}
$$

- Estimate a vector x of parameters known to be nonnegative
- Determine the projection of a vector b onto the cone generated by the columns of A
- Approximate b using a nonnegative linear combination of the columns of A

Approximation with Constraints

\square Variable Bounds

$$
\begin{array}{cl}
\min & \|A x-b\| \\
\text { s.t. } & l \leqslant x \leqslant u
\end{array}
$$

- Prior knowledge of intervals in which each variable lies
- Determine the projection of a vector b onto the image of a box under the linear mapping induced by A

Approximation with Constraints

\square Probability Distribution

$$
\begin{array}{cl}
\text { min } & \|A x-b\| \\
\text { s.t. } & x \geqslant 0,1^{\top} x=1
\end{array}
$$

■ Estimation of proportions or relative frequencies
■ Approximate b by a convex combination of the columns of A
\square Norm Ball Constraint

$$
\begin{array}{cl}
\min & \|A x-b\| \\
\text { s.t. } & \left\|x-x_{0}\right\| \leq d
\end{array}
$$

- x_{0} is prior guess of what the parameter x is, and d is the maximum plausible deviation

Outline

\square Norm Approximation

- Basic Norm Approximation
- Penalty Function Approximation
- Approximation with Constraints
\square Least-norm Problems
\square Regularized Approximation
\square Projection
- Projection on a Set
- Projection on a Convex Set

Least-norm Problems

\square Basic least-norm Problem

$$
\begin{array}{cl}
\min & \|x\| \\
\text { s.t. } & A x=b
\end{array}
$$

■ $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$
■ $x \in \mathbf{R}^{n},\|\cdot\|$ is a norm on \mathbf{R}^{n}

- The solution is called a least-norm solution of $A x=b$
- A convex optimization problem
- Interesting when $m<n$
\checkmark When the equation is underdetermined

Least-norm Problems

\square Reformulation as Norm
Approximation Problem

- Let x_{0} be any solution of $A x=b$
- Let $Z \in \mathbf{R}^{n \times k}$ be a matrix whose columns are a basis for the nullspace of A.

$$
\{x \mid A x=b\}=\left\{x_{0}+Z u \mid u \in \mathbf{R}^{k}\right\}
$$

- The least-norm problem can be expressed as

$$
\min \left\|x_{0}+Z u\right\|
$$

Least-norm Problems

\square Estimation Interpretation
■ We have $m<n$ perfect linear measurement, given by $A x=b$
■ Our measurements do not completely determine x

■ Suppose our prior information, is that x is more likely to be small than large

- Choose the parameter vector x which is smallest among all parameter vectors that are consistent with the measurements

Least-norm Problems

\square Geometric Interpretation

- The feasible set $\{x \mid A x=b\}$ is affine
- The objective is the distance between x and the point 0

■ Find the point in the affine set with minimum distance to 0

- Determine the projection of the point 0 on the affine set $\{x \mid A x=b\}$

Least-norm Problems

\square Least-squares Solution of Linear Equations min $\|x\|_{2}^{2}$

$$
\text { s.t. } \quad A x=b
$$

■ The optimality conditions

$$
2 x^{*}+A^{\top} v^{*}=0 \quad A x^{*}=b
$$

$\checkmark v$ is the dual variable

- The Solution

$$
\begin{aligned}
x^{*} & =-\frac{1}{2} A^{\top} v^{*} \Rightarrow-\frac{1}{2} A A^{\top} v^{*}=b \\
\Rightarrow \quad v^{*} & =-2\left(A A^{\top}\right)^{-1} b, x^{*}=A^{\top}\left(A A^{\top}\right)^{-1} b
\end{aligned}
$$

Least-norm Problems

\square Least-penalty Problems

$$
\begin{array}{cl}
\min & \phi\left(x_{1}\right)+\cdots+\phi\left(x_{n}\right) \\
\text { s.t. } & A x=b
\end{array}
$$

- $\phi: \mathbf{R} \rightarrow \mathbf{R}$ is convex, nonnegative and satisfies $\phi(0)=0$
- The penalty function value $\phi(u)$ quantifies our dislike of a component of x having value u
- Find x that has least total penalty, subject to the constraint $A x=b$

Least-norm Problems

\square Sparse Solutions via Least ℓ_{1}-norm

$\min \quad\|x\|_{1}$
s.t. $\quad A x=b$

- Tend to produce a solution x with a large number of components equal to 0
- Tend to produce sparse solutions of $A x=$ b, often with m nonzero components

Least-norm Problems

\square Sparse Solutions via Least ℓ_{1}-norm

$$
\begin{array}{cl}
\min & \|x\|_{1} \\
\text { s.t. } & A x=b
\end{array}
$$

\square Find solutions of $A x=b$ that have only m nonzero components

- \tilde{A} is a submatrix of A

■ \tilde{x} and subvector of x

- Solve $\tilde{A} \tilde{x}=b$
\checkmark If there is a solution, we are done
- Complexity: $n!/(m!(n-m)!)$

Outline

\square Norm Approximation

- Basic Norm Approximation
- Penalty Function Approximation
- Approximation with Constraints
\square Least-norm Problems
\square Regularized Approximation
\square Projection
- Projection on a Set
- Projection on a Convex Set

Bi -criterion Formulation

\square A (convex) Vector Optimization Problem with Two Objectives

$$
\min \left(\text { w. r.t. } \mathbf{R}_{+}^{2}\right) \quad(\|A x-b\|,\|x\|)
$$

■ Find a vector x that is small
■ Make the residual $A x-b$ small
■ Optimal trade-off between the two objectives
\checkmark The minimum value of $\|x\|$ is 0 and the residual norm is $\|b\|$
\checkmark Let C denote the set of minimizers of $\|A x-b\|$, and then any minimum norm point in C is Pareto optimal

Regularization

\square Weighted Sum of the Objectives

$$
\min \quad\|A x-b\|+\gamma\|x\|
$$

- $\gamma>0$ is a problem parameter
- A common scalarization method used to solve the bi-criterion problem
- As γ varies over $(0, \infty)$, the solution traces out the optimal trade-off curve
\square Weighted Sum of Squared Norms

$$
\min \|A x-b\|^{2}+\gamma\|x\|^{2}
$$

Regularization

\square Tikhonov Regularization
$\min \|A x-b\|_{2}^{2}+\delta\|x\|_{2}^{2}=x^{\top}\left(A^{\top} A+\delta I\right) x-2 b^{\top} A x+b^{\top} b$

- Analytical solution

$$
x=\left(A^{\top} A+\delta I\right)^{-1} A^{\top} b
$$

■ Since $A^{\top} A+\delta I \succ 0$ for any $\delta \succ 0$, the Tikhonov regularized least-squares solution requires no rank assumptions on the matrix A

Regularization

$\square \ell_{1}$-norm Regularization

$$
\min \|A x-b\|_{2}+\gamma\|x\|_{1}
$$

- Find a sparse solution
- The residual is measured with the Euclidean norm and the regularization is done with an ℓ_{1}-norm
- By varying γ we can sweep out the optimal trade-off curve between $\|A x-b\|_{2}$ and $\|x\|_{1}$
\checkmark As an approximation of the optimal trade-off curve between $\|A x-b\|_{2}$ and the cardinality $\operatorname{card}(x)$ of the vector x

Example

\square Regressor Selection Problem

$$
\begin{array}{cl}
\min & \|A x-b\|_{2} \\
\text { s.t. } & \operatorname{card}(x) \leq k
\end{array}
$$

- One straightforward approach is to check every possible sparsity pattern in x with k nonzero entries
- For a fixed sparsity pattern, we can find the optimal x by solving a least-squares problem
■ Complexity: $n!/(k!(n-k)!)$

Example

\square Regressor Selection Problem

$$
\begin{array}{cl}
\min & \|A x-b\|_{2} \\
\text { s.t. } & \operatorname{card}(x) \leq k
\end{array}
$$

■ A good heuristic approach is to solve the following problem for different γ

$$
\min \|A x-b\|_{2}+\gamma\|x\|_{1}
$$

- Find the smallest value of γ that results in a solution with $\operatorname{card}(x)=k$
- We then fix this sparsity pattern and find the value of x that minimizes $\|A x-b\|_{2}$

Example

Figure 6.7 Sparse regressor selection with a matrix $A \in \mathbf{R}^{10 \times 20}$. The circles on the dashed line are the Pareto optimal values for the trade-off between the residual $\|A x-b\|_{2}$ and the number of nonzero elements card (x). The points indicated by circles on the solid line are obtained via the ℓ_{1}-norm regularized heuristic.

Outline

\square Norm Approximation

- Basic Norm Approximation
- Penalty Function Approximation
- Approximation with Constraints
\square Least-norm Problems
\square Regularized Approximation
\square Projection
- Projection on a Set
- Projection on a Convex Set

Projection on a Set

\square The distance of a point $x_{0} \in \mathbf{R}^{n}$ to a closed set $C \subseteq \mathbf{R}^{n}$, in the norm $\|\cdot\|$

$$
\operatorname{dist}\left(x_{0}, C\right)=\inf \left\{\left\|x_{0}-x\right\| \mid x \in C\right\}
$$

- The infimum is always achieved
\square Projection of x_{0} on C
■ Any point $z \in C$ which is closest to x_{0}

$$
\left\|z-x_{0}\right\|=\operatorname{dist}\left(x_{0}, C\right)
$$

- Can be more than one projection of x_{0} on C
- If C is closed and convex, and the norm is strictly convex, there is exactly one

Projection on a Set

\square The distance of a point $x_{0} \in \mathbf{R}^{n}$ to a closed set $C \subseteq \mathbf{R}^{n}$, in the norm $\|\cdot\|$

$$
\operatorname{dist}\left(x_{0}, C\right)=\inf \left\{\left\|x_{0}-x\right\| \mid x \in C\right\}
$$

- The infimum is always achieved
$\square P_{C}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ to denote the projection of x_{0} on C

$$
\begin{gathered}
P_{C}\left(x_{0}\right) \in C,\left\|x_{0}-P_{C}\left(x_{0}\right)\right\|=\operatorname{dist}\left(x_{0}, C\right) \\
P_{C}\left(x_{0}\right)=\operatorname{argmin}\left\{\left\|x-x_{0}\right\| \mid x \in C\right\}
\end{gathered}
$$

■ We refer to P_{C} as projection on C

Example

\square Projection on the Unit Square in \mathbf{R}^{2}

- Consider the boundary of the unit square in \mathbf{R}^{2}, i.e., $C=\left\{x \in \mathbf{R}^{2} \mid\|x\|_{\infty}=1\right\}$, take $x_{0}=0$

■ In the ℓ_{1}-norm, the four points (1,0), $(0,-1),(-1,0)$, and $(0,1)$ are closest to $x_{0}=$ 0 , with distance 1 , so we have $\operatorname{dist}\left(x_{0}, C\right)=$ 1 in the ℓ_{1}-norm

- In the ℓ_{∞}-norm, all points in C lie at a distance 1 from x_{0}, and $\operatorname{dist}\left(x_{0}, C\right)=1$

Example

\square Projection onto Rank- k Matrices

- The set of $m \times n$ matrices with rank less than or equal to k

$$
C=\left\{X \in \mathbf{R}^{m \times n} \mid \operatorname{rank} X \leq k\right\}
$$

with $k \leq \min \{m, n\}$
■ The Projection of $X_{0} \in \mathbf{R}^{m \times n}$ on C in $\|\cdot\|_{2}$
\checkmark SVD of X_{0}

$$
\begin{gathered}
\text { of } X_{0} X_{0}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\top} \\
P_{C}\left(x_{0}\right)=\sum_{i=1}^{\min \{k, r\}} \sigma_{i} u_{i} v_{i}^{\top}
\end{gathered}
$$

Outline

\square Norm Approximation

- Basic Norm Approximation
- Penalty Function Approximation
- Approximation with Constraints
\square Least-norm Problems
\square Regularized Approximation
\square Projection
- Projection on a Set
- Projection on a Convex Set

Projection on a Convex Set

$\square C$ is Convex

- Represent C by a set of linear equalities and convex inequalities

$$
A x=b, \quad f_{i}(x) \leq 0, i=1, \ldots, m
$$

\square Projection of x_{0} on C

$$
\begin{array}{cl}
\min & \left\|x-x_{0}\right\| \\
\text { s.t. } & f_{i}(x) \leq 0, i=1, \ldots, m \\
& A x=b
\end{array}
$$

■ A convex optimization problem
■ Feasible if and only if C is nonempty

Example

\square Euclidean Projection on a Polyhedron
■ Projection of x_{0} on $C=\{x \mid A x \leqslant b\}$

$$
\min \quad\left\|x-x_{0}\right\|_{2}^{2}
$$

$$
\text { s.t. } \quad A x \preccurlyeq b
$$

- Projection of x_{0} on $C=\left\{x \mid a^{\top} x=b\right\}$

$$
P_{C}\left(x_{0}\right)=x_{0}+\frac{\left(b-a^{\top} x_{0}\right) a}{\|a\|_{2}^{2}}
$$

- Projection of x_{0} on $C=\left\{x \mid a^{\top} x \leq b\right\}$

$$
P_{C}\left(x_{0}\right)= \begin{cases}x_{0}+\frac{\left(b-a^{\top} x_{0}\right) a}{\|a\|_{2}^{2}}, & a^{\top} x_{0}>b \\ x_{0}, & a^{\top} x_{0} \leq b\end{cases}
$$

Example

\square Euclidean Projection on a Polyhedron - Projection of x_{0} on $C=\{x \mid l \preccurlyeq x \preccurlyeq u\}$

$$
P_{C}\left(x_{0}\right)_{k}=\left\{\begin{array}{cl}
l_{k}, & x_{0 k} \leq l_{k} \\
x_{0 k}, & l_{k} \leq x_{0 k} \leq u_{k} \\
u_{k}, & u_{k} \leq x_{0 k}
\end{array}\right.
$$

\square Property of Euclidean Projection

- C is Convex

$$
\left\|P_{C}(x)-P_{C}(x)\right\|_{2} \leq\|x-y\|_{2}
$$

for all x, y

Example

\square Euclidean Projection on a Proper Cone
■ Projection of x_{0} on a proper cone K

$$
\begin{array}{cl}
\min & \left\|x-x_{0}\right\|_{2}^{2} \\
\text { s.t. } & x \succcurlyeq_{K} 0
\end{array}
$$

■ KKT Conditions

$$
x \succcurlyeq_{K} 0, \quad x-x_{0}=z, \quad z \succcurlyeq_{K^{*}} 0, \quad z^{\top} x=0
$$

■ Introduce $x_{+}=x$ and $x_{-}=z$

$$
x_{0}=x_{+}-x_{-}, \quad x_{+} \succcurlyeq_{K} 0, \quad x_{-} \succcurlyeq_{K^{*}} 0, \quad x_{+}^{\top} x_{-}=0
$$

- Decompose x_{0} into two orthogonal elements
\checkmark One nonnegative with respect to K
\checkmark The other nonnegative with respect to K^{*}

Example

$\square K=\mathbf{R}_{+}^{n}$

$$
P_{K}\left(x_{0}\right)_{k}=\max \left\{x_{0 k}, 0\right\}
$$

■ Replace each negative component with 0
$\square K=\mathbf{S}_{+}^{n}$ and $\|\cdot\|_{F}$

$$
P_{K}\left(X_{0}\right)=\sum_{i=1}^{n} \max \left\{0, \lambda_{i}\right\} v_{i} v_{i}^{\top}
$$

- The eigendecomposition of X_{0} is $X_{0}=$ $\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{\top}$
■ Drop terms associated with negative eigenvalues

Summary

\square Norm Approximation

- Basic Norm Approximation
- Penalty Function Approximation
- Approximation with Constraints
\square Least-norm Problems
\square Regularized Approximation
\square Projection
- Projection on a Set
- Projection on a Convex Set

